The reverse Warburg Effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts

We and others have previously identified a loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts (CAFs) as a powerful single independent predictor of breast cancer patient tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. However, it remains unknown how los...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cell cycle (Georgetown, Tex.) Ročník 9; číslo 10; s. 1960 - 1971
Hlavní autoři: Bonuccelli, Gloria, Whitaker-Menezes, Diana, Castello-Cros, Remedios, Pavlides, Stephanos, Pestell, Richard G., Fatatis, Alessandro, Witkiewicz, Agnieszka K., Vander Heiden, Matthew G., Migneco, Gemma, Chiavarina, Barbara, Frank, Philippe G., Capozza, Franco, Flomenberg, Neal, Martinez-Outschoorn, Ubaldo E., Sotgia, Federica, Lisanti, Michael P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Taylor & Francis 15.05.2010
Témata:
ISSN:1538-4101, 1551-4005, 1551-4005
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We and others have previously identified a loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts (CAFs) as a powerful single independent predictor of breast cancer patient tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. However, it remains unknown how loss of stromal Cav-1 mediates these effects clinically. To mechanistically address this issue, we have now generated a novel human tumor xenograft model. In this two-component system, nude mice are co-injected with i) human breast cancer cells (MDA-MB-231), and ii) stromal fibroblasts (wild-type (WT) versus Cav-1 (-/-) deficient). This allowed us to directly evaluate the effects of a Cav-1 deficiency solely in the tumor stromal compartment. Here, we show that Cav-1-deficient stromal fibroblasts are sufficient to promote both tumor growth and angiogenesis, and to recruit Cav-1 (+) micro-vascular cells. Proteomic analysis of Cav-1-deficient stromal fibroblasts indicates that these cells upregulate the expression of glycolytic enzymes, a hallmark of aerobic glycolysis (the Warburg effect). Thus, Cav-1-deficient stromal fibroblasts may contribute towards tumor growth and angiogenesis, by providing energy-rich metabolites in a paracrine fashion. We have previously termed this new idea the "Reverse Warburg Effect". In direct support of this notion, treatment of this xenograft model with glycolysis inhibitors functionally blocks the positive effects of Cav-1-deficient stromal fibroblasts on breast cancer tumor growth. Thus, pharmacologically-induced metabolic restriction (via treatment with glycolysis inhibitors) may be a promising new therapeutic strategy for breast cancer patients that lack stromal Cav-1 expression. We also identify the stromal expression of PKM2 and LDH-B as new candidate biomarkers for the "Reverse Warburg Effect" or "Stromal-Epithelial Metabolic Coupling" in human breast cancers.
AbstractList We and others have previously identified a loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts (CAFs) as a powerful single independent predictor of breast cancer patient tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. However, it remains unknown how loss of stromal Cav-1 mediates these effects clinically. To mechanistically address this issue, we have now generated a novel human tumor xenograft model. In this two-component system, nude mice are co-injected with i) human breast cancer cells (MDA-MB-231), and ii) stromal fibroblasts (wild-type (WT) versus Cav-1 (-/-) deficient). This allowed us to directly evaluate the effects of a Cav-1 deficiency solely in the tumor stromal compartment. Here, we show that Cav-1-deficient stromal fibroblasts are sufficient to promote both tumor growth and angiogenesis, and to recruit Cav-1 (+) micro-vascular cells. Proteomic analysis of Cav-1-deficient stromal fibroblasts indicates that these cells upregulate the expression of glycolytic enzymes, a hallmark of aerobic glycolysis (the Warburg effect). Thus, Cav-1-deficient stromal fibroblasts may contribute towards tumor growth and angiogenesis, by providing energy-rich metabolites in a paracrine fashion. We have previously termed this new idea the "Reverse Warburg Effect". In direct support of this notion, treatment of this xenograft model with glycolysis inhibitors functionally blocks the positive effects of Cav-1-deficient stromal fibroblasts on breast cancer tumor growth. Thus, pharmacologically-induced metabolic restriction (via treatment with glycolysis inhibitors) may be a promising new therapeutic strategy for breast cancer patients that lack stromal Cav-1 expression. We also identify the stromal expression of PKM2 and LDH-B as new candidate biomarkers for the "Reverse Warburg Effect" or "Stromal-Epithelial Metabolic Coupling" in human breast cancers.We and others have previously identified a loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts (CAFs) as a powerful single independent predictor of breast cancer patient tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. However, it remains unknown how loss of stromal Cav-1 mediates these effects clinically. To mechanistically address this issue, we have now generated a novel human tumor xenograft model. In this two-component system, nude mice are co-injected with i) human breast cancer cells (MDA-MB-231), and ii) stromal fibroblasts (wild-type (WT) versus Cav-1 (-/-) deficient). This allowed us to directly evaluate the effects of a Cav-1 deficiency solely in the tumor stromal compartment. Here, we show that Cav-1-deficient stromal fibroblasts are sufficient to promote both tumor growth and angiogenesis, and to recruit Cav-1 (+) micro-vascular cells. Proteomic analysis of Cav-1-deficient stromal fibroblasts indicates that these cells upregulate the expression of glycolytic enzymes, a hallmark of aerobic glycolysis (the Warburg effect). Thus, Cav-1-deficient stromal fibroblasts may contribute towards tumor growth and angiogenesis, by providing energy-rich metabolites in a paracrine fashion. We have previously termed this new idea the "Reverse Warburg Effect". In direct support of this notion, treatment of this xenograft model with glycolysis inhibitors functionally blocks the positive effects of Cav-1-deficient stromal fibroblasts on breast cancer tumor growth. Thus, pharmacologically-induced metabolic restriction (via treatment with glycolysis inhibitors) may be a promising new therapeutic strategy for breast cancer patients that lack stromal Cav-1 expression. We also identify the stromal expression of PKM2 and LDH-B as new candidate biomarkers for the "Reverse Warburg Effect" or "Stromal-Epithelial Metabolic Coupling" in human breast cancers.
We and others have previously identified a loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts (CAFs) as a powerful single independent predictor of breast cancer patient tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. However, it remains unknown how loss of stromal Cav-1 mediates these effects clinically. To mechanistically address this issue, we have now generated a novel human tumor xenograft model. In this two-component system, nude mice are co-injected with i) human breast cancer cells (MDA-MB-231), and ii) stromal fibroblasts (wild-type (WT) versus Cav-1 (-/-) deficient). This allowed us to directly evaluate the effects of a Cav-1 deficiency solely in the tumor stromal compartment. Here, we show that Cav-1-deficient stromal fibroblasts are sufficient to promote both tumor growth and angiogenesis, and to recruit Cav-1 (+) micro-vascular cells. Proteomic analysis of Cav-1-deficient stromal fibroblasts indicates that these cells upregulate the expression of glycolytic enzymes, a hallmark of aerobic glycolysis (the Warburg effect). Thus, Cav-1-deficient stromal fibroblasts may contribute towards tumor growth and angiogenesis, by providing energy-rich metabolites in a paracrine fashion. We have previously termed this new idea the "Reverse Warburg Effect". In direct support of this notion, treatment of this xenograft model with glycolysis inhibitors functionally blocks the positive effects of Cav-1-deficient stromal fibroblasts on breast cancer tumor growth. Thus, pharmacologically-induced metabolic restriction (via treatment with glycolysis inhibitors) may be a promising new therapeutic strategy for breast cancer patients that lack stromal Cav-1 expression. We also identify the stromal expression of PKM2 and LDH-B as new candidate biomarkers for the "Reverse Warburg Effect" or "Stromal-Epithelial Metabolic Coupling" in human breast cancers.
Author Capozza, Franco
Pavlides, Stephanos
Castello-Cros, Remedios
Martinez-Outschoorn, Ubaldo E.
Migneco, Gemma
Frank, Philippe G.
Fatatis, Alessandro
Lisanti, Michael P.
Whitaker-Menezes, Diana
Witkiewicz, Agnieszka K.
Sotgia, Federica
Pestell, Richard G.
Vander Heiden, Matthew G.
Bonuccelli, Gloria
Chiavarina, Barbara
Flomenberg, Neal
Author_xml – sequence: 1
  givenname: Gloria
  surname: Bonuccelli
  fullname: Bonuccelli, Gloria
– sequence: 2
  givenname: Diana
  surname: Whitaker-Menezes
  fullname: Whitaker-Menezes, Diana
– sequence: 3
  givenname: Remedios
  surname: Castello-Cros
  fullname: Castello-Cros, Remedios
– sequence: 4
  givenname: Stephanos
  surname: Pavlides
  fullname: Pavlides, Stephanos
– sequence: 5
  givenname: Richard G.
  surname: Pestell
  fullname: Pestell, Richard G.
– sequence: 6
  givenname: Alessandro
  surname: Fatatis
  fullname: Fatatis, Alessandro
– sequence: 7
  givenname: Agnieszka K.
  surname: Witkiewicz
  fullname: Witkiewicz, Agnieszka K.
– sequence: 8
  givenname: Matthew G.
  surname: Vander Heiden
  fullname: Vander Heiden, Matthew G.
– sequence: 9
  givenname: Gemma
  surname: Migneco
  fullname: Migneco, Gemma
– sequence: 10
  givenname: Barbara
  surname: Chiavarina
  fullname: Chiavarina, Barbara
– sequence: 11
  givenname: Philippe G.
  surname: Frank
  fullname: Frank, Philippe G.
– sequence: 12
  givenname: Franco
  surname: Capozza
  fullname: Capozza, Franco
– sequence: 13
  givenname: Neal
  surname: Flomenberg
  fullname: Flomenberg, Neal
– sequence: 14
  givenname: Ubaldo E.
  surname: Martinez-Outschoorn
  fullname: Martinez-Outschoorn, Ubaldo E.
– sequence: 15
  givenname: Federica
  surname: Sotgia
  fullname: Sotgia, Federica
  email: federica.sotgia@jefferson.edu
– sequence: 16
  givenname: Michael P.
  surname: Lisanti
  fullname: Lisanti, Michael P.
  email: mlisanti@KimmelCancerCenter.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20495363$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1vFDEQhlcoiHxASYvcUe1hr9f7QQenEJAi0QRRWt7xODHy2oftS3S_gT-N9-6SAoGo7LHeZ97xvOfViQ8eq-o1o6uWdewdwGpclYKxjrJn1RkTgtUtpeJkufOhbhllp9V5Sj8obYZ-ZC-q04a2o-AdP6t-3dwhiXiPMSH5ruK0jbfk0hiE_J5cuR0Et0s2Eevv7GRziIlsFrnPJBcyb-cQy0uYQ7b-luCeTCQYAuoeg7O-ZkSjsWAXBpQHjESlFMCqjJoYO8UwOZVyelk9N8olfHU8L6pvny5v1p_r669XX9YfrmsQnOW6a9SojJhGIbRuoJu6tunUNPTAjWlGDWCapmNTL_qmLTsCGJFT0w8D7bXgml9Ubw99y9w_t5iynG0CdE55DNskB963gnPRF-Wbo3I7zajlJtpZxZ183F8R8IMAYkgpopFgs8o2-ByVdZJRuaQkAeS4FPuUClX_QT02_pf-6FIm1JgmG9KyTsAn7mPw2-UHdr3ecxttCkX_QxUXFbMFh09GwwGx3oQ4q4cQnZZZ7VyIJpbsbJL87zP-Bn2Pzco
CitedBy_id crossref_primary_10_3389_fphar_2021_747001
crossref_primary_10_3390_ijms21249721
crossref_primary_10_17656_jzs_10638
crossref_primary_10_1016_j_prp_2024_155597
crossref_primary_10_3390_ph8040675
crossref_primary_10_4161_cc_9_17_12908
crossref_primary_10_3892_or_2021_8179
crossref_primary_10_1016_j_bbagen_2013_10_016
crossref_primary_10_1002_wsbm_1474
crossref_primary_10_1016_j_biocel_2014_09_004
crossref_primary_10_1371_journal_pone_0097239
crossref_primary_10_1146_annurev_pathol_011811_120856
crossref_primary_10_3389_fonc_2021_641428
crossref_primary_10_1002_jcp_25349
crossref_primary_10_1111_j_1349_7006_2011_01985_x
crossref_primary_10_3389_fcell_2023_1274682
crossref_primary_10_3390_ijms231710172
crossref_primary_10_1053_j_seminoncol_2017_10_004
crossref_primary_10_1007_s10555_020_09890_x
crossref_primary_10_1089_ars_2011_4243
crossref_primary_10_1016_j_tranon_2023_101845
crossref_primary_10_1002_pmic_201700167
crossref_primary_10_1007_s10555_021_09960_8
crossref_primary_10_3390_cells13201721
crossref_primary_10_1007_s13577_021_00622_z
crossref_primary_10_1111_j_1349_7006_2011_02183_x
crossref_primary_10_3390_biomedicines11010197
crossref_primary_10_1016_j_cmet_2019_08_013
crossref_primary_10_1016_j_csbj_2023_04_003
crossref_primary_10_1016_j_ctrv_2013_07_006
crossref_primary_10_1186_s13045_024_01600_2
crossref_primary_10_1007_s11427_021_1999_2
crossref_primary_10_3390_ijms26125583
crossref_primary_10_1016_j_bbcan_2014_07_008
crossref_primary_10_1038_aps_2016_47
crossref_primary_10_1186_2193_1801_3_470
crossref_primary_10_4251_wjgo_v13_i11_1561
crossref_primary_10_4161_cc_26182
crossref_primary_10_1016_j_ejps_2012_08_012
crossref_primary_10_1371_journal_pcbi_1006584
crossref_primary_10_3390_antiox10020169
crossref_primary_10_3748_wjg_v21_i4_1140
crossref_primary_10_1093_neuonc_nou035
crossref_primary_10_1186_s10020_024_01051_y
crossref_primary_10_1016_j_jhep_2014_04_040
crossref_primary_10_3390_ijms161024574
crossref_primary_10_1111_jog_13867
crossref_primary_10_1016_j_canlet_2019_07_010
crossref_primary_10_18632_oncotarget_3838
crossref_primary_10_4161_cc_10_12_16002
crossref_primary_10_1016_j_prp_2022_154177
crossref_primary_10_1016_j_semcancer_2015_08_008
crossref_primary_10_1186_1475_2867_12_6
crossref_primary_10_1051_epjconf_202532501011
crossref_primary_10_1155_2018_8651790
crossref_primary_10_3390_cells7030021
crossref_primary_10_1093_bib_bbae258
crossref_primary_10_1155_2012_574025
crossref_primary_10_1158_1940_6207_CAPR_11_0028
crossref_primary_10_4161_cc_10_24_18487
crossref_primary_10_1182_blood_2015_12_688051
crossref_primary_10_1371_journal_pone_0256615
crossref_primary_10_5604_01_3001_0014_1528
crossref_primary_10_3389_fnut_2021_588466
crossref_primary_10_3892_mmr_2023_13135
crossref_primary_10_1155_2013_242513
crossref_primary_10_1155_2017_9634172
crossref_primary_10_1016_j_molmed_2011_11_003
crossref_primary_10_1007_s43440_023_00504_1
crossref_primary_10_1016_j_ejca_2019_09_002
crossref_primary_10_4161_cc_10_11_15675
crossref_primary_10_1155_2016_8549635
crossref_primary_10_1007_s10555_020_09900_y
crossref_primary_10_1155_2013_195028
crossref_primary_10_1038_nrc3365
crossref_primary_10_1016_j_drup_2020_100715
crossref_primary_10_1177_1758834014521111
crossref_primary_10_1016_j_neo_2016_11_003
crossref_primary_10_3390_cells8040293
crossref_primary_10_1155_2017_7454031
crossref_primary_10_3389_fonc_2022_942064
crossref_primary_10_1016_j_omtn_2023_03_003
crossref_primary_10_3389_fonc_2018_00341
crossref_primary_10_3389_fonc_2019_01248
crossref_primary_10_3389_fimmu_2025_1561577
crossref_primary_10_3390_cancers15041070
crossref_primary_10_3390_cancers14020322
crossref_primary_10_3390_antiox10111838
crossref_primary_10_3390_ijms20020306
crossref_primary_10_1002_ijc_30540
crossref_primary_10_1016_j_molcel_2020_05_034
crossref_primary_10_1007_s10555_021_10013_3
crossref_primary_10_1007_s11306_016_1065_y
crossref_primary_10_4161_cc_25794
crossref_primary_10_1016_j_devcel_2024_06_022
crossref_primary_10_1016_j_bbcan_2012_04_005
crossref_primary_10_1007_s13277_014_2482_z
crossref_primary_10_1158_1078_0432_CCR_12_2123
crossref_primary_10_3389_fcell_2020_00651
crossref_primary_10_4161_cc_11_6_19530
crossref_primary_10_4161_cc_9_21_13817
crossref_primary_10_3389_fonc_2021_697894
crossref_primary_10_4161_cc_19841
crossref_primary_10_1242_dmm_016287
crossref_primary_10_3389_fonc_2021_700629
crossref_primary_10_1371_journal_pone_0075154
crossref_primary_10_1186_s12935_018_0715_8
crossref_primary_10_1038_onc_2016_370
crossref_primary_10_3389_fonc_2020_604143
crossref_primary_10_3389_fcell_2017_00027
crossref_primary_10_1186_s12943_016_0577_4
crossref_primary_10_1186_s12943_025_02297_8
crossref_primary_10_3892_ijmm_2017_3267
crossref_primary_10_1111_vco_12551
crossref_primary_10_1186_s12967_023_04498_5
crossref_primary_10_1016_j_jgo_2018_07_010
crossref_primary_10_3390_ijms251910486
crossref_primary_10_1172_JCI69741
crossref_primary_10_3389_fimmu_2018_00353
crossref_primary_10_3390_cancers6031570
crossref_primary_10_1093_neuonc_now258
crossref_primary_10_3892_or_2017_5479
crossref_primary_10_1002_cac2_12291
crossref_primary_10_1016_j_yexcr_2017_11_020
crossref_primary_10_1016_j_plipres_2013_06_002
crossref_primary_10_1146_annurev_cancerbio_030419_033333
crossref_primary_10_1016_j_bbcan_2019_07_004
crossref_primary_10_1007_s10549_011_1751_4
crossref_primary_10_1007_s10555_018_9772_7
crossref_primary_10_1002_ijc_32987
crossref_primary_10_1186_s12967_019_1936_x
crossref_primary_10_4161_cc_11_2_19006
crossref_primary_10_1007_s11060_021_03903_7
crossref_primary_10_1038_s41598_017_02251_9
crossref_primary_10_3892_ijo_2025_5796
crossref_primary_10_3390_cancers14071621
crossref_primary_10_1155_2020_4027627
crossref_primary_10_7554_eLife_09943
crossref_primary_10_1016_j_ejso_2014_04_005
crossref_primary_10_4161_cc_10_15_16870
crossref_primary_10_3390_ijms24087208
crossref_primary_10_3390_ijms22126262
crossref_primary_10_4103_0973_1482_193113
crossref_primary_10_1038_s41392_020_00359_5
crossref_primary_10_31083_j_fbl2912402
crossref_primary_10_3892_ijo_2018_4640
crossref_primary_10_4103_1673_5374_361536
crossref_primary_10_3892_ijo_2013_1985
crossref_primary_10_1089_cell_2023_0010
crossref_primary_10_4161_cc_9_17_12731
ContentType Journal Article
Copyright Copyright © 2010 Landes Bioscience 2010
Copyright_xml – notice: Copyright © 2010 Landes Bioscience 2010
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.4161/cc.9.10.11601
DatabaseName Taylor & Francis Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-4005
EndPage 1971
ExternalDocumentID 20495363
10_4161_cc_9_10_11601
10911601
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01-CA-120876
– fundername: NCI NIH HHS
  grantid: R01-CA-080250
– fundername: NIAMS NIH HHS
  grantid: R01-AR-055660
– fundername: NCI NIH HHS
  grantid: R01-CA-75503
– fundername: NCI NIH HHS
  grantid: R01-CA-86072
– fundername: NCI NIH HHS
  grantid: R01-CA-098779
– fundername: NCI NIH HHS
  grantid: R01-CA-107382
– fundername: NCI NIH HHS
  grantid: P30-CA-56036
– fundername: NCI NIH HHS
  grantid: R01-CA-70896
GroupedDBID ---
0BK
0R~
0YH
29B
30N
4.4
53G
5GY
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABFMO
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACFTK
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
AEISY
AENEX
AEXWM
AEYOC
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AQTUD
AVBZW
AWYRJ
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EJD
F5P
GTTXZ
H13
HYE
KRBQP
KWAYT
KYCEM
M4Z
O9-
OK1
P2P
RNANH
ROSJB
RPM
RTWRZ
SJN
SNACF
TASJS
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
TUROJ
ZGOLN
-
0R
AAAVI
ABJVF
ABQHQ
ADACO
AEGYZ
AFOLD
AHDLD
AIRXU
FUNRP
FVPDL
UNR
V1K
ZA5
AAYXX
CITATION
ADYSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c531t-62a9af5b955dd2c6b6426ab87c3ff29dccf2261b75724416cc9e30f78807d53d3
IEDL.DBID 0YH
ISICitedReferencesCount 196
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278015900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-4101
1551-4005
IngestDate Sun Aug 24 03:58:49 EDT 2025
Mon Jul 21 05:52:48 EDT 2025
Tue Nov 18 21:51:56 EST 2025
Sat Nov 29 03:33:02 EST 2025
Tue May 21 11:32:56 EDT 2019
Fri Jan 15 03:37:37 EST 2021
Mon Oct 20 23:45:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License open-access: http://creativecommons.org/licenses/by-nc/3.0/: This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-62a9af5b955dd2c6b6426ab87c3ff29dccf2261b75724416cc9e30f78807d53d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/abs/10.4161/cc.9.10.11601
PMID 20495363
PQID 837453357
PQPubID 23479
PageCount 12
ParticipantIDs pubmed_primary_20495363
informaworld_taylorfrancis_310_4161_cc_9_10_11601
landesbioscience_primary_cc_article_11601
crossref_citationtrail_10_4161_cc_9_10_11601
proquest_miscellaneous_837453357
crossref_primary_10_4161_cc_9_10_11601
PublicationCentury 2000
PublicationDate 5/15/2010
2010/05/15
2010-05-15
2010-May-15
20100515
PublicationDateYYYYMMDD 2010-05-15
PublicationDate_xml – month: 05
  year: 2010
  text: 5/15/2010
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell cycle (Georgetown, Tex.)
PublicationTitleAlternate Cell Cycle
PublicationYear 2010
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
SSID ssj0028791
Score 2.4106667
Snippet We and others have previously identified a loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts (CAFs) as a powerful single independent...
SourceID proquest
pubmed
crossref
landesbioscience
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1960
SubjectTerms Animals
Binding
Biology
Bioscience
Blotting, Western
Calcium
Cancer
Caveolin 1 - deficiency
Caveolin 1 - genetics
Cell
Cell Line, Tumor
Culture Media, Conditioned
Cycle
Deoxyglucose - pharmacology
Dichloroacetic Acid - pharmacology
Electrophoresis, Gel, Two-Dimensional
Electrophoresis, Polyacrylamide Gel
Fibroblasts - cytology
Fibroblasts - metabolism
Glycolysis - drug effects
Humans
Immunohistochemistry
Lactate Dehydrogenases - genetics
Lactate Dehydrogenases - metabolism
Landes
Mice
Mice, Nude
Microscopy, Fluorescence
Organogenesis
Proteins
Proteomics
Pyruvate Kinase - genetics
Pyruvate Kinase - metabolism
Xenograft Model Antitumor Assays
Title The reverse Warburg Effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts
URI https://www.tandfonline.com/doi/abs/10.4161/cc.9.10.11601
http://www.landesbioscience.com/journals/cc/article/11601/
https://www.ncbi.nlm.nih.gov/pubmed/20495363
https://www.proquest.com/docview/837453357
Volume 9
WOSCitedRecordID wos000278015900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1551-4005
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028791
  issn: 1538-4101
  databaseCode: TFW
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQAYkeKN9dvuQDQkJq2sRO4pgbrFh6QBWHoi4ny3bsEqkkq2y2Un8Df5oZO7tqQXuBiw-R7cjOG_tNPH5DyBvmgWNzx5PMeZfkpfWJyR3aFTfWMVdIGS4KfxEnJ9V8Lr9eS_WFYZXoQ_soFBHWajRubUIGEqTjR9YeysNg7SXe3LrNwCXBaK70-_HG16qEHKVSqyQH2EV5zb-b39iOboiV7pI9jC3EY5pRVtJtZ6FhN5rt_cc4HpD7IwWlHyJmHpJbrn1E7saklFePyS9ADkVhp37p6JnGWT-nUeT4Pf18cQXIQRUT2rQ_GtNgsh66iDpQFMgkHVY_ux6ehCi_9pyOASO089TqS4c5gpKM1g6VK7CNRdj1VI8wcTX14MF3Blj9sHxCvs0-nU6PkzFlQ2LBmIekZFpqXxhZFHXNbGnAvSm1qYTl3jNZW-uB72VGFAJ4RVZaKx1PPfjhqagLXvOnZKftWrdPaG6ZdHmVlpWBhSaTGrXJOCt0phFAZkIO1l9O2VHPHNNqXCjwa3B-lbVKquDkwPxOyNtN9UUU8thWMbsOAzWEPyc-pjlRfEubgz-xsnnJx65d4SFMM52GBovaT8i7rdWh33HNWHdN15hTYPnYk25dt1qqioscyHohJuRZxOKmE5Zi2HDJn__DWF6Qe-sIiax4SXaGfuVekTv2cmiW_etgZVCKeQXl6ezsN8CSL-I
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQAUEPlI9Cl08fEBJSUzZxnMTcYMVSxLLisKi9WbZjl0glWSXZSv0N_GlmYu-KgvYC18ieyM4b-008fkPIy8QBx2aWRbF1Nkoz4yKdWvQrpo1NLBdiuCg8y-fz4vRUfA1ZlV1Iq8QY2nmhiGGtRufGn9Ho4cjH3xhzJI4Gd8_w6tZ1DnsspvMtpiebYKvIRdBKLaIUcOf1Nf_ufmU_uqJWukv2MLkQz2mCrqTdTkOH7Wi69z8DuUvuBBJK33nU3CPXbH2f3PRlKS8fkJ-AHYrSTm1n6YnCeT-jXub4Lf14fgnYQR0TWtXfK11huR669EpQFOgk7Vc_mhaeDHl-9RkNKSO0cdSoC4tVgqKYlha1K7CPQeC1VAWg2JI6iOEbDby-7_bJt-mHxeQ4CkUbIgPu3EdZooRyXAvOyzIxmYYAJ1O6yA1zLhGlMQ4YX6xzngOziDNjhGVjB5H4OC85K9lDslM3tT0gNDWJsGkxzgoNS00sFKqTsYSrWCGE9Igcrj-dNEHRHAtrnEuIbHB-pTFSyCHMgfkdkVeb5ksv5bGtYfw7DmQ__DtxvtCJZFv6HP4Jls1L3jf1Co9hqslk6LAs3Yi83toc7IZVY22arkEnwffRkqpts-pkwfIU6DrPR-SRB-PGSDLGxOGMPf6Hsbwgt44XX2Zy9mn--Qm5vc6XiPlTstO3K_uM3DAXfdW1zweX-wXdQjIS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQeagcKG-Wpw8ICakpmzgvc4OFBUS16qGovVn2xC6R2mSVzVbqb-BPM2NnVy1oL3CN7InsfGN_E4-_Yex14pBjCyui2DobpTm4yKSW_EoYsInNpPQXhfeL2aw8PpYHl0p9UVolxdAuCEX4tZqce145cnCi4-8A9uSe9_acbm5d96JYCOXD6dE61ioLOUilllGKsAvymn93v7IdXRErvc12KLeQjmkGWUm7mYX63Wi68x_juMvuDBSUfwiYuceu2eY-uxmKUl48YL8QOZyEnbqF5UeaZv2EB5Hj9_zL6QUih1RMeN38rE1NxXr4POhAcSSTvF-etR0-8Vl-zQkfEkZ46zjoc0s1gqKYV5aUK6gPEOw6rgeY2Io7jOBbg6y-XzxkP6afDydfo6FkQwTozH2UJ1pqlxmZZVWVQG4wvMm1KQsQziWyAnDI92JTZAXyijgHkFaMHcbh46LKRCUesa2mbewTxlNIpE3LcV4aXGhiqUmbTCSZjjUByIzY7urLKRj0zKmsxqnCuIbmVwEoqXyQg_M7Ym_WzedByGNTw_gyDFTv_5y4UOZEiQ19dv_EyvolH9tmSYcw9WTiOyACRuztxuZod1gzVqb5CnMKPZ8s6ca2y4UqRZEiWc-KEXscsLg2kowpbTgXT_9hLK_YrYNPU7X_bfb9GdteJUvE2XO21XdL-4LdgPO-XnQvvcP9BgdGMLY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+reverse+Warburg+effect%3A+glycolysis+inhibitors+prevent+the+tumor+promoting+effects+of+caveolin-1+deficient+cancer+associated+fibroblasts&rft.jtitle=Cell+cycle+%28Georgetown%2C+Tex.%29&rft.au=Bonuccelli%2C+Gloria&rft.au=Whitaker-Menezes%2C+Diana&rft.au=Castello-Cros%2C+Remedios&rft.au=Pavlides%2C+Stephanos&rft.date=2010-05-15&rft.issn=1551-4005&rft.eissn=1551-4005&rft.volume=9&rft.issue=10&rft.spage=1960&rft_id=info:doi/10.4161%2Fcc.9.10.11601&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4101&client=summon