A hybrid analytical-numerical method for solving advection-dispersion problems on a half-line

•Solution of the advection-dispersion equation on the half-line via the Unified Transform (Fokas Method).•Combines complex analysis with numerics.•Compared to traditional approaches, the unified transform avoids the solution of ordinary differential equations.•Results are successfully compared to ot...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer Vol. 139; pp. 482 - 491
Main Authors: de Barros, F.P.J., Colbrook, M.J., Fokas, A.S.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.08.2019
Elsevier BV
Subjects:
ISSN:0017-9310, 1879-2189
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Solution of the advection-dispersion equation on the half-line via the Unified Transform (Fokas Method).•Combines complex analysis with numerics.•Compared to traditional approaches, the unified transform avoids the solution of ordinary differential equations.•Results are successfully compared to other existing solutions.•Illustrates the advantage of the numerical implementation of the Fokas Method. This paper employs the unified transform, also known as the Fokas method, to solve the advection-dispersion equation on the half-line. This method combines complex analysis with numerics. Compared to classical approaches used to solve linear partial differential equations (PDEs), the unified transform avoids the solution of ordinary differential equations and, more importantly, constructs an integral representation of the solution in the complex plane which is uniformly convergent at the boundaries. As a consequence, such solutions are well suited for numerical computations. Indeed, the numerical evaluation of the solution requires only the computation of a single contour integral involving an integrand which decays exponentially fast for large values of the integration variable. A novel contribution of this paper, with respect to the solution of linear evolution PDEs in general, and the implementation of the unified transform in particular, is the following: using the advection-dispersion equation as a generic example, it is shown that if the transforms of the given data can be computed analytically, then the unified transform yields a fast and accurate method that converges exponentially with the number of evaluations N yet only has complexity O(N). Furthermore, if the transforms are computed numerically using M evaluations, the unified transform gives rise to a method with complexity O(NM). Results are successfully compared to other existing solutions.
AbstractList •Solution of the advection-dispersion equation on the half-line via the Unified Transform (Fokas Method).•Combines complex analysis with numerics.•Compared to traditional approaches, the unified transform avoids the solution of ordinary differential equations.•Results are successfully compared to other existing solutions.•Illustrates the advantage of the numerical implementation of the Fokas Method. This paper employs the unified transform, also known as the Fokas method, to solve the advection-dispersion equation on the half-line. This method combines complex analysis with numerics. Compared to classical approaches used to solve linear partial differential equations (PDEs), the unified transform avoids the solution of ordinary differential equations and, more importantly, constructs an integral representation of the solution in the complex plane which is uniformly convergent at the boundaries. As a consequence, such solutions are well suited for numerical computations. Indeed, the numerical evaluation of the solution requires only the computation of a single contour integral involving an integrand which decays exponentially fast for large values of the integration variable. A novel contribution of this paper, with respect to the solution of linear evolution PDEs in general, and the implementation of the unified transform in particular, is the following: using the advection-dispersion equation as a generic example, it is shown that if the transforms of the given data can be computed analytically, then the unified transform yields a fast and accurate method that converges exponentially with the number of evaluations N yet only has complexity O(N). Furthermore, if the transforms are computed numerically using M evaluations, the unified transform gives rise to a method with complexity O(NM). Results are successfully compared to other existing solutions.
This paper employs the unified transform, also known as the Fokas method, to solve the advection-dispersion equation on the half-line. This method combines complex analysis with numerics. Compared to classical approaches used to solve linear partial differential equations (PDEs), the unified transform avoids the solution of ordinary differential equations and, more importantly, constructs an integral representation of the solution in the complex plane which is uniformly convergent at the boundaries. As a consequence, such solutions are well suited for numerical computations. Indeed, the numerical evaluation of the solution requires only the computation of a single contour integral involving an integrand which decays exponentially fast for large values of the integration variable. A novel contribution of this paper, with respect to the solution of linear evolution PDEs in general, and the implementation of the unified transform in particular, is the following: using the advection-dispersion equation as a generic example, it is shown that if the transforms of the given data can be computed analytically, then the unified transform yields a fast and accurate method that converges exponentially with the number of evaluations N yet only has complexity O(N). Furthermore, if the transforms are computed numerically using M evaluations, the unified transform gives rise to a method with complexity O(NM). Results are successfully compared to other existing solutions.
Author Fokas, A.S.
de Barros, F.P.J.
Colbrook, M.J.
Author_xml – sequence: 1
  givenname: F.P.J.
  surname: de Barros
  fullname: de Barros, F.P.J.
  email: fbarros@usc.edu
  organization: Sonny Astani Dept. of Civil and Environmental Engineering, University of Southern California, Los Angeles, USA
– sequence: 2
  givenname: M.J.
  surname: Colbrook
  fullname: Colbrook, M.J.
  email: m.colbrook@damtp.cam.ac.uk
  organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
– sequence: 3
  givenname: A.S.
  surname: Fokas
  fullname: Fokas, A.S.
  organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
BookMark eNqVkM9LwzAYhoNMcJv-DwEvXlqTtumPm2M4fzDwokcJafrFprTJTLrB_ntT5kkvevnyhrw8fHkWaGasAYRuKIkpofltF-uuBTEOwvvRCeMVuDghtIoJiwktz9CclkUVJbSsZmhOCC2iKqXkAi2876YryfI5el_h9lg73WBhRH8ctRR9ZPYDuCnhAcbWNlhZh73tD9p8YNEcQI7amqjRfgfOh4h3ztY9DB6HLHArehX12sAlOlei93D1fS7R2-b-df0YbV8entarbSRZSseoSDPJZJLVMhcqzLqSTIFsirSGKmM5YUmWCiEzSmpWZmWuGEsrKapQbhSt0yW6PnHDHp978CPv7N6FD3meJCxnYZRJaN2dWtJZ7x0ovnN6EO7IKeGTVN7x31L5JJUTxoPUgNj8QEg9islGqOv-P6DnEwiCloMOr15qMBIa7YJe3lj9d9gXaGGphg
CitedBy_id crossref_primary_10_1103_PhysRevFluids_6_044501
crossref_primary_10_1515_zna_2020_0106
crossref_primary_10_1080_00207179_2023_2297982
crossref_primary_10_1088_1361_6544_ac0f4f
crossref_primary_10_1016_j_pce_2022_103255
crossref_primary_10_1111_sapm_12464
crossref_primary_10_1007_s00208_023_02698_4
crossref_primary_10_1111_sapm_12322
crossref_primary_10_1007_s00033_023_02174_8
crossref_primary_10_1142_S0218202525500149
crossref_primary_10_1016_j_scitotenv_2025_179176
crossref_primary_10_1029_2019WR025586
crossref_primary_10_3934_eect_2025041
crossref_primary_10_1111_ejss_13547
crossref_primary_10_1093_imanum_drab007
crossref_primary_10_1002_zamm_202300614
crossref_primary_10_1007_s42985_024_00296_w
crossref_primary_10_1063_5_0221578
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122244
crossref_primary_10_1111_sapm_12452
crossref_primary_10_3390_axioms9030089
crossref_primary_10_1002_mma_10303
crossref_primary_10_1016_j_padiff_2025_101144
crossref_primary_10_3934_math_2025862
crossref_primary_10_1007_s44198_022_00030_3
crossref_primary_10_1093_imamat_hxac030
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120569
crossref_primary_10_1002_mma_9919
Cites_doi 10.1017/S0956792513000223
10.1029/WR017i003p00555
10.1137/06067016X
10.1016/j.envsoft.2005.02.002
10.1016/j.icheatmasstransfer.2010.12.036
10.1016/j.ijheatmasstransfer.2009.02.002
10.1016/j.apm.2006.10.024
10.1016/j.aml.2014.06.006
10.1090/S0002-9947-1928-1501444-8
10.1016/0021-9045(83)90078-3
10.1137/0911001
10.1029/WR018i006p01634
10.1029/2008JF001222
10.1146/annurev.fl.19.010187.001151
10.1016/j.cej.2013.01.095
10.1029/WR025i012p02407
10.1002/2016WR018907
10.1098/rspa.2013.0605
10.1098/rspa.1953.0139
10.1016/0009-2509(78)85196-3
10.1017/S0956792517000316
10.1093/imanum/drx030
10.1029/2011WR011168
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Aug 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2019.05.018
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 491
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2019_05_018
S0017931018355480
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
H8D
KR7
L7M
SSH
ID FETCH-LOGICAL-c531t-734c5c24bc6af4bcb9c5fecd73be945605243aac410b58486f5539ca9f4bdf1b3
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473381300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Fri Jul 25 23:44:46 EDT 2025
Sat Nov 29 07:30:41 EST 2025
Tue Nov 18 21:10:22 EST 2025
Fri Feb 23 02:22:42 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Advection-dispersion equation
Unified transform
Fokas method
Analytical solution
Environmental flows
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c531t-734c5c24bc6af4bcb9c5fecd73be945605243aac410b58486f5539ca9f4bdf1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.repository.cam.ac.uk/handle/1810/295867
PQID 2256522582
PQPubID 2045464
PageCount 10
ParticipantIDs proquest_journals_2256522582
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_018
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2019_05_018
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2019_05_018
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Kalimeris (b0205) 2010
M. van Genuchten, W. Alves, Analytical solutions of the one-dimensional convective-dispersive solute transport equation, Technical Bulletins (157268).
Glaser, Liu, Rokhlin (b0165) 2007; 29
Barry, Sposito (b0060) 1989; 25
V. Ganti, M.M. Meerschaert, E. Foufoula-Georgiou, E. Viparelli, G. Parker, Normal and anomalous diffusion of gravel tracer particles in rivers, J. Geophys. Res.: Earth Surface 115(F2).
Fokas (b0145) 1997; Vol. 453
Sudicky, Frind (b0045) 1982; 18
Lee (b0025) 1998
Deconinck, Pelloni, Sheils (b0110) 2014; 470
Carslaw, Jaeger (b0090) 1959
Ogata, Banks (b0010) 1961; vol. 411
Rubol, Battiato, de Barros (b0080) 2016; 52
Huybrechs, Opsomer (b0175) 2017; 38
de Barros, Cotta (b0075) 2007; 31
Fokas (b0105) 2008
Sphaier, Cotta, Naveira-Cotta, Quaresma (b0185) 2011; 38
Uspensky (b0150) 1928; 30
Townsend, Trogdon, Olver (b0170) 2015; 36
de Barros, Mills, Cotta (b0070) 2006; 21
Spence (b0200) 2011
Tang, Frind, Sudicky (b0040) 1981; 17
Lubinsky (b0155) 1983; 39
Mastroianni, Monegato (b0160) 1994
Taylor (b0005) 1953; 219
Dagan (b0055) 1987; 19
Kesici, Pelloni, Pryer, Smith (b0130) 2018; 29
Fischer, List, Koh, Imberger, Brooks (b0065) 1979
Crank (b0095) 1979
P.D. Miller, D.A. Smith, The diffusion equation with nonlocal data, Available from: arXiv preprint arXiv:1708.00972.
Skeel, Berzins (b0180) 1990; 11
Pelloni (b0190) 2004; vol. 136
Mantzavinos, Fokas (b0125) 2013; 24
Sheils, Deconinck (b0115) 2014; 37
Asvestas, Sifalakis, Papadopoulou, Saridakis (b0135) 2014; vol. 490
Guerrero, Pimentel, Skaggs, Van Genuchten (b0030) 2009; 52
Guerrero, Pontedeiro, van Genuchten, Skaggs (b0035) 2013; 221
Kreft, Zuber (b0020) 1978; 33
D. Roubinet, J.-R. Dreuzy, D. Tartakovsky, Semi-analytical solutions for solute transport and exchange in fractured porous media, Water Resour. Res. 48(1).
Ozisik (b0100) 1993
Flyer, Fokas (b0120) 2008; vol. 464
M.J. Colbrook, Z.I. Botev, K. Kuritz, S. MacNamara, Kernel density estimation with linked boundary conditions, Available from: arXiv preprint arXiv:1809.07735.
10.1016/j.ijheatmasstransfer.2019.05.018_b0015
Guerrero (10.1016/j.ijheatmasstransfer.2019.05.018_b0035) 2013; 221
de Barros (10.1016/j.ijheatmasstransfer.2019.05.018_b0070) 2006; 21
Lubinsky (10.1016/j.ijheatmasstransfer.2019.05.018_b0155) 1983; 39
Townsend (10.1016/j.ijheatmasstransfer.2019.05.018_b0170) 2015; 36
Tang (10.1016/j.ijheatmasstransfer.2019.05.018_b0040) 1981; 17
10.1016/j.ijheatmasstransfer.2019.05.018_b0195
10.1016/j.ijheatmasstransfer.2019.05.018_b0050
Ozisik (10.1016/j.ijheatmasstransfer.2019.05.018_b0100) 1993
Skeel (10.1016/j.ijheatmasstransfer.2019.05.018_b0180) 1990; 11
Crank (10.1016/j.ijheatmasstransfer.2019.05.018_b0095) 1979
Fokas (10.1016/j.ijheatmasstransfer.2019.05.018_b0145) 1997; Vol. 453
Rubol (10.1016/j.ijheatmasstransfer.2019.05.018_b0080) 2016; 52
Sheils (10.1016/j.ijheatmasstransfer.2019.05.018_b0115) 2014; 37
Ogata (10.1016/j.ijheatmasstransfer.2019.05.018_b0010) 1961; vol. 411
Taylor (10.1016/j.ijheatmasstransfer.2019.05.018_b0005) 1953; 219
Uspensky (10.1016/j.ijheatmasstransfer.2019.05.018_b0150) 1928; 30
Mastroianni (10.1016/j.ijheatmasstransfer.2019.05.018_b0160) 1994
Flyer (10.1016/j.ijheatmasstransfer.2019.05.018_b0120) 2008; vol. 464
Asvestas (10.1016/j.ijheatmasstransfer.2019.05.018_b0135) 2014; vol. 490
Dagan (10.1016/j.ijheatmasstransfer.2019.05.018_b0055) 1987; 19
Glaser (10.1016/j.ijheatmasstransfer.2019.05.018_b0165) 2007; 29
Kreft (10.1016/j.ijheatmasstransfer.2019.05.018_b0020) 1978; 33
Lee (10.1016/j.ijheatmasstransfer.2019.05.018_b0025) 1998
Kesici (10.1016/j.ijheatmasstransfer.2019.05.018_b0130) 2018; 29
Spence (10.1016/j.ijheatmasstransfer.2019.05.018_b0200) 2011
Guerrero (10.1016/j.ijheatmasstransfer.2019.05.018_b0030) 2009; 52
Sphaier (10.1016/j.ijheatmasstransfer.2019.05.018_b0185) 2011; 38
de Barros (10.1016/j.ijheatmasstransfer.2019.05.018_b0075) 2007; 31
Sudicky (10.1016/j.ijheatmasstransfer.2019.05.018_b0045) 1982; 18
10.1016/j.ijheatmasstransfer.2019.05.018_b0085
10.1016/j.ijheatmasstransfer.2019.05.018_b0140
Pelloni (10.1016/j.ijheatmasstransfer.2019.05.018_b0190) 2004; vol. 136
Mantzavinos (10.1016/j.ijheatmasstransfer.2019.05.018_b0125) 2013; 24
Barry (10.1016/j.ijheatmasstransfer.2019.05.018_b0060) 1989; 25
Deconinck (10.1016/j.ijheatmasstransfer.2019.05.018_b0110) 2014; 470
Huybrechs (10.1016/j.ijheatmasstransfer.2019.05.018_b0175) 2017; 38
Fischer (10.1016/j.ijheatmasstransfer.2019.05.018_b0065) 1979
Carslaw (10.1016/j.ijheatmasstransfer.2019.05.018_b0090) 1959
Kalimeris (10.1016/j.ijheatmasstransfer.2019.05.018_b0205) 2010
Fokas (10.1016/j.ijheatmasstransfer.2019.05.018_b0105) 2008
References_xml – volume: 39
  start-page: 338
  year: 1983
  end-page: 360
  ident: b0155
  article-title: Geometric convergence of Lagrangian interpolation and numerical integration rules over unbounded contours and intervals
  publication-title: J. Approx. Theory
– volume: 33
  start-page: 1471
  year: 1978
  end-page: 1480
  ident: b0020
  article-title: On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions
  publication-title: Chem. Eng. Sci.
– volume: 221
  start-page: 487
  year: 2013
  end-page: 491
  ident: b0035
  article-title: Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions
  publication-title: Chem. Eng. J.
– year: 2011
  ident: b0200
  article-title: Boundary Value Problems for Linear Elliptic PDEs, Ph.D. thesis
– year: 1979
  ident: b0095
  article-title: The Mathematics of Diffusion
– year: 1998
  ident: b0025
  article-title: Applied Mathematics in Hydrogeology
– volume: 31
  start-page: 2719
  year: 2007
  end-page: 2732
  ident: b0075
  article-title: Integral transforms for three-dimensional steady turbulent dispersion in rivers and channels
  publication-title: Appl. Math. Model.
– volume: 24
  start-page: 857
  year: 2013
  end-page: 886
  ident: b0125
  article-title: The unified method for the heat equation: I. Non-separable boundary conditions and non-local constraints in one dimension
  publication-title: Euro. J. Appl. Math.
– reference: M. van Genuchten, W. Alves, Analytical solutions of the one-dimensional convective-dispersive solute transport equation, Technical Bulletins (157268).
– volume: 38
  start-page: 565
  year: 2011
  end-page: 571
  ident: b0185
  article-title: The unit algorithm for solving one-dimensional convection-diffusion problems via integral transforms
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 17
  start-page: 555
  year: 1981
  end-page: 564
  ident: b0040
  article-title: Contaminant transport in fractured porous media: analytical solution for a single fracture
  publication-title: Water Resour. Res.
– volume: 21
  start-page: 699
  year: 2006
  end-page: 709
  ident: b0070
  article-title: Integral transform solution of a two-dimensional model for contaminant dispersion in rivers and channels with spatially variable coefficients
  publication-title: Environ. Model. Softw.
– volume: vol. 490
  start-page: 012143
  year: 2014
  ident: b0135
  article-title: Fokas method for a multi-domain linear reaction-diffusion equation with discontinuous diffusivity
  publication-title: Journal of Physics: Conference Series
– year: 1993
  ident: b0100
  article-title: Heat Conduction
– volume: 19
  start-page: 183
  year: 1987
  end-page: 213
  ident: b0055
  article-title: Theory of solute transport by groundwater
  publication-title: Annu. Rev. Fluid Mech.
– volume: 29
  start-page: 543
  year: 2018
  end-page: 567
  ident: b0130
  article-title: A numerical implementation of the unified fokas transform for evolution problems on a finite interval
  publication-title: Euro. J. Appl. Math.
– volume: 29
  start-page: 1420
  year: 2007
  end-page: 1438
  ident: b0165
  article-title: A fast algorithm for the calculation of the roots of special functions
  publication-title: SIAM J. Sci. Comput.
– volume: 18
  start-page: 1634
  year: 1982
  end-page: 1642
  ident: b0045
  article-title: Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures
  publication-title: Water Resour. Res.
– start-page: 421
  year: 1994
  end-page: 434
  ident: b0160
  article-title: Error estimates for Gauss-Laguerre and Gauss-Hermite quadrature formulas
  publication-title: Approximation and Computation: A Festschrift in Honor of Walter Gautschi
– year: 2008
  ident: b0105
  article-title: A Unified Approach to Boundary Value Problems
– reference: M.J. Colbrook, Z.I. Botev, K. Kuritz, S. MacNamara, Kernel density estimation with linked boundary conditions, Available from: arXiv preprint arXiv:1809.07735.
– volume: 52
  start-page: 3297
  year: 2009
  end-page: 3304
  ident: b0030
  article-title: Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique
  publication-title: Int. J. Heat Mass Transfer
– year: 1959
  ident: b0090
  article-title: Conduction of Heat in Solids
– volume: vol. 464
  start-page: 1823
  year: 2008
  end-page: 1849
  ident: b0120
  article-title: A hybrid analytical–numerical method for solving evolution partial differential equations. i. The half-line
  publication-title: Proc. R. Soc. Lond. A
– reference: D. Roubinet, J.-R. Dreuzy, D. Tartakovsky, Semi-analytical solutions for solute transport and exchange in fractured porous media, Water Resour. Res. 48(1).
– reference: V. Ganti, M.M. Meerschaert, E. Foufoula-Georgiou, E. Viparelli, G. Parker, Normal and anomalous diffusion of gravel tracer particles in rivers, J. Geophys. Res.: Earth Surface 115(F2).
– volume: 36
  start-page: 337
  year: 2015
  end-page: 358
  ident: b0170
  article-title: Fast computation of Gauss quadrature nodes and weights on the whole real line
  publication-title: IMA J. Numer. Anal.
– volume: 470
  start-page: 20130605
  year: 2014
  ident: b0110
  article-title: Non-steady-state heat conduction in composite walls
  publication-title: Proc. R. Soc. A
– volume: 219
  start-page: 186
  year: 1953
  end-page: 203
  ident: b0005
  article-title: Dispersion of soluble matter in solvent flowing slowly through a tube
  publication-title: Proc. R. Soc. Lond. A
– volume: Vol. 453
  start-page: 1411
  year: 1997
  end-page: 1443
  ident: b0145
  article-title: A unified transform method for solving linear and certain nonlinear pdes
  publication-title: Proc. R. Soc. Lond. A
– year: 2010
  ident: b0205
  article-title: Initial and Boundary Value Problems in Two and Three Dimensions
– year: 1979
  ident: b0065
  article-title: Mixing in Inland and Coastal Waters
– volume: 37
  start-page: 107
  year: 2014
  end-page: 111
  ident: b0115
  article-title: Heat conduction on the ring: Interface problems with periodic boundary conditions
  publication-title: Appl. Math. Lett.
– volume: 25
  start-page: 2407
  year: 1989
  end-page: 2416
  ident: b0060
  article-title: Analytical solution of a convection-dispersion model with time-dependent transport coefficients
  publication-title: Water Resour. Res.
– volume: 52
  start-page: 8066
  year: 2016
  end-page: 8080
  ident: b0080
  article-title: Vertical dispersion in vegetated shear flows
  publication-title: Water Resour. Res.
– volume: 30
  start-page: 542
  year: 1928
  end-page: 559
  ident: b0150
  article-title: On the convergence of quadrature formulas related to an infinite interval
  publication-title: Trans. Am. Math. Soc.
– reference: P.D. Miller, D.A. Smith, The diffusion equation with nonlocal data, Available from: arXiv preprint arXiv:1708.00972.
– volume: 11
  start-page: 1
  year: 1990
  end-page: 32
  ident: b0180
  article-title: A method for the spatial discretization of parabolic equations in one space variable
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: vol. 411
  year: 1961
  ident: b0010
  publication-title: A Solution of the Differential Equation of Longitudinal Dispersion in Porous Media: Fluid Movement in Earth Materials
– volume: 38
  start-page: 1085
  year: 2017
  end-page: 1118
  ident: b0175
  article-title: Construction and implementation of asymptotic expansions for Laguerre-type orthogonal polynomials
  publication-title: IMA J. Numer. Anal.
– volume: vol. 136
  start-page: 361
  year: 2004
  end-page: 382
  ident: b0190
  article-title: Well-posed boundary value problems for linear evolution equations on a finite interval
  publication-title: Mathematical Proceedings of the Cambridge Philosophical Society
– volume: 36
  start-page: 337
  issue: 1
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0170
  article-title: Fast computation of Gauss quadrature nodes and weights on the whole real line
  publication-title: IMA J. Numer. Anal.
– volume: 24
  start-page: 857
  issue: 6
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0125
  article-title: The unified method for the heat equation: I. Non-separable boundary conditions and non-local constraints in one dimension
  publication-title: Euro. J. Appl. Math.
  doi: 10.1017/S0956792513000223
– ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0140
– year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0205
– year: 1979
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0065
– volume: 17
  start-page: 555
  issue: 3
  year: 1981
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0040
  article-title: Contaminant transport in fractured porous media: analytical solution for a single fracture
  publication-title: Water Resour. Res.
  doi: 10.1029/WR017i003p00555
– start-page: 421
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0160
  article-title: Error estimates for Gauss-Laguerre and Gauss-Hermite quadrature formulas
– volume: 29
  start-page: 1420
  issue: 4
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0165
  article-title: A fast algorithm for the calculation of the roots of special functions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/06067016X
– volume: 21
  start-page: 699
  issue: 5
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0070
  article-title: Integral transform solution of a two-dimensional model for contaminant dispersion in rivers and channels with spatially variable coefficients
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2005.02.002
– volume: 38
  start-page: 565
  issue: 5
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0185
  article-title: The unit algorithm for solving one-dimensional convection-diffusion problems via integral transforms
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2010.12.036
– volume: 52
  start-page: 3297
  issue: 13–14
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0030
  article-title: Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2009.02.002
– year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0105
– volume: vol. 136
  start-page: 361
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0190
  article-title: Well-posed boundary value problems for linear evolution equations on a finite interval
– volume: 31
  start-page: 2719
  issue: 12
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0075
  article-title: Integral transforms for three-dimensional steady turbulent dispersion in rivers and channels
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2006.10.024
– year: 1959
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0090
– volume: 37
  start-page: 107
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0115
  article-title: Heat conduction on the ring: Interface problems with periodic boundary conditions
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2014.06.006
– volume: 30
  start-page: 542
  issue: 3
  year: 1928
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0150
  article-title: On the convergence of quadrature formulas related to an infinite interval
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1928-1501444-8
– volume: 39
  start-page: 338
  issue: 4
  year: 1983
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0155
  article-title: Geometric convergence of Lagrangian interpolation and numerical integration rules over unbounded contours and intervals
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(83)90078-3
– volume: 11
  start-page: 1
  issue: 1
  year: 1990
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0180
  article-title: A method for the spatial discretization of parabolic equations in one space variable
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0911001
– volume: 18
  start-page: 1634
  issue: 6
  year: 1982
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0045
  article-title: Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures
  publication-title: Water Resour. Res.
  doi: 10.1029/WR018i006p01634
– volume: vol. 490
  start-page: 012143
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0135
  article-title: Fokas method for a multi-domain linear reaction-diffusion equation with discontinuous diffusivity
– ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0085
  doi: 10.1029/2008JF001222
– volume: 19
  start-page: 183
  issue: 1
  year: 1987
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0055
  article-title: Theory of solute transport by groundwater
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.19.010187.001151
– year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0100
– year: 1979
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0095
– year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0025
– ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0195
– volume: vol. 411
  year: 1961
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0010
– volume: 221
  start-page: 487
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0035
  article-title: Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.01.095
– volume: 25
  start-page: 2407
  issue: 12
  year: 1989
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0060
  article-title: Analytical solution of a convection-dispersion model with time-dependent transport coefficients
  publication-title: Water Resour. Res.
  doi: 10.1029/WR025i012p02407
– volume: 52
  start-page: 8066
  issue: 10
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0080
  article-title: Vertical dispersion in vegetated shear flows
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR018907
– volume: 470
  start-page: 20130605
  issue: 2165
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0110
  article-title: Non-steady-state heat conduction in composite walls
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2013.0605
– volume: 219
  start-page: 186
  issue: 1137
  year: 1953
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0005
  article-title: Dispersion of soluble matter in solvent flowing slowly through a tube
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1953.0139
– year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0200
– ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0015
– volume: 33
  start-page: 1471
  issue: 11
  year: 1978
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0020
  article-title: On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(78)85196-3
– volume: 29
  start-page: 543
  issue: 3
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0130
  article-title: A numerical implementation of the unified fokas transform for evolution problems on a finite interval
  publication-title: Euro. J. Appl. Math.
  doi: 10.1017/S0956792517000316
– volume: 38
  start-page: 1085
  issue: 3
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0175
  article-title: Construction and implementation of asymptotic expansions for Laguerre-type orthogonal polynomials
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drx030
– volume: vol. 464
  start-page: 1823
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0120
  article-title: A hybrid analytical–numerical method for solving evolution partial differential equations. i. The half-line
– ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0050
  doi: 10.1029/2011WR011168
– volume: Vol. 453
  start-page: 1411
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0145
  article-title: A unified transform method for solving linear and certain nonlinear pdes
SSID ssj0017046
Score 2.4737089
Snippet •Solution of the advection-dispersion equation on the half-line via the Unified Transform (Fokas Method).•Combines complex analysis with numerics.•Compared to...
This paper employs the unified transform, also known as the Fokas method, to solve the advection-dispersion equation on the half-line. This method combines...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 482
SubjectTerms Advection
Advection-dispersion equation
Analytical solution
Complexity
Computation
Convergence
Decay rate
Dispersion
Environmental flows
Fokas method
Integrals
Numerical methods
Ordinary differential equations
Partial differential equations
Transformations (mathematics)
Unified transform
Title A hybrid analytical-numerical method for solving advection-dispersion problems on a half-line
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.05.018
https://www.proquest.com/docview/2256522582
Volume 139
WOSCitedRecordID wos000473381300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZupW9jH2ybt3Qwx4GwSax5A89DVMatrKVwjrIyxCSLNNknlOSNLR_z_7RnSzJDm03GsZehDHJIflOp9Pd7-4Qekd0kZBolASwmYYBVZoETCUabikFSaOilIluqut_To-Ps8mEnfR6v3wuzLpK6zq7vGTn_5XV8A6YbVJnt2B3SxRewDMwHUZgO4x3Ynw-OLsyaVgDYeqNNK7qoL6wgZnKdYxuwIUwjcabIIp1g8eqg2Jq6oYb_9nANZppggnCdFwpg8qH4Gcd-r1zJm6UoDD6vQlK_ATL3DShANO4AwEX2gQ5FhbeNw5PwqOwDYTMKwmWfKOgv2y8H89_2LyzPPwabvopTGpU5v0UTvfCeciIA7F63WsrGTntSW0fIncQU9vG64aOt-6GWTidmeWYlfiFGKQes4VYs-588zH9a8deC0b0OLcZv0mRG4p8GHOgeA_tRGnMsj7ayT8dTo7aYFU6tPlgfoG76H0HI_z7LP9kDV2zCxpj5_QxeuRuKTi30vUE9XT9FD1o0MJq-Qx9z7GVMXybjGErYxhkDDsZw7fJGPYyhuFZ4FbGnqNv48PTg4-B69MRKNDgqyAlVMUqolIlooRRMgNhVEVKpGZgoA_jiBIhFB0NJdi7WVLGMWFKMPhxUY4keYH69bzWLxE23QKMCU6VlFRSIUmWZVSPSqkKHYlkD33w34srV8Te9FKp-F25uIdYS-HcFnTZ4r8HnkXcGajW8OQgm1tQ2ffc5W5vLjkcqwlcheIsevUPE3yNHnZbbx_1V4sL_QbdV-vVdLl46-T2N2y50AI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+analytical-numerical+method+for+solving+advection-dispersion+problems+on+a+half-line&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=de+Barros%2C+F.P.J.&rft.au=Colbrook%2C+M.J.&rft.au=Fokas%2C+A.S.&rft.date=2019-08-01&rft.issn=0017-9310&rft.volume=139&rft.spage=482&rft.epage=491&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2019.05.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2019_05_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon