A role for the MRN complex in ATR activation via TOPBP1 recruitment

The MRN (MRE11-RAD50-NBS1) complex has been implicated in many aspects of the DNA damage response. It has key roles in sensing and processing DNA double-strand breaks, as well as in activation of ATM (ataxia telangiectasia mutated). We reveal a function for MRN in ATR (ATM- and RAD3-related) activat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell Jg. 50; H. 1; S. 116
Hauptverfasser: Duursma, Anja M, Driscoll, Robert, Elias, Josh E, Cimprich, Karlene A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 11.04.2013
Schlagworte:
ISSN:1097-4164, 1097-4164
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The MRN (MRE11-RAD50-NBS1) complex has been implicated in many aspects of the DNA damage response. It has key roles in sensing and processing DNA double-strand breaks, as well as in activation of ATM (ataxia telangiectasia mutated). We reveal a function for MRN in ATR (ATM- and RAD3-related) activation by using defined ATR-activating DNA structures in Xenopus egg extracts. Strikingly, we demonstrate that MRN is required for recruitment of TOPBP1 to an ATR-activating structure that contains a single-stranded DNA (ssDNA) and a double-stranded DNA (dsDNA) junction and that this recruitment is necessary for phosphorylation of CHK1. We also show that the 911 (RAD9-RAD1-HUS1) complex is not required for TOPBP1 recruitment but is essential for TOPBP1 function. Thus, whereas MRN is required for TOPBP1 recruitment at an ssDNA-to-dsDNA junction, 911 is required for TOPBP1 "activation." These findings provide molecular insights into how ATR is activated.
AbstractList The MRN (MRE11-RAD50-NBS1) complex has been implicated in many aspects of the DNA damage response. It has key roles in sensing and processing DNA double-strand breaks, as well as in activation of ATM (ataxia telangiectasia mutated). We reveal a function for MRN in ATR (ATM- and RAD3-related) activation by using defined ATR-activating DNA structures in Xenopus egg extracts. Strikingly, we demonstrate that MRN is required for recruitment of TOPBP1 to an ATR-activating structure that contains a single-stranded DNA (ssDNA) and a double-stranded DNA (dsDNA) junction and that this recruitment is necessary for phosphorylation of CHK1. We also show that the 911 (RAD9-RAD1-HUS1) complex is not required for TOPBP1 recruitment but is essential for TOPBP1 function. Thus, whereas MRN is required for TOPBP1 recruitment at an ssDNA-to-dsDNA junction, 911 is required for TOPBP1 "activation." These findings provide molecular insights into how ATR is activated.
The MRN (MRE11-RAD50-NBS1) complex has been implicated in many aspects of the DNA damage response. It has key roles in sensing and processing DNA double-strand breaks, as well as in activation of ATM (ataxia telangiectasia mutated). We reveal a function for MRN in ATR (ATM- and RAD3-related) activation by using defined ATR-activating DNA structures in Xenopus egg extracts. Strikingly, we demonstrate that MRN is required for recruitment of TOPBP1 to an ATR-activating structure that contains a single-stranded DNA (ssDNA) and a double-stranded DNA (dsDNA) junction and that this recruitment is necessary for phosphorylation of CHK1. We also show that the 911 (RAD9-RAD1-HUS1) complex is not required for TOPBP1 recruitment but is essential for TOPBP1 function. Thus, whereas MRN is required for TOPBP1 recruitment at an ssDNA-to-dsDNA junction, 911 is required for TOPBP1 "activation." These findings provide molecular insights into how ATR is activated.The MRN (MRE11-RAD50-NBS1) complex has been implicated in many aspects of the DNA damage response. It has key roles in sensing and processing DNA double-strand breaks, as well as in activation of ATM (ataxia telangiectasia mutated). We reveal a function for MRN in ATR (ATM- and RAD3-related) activation by using defined ATR-activating DNA structures in Xenopus egg extracts. Strikingly, we demonstrate that MRN is required for recruitment of TOPBP1 to an ATR-activating structure that contains a single-stranded DNA (ssDNA) and a double-stranded DNA (dsDNA) junction and that this recruitment is necessary for phosphorylation of CHK1. We also show that the 911 (RAD9-RAD1-HUS1) complex is not required for TOPBP1 recruitment but is essential for TOPBP1 function. Thus, whereas MRN is required for TOPBP1 recruitment at an ssDNA-to-dsDNA junction, 911 is required for TOPBP1 "activation." These findings provide molecular insights into how ATR is activated.
Author Cimprich, Karlene A
Elias, Josh E
Driscoll, Robert
Duursma, Anja M
Author_xml – sequence: 1
  givenname: Anja M
  surname: Duursma
  fullname: Duursma, Anja M
  organization: Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
– sequence: 2
  givenname: Robert
  surname: Driscoll
  fullname: Driscoll, Robert
– sequence: 3
  givenname: Josh E
  surname: Elias
  fullname: Elias, Josh E
– sequence: 4
  givenname: Karlene A
  surname: Cimprich
  fullname: Cimprich, Karlene A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23582259$$D View this record in MEDLINE/PubMed
BookMark eNpNkFtLw0AUhBep2Iv-A5F99CXx7C2bPNbiDaotpT6HTXKCW5Js3WyK_nsLVhAGZh4-BmamZNS5Dgm5ZhAzYMndLm5dU2ITc2AihqMgOSMTBpmOJEvk6F8ek2nf7wCYVGl2QcZcqJRzlU3IYk69a5DWztPwgfR180ZL1-4b_KK2o_Pthpoy2IMJ1nX0YA3drtb3a0Y9ln6wocUuXJLz2jQ9Xp18Rt4fH7aL52i5enpZzJdRqQQLkU6rQqHMJKYSUiYKAI2sqo1CndW6Bs2hqKBSCkxRcKwzJROdGJNVqk4F8hm5_e3de_c5YB_y1vbHBxrToRv6nAmuNddCyCN6c0KHosUq33vbGv-d_w3nP7ymXAo
CitedBy_id crossref_primary_10_1038_ng_3790
crossref_primary_10_1038_onc_2015_107
crossref_primary_10_1007_s00412_015_0535_8
crossref_primary_10_3390_genes5010147
crossref_primary_10_1038_s44318_023_00003_2
crossref_primary_10_1128_JVI_01412_14
crossref_primary_10_1080_15384101_2015_1128595
crossref_primary_10_1016_j_dnarep_2023_103524
crossref_primary_10_1158_1541_7786_MCR_15_0281
crossref_primary_10_1038_cdd_2015_81
crossref_primary_10_1038_s41388_019_0980_6
crossref_primary_10_1080_15384101_2016_1218102
crossref_primary_10_1016_j_dnarep_2015_11_019
crossref_primary_10_1016_j_pbiomolbio_2021_03_007
crossref_primary_10_3389_fcell_2022_1071786
crossref_primary_10_1016_j_molcel_2017_06_023
crossref_primary_10_1016_j_canlet_2020_08_042
crossref_primary_10_1016_j_molcel_2019_06_023
crossref_primary_10_1016_j_pbiomolbio_2020_11_005
crossref_primary_10_1016_j_bbamcr_2023_119484
crossref_primary_10_1016_j_dnarep_2025_103884
crossref_primary_10_1371_journal_pgen_1005645
crossref_primary_10_1038_ncb2897
crossref_primary_10_3390_cancers16203536
crossref_primary_10_7554_eLife_77956
crossref_primary_10_1016_j_jbc_2022_101992
crossref_primary_10_1016_j_dnarep_2020_102973
crossref_primary_10_1007_s00018_014_1666_4
crossref_primary_10_3390_genes12040552
crossref_primary_10_4161_cc_26061
crossref_primary_10_1016_j_molcel_2014_12_018
crossref_primary_10_1093_nar_gkaa508
crossref_primary_10_1038_s41467_024_50836_6
crossref_primary_10_1038_s41467_019_13981_x
crossref_primary_10_1002_embj_201386041
crossref_primary_10_1007_s42764_021_00045_y
crossref_primary_10_1016_j_dnarep_2014_05_001
crossref_primary_10_1016_j_devcel_2022_02_013
crossref_primary_10_4161_15384101_2014_967076
crossref_primary_10_1093_nar_gkw615
crossref_primary_10_1038_s41598_017_03322_7
crossref_primary_10_1093_nar_gkv369
crossref_primary_10_1128_JVI_00517_14
crossref_primary_10_1083_jcb_201810058
crossref_primary_10_1093_nar_gkv084
crossref_primary_10_1371_journal_pgen_1005346
crossref_primary_10_3389_fcell_2024_1422520
crossref_primary_10_1073_pnas_1706392114
crossref_primary_10_1038_nrm_2017_67
crossref_primary_10_1016_j_dnarep_2015_04_016
crossref_primary_10_3390_genes4030388
crossref_primary_10_1371_journal_pone_0271905
crossref_primary_10_1146_annurev_biochem_062917_012415
crossref_primary_10_1007_s13277_013_1038_y
crossref_primary_10_1016_j_yexcr_2014_09_030
crossref_primary_10_1093_nar_gkv691
crossref_primary_10_1038_ncb3415
crossref_primary_10_3390_biom5042877
crossref_primary_10_1074_jbc_M113_542787
crossref_primary_10_1016_j_molcel_2021_08_009
crossref_primary_10_1016_j_virol_2015_01_011
crossref_primary_10_1016_j_ydbio_2017_03_033
crossref_primary_10_1073_pnas_1712530114
crossref_primary_10_1080_15384101_2019_1598728
crossref_primary_10_1074_jbc_RA119_008154
crossref_primary_10_1007_s00018_016_2262_6
crossref_primary_10_1002_embj_201387440
crossref_primary_10_1158_0008_5472_CAN_13_3604
crossref_primary_10_3390_ijms23105679
crossref_primary_10_1038_s41388_022_02580_8
crossref_primary_10_1007_s42764_020_00015_w
crossref_primary_10_1007_s00204_020_02712_7
crossref_primary_10_1038_ncb3422
crossref_primary_10_1080_15384101_2020_1831256
crossref_primary_10_1016_j_dnarep_2014_06_004
crossref_primary_10_1073_pnas_2422720122
crossref_primary_10_15252_embr_201846263
crossref_primary_10_1016_j_dnarep_2013_07_009
crossref_primary_10_1038_s41598_020_80626_1
crossref_primary_10_1016_j_cell_2021_10_002
crossref_primary_10_1093_nar_gkz518
crossref_primary_10_1093_hmg_ddu141
crossref_primary_10_1016_j_cub_2016_10_030
crossref_primary_10_1016_j_celrep_2024_114064
crossref_primary_10_1101_gad_236745_113
crossref_primary_10_1146_annurev_genet_121415_121658
crossref_primary_10_1093_nar_gky020
crossref_primary_10_1007_s42764_020_00026_7
crossref_primary_10_1016_j_cell_2014_05_046
crossref_primary_10_1158_0008_5472_CAN_14_3790
crossref_primary_10_1074_jbc_M116_729194
crossref_primary_10_1158_0008_5472_CAN_16_3232
crossref_primary_10_3389_fcell_2021_731308
crossref_primary_10_3390_genes6030858
crossref_primary_10_3389_fcell_2020_00711
crossref_primary_10_1016_j_molcel_2020_12_049
crossref_primary_10_1093_nar_gkz009
crossref_primary_10_1016_j_cellsig_2014_01_006
crossref_primary_10_1016_j_dnarep_2023_103461
crossref_primary_10_1016_j_yexcr_2014_10_010
crossref_primary_10_1093_nar_gkae082
crossref_primary_10_1101_gad_238535_114
crossref_primary_10_26508_lsa_201800096
crossref_primary_10_1016_j_molcel_2017_05_015
crossref_primary_10_1038_s41467_019_09641_9
crossref_primary_10_3390_v9100268
ContentType Journal Article
Copyright Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2013 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.molcel.2013.03.006
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
ExternalDocumentID 23582259
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES016486
– fundername: NIEHS NIH HHS
  grantid: ES016486
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
5VS
62-
7-5
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAQFI
AAVLU
AAXUO
ABJNI
ABMAC
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
7X8
AAYWO
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c531t-78db5e494e840813b007e1dfa5e79f7f0720bd0d550abb2ef954676aa9d5f83e2
IEDL.DBID 7X8
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317558300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4164
IngestDate Sun Nov 09 13:43:15 EST 2025
Thu Apr 03 07:05:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-78db5e494e840813b007e1dfa5e79f7f0720bd0d550abb2ef954676aa9d5f83e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.molcel.2013.03.006
PMID 23582259
PQID 1327727334
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1327727334
pubmed_primary_23582259
PublicationCentury 2000
PublicationDate 2013-04-11
PublicationDateYYYYMMDD 2013-04-11
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2013
SSID ssj0014589
Score 2.45728
Snippet The MRN (MRE11-RAD50-NBS1) complex has been implicated in many aspects of the DNA damage response. It has key roles in sensing and processing DNA double-strand...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 116
SubjectTerms Animals
Ataxia Telangiectasia Mutated Proteins
Binding Sites
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Line, Tumor
Checkpoint Kinase 1
Chromosomal Proteins, Non-Histone - metabolism
DNA, Single-Stranded - chemistry
DNA, Single-Stranded - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Enzyme Activation
Humans
MRE11 Homologue Protein
Multiprotein Complexes
Nucleic Acid Conformation
Phosphorylation
Protein Binding
Protein Kinases - metabolism
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
RNA Interference
Transfection
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
Xenopus laevis - genetics
Xenopus laevis - metabolism
Xenopus Proteins - genetics
Xenopus Proteins - metabolism
Title A role for the MRN complex in ATR activation via TOPBP1 recruitment
URI https://www.ncbi.nlm.nih.gov/pubmed/23582259
https://www.proquest.com/docview/1327727334
Volume 50
WOSCitedRecordID wos000317558300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7qKHhxX8aNCF6DbZM2zUlGcfAytQwjzK2kTQIFbcfZ0H_vS9phToLgpbdAeXnL97Z8CN1JX8GtUkY4BCPCVBARKUROeKg5jTytQ6Yc2QRPkng8FmlbcJu1Y5Urn-gctaoLWyO_h6yJ21hL2cPkk1jWKNtdbSk0NlGHApSxhsnH6y4CCx0Fnm2yEgAebLU65-a7Pur3Qtvmg0-bZ06j30GmCzb9_f_-5gHaa2Em7jV6cYg2dHWEdhriye9j9NTDdqwQA2LFgADxYJhgN1yuv3BZ4d5oiO3CQ1OuxctS4tFr-pj6GPzjdFG6yfQT9NZ_Hj29kJZOgRRgaHPCY5WHmgmmIamLfQoGx7WvjIRrEYYbjwderjwFOYvM80AbEYIXjaQUKjQx1cEp2qrqSp8jHEWAKiFTMjL2mBRFzkzBaO7TSEbaaNVFtyvpZKCutgchK10vZtlaPl101og4mzTvamRuaxfSsYs_nL5Eu4EjpmDE969Qx4Cx6mu0XSzn5Wx64_QAvkk6-AHpAbp_
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+role+for+the+MRN+complex+in+ATR+activation+via+TOPBP1+recruitment&rft.jtitle=Molecular+cell&rft.au=Duursma%2C+Anja+M&rft.au=Driscoll%2C+Robert&rft.au=Elias%2C+Josh+E&rft.au=Cimprich%2C+Karlene+A&rft.date=2013-04-11&rft.eissn=1097-4164&rft.volume=50&rft.issue=1&rft.spage=116&rft_id=info:doi/10.1016%2Fj.molcel.2013.03.006&rft_id=info%3Apmid%2F23582259&rft_id=info%3Apmid%2F23582259&rft.externalDocID=23582259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4164&client=summon