Robot Learning From Randomized Simulations: A Review

The rise of deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data. Unfortunately, it is prohibitively expensive to generate such data sets on a physical platform. Therefore, state-of-the-art approaches learn in simulation where data gener...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in robotics and AI Ročník 9; s. 799893
Hlavní autoři: Muratore, Fabio, Ramos, Fabio, Turk, Greg, Yu, Wenhao, Gienger, Michael, Peters, Jan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Media S.A 11.04.2022
Témata:
ISSN:2296-9144, 2296-9144
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The rise of deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data. Unfortunately, it is prohibitively expensive to generate such data sets on a physical platform. Therefore, state-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive and subsequently transfer the knowledge to the real robot (sim-to-real). Despite becoming increasingly realistic, all simulators are by construction based on models, hence inevitably imperfect. This raises the question of how simulators can be modified to facilitate learning robot control policies and overcome the mismatch between simulation and reality, often called the “reality gap.” We provide a comprehensive review of sim-to-real research for robotics, focusing on a technique named “domain randomization” which is a method for learning from randomized simulations.
AbstractList The rise of deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data. Unfortunately, it is prohibitively expensive to generate such data sets on a physical platform. Therefore, state-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive and subsequently transfer the knowledge to the real robot (sim-to-real). Despite becoming increasingly realistic, all simulators are by construction based on models, hence inevitably imperfect. This raises the question of how simulators can be modified to facilitate learning robot control policies and overcome the mismatch between simulation and reality, often called the “reality gap.” We provide a comprehensive review of sim-to-real research for robotics, focusing on a technique named “domain randomization” which is a method for learning from randomized simulations.
The rise of deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data. Unfortunately, it is prohibitively expensive to generate such data sets on a physical platform. Therefore, state-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive and subsequently transfer the knowledge to the real robot (sim-to-real). Despite becoming increasingly realistic, all simulators are by construction based on models, hence inevitably imperfect. This raises the question of how simulators can be modified to facilitate learning robot control policies and overcome the mismatch between simulation and reality, often called the "reality gap." We provide a comprehensive review of sim-to-real research for robotics, focusing on a technique named "domain randomization" which is a method for learning from randomized simulations.The rise of deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data. Unfortunately, it is prohibitively expensive to generate such data sets on a physical platform. Therefore, state-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive and subsequently transfer the knowledge to the real robot (sim-to-real). Despite becoming increasingly realistic, all simulators are by construction based on models, hence inevitably imperfect. This raises the question of how simulators can be modified to facilitate learning robot control policies and overcome the mismatch between simulation and reality, often called the "reality gap." We provide a comprehensive review of sim-to-real research for robotics, focusing on a technique named "domain randomization" which is a method for learning from randomized simulations.
Author Gienger, Michael
Turk, Greg
Ramos, Fabio
Yu, Wenhao
Peters, Jan
Muratore, Fabio
AuthorAffiliation 6 Robotics at Google , Mountain View , CA , United States
1 Intelligent Autonomous Systems Group , Technical University of Darmstadt , Darmstadt , Germany
3 School of Computer Science , University of Sydney , Sydney , NSW , Australia
4 NVIDIA , Seattle , WA , United States
5 Georgia Institute of Technology , Atlanta , GA , United States
2 Honda Research Institute Europe , Offenbach am Main , Germany
AuthorAffiliation_xml – name: 6 Robotics at Google , Mountain View , CA , United States
– name: 2 Honda Research Institute Europe , Offenbach am Main , Germany
– name: 3 School of Computer Science , University of Sydney , Sydney , NSW , Australia
– name: 4 NVIDIA , Seattle , WA , United States
– name: 5 Georgia Institute of Technology , Atlanta , GA , United States
– name: 1 Intelligent Autonomous Systems Group , Technical University of Darmstadt , Darmstadt , Germany
Author_xml – sequence: 1
  givenname: Fabio
  surname: Muratore
  fullname: Muratore, Fabio
– sequence: 2
  givenname: Fabio
  surname: Ramos
  fullname: Ramos, Fabio
– sequence: 3
  givenname: Greg
  surname: Turk
  fullname: Turk, Greg
– sequence: 4
  givenname: Wenhao
  surname: Yu
  fullname: Yu, Wenhao
– sequence: 5
  givenname: Michael
  surname: Gienger
  fullname: Gienger, Michael
– sequence: 6
  givenname: Jan
  surname: Peters
  fullname: Peters, Jan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35494543$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB_0B7BBWbKZ4fqRxGaBVFW0VBoJaYC15evcDK4Su9iZVvDrSWdK1bJgZcv3nO8e-Ryzg5giMfaGw1JKbd73OeG0FCDEsjVGG_mCHQlhmoXhSh08uR-y01KuAYDXWsm2fcUOZa2MqpU8YmqdME3VilyOIW6qi5zGau1il8bwm7rqaxi3g5tCiuVDdVat6TbQ3Wv2sndDodOH84R9v_j07fzzYvXl8ur8bLXwteTTQiF48MqAk85jB-BQKFQSQfe9FjhnAMGp19jxhohLISVqj9K12PhWyBN2ted2yV3bmxxGl3_Z5ILdPaS8sS5PwQ9kueCARnWN9EqhqxE7ap3mnhzMAfqZ9XHPutniSJ2nOGU3PIM-n8Tww27SrTUgtVZqBrx7AOT0c0tlsmMonobBRUrbYkVT66YWoGCWvn2663HJ32-fBXwv8DmVkql_lHCw9-3aXbv2vl27b3f2tP94fJh2zcxxw_Af5x_Nvarv
CitedBy_id crossref_primary_10_3390_s25113394
crossref_primary_10_1109_LRA_2024_3398428
crossref_primary_10_1109_LRA_2025_3559833
crossref_primary_10_1109_OJVT_2025_3573647
crossref_primary_10_1016_j_iintel_2024_100098
crossref_primary_10_1109_TICPS_2025_3589351
crossref_primary_10_1109_ACCESS_2023_3278208
crossref_primary_10_1016_j_sysconle_2024_106011
crossref_primary_10_1007_s11042_024_19731_6
crossref_primary_10_1109_TRO_2025_3539192
crossref_primary_10_1007_s11044_024_10005_5
crossref_primary_10_1109_ACCESS_2023_3324039
crossref_primary_10_1109_MRA_2022_3207664
crossref_primary_10_1109_JAS_2023_123375
crossref_primary_10_1177_02783649251318046
crossref_primary_10_3390_electronics11111754
crossref_primary_10_3390_mti8030018
crossref_primary_10_1177_02783649231184498
crossref_primary_10_1177_02783649241273565
crossref_primary_10_1016_j_procs_2022_11_058
crossref_primary_10_1109_TASE_2024_3432405
crossref_primary_10_3390_jmse13091627
crossref_primary_10_1109_LRA_2024_3521178
crossref_primary_10_1109_ACCESS_2024_3390035
crossref_primary_10_3390_robotics11050109
crossref_primary_10_1016_j_neucom_2024_128951
crossref_primary_10_3389_fbioe_2024_1334643
crossref_primary_10_1109_ACCESS_2023_3249572
crossref_primary_10_1126_scirobotics_adi8022
crossref_primary_10_3390_technologies13050198
Cites_doi 10.3390/robotics9010008
10.15607/RSS.2006.II.032
10.1145/1833351.177881010.1145/1778765.1778810
10.1093/biomet/asp052
10.1109/TRO.2019.2958211
10.1145/566654.566636
10.15607/RSS.2018.XIV.008
10.1109/ICRA48506.2021.9562091
10.15607/RSS.2012.VIII.045
10.1007/s11263-015-0816-y
10.1177/0278364913495721
10.1080/01621459.1949.10483310
10.1609/aaai.v24i1.7727
10.1126/science.1133687
10.1098/rspa.2007.1900
10.1109/IROS.2017.8206245
10.1007/978-1-84628-517-2
10.1007/978-0-85729-664-1
10.1073/pnas.1912789117
10.1371/journal.pcbi.1002803
10.1109/JPROC.2020.3004555
10.1109/TAC.2015.2444134
10.15607/RSS.2021.XVII.011
10.1109/ICRA48506.2021.9561805
10.15607/RSS.2021.XVII.061
10.1109/ICRA48506.2021.9561731
10.1038/nature16961
10.1016/S0004-3702(99)00052-1
10.1007/BF00992696
10.1111/j.1468-5914.1975.tb00350.x
10.15607/RSS.2019.XV.029
10.1007/s10107-006-0720-x
10.1109/LRA.2020.3013848
10.1109/TPAMI.2019.2952353
10.1109/TKDE.2009.191
10.1023/A:101823700882310.1007/bf00117447
10.1109/LRA.2019.2920285
10.1177/0278364919887447
10.1109/ICRA.2017.7989186
10.15607/RSS.2021.XVII.068
10.1177/105971239700600205
10.1016/S0167-6377(98)00054-6
10.1016/j.neunet.2010.08.011
10.1111/j.1467-9868.2011.01010.x
10.1109/TCSI.2012.2215396
10.1109/ICRA48506.2021.9560935
10.1177/027836498600500306
10.15607/RSS.2020.XVI.064
10.15607/RSS.2017.XIII.048
10.1287/opre.1.5.263
10.1007/s11263-009-0233-1
10.1073/pnas.0306899100
10.1038/nature14422
10.1287/opre.1090.0741
10.15607/RSS.2018.XIV.010
10.1002/rob.21683
10.1007/bf00337259
10.3389/fnbot.2019.00006
10.1145/122344.122377
10.1007/bf00275151
10.1177/0278364917710318
10.1109/TEVC.2012.2185849
10.1287/mnsc.25.7.649
10.15607/RSS.2017.XIII.034
10.15607/RSS.2021.XVII.063
10.1007/bf00535296
10.1073/pnas.1306572110
10.15607/RSS.2021.XVII.007
10.1002/cav.1712
10.1561/2300000021
10.1038/nature14236
10.1109/LRA.2021.3052391
ContentType Journal Article
Copyright Copyright © 2022 Muratore, Ramos, Turk, Yu, Gienger and Peters.
Copyright © 2022 Muratore, Ramos, Turk, Yu, Gienger and Peters. 2022 Muratore, Ramos, Turk, Yu, Gienger and Peters
Copyright_xml – notice: Copyright © 2022 Muratore, Ramos, Turk, Yu, Gienger and Peters.
– notice: Copyright © 2022 Muratore, Ramos, Turk, Yu, Gienger and Peters. 2022 Muratore, Ramos, Turk, Yu, Gienger and Peters
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/frobt.2022.799893
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Muratore et al
EISSN 2296-9144
ExternalDocumentID oai_doaj_org_article_1210b94d63c44ba5bbde7a81cea090af
PMC9038844
35494543
10_3389_frobt_2022_799893
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
PGMZT
RPM
ACXDI
IAO
ICD
IEA
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c531t-4b0c0c490a3acbd00ab24b43b08ff82b494021ef8bd16ee13233b8cb3a7b6c723
IEDL.DBID DOA
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792457300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-9144
IngestDate Fri Oct 03 12:53:31 EDT 2025
Thu Aug 21 18:17:42 EDT 2025
Fri Sep 05 10:04:37 EDT 2025
Thu Jan 02 22:27:44 EST 2025
Sat Nov 29 05:50:08 EST 2025
Tue Nov 18 22:20:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords simulation optimization bias
reality gap
simulation
robotics
sim-to-real
domain randomization
reinforcement learning
Language English
License Copyright © 2022 Muratore, Ramos, Turk, Yu, Gienger and Peters.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-4b0c0c490a3acbd00ab24b43b08ff82b494021ef8bd16ee13233b8cb3a7b6c723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Konstantinos Chatzilygeroudis, University of Patras, Greece
Reviewed by: Akansel Cosgun, Monash University, Australia
This article was submitted to Robot Learning and Evolution, a section of the journal Frontiers in Robotics and AI
Edited by: Antonio Fernández-Caballero, University of Castilla-La Mancha, Spain
OpenAccessLink https://doaj.org/article/1210b94d63c44ba5bbde7a81cea090af
PMID 35494543
PQID 2658652040
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1210b94d63c44ba5bbde7a81cea090af
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9038844
proquest_miscellaneous_2658652040
pubmed_primary_35494543
crossref_primary_10_3389_frobt_2022_799893
crossref_citationtrail_10_3389_frobt_2022_799893
PublicationCentury 2000
PublicationDate 2022-04-11
PublicationDateYYYYMMDD 2022-04-11
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-11
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in robotics and AI
PublicationTitleAlternate Front Robot AI
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Van Parys (B170) 2015; 61
Metropolis (B118) 1949; 44
Zhang (B185) 2021
Craik (B39) 1943
Huang (B73) 2017
Peng (B136) 2018
Teh (B165) 2017
Jakobi (B76) 1997; 6
Kakade (B84) 2001
Wittenmark (B175) 1995
Cully (B42) 2015; 521
Chatzilygeroudis (B29) 2017
James (B79) 2019
Kaspar (B85) 2020
Allevato (B3) 2019
Martin Martin (B113) 2014
Alghonaim (B2) 2020
Andrychowicz (B5) 2017
Degrave (B48) 2019; 13
Goodfellow (B62) 2015
Lutter (B107) 2019
Szegedy (B163) 2014
Jiang (B80) 2021
Pinto (B139) 2018
Ramos (B146) 2019
Bengio (B18) 2009
Barcelos (B12) 2021
Xie (B179) 2020
Carlini (B27) 2017
B38
Klink (B88) 2019
Yu (B184) 2017
Levine (B100) 2018; 37
Russakovsky (B150) 2015; 115
Zhou (B188) 1998
Dai (B47) 2019
Bayraksan (B16) 2006; 108
Williams (B174) 1992; 8
Lutter (B106)
Peters (B138) 2010
Watson (B173) 2021
Krizhevsky (B93) 2012
Christiano (B34) 2016
Zhen (B187) 2021
Chow (B33) 1963; 2
Ting (B167) 2006
Bousmalis (B21) 2018
Muratore (B125); 43
Siekmann (B157) 2021
Yang (B181) 2013; 60
Battaglia (B15) 2016
Kahn (B83) 1953; 1
Mandlekar (B110) 2017
Polvara (B141) 2020; 9
Levine (B99) 2013
Brockman (B22) 2016
Mehta (B117) 2020
James (B78) 2017
Krotkov (B94) 2017; 34
Matl (B115) 2020
Yu (B183)
Atkeson (B10) 1986; 5
Chebotar (B31) 2019
Kumar (B95) 2021
Rajeswaran (B145) 2020
Paul (B135) 2019
Heiden (B69) 2021
Deisenroth (B50) 2011
Muratore (B126)
Parisotto (B134) 2016
Wang (B171) 2017
Baker (B11) 2020
Liu (B102) 2017
Czarnecki (B45) 2019
Matas (B114) 2018
Feldbaum (B59) 1960; 21
Amari (B4) 1977; 27
Durkan (B54) 2020
Dennett (B52) 1975
Sunnåker (B159) 2013; 9
Sutton (B161) 1991; 2
Tobin (B168) 2017
Marco (B111) 2017
Brosseit (B25) 2021
Santoro (B155) 2016
Yu (B182)
Wu (B177) 2015
Bongard (B20) 2006; 314
Lutter (B108)
Papamakarios (B132) 2016
Rasmussen (B147) 2006
Hanna (B68) 2017
Ruiz (B149) 2019
Ciresan (B36) 2012
Greydanus (B65) 2019
Silver (B158) 2016; 529
Barcelos (B13) 2020
Lillicrap (B101) 2016
Pan (B131) 2010; 22
Forrester (B61) 2007; 463
Kadian (B82) 2020; 5
Tan (B164) 2018
Jakobi (B77) 1995
Molchanov (B120) 2019
Papamakarios (B133) 2019
Brogliato (B23) 2007; 2
Ilyas (B74) 2019
Koos (B91) 2010
Marjoram (B112) 2003; 100
Du (B53) 2021
Kumar (B96) 2010
Battaglia (B14) 2013; 110
Mordatch (B121) 2015
Cranmer (B40) 2020; 117
Rusu (B153) 2017
Åström (B9) 2008
Koos (B92) 2013; 17
Lowrey (B103) 2018
Abdulsamad (B1) 2021
Kurakin (B97) 2017
Rawlik (B148) 2012
Ting (B166) 2011; 24
Chatzilygeroudis (B28) 2018
Collins (B37) 2019
Kishimoto (B86) 1979; 7
Erez (B55) 2008
Klink (B87) 2021
Muratore (B124); 6
Zhuang (B189) 2021; 109
Mnih (B119) 2015; 518
Mozian (B123) 2020
Zhang (B186) 2020
Sutanto (B160) 2020
Körber (B81) 2021
Antonova (B7) 2019
Wang (B172) 2010; 29
Kolev (B90) 2009; 84
Andrychowicz (B6) 2020; 39
Beaumont (B17) 2009; 96
Deisenroth (B49) 2011; 2
Fearnhead (B58) 2012; 74
Asada (B8) 1996; 23
Ng (B129) 2000
Chen (B32) 2017
Possas (B142) 2020
Haefner (B67) 2018
Morere (B122) 2019; 4
OpenAI (B130) 2019
Rusu (B152)
Fawzi (B57) 2015
Luksch (B105) 2012
Ivaldi (B75) 2014
Muratore (B127) 2018
Wright (B176) 1979; 25
Xie (B178) 2019
Kober (B89) 2013; 32
Cutler (B43) 2016
Grant (B63) 2018
Landau (B98) 2011
Mehta (B116) 2019
Nagabandi (B128) 2019
Höfer (B66) 2020
Bin Peng (B19) 2020
Chung (B35) 2016; 27
Dai (B46) 2021
Perlin (B137) 2002; 21
Sadeghi (B154) 2017
Yan (B180) 2020
Rajeswaran (B144) 2017
Chatzilygeroudis (B30) 2020; 36
van den Oord (B169) 2018
Erez (B56) 2015
Finn (B60) 2017
Cui (B41) 2017
Greenberg (B64) 2019
Mak (B109) 1999; 24
Rusu (B151)
Cutler (B44) 2015
Pinto (B140) 2017
Hu (B72) 2019
Radford (B143) 2019
Calandra (B26) 2015
Lueckmann (B104) 2017
Sutton (B162) 1999; 112
Hinton (B71) 2015
Schulman (B156) 2017
Hermans (B70) 2020
Delage (B51) 2010; 58
Brooks (B24) 1992
References_xml – start-page: 1531
  year: 2001
  ident: B84
  article-title: A Natural Policy Gradient
– year: 2018
  ident: B169
  article-title: Representation Learning with Contrastive Predictive Coding
– start-page: 564
  year: 2020
  ident: B180
  article-title: Learning Predictive Representations for Deformable Objects Using Contrastive Estimation
– start-page: 04616
  year: 2021
  ident: B81
  article-title: Comparing Popular Simulation Environments in the Scope of Robotics and Reinforcement Learning
– ident: B152
  article-title: Progressive Neural Networks
– volume-title: Language Models Are Unsupervised Multitask Learners
  year: 2019
  ident: B143
– start-page: 125
  year: 2019
  ident: B74
  article-title: Adversarial Examples Are Not Bugs, They Are Features
– volume: 9
  start-page: 8
  year: 2020
  ident: B141
  article-title: Sim-to-real Quadrotor landing via Sequential Deep Q-Networks and Domain Randomization
  publication-title: Robotics
  doi: 10.3390/robotics9010008
– start-page: 6706
  year: 2019
  ident: B37
  article-title: Quantifying the Reality gap in Robotic Manipulation Tasks
– year: 2006
  ident: B167
  article-title: A Bayesian Approach to Nonlinear Parameter Identification for Rigid Body Dynamics
  doi: 10.15607/RSS.2006.II.032
– start-page: 2771
  year: 2020
  ident: B54
  article-title: On Contrastive Learning for Likelihood-free Inference
– year: 2020
  ident: B179
  article-title: Dynamics Randomization Revisited: A Case Study for Quadrupedal Locomotion
– start-page: 334
  year: 2017
  ident: B78
  article-title: Transferring End-To-End Visuomotor Control from Simulation to Real World for a Multi-Stage Task
– volume: 29
  start-page: 73
  year: 2010
  ident: B172
  article-title: Optimizing Walking Controllers for Uncertain Inputs and Environments
  publication-title: ACM Trans. Graphics
  doi: 10.1145/1833351.177881010.1145/1778765.1778810
– start-page: 3642
  year: 2012
  ident: B36
  article-title: Multi-column Deep Neural Networks for Image Classification
– volume-title: Essentials of Robust Control
  year: 1998
  ident: B188
– start-page: 5048
  year: 2017
  ident: B5
  article-title: Hindsight Experience Replay
– year: 2016
  ident: B34
  article-title: Transfer from Simulation to Real World through Learning Deep Inverse Dynamics Model
– year: 2020
  ident: B11
  article-title: Emergent Tool Use from Multi-Agent Autocurricula
– volume: 96
  start-page: 983
  year: 2009
  ident: B17
  article-title: Adaptive Approximate Bayesian Computation
  publication-title: Biometrika
  doi: 10.1093/biomet/asp052
– start-page: 207
  year: 2013
  ident: B99
  article-title: Variational Policy Search via Trajectory Optimization
– start-page: 4239
  year: 2020
  ident: B70
  article-title: Likelihood-free MCMC with Amortized Approximate Ratio Estimators
– start-page: 59
  year: 2019
  ident: B120
  article-title: Sim-to-(multi)-real: Transfer of Low-Level Robust Control Policies to Multiple Quadrotors
– start-page: 13176
  volume-title: A Probabilistic Interpretation of Self-Paced Learning with Applications to Reinforcement Learning
  year: 2021
  ident: B87
– start-page: 4502
  year: 2016
  ident: B15
  article-title: Interaction Networks for Learning about Objects, Relations and Physics
– volume: 36
  start-page: 328
  year: 2020
  ident: B30
  article-title: A Survey on Policy Search Algorithms for Learning Robot Controllers in a Handful of Trials
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2019.2958211
– volume: 21
  start-page: 681
  year: 2002
  ident: B137
  article-title: Improving Noise
  publication-title: ACM Trans. Graph.
  doi: 10.1145/566654.566636
– year: 2020
  ident: B117
  article-title: A User‘s Guide to Calibrating Robotics Simulators
– year: 2016
  ident: B134
  article-title: Actor-mimic: Deep Multitask and Transfer Reinforcement Learning
– ident: B183
  article-title: Policy Transfer with Strategy Optimization
– ident: B151
  article-title: Policy Distillation
– year: 2018
  ident: B139
  article-title: Asymmetric Actor Critic for Image-Based Robot Learning
  doi: 10.15607/RSS.2018.XIV.008
– start-page: 164
  year: 2018
  ident: B67
  article-title: Fight Ill-Posedness with Ill-Posedness: Single-Shot Variational Depth Super-resolution from Shading
– year: 2016
  ident: B101
  article-title: Continuous Control with Deep Reinforcement Learning
– start-page: 1289
  year: 2017
  ident: B104
  article-title: Flexible Statistical Inference for Mechanistic Models of Neural Dynamics
– volume-title: Adaptive Control
  year: 2008
  ident: B9
– year: 2019
  ident: B107
  article-title: Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
– start-page: 700
  year: 2018
  ident: B127
  article-title: Domain Randomization for Simulation-Based Policy Optimization with Transferability Assessment
– ident: B38
– volume-title: Auto-tuned Sim-To-Real Transfer
  year: 2021
  ident: B53
  doi: 10.1109/ICRA48506.2021.9562091
– year: 2015
  ident: B62
  article-title: Explaining and Harnessing Adversarial Examples
– year: 2012
  ident: B148
  article-title: On Stochastic Optimal Control and Reinforcement Learning by Approximate Inference
  doi: 10.15607/RSS.2012.VIII.045
– start-page: 10969
  year: 2020
  ident: B13
  article-title: DISCO: Double Likelihood-free Inference Stochastic Control
– start-page: 1331
  year: 2019
  ident: B45
  article-title: Distilling Policy Distillation
– volume: 115
  start-page: 211
  year: 2015
  ident: B150
  article-title: Imagenet Large Scale Visual Recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– start-page: 4496
  year: 2017
  ident: B165
  article-title: Distral: Robust Multitask Reinforcement Learning
– start-page: 445
  volume-title: Proc. Machine Learn. Res.
  year: 2019
  ident: B3
  article-title: Tunenet: One-Shot Residual Tuning for System Identification and Sim-To-Real Robot Task Transfer
– year: 2019
  ident: B130
  article-title: Solving Rubik’s Cube with a Robot Hand
– year: 2021
  ident: B185
  article-title: Robust Reinforcement Learning on State Observations with Learned Optimal Adversary
– start-page: 41
  year: 2009
  ident: B18
  article-title: Curriculum Learning
– start-page: 1106
  volume-title: Lake Tahoe, Nev. United States December
  year: 2012
  ident: B93
  article-title: Imagenet Classification with Deep Convolutional Neural Networks
– start-page: 1189
  year: 2010
  ident: B96
  article-title: Self-paced Learning for Latent Variable Models
– volume: 32
  start-page: 1238
  year: 2013
  ident: B89
  article-title: Reinforcement Learning in Robotics: A Survey
  publication-title: Int. J. Robotics Res.
  doi: 10.1177/0278364913495721
– volume: 44
  start-page: 335
  year: 1949
  ident: B118
  article-title: The Monte Carlo Method
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1949.10483310
– year: 2010
  ident: B138
  article-title: Relative Entropy Policy Search
  doi: 10.1609/aaai.v24i1.7727
– volume: 314
  start-page: 1118
  year: 2006
  ident: B20
  article-title: Resilient Machines through Continuous Self-Modeling
  publication-title: Science
  doi: 10.1126/science.1133687
– volume: 463
  start-page: 3251
  year: 2007
  ident: B61
  article-title: Multi-fidelity Optimization via Surrogate Modelling
  publication-title: Proc. R. Soc. A.
  doi: 10.1098/rspa.2007.1900
– year: 2017
  ident: B110
  article-title: Adversarially Robust Policy Learning: Active Construction of Physically-Plausible Perturbations
  doi: 10.1109/IROS.2017.8206245
– year: 2021
  ident: B187
  article-title: Mathematical Foundations of Robust and Distributionally Robust Optimization
– start-page: 127
  year: 2015
  ident: B177
  article-title: Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning
– start-page: 5445
  year: 2020
  ident: B142
  article-title: Online Bayessim for Combined Simulator Parameter Inference and Policy Improvement
– volume: 2
  year: 2007
  ident: B23
  article-title: Dissipative Systems Analysis and Control
  publication-title: Theor. Appl.
  doi: 10.1007/978-1-84628-517-2
– start-page: 215
  year: 2008
  ident: B55
  article-title: What Does Shaping Mean for Computational Reinforcement Learning?
– volume-title: Adaptive Control: Algorithms, Analysis and Applications
  year: 2011
  ident: B98
  doi: 10.1007/978-0-85729-664-1
– start-page: 03149
  volume-title: Destilled Domain Randomization
  year: 2021
  ident: B25
– volume: 117
  start-page: 30055
  year: 2020
  ident: B40
  article-title: The Frontier of Simulation-Based Inference
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1912789117
– start-page: 2404
  year: 2019
  ident: B64
  article-title: Automatic Posterior Transformation for Likelihood-free Inference
– volume: 9
  start-page: e1002803
  year: 2013
  ident: B159
  article-title: Approximate Bayesian Computation
  publication-title: Plos Comput. Biol.
  doi: 10.1371/journal.pcbi.1002803
– volume: 109
  start-page: 43
  year: 2021
  ident: B189
  article-title: A Comprehensive Survey on Transfer Learning
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.3004555
– volume: 61
  start-page: 1
  year: 2015
  ident: B170
  article-title: Distributionally Robust Control of Constrained Stochastic Systems
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/TAC.2015.2444134
– year: 2021
  ident: B95
  article-title: RMA: Rapid Motor Adaptation for Legged Robots
  doi: 10.15607/RSS.2021.XVII.011
– year: 2015
  ident: B57
  article-title: Fundamental Limits on Adversarial Robustness
– start-page: 2770
  year: 2020
  ident: B115
  article-title: Inferring the Material Properties of Granular media for Robotic Tasks
– start-page: 5442
  year: 2016
  ident: B43
  article-title: Autonomous Drifting Using Simulation-Aided Reinforcement Learning
– start-page: 456
  year: 2019
  ident: B7
  article-title: Bayesian Optimization in Variational Latent Spaces with Dynamic Compression
– ident: B108
  article-title: Differentiable Physics Models for Real-World Offline Model-Based Reinforcement Learning
  doi: 10.1109/ICRA48506.2021.9561805
– start-page: 734
  year: 2018
  ident: B114
  article-title: Sim-to-real Reinforcement Learning for Deformable Object Manipulation
– year: 2021
  ident: B157
  article-title: Blind Bipedal Stair Traversal via Sim-To-Real Reinforcement Learning
  doi: 10.15607/RSS.2021.XVII.061
– start-page: 7953
  year: 2020
  ident: B145
  article-title: A Game Theoretic Framework for Model Based Reinforcement Learning
– year: 2021
  ident: B80
  article-title: Simgan: Hybrid Simulator Identification for Domain Adaptation via Adversarial Reinforcement Learning
  doi: 10.1109/ICRA48506.2021.9561731
– start-page: 2494
  year: 2014
  ident: B113
  article-title: Online Interactive Perception of Articulated Objects with Multi-Level Recursive Estimation Based on Task-specific Priors
– volume: 529
  start-page: 484
  year: 2016
  ident: B158
  article-title: Mastering the Game of Go with Deep Neural Networks and Tree Search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 112
  start-page: 181
  year: 1999
  ident: B162
  article-title: Between Mdps and Semi-mdps: A Framework for Temporal Abstraction in Reinforcement Learning
  publication-title: Artif. Intelligence
  doi: 10.1016/S0004-3702(99)00052-1
– volume: 8
  start-page: 229
  year: 1992
  ident: B174
  article-title: Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning
  publication-title: Mach Learn.
  doi: 10.1007/BF00992696
– year: 1975
  ident: B52
  article-title: Why the Law of Effect Will Not Go Away
  publication-title: J. Theor. Soc. Behav.
  doi: 10.1111/j.1468-5914.1975.tb00350.x
– year: 2019
  ident: B146
  article-title: Bayessim: Adaptive Domain Randomization via Probabilistic Inference for Robotics Simulators
  doi: 10.15607/RSS.2019.XV.029
– volume: 108
  start-page: 495
  year: 2006
  ident: B16
  article-title: Assessing Solution Quality in Stochastic Programs
  publication-title: Math. Program
  doi: 10.1007/s10107-006-0720-x
– start-page: 1
  year: 2018
  ident: B28
  article-title: Using Parameterized Black-Box Priors to Scale up Model-Based Policy Search for Robotics
– start-page: 1
  year: 2018
  ident: B136
  article-title: Sim-to-real Transfer of Robotic Control with Dynamics Randomization
– start-page: 1028
  year: 2016
  ident: B132
  article-title: Fast ϵ-free Inference of Simulation Models with Bayesian Conditional Density Estimation
– volume: 5
  start-page: 6670
  year: 2020
  ident: B82
  article-title: Sim2real Predictivity: Does Evaluation in Simulation Predict Real-World Performance?
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3013848
– volume: 43
  start-page: 1172
  ident: B125
  article-title: Assessing Transferability from Simulation to Reality for Reinforcement Learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2952353
– volume: 22
  start-page: 1345
  year: 2010
  ident: B131
  article-title: A Survey on Transfer Learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– start-page: 23
  year: 2017
  ident: B168
  article-title: Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World
– volume: 23
  start-page: 279
  year: 1996
  ident: B8
  article-title: Purposive Behavior Acquisition for a Real Robot by Vision-Based Reinforcement Learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:101823700882310.1007/bf00117447
– start-page: 4825
  year: 2017
  ident: B41
  article-title: Knowledge Distillation across Ensembles of Multilingual Models for Low-Resource Languages
– volume: 4
  start-page: 2815
  year: 2019
  ident: B122
  article-title: Learning to Plan Hierarchically from Curriculum
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2920285
– year: 2017
  ident: B144
  article-title: Epopt: Learning Robust Neural Network Policies Using Model Ensembles
– year: 2017
  ident: B97
  article-title: Adversarial Examples in the Physical World
– start-page: 317
  year: 2019
  ident: B178
  article-title: Learning Locomotion Skills for Cassie: Iterative Design and Sim-To-Real
– volume: 39
  start-page: 3
  year: 2020
  ident: B6
  article-title: Learning Dexterous In-Hand Manipulation
  publication-title: Int. J. Robotics Res.
  doi: 10.1177/0278364919887447
– start-page: 2605
  year: 2015
  ident: B44
  article-title: Efficient Reinforcement Learning for Robots Using Informative Simulated Priors
– start-page: 3186
  year: 2015
  ident: B26
  article-title: Learning Inverse Dynamics Models with Contacts
– volume-title: Proximal Policy Optimization Algorithms
  year: 2017
  ident: B156
– year: 2017
  ident: B111
  article-title: Virtual vs. Real: Trading off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization
  doi: 10.1109/ICRA.2017.7989186
– start-page: 3
  year: 1992
  ident: B24
  article-title: Artificial Life and Real Robots
– start-page: 15353
  year: 2019
  ident: B65
  article-title: Hamiltonian Neural Networks
– year: 2021
  ident: B12
  article-title: Dual Online Stein Variational Inference for Control and Dynamics
  doi: 10.15607/RSS.2021.XVII.068
– start-page: 6265
  year: 2019
  ident: B72
  article-title: Chainqueen: A Real-Time Differentiable Physical Simulator for Soft Robotics
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: B147
– year: 2018
  ident: B63
  article-title: Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
– start-page: 119
  year: 2010
  ident: B91
  article-title: Crossing the Reality gap in Evolutionary Robotics by Promoting Transferable Controllers
– start-page: 4397
  year: 2015
  ident: B56
  article-title: Simulation Tools for Model-Based Robotics: Comparison of Bullet, Havok, Mujoco, ODE and Physx
– volume-title: The Nature of Explanation
  year: 1943
  ident: B39
– start-page: 2082
  year: 2012
  ident: B105
  article-title: Adaptive Movement Sequences and Predictive Decisions Based on Hierarchical Dynamical Systems
– start-page: 804
  year: 2020
  ident: B160
  article-title: Encoding Physical Constraints in Differentiable newton-euler Algorithm
– start-page: 4243
  year: 2018
  ident: B21
  article-title: Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping
– start-page: 1842
  year: 2016
  ident: B155
  article-title: Meta-learning with Memory-Augmented Neural Networks
– volume: 6
  start-page: 325
  year: 1997
  ident: B76
  article-title: Evolutionary Robotics and the Radical Envelope-Of-Noise Hypothesis
  publication-title: Adaptive Behav.
  doi: 10.1177/105971239700600205
– volume: 24
  start-page: 47
  year: 1999
  ident: B109
  article-title: Monte Carlo Bounding Techniques for Determining Solution Quality in Stochastic Programs
  publication-title: Operations Res. Lett.
  doi: 10.1016/S0167-6377(98)00054-6
– start-page: 837
  year: 2019
  ident: B133
  article-title: Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
– start-page: 5307
  year: 2015
  ident: B121
  article-title: Ensemble-cio: Full-Body Dynamic Motion Planning that Transfers to Physical Humanoids
– start-page: 842
  year: 2014
  ident: B75
  article-title: Tools for Simulating Humanoid Robot Dynamics: A Survey Based on User Feedback
– year: 2019
  ident: B128
  article-title: Learning to Adapt in Dynamic, Real-World Environments through Meta-Reinforcement Learning
– volume: 24
  start-page: 99
  year: 2011
  ident: B166
  article-title: Bayesian Robot System Identification with Input and Output Noise
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2010.08.011
– volume: 74
  start-page: 419
  year: 2012
  ident: B58
  article-title: Constructing Summary Statistics for Approximate Bayesian Computation: Semi-automatic Approximate Bayesian Computation
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.1467-9868.2011.01010.x
– year: 2015
  ident: B71
  article-title: Distilling the Knowledge in a Neural Network
– volume: 60
  start-page: 1003
  year: 2013
  ident: B181
  article-title: Lyapunov Stability and strong Passivity Analysis for Nonlinear Descriptor Systems
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/TCSI.2012.2215396
– year: 2021
  ident: B69
  article-title: NeuralSim: Augmenting Differentiable Simulators with Neural Networks
  doi: 10.1109/ICRA48506.2021.9560935
– volume: 5
  start-page: 101
  year: 1986
  ident: B10
  article-title: Estimation of Inertial Parameters of Manipulator Loads and Links
  publication-title: Int. J. Robotics Res.
  doi: 10.1177/027836498600500306
– year: 2020
  ident: B19
  article-title: Learning Agile Robotic Locomotion Skills by Imitating Animals
  doi: 10.15607/RSS.2020.XVI.064
– year: 2017
  ident: B184
  article-title: Preparing for the Unknown: Learning a Universal Policy with Online System Identification
  doi: 10.15607/RSS.2017.XIII.048
– year: 2019
  ident: B135
  article-title: Fingerprint Policy Optimisation for Robust Reinforcement Learning
– start-page: 07693
  year: 2021
  ident: B173
  article-title: Stochastic Control through Approximate Bayesian Input Inference
– year: 2020
  ident: B2
  article-title: Benchmarking Domain Randomisation for Visual Sim-To-Real Transfer
– volume: 1
  start-page: 263
  year: 1953
  ident: B83
  article-title: Methods of Reducing Sample Size in Monte Carlo Computations
  publication-title: Or
  doi: 10.1287/opre.1.5.263
– start-page: 513
  year: 2019
  ident: B88
  article-title: Self-paced Contextual Reinforcement Learning
– volume: 84
  start-page: 80
  year: 2009
  ident: B90
  article-title: Continuous Global Optimization in Multiview 3d Reconstruction
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0233-1
– volume: 100
  start-page: 15324
  year: 2003
  ident: B112
  article-title: Markov Chain Monte Carlo without Likelihoods
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0306899100
– start-page: 1126
  year: 2017
  ident: B60
  article-title: Model-agnostic Meta-Learning for Fast Adaptation of Deep Networks
– volume: 521
  start-page: 503
  year: 2015
  ident: B42
  article-title: Robots that Can Adapt like Animals
  publication-title: Nature
  doi: 10.1038/nature14422
– volume: 58
  start-page: 595
  year: 2010
  ident: B51
  article-title: Distributionally Robust Optimization under Moment Uncertainty with Application to Data-Driven Problems
  publication-title: Operations Res.
  doi: 10.1287/opre.1090.0741
– start-page: 3503
  ident: B182
  article-title: Sim-to-real Transfer for Biped Locomotion
– year: 2018
  ident: B164
  article-title: Sim-to-real: Learning Agile Locomotion for Quadruped Robots
  doi: 10.15607/RSS.2018.XIV.010
– start-page: 3834
  year: 2017
  ident: B68
  article-title: Grounded Action Transformation for Robot Learning in Simulation
– volume: 34
  start-page: 229
  year: 2017
  ident: B94
  article-title: The DARPA Robotics challenge Finals: Results and Perspectives
  publication-title: J. Field Robotics
  doi: 10.1002/rob.21683
– start-page: 8973
  year: 2019
  ident: B31
  article-title: Closing the Sim-To-Real Loop: Adapting Simulation Randomization with Real World Experience
– year: 2017
  ident: B73
  article-title: Adversarial Attacks on Neural Network Policies, Workshop Track
– volume: 27
  start-page: 77
  year: 1977
  ident: B4
  article-title: Dynamics of Pattern Formation in Lateral-Inhibition Type Neural fields
  publication-title: Biol. Cybern.
  doi: 10.1007/bf00337259
– start-page: 51
  year: 2017
  ident: B29
  article-title: Black-box Data-Efficient Policy Search for Robotics
– start-page: 2817
  year: 2017
  ident: B140
  article-title: Robust Adversarial Reinforcement Learning
– ident: B126
  article-title: Neural Posterior Domain Randomization
– volume: 13
  start-page: 6
  year: 2019
  ident: B48
  article-title: A Differentiable Physics Engine for Deep Learning in Robotics
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2019.00006
– start-page: 6112
  year: 2020
  ident: B123
  article-title: Learning Domain Randomization Distributions for Training Robust Locomotion Policies
– start-page: 08324
  year: 2019
  ident: B47
  article-title: Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation
– year: 2014
  ident: B163
  article-title: Intriguing Properties of Neural Networks
– start-page: 465
  year: 2011
  ident: B50
  article-title: PILCO: a Model-Based and Data-Efficient Approach to Policy Search
– start-page: 1162
  year: 2019
  ident: B116
  article-title: Active Domain Randomization
– start-page: 67
  year: 1995
  ident: B175
  article-title: Adaptive Dual Control Methods: An Overview
– volume: 2
  start-page: 160
  year: 1991
  ident: B161
  article-title: Dyna, an Integrated Architecture for Learning, Planning, and Reacting
  publication-title: SIGART Bull.
  doi: 10.1145/122344.122377
– volume: 7
  start-page: 303
  year: 1979
  ident: B86
  article-title: Existence and Stability of Local Excitations in Homogeneous Neural fields
  publication-title: J. Math. Biol.
  doi: 10.1007/bf00275151
– start-page: August 11
  year: 2017
  ident: B102
  article-title: Stein Variational Policy Gradient
– volume: 37
  start-page: 421
  year: 2018
  ident: B100
  article-title: Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection
  publication-title: Int. J. Robotics Res.
  doi: 10.1177/0278364917710318
– volume: 17
  start-page: 122
  year: 2013
  ident: B92
  article-title: The Transferability Approach: Crossing the Reality gap in Evolutionary Robotics
  publication-title: IEEE Trans. Evol. Computat.
  doi: 10.1109/TEVC.2012.2185849
– year: 2020
  ident: B66
  article-title: Perspectives on Sim2real Transfer for Robotics: A Summary of the R:SS 2020 Workshop
– volume: 25
  start-page: 649
  year: 1979
  ident: B176
  article-title: On the Effectiveness of Common Random Numbers
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.25.7.649
– year: 2017
  ident: B154
  article-title: CAD2RL: Real Single-Image Flight without a Single Real Image
  doi: 10.15607/RSS.2017.XIII.034
– year: 2021
  ident: B46
  article-title: Lyapunov-stable Neural-Network Control
  doi: 10.15607/RSS.2021.XVII.063
– volume: 2
  start-page: 33
  year: 1963
  ident: B33
  article-title: On Optimal Stopping Rules
  publication-title: Z. Wahrscheinlichkeitstheorie Verw Gebiete
  doi: 10.1007/bf00535296
– start-page: 15388
  year: 2021
  ident: B1
  article-title: Distributionally Robust Trajectory Optimization under Uncertain Dynamics via Relative-Entropy Trust Regions
– start-page: 406
  year: 2000
  ident: B129
  article-title: PEGASUS: a Policy Search Method for Large Mdps and Pomdps
– volume: 110
  start-page: 18327
  year: 2013
  ident: B14
  article-title: Simulation as an Engine of Physical Scene Understanding
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1306572110
– start-page: 742
  year: 2017
  ident: B32
  article-title: Learning Efficient Object Detection Models with Knowledge Distillation
– volume-title: Robust Value Iteration for Continuous Control Tasks
  ident: B106
  doi: 10.15607/RSS.2021.XVII.007
– volume: 27
  start-page: 262
  year: 2016
  ident: B35
  article-title: Predictable Behavior during Contact Simulation: a Comparison of Selected Physics Engines
  publication-title: Comp. Anim. Virtual Worlds
  doi: 10.1002/cav.1712
– year: 2019
  ident: B149
  article-title: Learning to Simulate
– start-page: 3
  year: 2017
  ident: B27
  article-title: Adversarial Examples Are Not Easily Detected
– start-page: 35
  year: 2018
  ident: B103
  article-title: Reinforcement Learning for Non-prehensile Manipulation: Transfer from Simulation to Physical System
– start-page: 4383
  year: 2020
  ident: B85
  article-title: Sim2real Transfer for Reinforcement Learning without Dynamics Randomization
– volume: 2
  start-page: 1
  year: 2011
  ident: B49
  article-title: A Survey on Policy Search for Robotics
  publication-title: FNT in Robotics
  doi: 10.1561/2300000021
– start-page: 12627
  year: 2019
  ident: B79
  article-title: Sim-to-real via Sim-To-Sim: Data-Efficient Robotic Grasping via Randomized-To-Canonical Adaptation Networks
– year: 2017
  ident: B171
  article-title: Learning to Reinforcement Learn
– volume: 21
  start-page: 1240
  year: 1960
  ident: B59
  article-title: Dual Control Theory. I
  publication-title: Avtomatika i Telemekhanika
– start-page: 12864
  volume-title: Predicting Sim-To-Real Transfer with Probabilistic Dynamics Models
  year: 2020
  ident: B186
– year: 2016
  ident: B22
  article-title: Openai Gym
– start-page: 262
  year: 2017
  ident: B153
  article-title: Sim-to-real Robot Learning from Pixels with Progressive Nets
– start-page: 704
  year: 1995
  ident: B77
  article-title: Noise and the Reality gap: The Use of Simulation in Evolutionary Robotics
– volume: 518
  start-page: 529
  year: 2015
  ident: B119
  article-title: Human-level Control through Deep Reinforcement Learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 6
  start-page: 911
  ident: B124
  article-title: Data-efficient Domain Randomization with Bayesian Optimization
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3052391
SSID ssj0001584377
Score 2.532296
SecondaryResourceType review_article
Snippet The rise of deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data. Unfortunately, it is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 799893
SubjectTerms domain randomization
reality gap
reinforcement learning
robotics
Robotics and AI
simulation
simulation optimization bias
Title Robot Learning From Randomized Simulations: A Review
URI https://www.ncbi.nlm.nih.gov/pubmed/35494543
https://www.proquest.com/docview/2658652040
https://pubmed.ncbi.nlm.nih.gov/PMC9038844
https://doaj.org/article/1210b94d63c44ba5bbde7a81cea090af
Volume 9
WOSCitedRecordID wos000792457300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-9144
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001584377
  issn: 2296-9144
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-9144
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001584377
  issn: 2296-9144
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4gAHVN4LpQoSJ6RQJ57Edm8t6ooDVKg8tDfL4wesxCZod8uBA7-dcZyudhGCC5ccEkeZfBN75tM43zD2POpoIYS2jL6FElTtSmy4oETOO08RqfWDlNKnN_L8XM1m-t1Wq6-0JyzLA2fgjpLAFWrwrXAAaBtEH6RVlQuWa25jWn0p69kiU_n_YAVCylzGJBamj-Kyx7R3sq5fSqIYWuwEokGv_09J5u97JbeCz3Sf3R6zxuIkW3uHXQvdXXZrS0vwHoOLHvt1Meqlfi6my35RXNjO94v5j-CL9_PF2KlrdVycFLkmcJ99nJ59ePW6HFsilI4my7oE5I47oBcX1qHn3GINCAK5ilHVCJr4YBWiQl-1IRDVFAKVQ2Eltk7W4gHb6_ouPGJFaBoVKRmh-I_ggrJKeyWsx-hEtBonjF_hY9yoF57aVnw1xBsSpGaA1CRITYZ0wl5sbvmWxTL-Nvg0gb4ZmHSuhxPkfTN63_zL-xP27MplhuZFKnbYLvSXK1NTatU2Na1RE_Ywu3DzKEGkGBogE-SOc3ds2b3Szb8M2ts6qecAPP4fxj9hNxMeqTZVVQdsb728DE_ZDfd9PV8tD9l1OVOHw2dNx7c_z34BLCb_mQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robot+Learning+From+Randomized+Simulations%3A+A+Review&rft.jtitle=Frontiers+in+robotics+and+AI&rft.au=Muratore%2C+Fabio&rft.au=Ramos%2C+Fabio&rft.au=Turk%2C+Greg&rft.au=Yu%2C+Wenhao&rft.date=2022-04-11&rft.eissn=2296-9144&rft.volume=9&rft.spage=799893&rft_id=info:doi/10.3389%2Ffrobt.2022.799893&rft_id=info%3Apmid%2F35494543&rft.externalDocID=35494543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-9144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-9144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-9144&client=summon