A hybrid analytical-numerical method for solving advection-dispersion problems on a half-line
•Solution of the advection-dispersion equation on the half-line via the Unified Transform (Fokas Method).•Combines complex analysis with numerics.•Compared to traditional approaches, the unified transform avoids the solution of ordinary differential equations.•Results are successfully compared to ot...
Uloženo v:
| Vydáno v: | International journal of heat and mass transfer Ročník 139; s. 482 - 491 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.08.2019
Elsevier BV |
| Témata: | |
| ISSN: | 0017-9310, 1879-2189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Solution of the advection-dispersion equation on the half-line via the Unified Transform (Fokas Method).•Combines complex analysis with numerics.•Compared to traditional approaches, the unified transform avoids the solution of ordinary differential equations.•Results are successfully compared to other existing solutions.•Illustrates the advantage of the numerical implementation of the Fokas Method.
This paper employs the unified transform, also known as the Fokas method, to solve the advection-dispersion equation on the half-line. This method combines complex analysis with numerics. Compared to classical approaches used to solve linear partial differential equations (PDEs), the unified transform avoids the solution of ordinary differential equations and, more importantly, constructs an integral representation of the solution in the complex plane which is uniformly convergent at the boundaries. As a consequence, such solutions are well suited for numerical computations. Indeed, the numerical evaluation of the solution requires only the computation of a single contour integral involving an integrand which decays exponentially fast for large values of the integration variable. A novel contribution of this paper, with respect to the solution of linear evolution PDEs in general, and the implementation of the unified transform in particular, is the following: using the advection-dispersion equation as a generic example, it is shown that if the transforms of the given data can be computed analytically, then the unified transform yields a fast and accurate method that converges exponentially with the number of evaluations N yet only has complexity O(N). Furthermore, if the transforms are computed numerically using M evaluations, the unified transform gives rise to a method with complexity O(NM). Results are successfully compared to other existing solutions. |
|---|---|
| AbstractList | •Solution of the advection-dispersion equation on the half-line via the Unified Transform (Fokas Method).•Combines complex analysis with numerics.•Compared to traditional approaches, the unified transform avoids the solution of ordinary differential equations.•Results are successfully compared to other existing solutions.•Illustrates the advantage of the numerical implementation of the Fokas Method.
This paper employs the unified transform, also known as the Fokas method, to solve the advection-dispersion equation on the half-line. This method combines complex analysis with numerics. Compared to classical approaches used to solve linear partial differential equations (PDEs), the unified transform avoids the solution of ordinary differential equations and, more importantly, constructs an integral representation of the solution in the complex plane which is uniformly convergent at the boundaries. As a consequence, such solutions are well suited for numerical computations. Indeed, the numerical evaluation of the solution requires only the computation of a single contour integral involving an integrand which decays exponentially fast for large values of the integration variable. A novel contribution of this paper, with respect to the solution of linear evolution PDEs in general, and the implementation of the unified transform in particular, is the following: using the advection-dispersion equation as a generic example, it is shown that if the transforms of the given data can be computed analytically, then the unified transform yields a fast and accurate method that converges exponentially with the number of evaluations N yet only has complexity O(N). Furthermore, if the transforms are computed numerically using M evaluations, the unified transform gives rise to a method with complexity O(NM). Results are successfully compared to other existing solutions. This paper employs the unified transform, also known as the Fokas method, to solve the advection-dispersion equation on the half-line. This method combines complex analysis with numerics. Compared to classical approaches used to solve linear partial differential equations (PDEs), the unified transform avoids the solution of ordinary differential equations and, more importantly, constructs an integral representation of the solution in the complex plane which is uniformly convergent at the boundaries. As a consequence, such solutions are well suited for numerical computations. Indeed, the numerical evaluation of the solution requires only the computation of a single contour integral involving an integrand which decays exponentially fast for large values of the integration variable. A novel contribution of this paper, with respect to the solution of linear evolution PDEs in general, and the implementation of the unified transform in particular, is the following: using the advection-dispersion equation as a generic example, it is shown that if the transforms of the given data can be computed analytically, then the unified transform yields a fast and accurate method that converges exponentially with the number of evaluations N yet only has complexity O(N). Furthermore, if the transforms are computed numerically using M evaluations, the unified transform gives rise to a method with complexity O(NM). Results are successfully compared to other existing solutions. |
| Author | Fokas, A.S. de Barros, F.P.J. Colbrook, M.J. |
| Author_xml | – sequence: 1 givenname: F.P.J. surname: de Barros fullname: de Barros, F.P.J. email: fbarros@usc.edu organization: Sonny Astani Dept. of Civil and Environmental Engineering, University of Southern California, Los Angeles, USA – sequence: 2 givenname: M.J. surname: Colbrook fullname: Colbrook, M.J. email: m.colbrook@damtp.cam.ac.uk organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK – sequence: 3 givenname: A.S. surname: Fokas fullname: Fokas, A.S. organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK |
| BookMark | eNqVkM9LwzAYhoNMcJv-DwEvXlqTtumPm2M4fzDwokcJafrFprTJTLrB_ntT5kkvevnyhrw8fHkWaGasAYRuKIkpofltF-uuBTEOwvvRCeMVuDghtIoJiwktz9CclkUVJbSsZmhOCC2iKqXkAi2876YryfI5el_h9lg73WBhRH8ctRR9ZPYDuCnhAcbWNlhZh73tD9p8YNEcQI7amqjRfgfOh4h3ztY9DB6HLHArehX12sAlOlei93D1fS7R2-b-df0YbV8entarbSRZSseoSDPJZJLVMhcqzLqSTIFsirSGKmM5YUmWCiEzSmpWZmWuGEsrKapQbhSt0yW6PnHDHp978CPv7N6FD3meJCxnYZRJaN2dWtJZ7x0ovnN6EO7IKeGTVN7x31L5JJUTxoPUgNj8QEg9islGqOv-P6DnEwiCloMOr15qMBIa7YJe3lj9d9gXaGGphg |
| CitedBy_id | crossref_primary_10_1103_PhysRevFluids_6_044501 crossref_primary_10_1515_zna_2020_0106 crossref_primary_10_1080_00207179_2023_2297982 crossref_primary_10_1088_1361_6544_ac0f4f crossref_primary_10_1016_j_pce_2022_103255 crossref_primary_10_1111_sapm_12464 crossref_primary_10_1007_s00208_023_02698_4 crossref_primary_10_1111_sapm_12322 crossref_primary_10_1007_s00033_023_02174_8 crossref_primary_10_1142_S0218202525500149 crossref_primary_10_1016_j_scitotenv_2025_179176 crossref_primary_10_1029_2019WR025586 crossref_primary_10_3934_eect_2025041 crossref_primary_10_1111_ejss_13547 crossref_primary_10_1093_imanum_drab007 crossref_primary_10_1002_zamm_202300614 crossref_primary_10_1007_s42985_024_00296_w crossref_primary_10_1063_5_0221578 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122244 crossref_primary_10_1111_sapm_12452 crossref_primary_10_3390_axioms9030089 crossref_primary_10_1002_mma_10303 crossref_primary_10_1016_j_padiff_2025_101144 crossref_primary_10_3934_math_2025862 crossref_primary_10_1007_s44198_022_00030_3 crossref_primary_10_1093_imamat_hxac030 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120569 crossref_primary_10_1002_mma_9919 |
| Cites_doi | 10.1017/S0956792513000223 10.1029/WR017i003p00555 10.1137/06067016X 10.1016/j.envsoft.2005.02.002 10.1016/j.icheatmasstransfer.2010.12.036 10.1016/j.ijheatmasstransfer.2009.02.002 10.1016/j.apm.2006.10.024 10.1016/j.aml.2014.06.006 10.1090/S0002-9947-1928-1501444-8 10.1016/0021-9045(83)90078-3 10.1137/0911001 10.1029/WR018i006p01634 10.1029/2008JF001222 10.1146/annurev.fl.19.010187.001151 10.1016/j.cej.2013.01.095 10.1029/WR025i012p02407 10.1002/2016WR018907 10.1098/rspa.2013.0605 10.1098/rspa.1953.0139 10.1016/0009-2509(78)85196-3 10.1017/S0956792517000316 10.1093/imanum/drx030 10.1029/2011WR011168 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Aug 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2019 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2019.05.018 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| EndPage | 491 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2019_05_018 S0017931018355480 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AFXIZ AGCQF AGRNS FR3 H8D KR7 L7M SSH |
| ID | FETCH-LOGICAL-c531t-734c5c24bc6af4bcb9c5fecd73be945605243aac410b58486f5539ca9f4bdf1b3 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473381300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Fri Jul 25 23:44:46 EDT 2025 Sat Nov 29 07:30:41 EST 2025 Tue Nov 18 21:10:22 EST 2025 Fri Feb 23 02:22:42 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Advection-dispersion equation Unified transform Fokas method Analytical solution Environmental flows |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c531t-734c5c24bc6af4bcb9c5fecd73be945605243aac410b58486f5539ca9f4bdf1b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.repository.cam.ac.uk/handle/1810/295867 |
| PQID | 2256522582 |
| PQPubID | 2045464 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2256522582 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_018 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2019_05_018 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2019_05_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Kalimeris (b0205) 2010 M. van Genuchten, W. Alves, Analytical solutions of the one-dimensional convective-dispersive solute transport equation, Technical Bulletins (157268). Glaser, Liu, Rokhlin (b0165) 2007; 29 Barry, Sposito (b0060) 1989; 25 V. Ganti, M.M. Meerschaert, E. Foufoula-Georgiou, E. Viparelli, G. Parker, Normal and anomalous diffusion of gravel tracer particles in rivers, J. Geophys. Res.: Earth Surface 115(F2). Fokas (b0145) 1997; Vol. 453 Sudicky, Frind (b0045) 1982; 18 Lee (b0025) 1998 Deconinck, Pelloni, Sheils (b0110) 2014; 470 Carslaw, Jaeger (b0090) 1959 Ogata, Banks (b0010) 1961; vol. 411 Rubol, Battiato, de Barros (b0080) 2016; 52 Huybrechs, Opsomer (b0175) 2017; 38 de Barros, Cotta (b0075) 2007; 31 Fokas (b0105) 2008 Sphaier, Cotta, Naveira-Cotta, Quaresma (b0185) 2011; 38 Uspensky (b0150) 1928; 30 Townsend, Trogdon, Olver (b0170) 2015; 36 de Barros, Mills, Cotta (b0070) 2006; 21 Spence (b0200) 2011 Tang, Frind, Sudicky (b0040) 1981; 17 Lubinsky (b0155) 1983; 39 Mastroianni, Monegato (b0160) 1994 Taylor (b0005) 1953; 219 Dagan (b0055) 1987; 19 Kesici, Pelloni, Pryer, Smith (b0130) 2018; 29 Fischer, List, Koh, Imberger, Brooks (b0065) 1979 Crank (b0095) 1979 P.D. Miller, D.A. Smith, The diffusion equation with nonlocal data, Available from: arXiv preprint arXiv:1708.00972. Skeel, Berzins (b0180) 1990; 11 Pelloni (b0190) 2004; vol. 136 Mantzavinos, Fokas (b0125) 2013; 24 Sheils, Deconinck (b0115) 2014; 37 Asvestas, Sifalakis, Papadopoulou, Saridakis (b0135) 2014; vol. 490 Guerrero, Pimentel, Skaggs, Van Genuchten (b0030) 2009; 52 Guerrero, Pontedeiro, van Genuchten, Skaggs (b0035) 2013; 221 Kreft, Zuber (b0020) 1978; 33 D. Roubinet, J.-R. Dreuzy, D. Tartakovsky, Semi-analytical solutions for solute transport and exchange in fractured porous media, Water Resour. Res. 48(1). Ozisik (b0100) 1993 Flyer, Fokas (b0120) 2008; vol. 464 M.J. Colbrook, Z.I. Botev, K. Kuritz, S. MacNamara, Kernel density estimation with linked boundary conditions, Available from: arXiv preprint arXiv:1809.07735. 10.1016/j.ijheatmasstransfer.2019.05.018_b0015 Guerrero (10.1016/j.ijheatmasstransfer.2019.05.018_b0035) 2013; 221 de Barros (10.1016/j.ijheatmasstransfer.2019.05.018_b0070) 2006; 21 Lubinsky (10.1016/j.ijheatmasstransfer.2019.05.018_b0155) 1983; 39 Townsend (10.1016/j.ijheatmasstransfer.2019.05.018_b0170) 2015; 36 Tang (10.1016/j.ijheatmasstransfer.2019.05.018_b0040) 1981; 17 10.1016/j.ijheatmasstransfer.2019.05.018_b0195 10.1016/j.ijheatmasstransfer.2019.05.018_b0050 Ozisik (10.1016/j.ijheatmasstransfer.2019.05.018_b0100) 1993 Skeel (10.1016/j.ijheatmasstransfer.2019.05.018_b0180) 1990; 11 Crank (10.1016/j.ijheatmasstransfer.2019.05.018_b0095) 1979 Fokas (10.1016/j.ijheatmasstransfer.2019.05.018_b0145) 1997; Vol. 453 Rubol (10.1016/j.ijheatmasstransfer.2019.05.018_b0080) 2016; 52 Sheils (10.1016/j.ijheatmasstransfer.2019.05.018_b0115) 2014; 37 Ogata (10.1016/j.ijheatmasstransfer.2019.05.018_b0010) 1961; vol. 411 Taylor (10.1016/j.ijheatmasstransfer.2019.05.018_b0005) 1953; 219 Uspensky (10.1016/j.ijheatmasstransfer.2019.05.018_b0150) 1928; 30 Mastroianni (10.1016/j.ijheatmasstransfer.2019.05.018_b0160) 1994 Flyer (10.1016/j.ijheatmasstransfer.2019.05.018_b0120) 2008; vol. 464 Asvestas (10.1016/j.ijheatmasstransfer.2019.05.018_b0135) 2014; vol. 490 Dagan (10.1016/j.ijheatmasstransfer.2019.05.018_b0055) 1987; 19 Glaser (10.1016/j.ijheatmasstransfer.2019.05.018_b0165) 2007; 29 Kreft (10.1016/j.ijheatmasstransfer.2019.05.018_b0020) 1978; 33 Lee (10.1016/j.ijheatmasstransfer.2019.05.018_b0025) 1998 Kesici (10.1016/j.ijheatmasstransfer.2019.05.018_b0130) 2018; 29 Spence (10.1016/j.ijheatmasstransfer.2019.05.018_b0200) 2011 Guerrero (10.1016/j.ijheatmasstransfer.2019.05.018_b0030) 2009; 52 Sphaier (10.1016/j.ijheatmasstransfer.2019.05.018_b0185) 2011; 38 de Barros (10.1016/j.ijheatmasstransfer.2019.05.018_b0075) 2007; 31 Sudicky (10.1016/j.ijheatmasstransfer.2019.05.018_b0045) 1982; 18 10.1016/j.ijheatmasstransfer.2019.05.018_b0085 10.1016/j.ijheatmasstransfer.2019.05.018_b0140 Pelloni (10.1016/j.ijheatmasstransfer.2019.05.018_b0190) 2004; vol. 136 Mantzavinos (10.1016/j.ijheatmasstransfer.2019.05.018_b0125) 2013; 24 Barry (10.1016/j.ijheatmasstransfer.2019.05.018_b0060) 1989; 25 Deconinck (10.1016/j.ijheatmasstransfer.2019.05.018_b0110) 2014; 470 Huybrechs (10.1016/j.ijheatmasstransfer.2019.05.018_b0175) 2017; 38 Fischer (10.1016/j.ijheatmasstransfer.2019.05.018_b0065) 1979 Carslaw (10.1016/j.ijheatmasstransfer.2019.05.018_b0090) 1959 Kalimeris (10.1016/j.ijheatmasstransfer.2019.05.018_b0205) 2010 Fokas (10.1016/j.ijheatmasstransfer.2019.05.018_b0105) 2008 |
| References_xml | – volume: 39 start-page: 338 year: 1983 end-page: 360 ident: b0155 article-title: Geometric convergence of Lagrangian interpolation and numerical integration rules over unbounded contours and intervals publication-title: J. Approx. Theory – volume: 33 start-page: 1471 year: 1978 end-page: 1480 ident: b0020 article-title: On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions publication-title: Chem. Eng. Sci. – volume: 221 start-page: 487 year: 2013 end-page: 491 ident: b0035 article-title: Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions publication-title: Chem. Eng. J. – year: 2011 ident: b0200 article-title: Boundary Value Problems for Linear Elliptic PDEs, Ph.D. thesis – year: 1979 ident: b0095 article-title: The Mathematics of Diffusion – year: 1998 ident: b0025 article-title: Applied Mathematics in Hydrogeology – volume: 31 start-page: 2719 year: 2007 end-page: 2732 ident: b0075 article-title: Integral transforms for three-dimensional steady turbulent dispersion in rivers and channels publication-title: Appl. Math. Model. – volume: 24 start-page: 857 year: 2013 end-page: 886 ident: b0125 article-title: The unified method for the heat equation: I. Non-separable boundary conditions and non-local constraints in one dimension publication-title: Euro. J. Appl. Math. – reference: M. van Genuchten, W. Alves, Analytical solutions of the one-dimensional convective-dispersive solute transport equation, Technical Bulletins (157268). – volume: 38 start-page: 565 year: 2011 end-page: 571 ident: b0185 article-title: The unit algorithm for solving one-dimensional convection-diffusion problems via integral transforms publication-title: Int. Commun. Heat Mass Transfer – volume: 17 start-page: 555 year: 1981 end-page: 564 ident: b0040 article-title: Contaminant transport in fractured porous media: analytical solution for a single fracture publication-title: Water Resour. Res. – volume: 21 start-page: 699 year: 2006 end-page: 709 ident: b0070 article-title: Integral transform solution of a two-dimensional model for contaminant dispersion in rivers and channels with spatially variable coefficients publication-title: Environ. Model. Softw. – volume: vol. 490 start-page: 012143 year: 2014 ident: b0135 article-title: Fokas method for a multi-domain linear reaction-diffusion equation with discontinuous diffusivity publication-title: Journal of Physics: Conference Series – year: 1993 ident: b0100 article-title: Heat Conduction – volume: 19 start-page: 183 year: 1987 end-page: 213 ident: b0055 article-title: Theory of solute transport by groundwater publication-title: Annu. Rev. Fluid Mech. – volume: 29 start-page: 543 year: 2018 end-page: 567 ident: b0130 article-title: A numerical implementation of the unified fokas transform for evolution problems on a finite interval publication-title: Euro. J. Appl. Math. – volume: 29 start-page: 1420 year: 2007 end-page: 1438 ident: b0165 article-title: A fast algorithm for the calculation of the roots of special functions publication-title: SIAM J. Sci. Comput. – volume: 18 start-page: 1634 year: 1982 end-page: 1642 ident: b0045 article-title: Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures publication-title: Water Resour. Res. – start-page: 421 year: 1994 end-page: 434 ident: b0160 article-title: Error estimates for Gauss-Laguerre and Gauss-Hermite quadrature formulas publication-title: Approximation and Computation: A Festschrift in Honor of Walter Gautschi – year: 2008 ident: b0105 article-title: A Unified Approach to Boundary Value Problems – reference: M.J. Colbrook, Z.I. Botev, K. Kuritz, S. MacNamara, Kernel density estimation with linked boundary conditions, Available from: arXiv preprint arXiv:1809.07735. – volume: 52 start-page: 3297 year: 2009 end-page: 3304 ident: b0030 article-title: Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique publication-title: Int. J. Heat Mass Transfer – year: 1959 ident: b0090 article-title: Conduction of Heat in Solids – volume: vol. 464 start-page: 1823 year: 2008 end-page: 1849 ident: b0120 article-title: A hybrid analytical–numerical method for solving evolution partial differential equations. i. The half-line publication-title: Proc. R. Soc. Lond. A – reference: D. Roubinet, J.-R. Dreuzy, D. Tartakovsky, Semi-analytical solutions for solute transport and exchange in fractured porous media, Water Resour. Res. 48(1). – reference: V. Ganti, M.M. Meerschaert, E. Foufoula-Georgiou, E. Viparelli, G. Parker, Normal and anomalous diffusion of gravel tracer particles in rivers, J. Geophys. Res.: Earth Surface 115(F2). – volume: 36 start-page: 337 year: 2015 end-page: 358 ident: b0170 article-title: Fast computation of Gauss quadrature nodes and weights on the whole real line publication-title: IMA J. Numer. Anal. – volume: 470 start-page: 20130605 year: 2014 ident: b0110 article-title: Non-steady-state heat conduction in composite walls publication-title: Proc. R. Soc. A – volume: 219 start-page: 186 year: 1953 end-page: 203 ident: b0005 article-title: Dispersion of soluble matter in solvent flowing slowly through a tube publication-title: Proc. R. Soc. Lond. A – volume: Vol. 453 start-page: 1411 year: 1997 end-page: 1443 ident: b0145 article-title: A unified transform method for solving linear and certain nonlinear pdes publication-title: Proc. R. Soc. Lond. A – year: 2010 ident: b0205 article-title: Initial and Boundary Value Problems in Two and Three Dimensions – year: 1979 ident: b0065 article-title: Mixing in Inland and Coastal Waters – volume: 37 start-page: 107 year: 2014 end-page: 111 ident: b0115 article-title: Heat conduction on the ring: Interface problems with periodic boundary conditions publication-title: Appl. Math. Lett. – volume: 25 start-page: 2407 year: 1989 end-page: 2416 ident: b0060 article-title: Analytical solution of a convection-dispersion model with time-dependent transport coefficients publication-title: Water Resour. Res. – volume: 52 start-page: 8066 year: 2016 end-page: 8080 ident: b0080 article-title: Vertical dispersion in vegetated shear flows publication-title: Water Resour. Res. – volume: 30 start-page: 542 year: 1928 end-page: 559 ident: b0150 article-title: On the convergence of quadrature formulas related to an infinite interval publication-title: Trans. Am. Math. Soc. – reference: P.D. Miller, D.A. Smith, The diffusion equation with nonlocal data, Available from: arXiv preprint arXiv:1708.00972. – volume: 11 start-page: 1 year: 1990 end-page: 32 ident: b0180 article-title: A method for the spatial discretization of parabolic equations in one space variable publication-title: SIAM J. Sci. Stat. Comput. – volume: vol. 411 year: 1961 ident: b0010 publication-title: A Solution of the Differential Equation of Longitudinal Dispersion in Porous Media: Fluid Movement in Earth Materials – volume: 38 start-page: 1085 year: 2017 end-page: 1118 ident: b0175 article-title: Construction and implementation of asymptotic expansions for Laguerre-type orthogonal polynomials publication-title: IMA J. Numer. Anal. – volume: vol. 136 start-page: 361 year: 2004 end-page: 382 ident: b0190 article-title: Well-posed boundary value problems for linear evolution equations on a finite interval publication-title: Mathematical Proceedings of the Cambridge Philosophical Society – volume: 36 start-page: 337 issue: 1 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0170 article-title: Fast computation of Gauss quadrature nodes and weights on the whole real line publication-title: IMA J. Numer. Anal. – volume: 24 start-page: 857 issue: 6 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0125 article-title: The unified method for the heat equation: I. Non-separable boundary conditions and non-local constraints in one dimension publication-title: Euro. J. Appl. Math. doi: 10.1017/S0956792513000223 – ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0140 – year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0205 – year: 1979 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0065 – volume: 17 start-page: 555 issue: 3 year: 1981 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0040 article-title: Contaminant transport in fractured porous media: analytical solution for a single fracture publication-title: Water Resour. Res. doi: 10.1029/WR017i003p00555 – start-page: 421 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0160 article-title: Error estimates for Gauss-Laguerre and Gauss-Hermite quadrature formulas – volume: 29 start-page: 1420 issue: 4 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0165 article-title: A fast algorithm for the calculation of the roots of special functions publication-title: SIAM J. Sci. Comput. doi: 10.1137/06067016X – volume: 21 start-page: 699 issue: 5 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0070 article-title: Integral transform solution of a two-dimensional model for contaminant dispersion in rivers and channels with spatially variable coefficients publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2005.02.002 – volume: 38 start-page: 565 issue: 5 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0185 article-title: The unit algorithm for solving one-dimensional convection-diffusion problems via integral transforms publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.12.036 – volume: 52 start-page: 3297 issue: 13–14 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0030 article-title: Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.02.002 – year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0105 – volume: vol. 136 start-page: 361 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0190 article-title: Well-posed boundary value problems for linear evolution equations on a finite interval – volume: 31 start-page: 2719 issue: 12 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0075 article-title: Integral transforms for three-dimensional steady turbulent dispersion in rivers and channels publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2006.10.024 – year: 1959 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0090 – volume: 37 start-page: 107 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0115 article-title: Heat conduction on the ring: Interface problems with periodic boundary conditions publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2014.06.006 – volume: 30 start-page: 542 issue: 3 year: 1928 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0150 article-title: On the convergence of quadrature formulas related to an infinite interval publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1928-1501444-8 – volume: 39 start-page: 338 issue: 4 year: 1983 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0155 article-title: Geometric convergence of Lagrangian interpolation and numerical integration rules over unbounded contours and intervals publication-title: J. Approx. Theory doi: 10.1016/0021-9045(83)90078-3 – volume: 11 start-page: 1 issue: 1 year: 1990 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0180 article-title: A method for the spatial discretization of parabolic equations in one space variable publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0911001 – volume: 18 start-page: 1634 issue: 6 year: 1982 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0045 article-title: Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures publication-title: Water Resour. Res. doi: 10.1029/WR018i006p01634 – volume: vol. 490 start-page: 012143 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0135 article-title: Fokas method for a multi-domain linear reaction-diffusion equation with discontinuous diffusivity – ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0085 doi: 10.1029/2008JF001222 – volume: 19 start-page: 183 issue: 1 year: 1987 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0055 article-title: Theory of solute transport by groundwater publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.19.010187.001151 – year: 1993 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0100 – year: 1979 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0095 – year: 1998 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0025 – ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0195 – volume: vol. 411 year: 1961 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0010 – volume: 221 start-page: 487 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0035 article-title: Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.01.095 – volume: 25 start-page: 2407 issue: 12 year: 1989 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0060 article-title: Analytical solution of a convection-dispersion model with time-dependent transport coefficients publication-title: Water Resour. Res. doi: 10.1029/WR025i012p02407 – volume: 52 start-page: 8066 issue: 10 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0080 article-title: Vertical dispersion in vegetated shear flows publication-title: Water Resour. Res. doi: 10.1002/2016WR018907 – volume: 470 start-page: 20130605 issue: 2165 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0110 article-title: Non-steady-state heat conduction in composite walls publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2013.0605 – volume: 219 start-page: 186 issue: 1137 year: 1953 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0005 article-title: Dispersion of soluble matter in solvent flowing slowly through a tube publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1953.0139 – year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0200 – ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0015 – volume: 33 start-page: 1471 issue: 11 year: 1978 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0020 article-title: On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(78)85196-3 – volume: 29 start-page: 543 issue: 3 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0130 article-title: A numerical implementation of the unified fokas transform for evolution problems on a finite interval publication-title: Euro. J. Appl. Math. doi: 10.1017/S0956792517000316 – volume: 38 start-page: 1085 issue: 3 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0175 article-title: Construction and implementation of asymptotic expansions for Laguerre-type orthogonal polynomials publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drx030 – volume: vol. 464 start-page: 1823 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0120 article-title: A hybrid analytical–numerical method for solving evolution partial differential equations. i. The half-line – ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0050 doi: 10.1029/2011WR011168 – volume: Vol. 453 start-page: 1411 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2019.05.018_b0145 article-title: A unified transform method for solving linear and certain nonlinear pdes |
| SSID | ssj0017046 |
| Score | 2.4736323 |
| Snippet | •Solution of the advection-dispersion equation on the half-line via the Unified Transform (Fokas Method).•Combines complex analysis with numerics.•Compared to... This paper employs the unified transform, also known as the Fokas method, to solve the advection-dispersion equation on the half-line. This method combines... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 482 |
| SubjectTerms | Advection Advection-dispersion equation Analytical solution Complexity Computation Convergence Decay rate Dispersion Environmental flows Fokas method Integrals Numerical methods Ordinary differential equations Partial differential equations Transformations (mathematics) Unified transform |
| Title | A hybrid analytical-numerical method for solving advection-dispersion problems on a half-line |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.05.018 https://www.proquest.com/docview/2256522582 |
| Volume | 139 |
| WOSCitedRecordID | wos000473381300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF9qT8UX8RNPT9kHH4SyIWm-dp8kHFf0wOPgTuiLLJtNgq0xPdpeOf8Z_1ZndjdJ9U6xoC8hBJp0d2ZnfzvzmxlCXgMi1rCGFMsDFbNIJRzXXMhEqESl_KDUFTfNJtKTEz6ditPB4HubC7Op06bhV1fi4r-KGp6BsDF1dgdxdy-FB3APQocriB2ufyX4bPT5G6ZhjRTWGzGuatZc2sBM7TpGG3Ih_A3jTVDFxvCxGlbMsG44-s9GrtGMCSYo7LhSsboNwc979nvvTNwqQYH23QQlvgIyxyYUAI17EnBRYpBjael9E-_UO_a6QMiizgHJGwP9Yev5ZPHF5p1l3pm37afA1Ci-7afoEmh6tpIxyLBJitAxW0trg3kqGCAP8ZORtiWPnJmNbMMit2NHtt_Xtc3A-iXm3myO48YhtyNGSp-wFVt5vxF29MQz39gtLGaGcIz7t8jeOI0FH5K97P3R9LiLU6W-TQVrh3GXvOkZhH_-7u-A0C-QwOCc8wfkvjug0Mwq1kMyKJtH5I4hCuvVY_Ipo1a96E3qRa16UVAv6tSL3qRetFUvCveKdur1hHycHJ0fvmOuRQfTYLzXLA0jHetxlOtEVXDNBbIXdZGGeSkAm_vxOAqV0lHg5wB1eVLFcSg02IEoL6ogD5-SYbNoymeEAvaH00IlClVWEYiUaxGrJEhgbetAjat98radL6ld_Xpso1LLlqg4l9dnXOKMSz-WMOP7RHRvuLC1XHb47WErIumwqcWcErRth7cctNKVblmuJOyoCZyCYj5-_k8-8oLc69ffARmul5flS3Jbb9az1fKV0-AfwdDPjA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+analytical-numerical+method+for+solving+advection-dispersion+problems+on+a+half-line&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=de+Barros%2C+F.P.J.&rft.au=Colbrook%2C+M.J.&rft.au=Fokas%2C+A.S.&rft.date=2019-08-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=139&rft.spage=482&rft.epage=491&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2019.05.018&rft.externalDocID=S0017931018355480 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |