Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity

Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in immunology Jg. 13; S. 812774
Hauptverfasser: Duan, Tianhao, Du, Yang, Xing, Changsheng, Wang, Helen Y., Wang, Rong-Fu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Media S.A 03.03.2022
Schlagworte:
ISSN:1664-3224, 1664-3224
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host’s defense against infectious diseases, autoimmune diseases, and cancer.
AbstractList Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Author Wang, Rong-Fu
Xing, Changsheng
Duan, Tianhao
Du, Yang
Wang, Helen Y.
AuthorAffiliation 3 Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles, CA , United States
2 Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California , Los Angeles, CA , United States
1 Department of Medicine, Keck School of Medicine, University of Southern California , Los Angeles, CA , United States
AuthorAffiliation_xml – name: 2 Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California , Los Angeles, CA , United States
– name: 1 Department of Medicine, Keck School of Medicine, University of Southern California , Los Angeles, CA , United States
– name: 3 Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles, CA , United States
Author_xml – sequence: 1
  givenname: Tianhao
  surname: Duan
  fullname: Duan, Tianhao
– sequence: 2
  givenname: Yang
  surname: Du
  fullname: Du, Yang
– sequence: 3
  givenname: Changsheng
  surname: Xing
  fullname: Xing, Changsheng
– sequence: 4
  givenname: Helen Y.
  surname: Wang
  fullname: Wang, Helen Y.
– sequence: 5
  givenname: Rong-Fu
  surname: Wang
  fullname: Wang, Rong-Fu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35309296$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtvEzEUhS1URB_0B7BBs2Qzwc_xeIOEokIjBSGVsrY8nuvgMmMH20Hqv8dJWtQi4Y19fc_5ruVzjk5CDIDQG4IXjPXqvfPzvFtQTOmiJ1RK_gKdka7jLaOUnzw5n6LLnO9wXVwxxsQrdMoEw4qq7gwtb-M0tWv_E5obsLAtMTXf_CaYyYdNY8LYrEpubuIEjQ_NEqr4C4zeFKid-oDgy_1r9NKZKcPlw36Bvn-6ul1et-uvn1fLj-vWCkZKSwciegpqFIpIIwyMoEAw29uhJzA6wZ3hrmdWOiCYKuyUBcGF6AQf-kGxC7Q6csdo7vQ2-dmkex2N14eLmDbapOLtBFoBJh0dpaDU7LGmU3KQ7lAYRkVlfTiytrthhtFCKMlMz6DPO8H_0Jv4W_eKSiVxBbx7AKT4awe56NlnW__HBIi7rGnHiSACc1qlb5_O-jvkMYUqkEeBTTHnBE5bX0zxcT_aT5pgvY9cHyLX-8j1MfLqJP84H-H_9_wBADyvWA
CitedBy_id crossref_primary_10_3390_biomedicines12040893
crossref_primary_10_1016_j_intimp_2024_112764
crossref_primary_10_1007_s43538_024_00355_1
crossref_primary_10_1080_07391102_2025_2530064
crossref_primary_10_3389_fmicb_2025_1541140
crossref_primary_10_1007_s10787_025_01913_9
crossref_primary_10_3389_fimmu_2024_1465952
crossref_primary_10_3390_ani13091515
crossref_primary_10_1016_j_imbio_2025_152869
crossref_primary_10_4049_jimmunol_2200395
crossref_primary_10_1038_s41556_024_01388_w
crossref_primary_10_1186_s12885_025_14051_w
crossref_primary_10_3390_biology12070924
crossref_primary_10_1016_j_fsi_2024_109591
crossref_primary_10_3389_fpubh_2024_1340673
crossref_primary_10_3389_fimmu_2024_1391395
crossref_primary_10_1016_j_mam_2024_101323
crossref_primary_10_1016_j_cbd_2025_101512
crossref_primary_10_1016_j_ijbiomac_2025_147475
crossref_primary_10_1007_s11033_025_10843_2
crossref_primary_10_1016_j_cellimm_2024_104878
crossref_primary_10_7717_peerj_19828
crossref_primary_10_1016_j_jep_2022_115743
crossref_primary_10_1093_hmg_ddae155
crossref_primary_10_1016_j_sajb_2025_06_019
crossref_primary_10_1016_j_ymthe_2025_05_009
crossref_primary_10_3390_v17010035
crossref_primary_10_1016_j_bioorg_2024_107835
crossref_primary_10_3389_fcell_2024_1370042
crossref_primary_10_3390_pharmaceutics16010024
crossref_primary_10_1080_22221751_2025_2459136
crossref_primary_10_1016_j_heliyon_2024_e36512
crossref_primary_10_3390_cells13141172
crossref_primary_10_1038_s42003_024_06544_4
crossref_primary_10_1515_biol_2022_1003
crossref_primary_10_1016_j_cbd_2025_101638
crossref_primary_10_1007_s11427_024_2835_y
crossref_primary_10_1016_j_biopha_2024_117235
crossref_primary_10_1016_j_phymed_2025_156967
crossref_primary_10_1016_j_ijbiomac_2024_136391
crossref_primary_10_1016_j_jep_2024_118000
crossref_primary_10_1038_s41598_024_52565_8
crossref_primary_10_15789_2220_7619_ABT_17871
crossref_primary_10_1080_29933935_2025_2470805
crossref_primary_10_1002_cam4_6247
crossref_primary_10_3390_ph17030402
crossref_primary_10_1016_j_actbio_2025_06_020
crossref_primary_10_1016_j_microb_2025_100393
crossref_primary_10_3390_biology13010008
crossref_primary_10_1007_s12026_025_09592_y
crossref_primary_10_1016_j_psj_2023_102770
crossref_primary_10_3390_ijms26083658
crossref_primary_10_1002_path_6275
crossref_primary_10_3389_fimmu_2024_1271926
crossref_primary_10_1134_S1068162024606670
crossref_primary_10_3390_vaccines13040365
crossref_primary_10_1016_j_fsi_2023_109057
crossref_primary_10_21926_rpn_2502007
crossref_primary_10_3389_fceld_2024_1503799
crossref_primary_10_3389_fimmu_2023_1009137
crossref_primary_10_4103_2311_8571_395061
crossref_primary_10_1186_s13018_024_04931_5
crossref_primary_10_3389_fimmu_2023_1264889
crossref_primary_10_1097_ACI_0000000000001010
crossref_primary_10_1007_s13353_024_00868_x
crossref_primary_10_1371_journal_ppat_1012854
crossref_primary_10_1002_pros_24756
crossref_primary_10_1016_j_bmcl_2025_130259
crossref_primary_10_1186_s12951_025_03410_1
crossref_primary_10_22207_JPAM_19_2_07
crossref_primary_10_3389_fimmu_2025_1579113
crossref_primary_10_1016_j_mattod_2024_08_006
crossref_primary_10_3390_cells14120930
crossref_primary_10_3390_pharmaceutics16091140
crossref_primary_10_1007_s00210_025_04550_9
crossref_primary_10_3892_mmr_2025_13585
crossref_primary_10_1371_journal_pone_0316699
crossref_primary_10_3390_ijms26157099
crossref_primary_10_1016_j_apsb_2025_09_007
crossref_primary_10_3390_biom14121481
crossref_primary_10_1186_s13567_025_01500_4
crossref_primary_10_3390_medicina60091545
crossref_primary_10_3389_fcimb_2024_1384420
crossref_primary_10_1007_s00210_025_04221_9
crossref_primary_10_3389_fendo_2023_1124334
crossref_primary_10_1186_s12974_025_03531_2
crossref_primary_10_1093_sxmrev_qeaf032
crossref_primary_10_1016_j_bioactmat_2025_01_028
crossref_primary_10_1038_s12276_025_01443_y
crossref_primary_10_3390_jpm14070753
crossref_primary_10_1016_j_jep_2023_117055
crossref_primary_10_1016_j_tox_2023_153596
crossref_primary_10_3390_biom15010043
crossref_primary_10_1038_s41582_023_00915_x
crossref_primary_10_15252_embr_202357828
crossref_primary_10_3390_ijms26115244
crossref_primary_10_3389_fimmu_2024_1462352
crossref_primary_10_1007_s00018_025_05631_x
crossref_primary_10_1128_jvi_01156_25
crossref_primary_10_3390_ijms26157281
crossref_primary_10_1080_09273948_2024_2406310
crossref_primary_10_1016_j_cyto_2023_156278
crossref_primary_10_1016_j_bbi_2023_11_011
crossref_primary_10_3389_fimmu_2024_1410090
crossref_primary_10_1016_j_bbi_2025_106081
crossref_primary_10_2147_JIR_S488400
crossref_primary_10_1016_j_mce_2025_112630
crossref_primary_10_3389_fimmu_2024_1437430
crossref_primary_10_3389_fmed_2023_1289194
crossref_primary_10_1016_j_jgeb_2025_100519
crossref_primary_10_1016_j_aquaculture_2025_742925
crossref_primary_10_3390_life15010088
crossref_primary_10_3748_wjg_v31_i22_106575
crossref_primary_10_1007_s11033_024_10146_y
crossref_primary_10_1016_j_ijbiomac_2024_137208
crossref_primary_10_3389_fimmu_2024_1363958
crossref_primary_10_1002_cbf_4056
crossref_primary_10_3389_fimmu_2023_1209970
crossref_primary_10_1111_sji_13337
crossref_primary_10_3389_fimmu_2024_1508985
crossref_primary_10_2174_0113892037324425241018061548
crossref_primary_10_1007_s00432_023_05084_4
crossref_primary_10_3390_ijms25179751
crossref_primary_10_3390_microorganisms11092169
crossref_primary_10_3389_fcimb_2024_1393680
crossref_primary_10_1021_acsbiomaterials_4c01984
crossref_primary_10_1186_s12964_023_01077_5
crossref_primary_10_3389_fcimb_2023_1146381
crossref_primary_10_3389_fimmu_2025_1610296
crossref_primary_10_3389_fimmu_2023_1276512
crossref_primary_10_1002_eji_202250271
crossref_primary_10_1016_j_jep_2024_118681
crossref_primary_10_3389_fimmu_2024_1403764
crossref_primary_10_1016_j_seminoncol_2025_152344
crossref_primary_10_3390_ijms24065967
crossref_primary_10_3390_ijms26031139
crossref_primary_10_1097_COH_0000000000000856
crossref_primary_10_1016_j_cyto_2024_156800
crossref_primary_10_1016_j_vetimm_2025_110881
crossref_primary_10_3389_fmicb_2025_1542142
crossref_primary_10_1016_j_intimp_2024_112658
crossref_primary_10_1016_j_micinf_2024_105428
crossref_primary_10_3389_fmed_2025_1458281
crossref_primary_10_3390_ijms241713259
crossref_primary_10_1155_2024_5320926
crossref_primary_10_1186_s12879_024_10272_9
crossref_primary_10_1016_j_intimp_2023_110176
crossref_primary_10_3390_nu16040558
crossref_primary_10_1038_s42003_024_06872_5
crossref_primary_10_1016_j_ijbiomac_2024_133188
crossref_primary_10_4103_apjtm_apjtm_567_23
crossref_primary_10_1016_j_jaut_2025_103377
crossref_primary_10_3389_fimmu_2023_1239142
crossref_primary_10_1186_s12864_023_09313_5
crossref_primary_10_1134_S1070363224613474
crossref_primary_10_1016_j_lfs_2024_123196
crossref_primary_10_4274_tji_galenos_2024_26213
crossref_primary_10_70389_PJI_100008
crossref_primary_10_1016_j_bbcan_2025_189352
crossref_primary_10_3390_jcm13154531
crossref_primary_10_1016_j_tips_2024_10_013
crossref_primary_10_1186_s40537_024_00881_1
crossref_primary_10_1016_j_coi_2025_102618
crossref_primary_10_1016_j_cytogfr_2025_03_001
crossref_primary_10_3390_ijms252011310
crossref_primary_10_1016_j_arr_2025_102812
crossref_primary_10_1016_j_ejphar_2025_177749
crossref_primary_10_3390_pathogens14040394
crossref_primary_10_3390_cimb46120799
crossref_primary_10_1155_2022_5985255
crossref_primary_10_3389_fendo_2024_1356959
crossref_primary_10_3389_fimmu_2025_1581385
crossref_primary_10_1186_s12864_024_10888_w
crossref_primary_10_1242_dmm_050770
crossref_primary_10_12677_tcm_2025_148536
crossref_primary_10_1186_s12964_025_02384_9
crossref_primary_10_3389_fimmu_2025_1573635
crossref_primary_10_1093_cvr_cvaf158
crossref_primary_10_1016_j_rvsc_2025_105607
crossref_primary_10_1021_prechem_5c00012
crossref_primary_10_3389_fphar_2022_866574
crossref_primary_10_1038_s41598_024_67000_1
crossref_primary_10_1016_j_phymed_2024_156063
crossref_primary_10_1016_j_xphs_2024_09_006
crossref_primary_10_3389_fbioe_2023_1266799
crossref_primary_10_1016_j_jff_2025_106704
crossref_primary_10_3390_cancers15184626
crossref_primary_10_3389_fimmu_2023_1206025
crossref_primary_10_1038_s41586_024_07410_3
crossref_primary_10_1016_j_bbadis_2024_167155
crossref_primary_10_1016_j_carbpol_2024_122980
crossref_primary_10_4014_jmb_2503_03013
crossref_primary_10_1016_j_fsi_2022_09_035
crossref_primary_10_3390_cancers16223810
crossref_primary_10_1021_acs_jafc_5c01550
crossref_primary_10_3389_fimmu_2023_1249098
crossref_primary_10_1038_s41598_024_63567_x
crossref_primary_10_1186_s12885_024_12944_w
crossref_primary_10_1016_j_meegid_2024_105703
crossref_primary_10_1038_s41388_023_02649_y
crossref_primary_10_3390_cancers16233974
crossref_primary_10_3390_agriculture13122192
crossref_primary_10_3389_fimmu_2023_1130423
crossref_primary_10_1016_j_dib_2024_110294
crossref_primary_10_3390_pathogens14030223
crossref_primary_10_1016_j_microb_2025_100324
crossref_primary_10_3390_vaccines12040415
crossref_primary_10_1016_j_bbi_2024_10_031
crossref_primary_10_3390_antiox12061290
crossref_primary_10_3390_ijms25105351
crossref_primary_10_7759_cureus_62310
crossref_primary_10_1016_j_ijbiomac_2025_146756
crossref_primary_10_3390_ijms25041955
crossref_primary_10_1007_s00203_025_04371_7
crossref_primary_10_3389_fnagi_2024_1347987
crossref_primary_10_1007_s11103_024_01502_4
crossref_primary_10_1016_j_ijbiomac_2025_141282
crossref_primary_10_1016_j_biopha_2025_117858
crossref_primary_10_12677_tcm_2024_135158
crossref_primary_10_1107_S2052252523002956
crossref_primary_10_1016_j_bbcan_2024_189229
crossref_primary_10_1111_aos_16661
crossref_primary_10_1080_0886022X_2025_2502875
crossref_primary_10_1016_j_bbcan_2024_189107
crossref_primary_10_1016_j_micpath_2024_107189
crossref_primary_10_3389_fimmu_2024_1339467
crossref_primary_10_1002_prot_26703
crossref_primary_10_1016_j_cell_2025_05_016
crossref_primary_10_3389_fimmu_2023_1128774
crossref_primary_10_1016_j_bcp_2024_116174
crossref_primary_10_3390_genes16070781
crossref_primary_10_1016_j_expneurol_2025_115374
crossref_primary_10_1016_j_jiph_2024_102540
crossref_primary_10_1016_j_cej_2025_161208
crossref_primary_10_1134_S1022795423090028
crossref_primary_10_3390_biomedicines12051051
crossref_primary_10_3390_ph18060885
crossref_primary_10_1016_j_medj_2024_03_001
crossref_primary_10_3390_cancers16142608
crossref_primary_10_3390_md23070290
crossref_primary_10_1016_j_pupt_2025_102361
crossref_primary_10_1016_j_carbpol_2023_121490
crossref_primary_10_1016_j_acci_2024_08_006
crossref_primary_10_4103_NRR_NRR_D_24_00963
crossref_primary_10_3390_ijms26188960
crossref_primary_10_3389_fmicb_2023_1158777
crossref_primary_10_14202_vetworld_2025_1014_1024
crossref_primary_10_1002_ptr_8203
crossref_primary_10_1016_j_arr_2025_102872
crossref_primary_10_1038_s41435_025_00323_9
crossref_primary_10_1002_eji_202250326
crossref_primary_10_1016_j_jafr_2025_102358
crossref_primary_10_1016_j_lfs_2025_123886
crossref_primary_10_1016_j_bbi_2024_11_012
crossref_primary_10_3390_cells12101351
crossref_primary_10_1016_j_psj_2024_103833
crossref_primary_10_1208_s12248_025_01105_x
crossref_primary_10_1016_j_jpha_2025_101195
crossref_primary_10_3390_v16091408
crossref_primary_10_3390_foods12071468
crossref_primary_10_1007_s11262_025_02136_4
crossref_primary_10_1007_s12672_025_02509_z
crossref_primary_10_3389_ebm_2024_10120
crossref_primary_10_3389_fnbeh_2024_1341901
crossref_primary_10_3390_toxics12120887
crossref_primary_10_3390_pathogens12030457
crossref_primary_10_3390_ijms26146862
crossref_primary_10_1155_2024_8634515
crossref_primary_10_1016_j_jep_2025_120026
crossref_primary_10_1016_j_pmpp_2025_102954
crossref_primary_10_3390_ijms26020505
crossref_primary_10_12677_acm_2025_1582390
crossref_primary_10_3389_fimmu_2024_1475073
crossref_primary_10_1080_21645515_2024_2317439
crossref_primary_10_31083_j_fbl2811307
crossref_primary_10_1002_jbt_70361
crossref_primary_10_1007_s10439_024_03523_y
crossref_primary_10_1093_nutrit_nuae066
crossref_primary_10_1155_vmi_2638167
crossref_primary_10_12968_jpar_2024_0120
crossref_primary_10_1016_j_ecoenv_2025_117950
crossref_primary_10_3389_fimmu_2023_1213629
crossref_primary_10_1016_j_intimp_2025_114556
crossref_primary_10_3389_fimmu_2024_1513206
crossref_primary_10_3390_cimb46100670
crossref_primary_10_1177_15473287251366979
crossref_primary_10_3389_fimmu_2024_1512353
crossref_primary_10_3389_fimmu_2024_1408377
crossref_primary_10_1007_s43450_023_00372_z
crossref_primary_10_1007_s11914_023_00774_x
crossref_primary_10_3389_fnins_2025_1542264
crossref_primary_10_1016_j_micpath_2024_107136
crossref_primary_10_1016_j_tibs_2025_04_004
crossref_primary_10_2147_CCID_S405491
crossref_primary_10_3390_biom14081007
crossref_primary_10_4049_jimmunol_2300419
crossref_primary_10_3389_fimmu_2025_1480025
crossref_primary_10_1186_s40104_024_01070_z
crossref_primary_10_3390_biomedicines13092288
crossref_primary_10_1136_jitc_2024_009552
crossref_primary_10_3390_cancers17020226
crossref_primary_10_3390_biom14010136
crossref_primary_10_1016_j_aquaculture_2025_743020
crossref_primary_10_3389_fimmu_2024_1287940
crossref_primary_10_7554_eLife_84708
crossref_primary_10_1007_s00203_024_04179_x
crossref_primary_10_1016_j_animal_2024_101151
crossref_primary_10_1371_journal_ppat_1013147
crossref_primary_10_3389_fimmu_2024_1456470
crossref_primary_10_3389_fcimb_2022_910654
crossref_primary_10_1038_s41467_024_46555_7
crossref_primary_10_1016_j_dci_2025_105443
crossref_primary_10_3389_fimmu_2024_1480675
crossref_primary_10_3390_cells12192359
crossref_primary_10_3389_fimmu_2024_1458884
crossref_primary_10_3389_fimmu_2022_1058599
crossref_primary_10_1016_j_jep_2023_116763
crossref_primary_10_1016_j_ijbiomac_2024_134628
crossref_primary_10_3390_ijms25169053
crossref_primary_10_1002_adtp_202500087
crossref_primary_10_3389_fmicb_2025_1540534
crossref_primary_10_1016_j_biopha_2024_116646
crossref_primary_10_1007_s13105_025_01111_9
crossref_primary_10_3389_fnut_2025_1526053
crossref_primary_10_59717_j_xinn_life_2025_100132
crossref_primary_10_1016_j_heliyon_2024_e29683
crossref_primary_10_1007_s11596_024_2912_0
crossref_primary_10_1016_j_chemosphere_2024_142826
crossref_primary_10_1007_s12013_025_01830_2
crossref_primary_10_1111_exd_15083
crossref_primary_10_1007_s00284_025_04408_6
crossref_primary_10_1002_eji_202350476
crossref_primary_10_3390_antiox13040443
crossref_primary_10_3390_ijms251810152
crossref_primary_10_3390_biomedicines12010138
crossref_primary_10_3390_ijms25010141
crossref_primary_10_3389_fcimb_2024_1342684
crossref_primary_10_1016_j_jep_2025_120463
crossref_primary_10_1016_j_gene_2025_149634
crossref_primary_10_1002_mc_23784
crossref_primary_10_3389_fimmu_2025_1605185
crossref_primary_10_3390_pathogens12070969
crossref_primary_10_1007_s11030_024_11082_6
crossref_primary_10_1007_s12017_025_08855_z
crossref_primary_10_1016_j_ijbiomac_2024_138092
crossref_primary_10_3390_nu16193266
crossref_primary_10_3389_fcimb_2025_1533658
crossref_primary_10_3389_fimmu_2023_1198211
crossref_primary_10_1093_neuonc_noae182
crossref_primary_10_1016_j_heliyon_2024_e29588
crossref_primary_10_1016_j_theriogenology_2024_11_021
crossref_primary_10_3389_fimmu_2022_963819
crossref_primary_10_1093_biolre_ioad181
crossref_primary_10_3390_ijms25137006
crossref_primary_10_3390_fishes9120493
crossref_primary_10_1002_advs_202103701
crossref_primary_10_1111_imr_13174
crossref_primary_10_1186_s40104_024_01018_3
crossref_primary_10_1186_s12929_025_01151_9
crossref_primary_10_1038_s41380_025_03127_5
crossref_primary_10_3390_biology11071091
crossref_primary_10_1016_j_intimp_2024_113068
crossref_primary_10_1002_pep2_70007
crossref_primary_10_1016_j_fsi_2024_110092
crossref_primary_10_1016_j_humimm_2024_111169
crossref_primary_10_1007_s12035_025_04754_3
crossref_primary_10_1016_j_waojou_2025_101026
crossref_primary_10_3390_ijms252011267
crossref_primary_10_1155_2024_8922878
crossref_primary_10_1136_jitc_2024_010681
crossref_primary_10_1016_j_hlife_2025_02_007
crossref_primary_10_1128_spectrum_02715_24
crossref_primary_10_2174_0113816128347345241028063515
crossref_primary_10_1007_s44411_025_00319_x
crossref_primary_10_3389_fanim_2025_1623311
crossref_primary_10_2174_0113816128348771240925100639
crossref_primary_10_1016_j_cyto_2025_156861
crossref_primary_10_1080_15685551_2024_2448122
crossref_primary_10_1016_j_heliyon_2024_e36220
crossref_primary_10_1134_S1022795423110145
crossref_primary_10_1002_mco2_70297
crossref_primary_10_1016_j_smim_2024_101925
crossref_primary_10_1007_s10067_024_07125_w
crossref_primary_10_1016_j_carres_2025_109583
crossref_primary_10_3389_fendo_2023_1217579
crossref_primary_10_3390_ijms24129818
crossref_primary_10_1016_j_aquaculture_2024_741740
crossref_primary_10_1016_j_fsi_2025_110691
crossref_primary_10_3390_molecules28041625
crossref_primary_10_1016_j_mehy_2025_111710
crossref_primary_10_1111_iji_70002
crossref_primary_10_1016_j_aquaculture_2025_743095
crossref_primary_10_1371_journal_ppat_1012474
crossref_primary_10_1016_j_vetimm_2025_110900
crossref_primary_10_1016_j_jep_2024_118733
crossref_primary_10_1016_j_humimm_2024_111188
crossref_primary_10_1080_20477724_2025_2478362
crossref_primary_10_3390_pharmaceutics14081671
crossref_primary_10_1128_iai_00506_24
crossref_primary_10_3389_fmicb_2023_1249718
crossref_primary_10_3349_ymj_2024_0447
crossref_primary_10_3390_ijms26114985
crossref_primary_10_3390_biomimetics8070543
crossref_primary_10_3390_v15091916
crossref_primary_10_1007_s00011_024_01924_2
crossref_primary_10_1097_COH_0000000000000848
crossref_primary_10_1111_imm_13880
crossref_primary_10_1016_j_fsi_2025_110686
crossref_primary_10_3390_cells14161273
crossref_primary_10_3390_genes14122118
crossref_primary_10_3389_fimmu_2024_1438030
crossref_primary_10_3390_jcm13102793
crossref_primary_10_3390_nu17172898
crossref_primary_10_1186_s12964_024_01473_5
crossref_primary_10_3390_cells12091332
crossref_primary_10_1111_myc_13800
crossref_primary_10_3390_cells12162055
crossref_primary_10_3389_fgene_2022_1053655
crossref_primary_10_2147_JIR_S535701
crossref_primary_10_1186_s12906_024_04628_6
crossref_primary_10_3390_cells13080687
crossref_primary_10_1007_s12672_025_03508_w
crossref_primary_10_1186_s12864_025_11853_x
crossref_primary_10_1038_s41598_025_13875_7
crossref_primary_10_3389_fbioe_2022_1037147
crossref_primary_10_2147_JIR_S508098
crossref_primary_10_1038_s41598_024_84062_3
crossref_primary_10_1007_s00705_024_06114_3
crossref_primary_10_3390_biom14070748
crossref_primary_10_3390_metabo15060349
crossref_primary_10_1111_omi_12490
crossref_primary_10_17816_MAJ639999
crossref_primary_10_3390_metabo14070388
crossref_primary_10_1007_s00281_024_01003_y
crossref_primary_10_3390_ijms252212066
crossref_primary_10_1007_s12015_023_10674_3
crossref_primary_10_3892_etm_2023_11999
crossref_primary_10_3389_fmicb_2023_1256385
crossref_primary_10_3390_ijms232416137
crossref_primary_10_3390_ijms26189069
crossref_primary_10_1016_j_jep_2023_116394
crossref_primary_10_3389_fimmu_2025_1534241
crossref_primary_10_1002_mco2_714
crossref_primary_10_1016_j_ijbiomac_2023_127252
crossref_primary_10_3389_fnut_2024_1496616
crossref_primary_10_3390_biology13090692
crossref_primary_10_3390_microorganisms11071849
crossref_primary_10_3389_fmolb_2023_1204025
crossref_primary_10_3390_vaccines13090957
crossref_primary_10_1016_j_carbpol_2024_123175
crossref_primary_10_1016_j_intimp_2023_110547
crossref_primary_10_3233_JAD_230801
crossref_primary_10_1038_s41551_025_01366_z
crossref_primary_10_1016_j_taap_2022_116344
crossref_primary_10_3390_ph15111376
crossref_primary_10_3389_fcvm_2025_1570582
crossref_primary_10_1038_s41422_024_00971_y
crossref_primary_10_1186_s12931_024_03050_3
crossref_primary_10_1016_j_ejmech_2025_117289
crossref_primary_10_3389_fvets_2024_1388438
crossref_primary_10_3389_fimmu_2025_1515718
crossref_primary_10_3390_cancers15030748
crossref_primary_10_3390_life12070962
crossref_primary_10_1007_s40588_024_00214_z
crossref_primary_10_1016_j_jddst_2024_105847
crossref_primary_10_1016_j_ijpharm_2025_126180
crossref_primary_10_1016_j_intimp_2024_112833
crossref_primary_10_1097_BOR_0000000000001072
crossref_primary_10_1007_s10787_024_01525_9
crossref_primary_10_3390_biomedicines10092142
crossref_primary_10_1016_j_prp_2025_155940
crossref_primary_10_3390_vaccines13090944
crossref_primary_10_1007_s12013_024_01628_8
crossref_primary_10_3390_ijms26073126
crossref_primary_10_1002_mabi_202500388
crossref_primary_10_3390_molecules27217352
crossref_primary_10_3390_jcm13020325
crossref_primary_10_3390_pathogens12010092
crossref_primary_10_1128_aem_02174_23
crossref_primary_10_3390_ijms25010420
crossref_primary_10_1002_mco2_658
crossref_primary_10_1038_s41598_024_67553_1
crossref_primary_10_1016_j_apsb_2024_09_008
crossref_primary_10_1080_13543776_2025_2556819
crossref_primary_10_3390_biomedicines10071476
crossref_primary_10_1186_s12883_025_04068_w
crossref_primary_10_1016_j_yexcr_2024_114314
crossref_primary_10_3390_ijms25095037
crossref_primary_10_1097_j_pain_0000000000003759
crossref_primary_10_1007_s10482_025_02097_6
crossref_primary_10_1016_j_omto_2023_08_010
crossref_primary_10_1089_derm_2023_0311
crossref_primary_10_1080_0886022X_2025_2495836
crossref_primary_10_3389_fmolb_2024_1486576
crossref_primary_10_1016_j_imbio_2023_152725
crossref_primary_10_3390_pharmaceutics16080983
crossref_primary_10_1016_j_imu_2025_101645
crossref_primary_10_3389_fimmu_2024_1406762
crossref_primary_10_3390_gastroent15030040
crossref_primary_10_3390_ijms26157101
crossref_primary_10_3389_fimmu_2025_1617773
crossref_primary_10_1007_s12032_024_02561_9
crossref_primary_10_1080_1744666X_2024_2391915
crossref_primary_10_1016_j_biomaterials_2025_123692
crossref_primary_10_1016_j_msard_2024_105512
crossref_primary_10_1111_jre_13394
crossref_primary_10_1016_j_micpath_2023_106005
crossref_primary_10_3389_fimmu_2024_1404108
crossref_primary_10_1007_s00203_024_04051_y
crossref_primary_10_3390_ijms25031553
crossref_primary_10_1096_fj_202501352R
crossref_primary_10_1002_fft2_481
crossref_primary_10_1093_jleuko_qiae140
crossref_primary_10_1007_s12325_025_03291_8
crossref_primary_10_1016_j_jbc_2023_104587
crossref_primary_10_3390_ijms26052229
crossref_primary_10_21926_obm_genet_2304206
Cites_doi 10.1155/2013/516749
10.1371/journal.pone.0004064
10.1038/nm1093
10.1016/j.cell.2011.01.031
10.3389/fimmu.2020.00171
10.1016/j.it.2006.06.005
10.1038/nri3339
10.1073/pnas.1819004116
10.1038/ni.1858
10.4049/jimmunol.1102179
10.1074/jbc.M109537200
10.2353/ajpath.2008.070567
10.1128/MCB.02380-06
10.1038/ncb1384
10.1016/j.molcel.2006.03.026
10.4110/in.2009.9.4.127
10.1002/1521-4141(200111)31:11<3388::AID-IMMU3388>3.0.CO;2-Q
10.1016/S0092-8674(00)80172-5
10.1074/jbc.M412584200
10.1126/science.1183021
10.1016/j.cmi.2016.08.028
10.1126/scisignal.aab2191
10.1073/pnas.2237236100
10.1038/nri3095
10.1016/s1074-7613(03)00359-5
10.1038/ni.1863
10.1002/eji.201344100
10.1007/978-1-4419-9914-6_6
10.1038/nmicrobiol.2017.63
10.1111/imr.12309
10.4049/jimmunol.176.3.1937
10.1038/ni.1777
10.1177/0300060513483398
10.1136/annrheumdis-2012-202207
10.1038/s41584-020-00544-4
10.1126/science.1093616
10.1073/pnas.1418516111
10.1016/S0092-8674(00)80412-2
10.1016/j.chom.2021.03.016
10.1016/j.cell.2010.01.022
10.1084/jem.20062694
10.4049/jimmunol.1002094
10.1126/science.288.5465.522
10.4049/jimmunol.174.5.2661
10.1196/annals.1443.020
10.1038/ni1315
10.1038/ni0901-835
10.1146/annurev-immunol-020711-074950
10.4161/21645515.2014.979640
10.1038/32588
10.1038/s41598-021-99625-x
10.1155/2019/2691808
10.1073/pnas.0400171101
10.1084/jem.20021633
10.1002/eji.200323797
10.1038/ni.1742
10.1038/nri3757
10.1038/s41598-019-38864-5
10.1371/journal.pntd.0000231
10.1016/j.jmb.2013.11.012
10.3389/fimmu.2014.00461
10.1016/j.yexcr.2017.02.025
10.1038/ni1255
10.1172/jci25439
10.1126/science.1087262
10.1155/2021/9914854
10.1038/cmi.2012.61
10.1084/jem.20101111
10.1038/ni1010
10.1172/jci200319441
10.1016/j.cell.2010.03.040
10.1002/art.33350
10.1128/MCB.01538-13
10.1016/s0092-8674(02)00827-9
10.1016/j.cell.2014.01.019
10.1186/s12964-020-00598-7
10.1016/j.immuni.2004.11.008
10.4103/0253-7613.161249
10.1126/science.1081315
10.1038/s41467-017-02073-3
10.1128/IAI.00739-18
10.3389/fimmu.2019.01546
10.4049/jimmunol.165.12.6682
10.1196/annals.1337.028
10.4049/jimmunol.1303064
10.1128/IAI.73.10.7064-7068.2005
10.1038/ni1066
10.1002/art.39602
10.1038/35100529
10.1016/j.coi.2007.02.004
10.1111/liv.12626
10.1073/pnas.1418399111
10.1038/nature01803
10.1073/pnas.0308680101
10.1186/s11658-016-0002-4
10.1016/j.molimm.2012.02.119
10.3389/fimmu.2019.02388
10.1038/ni921
10.1016/0092-8674(85)90274-0
10.1016/s0960-9822(02)00712-1
10.25100/cm.v44i2.1183
10.1038/sj.onc.1210906
10.1083/jcb.201505091
10.4049/jimmunol.1302244
10.1016/j.cellimm.2011.10.007
10.1371/journal.pone.0067036
10.3389/fimmu.2014.00386
10.3324/haematol.2018.203380
10.1038/41131
10.1016/j.molcel.2016.08.025
10.1038/nrm3644
10.1186/1756-9966-29-92
10.3389/fimmu.2017.00158
10.1126/science.1093620
10.1126/science.1140485
10.1128/JVI.00829-21
10.1038/nature09121
10.1016/j.imbio.2016.06.009
10.4049/jimmunol.172.6.3712
10.4049/jimmunol.175.12.8051
10.1016/j.immuni.2010.08.012
10.1073/pnas.082100399
10.1158/0008-5472.CAN-10-2833
10.1038/s41590-021-00937-x
10.1371/journal.ppat.1008622
10.1038/ni1355
10.1016/j.celrep.2020.107746
10.3389/fimmu.2019.00482
10.1016/j.immuni.2011.02.022
10.4049/jimmunol.179.1.41
10.1002/pro.4043
10.1111/imr.12308
10.1093/infdis/jiab389
10.1371/journal.ppat.1005053
10.1073/pnas.1206048110
10.1002/advs.202002680
10.1074/jbc.M609503200
10.1016/j.immuni.2011.12.010
10.1126/science.1113401
10.1073/pnas.0601554103
10.1038/s41598-017-12573-3
10.1073/pnas.1120585109
10.1038/ni1110
10.1016/j.molcel.2016.08.029
10.1002/jcb.29397
10.1038/ni.2378
10.1038/emboj.2010.31
10.1016/j.intimp.2005.02.013
10.1172/JCI99005
10.1038/s41467-017-01290-0
10.4049/jimmunol.1203024
10.4049/jimmunol.169.7.3480
10.1136/jitc-2020-SITC2020.0245
10.1182/blood-2008-08-176057
10.1002/hep.25991
10.4049/jimmunol.168.9.4531
10.1016/j.immuni.2007.05.020
10.1084/jem.20021790
10.3389/fonc.2020.570899
10.1038/mi.2013.5
10.1126/science.1132998
10.1038/nature04641
10.1136/ard.2009.124313
10.1016/j.molcel.2017.09.035
10.4049/jimmunol.166.1.249
10.1016/j.immuni.2010.03.012
10.1038/ncb1821
10.2353/ajpath.2007.060657
10.1038/nature03464
10.1126/science.1182364
10.1016/j.cell.2019.11.001
10.4049/jimmunol.1501297
10.1038/ni1569
10.1073/pnas.1603269113
10.4049/jimmunol.1002320
10.1016/s1074-7613(02)00446-6
10.1038/nri1630
10.1155/2017/8391230
10.3390/pharmaceutics13020142
10.1016/j.cell.2009.03.007
10.1016/j.it.2013.03.007
10.1016/j.cmet.2018.09.020
10.1158/2326-6066.CIR-14-0024
10.3389/fimmu.2019.02191
10.1016/s0022-5347(17)58737-6
10.1172/JCI32354
10.1093/intimm/dxh025
10.4049/jimmunol.0801167
10.1073/pnas.0510041103
10.1128/JVI.02789-13
10.1093/jb/mvt079
10.1038/s41577-021-00577-0
10.1186/s40425-019-0724-8
10.1038/90609
10.1038/ni1479
10.1038/nature01802
10.1073/pnas.1303275110
10.1136/ard.2007.086421
10.1038/ni909
10.1016/j.cell.2014.04.054
10.4049/jimmunol.177.12.8708
10.3389/fimmu.2018.01231
10.1016/bs.ai.2019.09.001
10.1016/j.cellsig.2007.08.009
10.4049/jimmunol.171.12.6680
10.1084/jem.20031023
10.1038/ni986
10.1038/ni904
10.1038/nri2079
10.1136/bmjopen-2019-034629
10.1002/jgm.964
10.1038/ni712
10.1111/imm.13181
10.1074/jbc.M506831200
10.1038/leu.2017.249
10.1016/j.molimm.2021.08.019
10.4049/jimmunol.173.5.2913
10.1212/WNL.0b013e31821f440a
10.1056/NEJMoa1200710
10.1016/j.celrep.2020.01.040
10.1016/s1471-4906(01)01896-8
10.1126/science.aaa2630
10.1016/j.cell.2011.09.051
10.1186/1479-5876-12-177
10.4049/jimmunol.178.11.6715
10.1084/jem.20021908
10.1001/jamadermatol.2014.821
10.4049/jimmunol.169.5.2756
10.1007/164_2021_543
10.1038/s41422-021-00495-9
10.1073/pnas.0400937101
10.1038/nature08516
10.4049/jimmunol.169.6.3155
10.1038/nature11250
10.1158/1940-6207.CAPR-19-0286
10.1016/j.immuni.2011.03.026
10.1038/ni968
10.1038/nature09671
10.1016/j.intimp.2014.12.030
10.1111/imm.12260
10.1179/096805103225001477
10.15252/embj.201796781
10.4049/jimmunol.172.6.3415
10.1074/jbc.M309251200
10.1158/0008-5472.CAN-20-3510
10.1016/j.molimm.2009.06.006
10.1038/ni926
10.1074/jbc.M109.022392
10.1073/pnas.0603089103
10.1016/j.canlet.2018.09.003
10.1158/1078-0432.ccr-07-0842
10.1038/sj.embor.7401161
10.1016/j.molimm.2007.01.022
10.1016/j.ccell.2021.08.005
10.1038/35092578
10.1073/pnas.1316941111
10.1084/jem.20131044
10.1084/jem.20020207
10.1172/jci.insight.93397
10.1128/MCB.02098-07
10.1038/gene.2013.34
10.1038/nri2343
10.1097/CJI.0b013e318183af0b
10.1126/science.1139522
10.4049/jimmunol.178.12.7520
10.4049/jimmunol.179.5.3171
10.4110/in.2020.20.e21
10.1002/art.20678
10.1038/cr.2012.53
10.1073/pnas.1521359113
10.1371/journal.pone.0051228
10.4049/jimmunol.0902958
10.1038/nrcardio.2014.91
10.1038/cr.2011.13
10.4049/jimmunol.1700339
10.1038/80833
10.1038/srep30529
10.1126/science.284.5418.1313
10.1084/jem.20112339
10.3389/fimmu.2013.00211
10.1038/nature08247
10.3389/fimmu.2019.01243
10.1038/ni1577
10.1038/nature06501
10.1007/s10067-013-2418-9
10.1093/intimm/dxl082
10.1016/j.molcel.2009.01.012
10.1126/science.1079490
10.1126/sciimmunol.aap8855
10.1038/s41598-017-01033-7
10.1002/eji.201646846
10.1126/science.271.5252.1128
10.1084/jem.194.6.863
10.1371/journal.pone.0109980
10.1111/cei.13215
10.1371/journal.pntd.0005587
10.1172/JCI40055
10.1126/science.1140488
10.1073/pnas.1608555113
10.1186/s12879-018-3485-y
10.1016/j.cell.2020.02.041
10.1038/s41598-018-25549-8
10.1038/ni0602-499
10.1172/JCI26078
10.3389/fonc.2019.00241
10.2337/db20-0591
10.1016/j.imlet.2006.12.007
10.1016/j.cell.2006.03.047
10.1038/nature07959
10.1038/nrm3836
10.1038/cr.2016.155
10.1038/nature03308
10.1126/science.1080106
10.1038/ni1112
10.1016/j.cell.2006.02.015
10.1038/35021228
10.1016/S0952-7915(99)80066-1
10.1016/j.molcel.2014.03.040
10.1038/nature03547
10.1038/ni1050
10.1016/j.str.2011.02.004
10.1016/s1074-7613(02)00449-1
10.1152/ajpheart.00646.2011
10.1016/j.meegid.2013.08.008
10.1126/scitranslmed.aam8458
10.4049/jimmunol.0801969
10.1038/nature04596
10.1002/eji.200636181
10.4049/jimmunol.0903900
10.1002/advs.201901261
ContentType Journal Article
Copyright Copyright © 2022 Duan, Du, Xing, Wang and Wang.
Copyright © 2022 Duan, Du, Xing, Wang and Wang 2022 Duan, Du, Xing, Wang and Wang
Copyright_xml – notice: Copyright © 2022 Duan, Du, Xing, Wang and Wang.
– notice: Copyright © 2022 Duan, Du, Xing, Wang and Wang 2022 Duan, Du, Xing, Wang and Wang
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2022.812774
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_9e0162d7522a4fa4a697b7f2a4faa325
PMC8927970
35309296
10_3389_fimmu_2022_812774
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U54 CA210181
– fundername: NCI NIH HHS
  grantid: R01 CA101795
– fundername: NCI NIH HHS
  grantid: R01 CA246547
– fundername: ;
  grantid: U54CA210181
– fundername: ;
  grantid: BC151081, LC200368
– fundername: ;
  grantid: R01CA101795, R01CA246547
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
CGR
CUY
CVF
ECM
EIF
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c531t-2b1582e9d5917a5aede9e53c8cb81edf54fa4f83c7fe10290f9ce5455654b8b93
IEDL.DBID DOA
ISICitedReferencesCount 583
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773218200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-3224
IngestDate Fri Oct 03 12:42:49 EDT 2025
Thu Aug 21 13:30:30 EDT 2025
Fri Sep 05 11:50:42 EDT 2025
Thu Jan 02 22:53:45 EST 2025
Sat Nov 29 05:52:07 EST 2025
Tue Nov 18 22:24:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords autoimmune diseases
toll-like receptors
infectious diseases
signaling pathway
cancer
T cells
cell-mediated immunity
Language English
License Copyright © 2022 Duan, Du, Xing, Wang and Wang.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-2b1582e9d5917a5aede9e53c8cb81edf54fa4f83c7fe10290f9ce5455654b8b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Subhasis Chattopadhyay, National Institute of Science Education and Research (NISER), India
Reviewed by: Subhransu Sekhar Sahoo, Purdue University, United States; Sarang Tartey, IGM Biosciences, United States
This article was submitted to T Cell Biology, a section of the journal Frontiers in Immunology
OpenAccessLink https://doaj.org/article/9e0162d7522a4fa4a697b7f2a4faa325
PMID 35309296
PQID 2641515042
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9e0162d7522a4fa4a697b7f2a4faa325
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8927970
proquest_miscellaneous_2641515042
pubmed_primary_35309296
crossref_citationtrail_10_3389_fimmu_2022_812774
crossref_primary_10_3389_fimmu_2022_812774
PublicationCentury 2000
PublicationDate 2022-03-03
PublicationDateYYYYMMDD 2022-03-03
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-03
  day: 03
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Mercier (B130) 2009; 182
Li (B41) 2002; 99
Netea (B165) 2004; 172
Zhao (B213) 2020; 7
Chantratita (B296) 2017; 23
Curiel (B153) 2004; 10
Misch (B279) 2008; 2
Sun (B43) 2016; 9
Clark (B44) 2013; 14
Merad (B116) 2013; 31
Wu (B205) 2017; 8
Lopez-Pelaez (B79) 2014; 111
O’Reilly (B271) 2014; 143
Bhoj (B54) 2009; 458
Kadowaki (B112) 2001; 194
Medzhitov (B10) 1997; 388
Diehl (B181) 2004; 21
Hoshino (B94) 2006; 440
Yang (B228) 2014; 9
Prinz (B276) 2006; 116
Kagan (B36) 2014; 14
Lin (B37) 2010; 465
Mills (B118) 2011; 11
Chuang (B207) 2004; 5
Luchner (B335) 2021; 13
Trompouki (B193) 2003; 424
Caramalho (B171) 2003; 197
Benko (B203) 2010; 185
Akira (B2) 2006; 124
Kim (B229) 2020; 13
Zhou (B218) 2014; 111
Sharma (B225) 2019; 116
Wang (B334) 2017; 27
Hoffmann (B23) 1999; 284
Huang (B292) 2009; 49
Turley (B100) 2000; 288
DePaolo (B316) 2012; 209
Visintin (B113) 2001; 166
Satomi (B133) 2020; 105
Nguyen (B282) 2020; 16
George (B146) 2020; 10
Bhagavan (B20) 2011
Liyanage (B154) 2002; 169
Sharma (B87) 2003; 300
Hornung (B110) 2002; 168
Urban-Wojciuk (B221) 2019; 10
Schuman (B65) 2009; 113
Xia (B199) 2011; 34
Kumar (B200) 2011; 186
Rowe (B32) 2006; 103
Pahl (B314) 2012; 51
Wang (B330) 2018; 18
Wang (B157) 2007; 19
Kinjyo (B183) 2002; 17
Wan (B68) 2006; 7
Schnare (B92) 2001; 2
Kobayashi (B210) 2012; 12
Ngo (B232) 2011; 470
Takaoka (B76) 2005; 434
Mullins (B245) 2019; 7
Kollewe (B42) 2004; 279
Edwards (B114) 2003; 33
Sutmuller (B166) 2006; 116
Wang (B156) 2005; 174
Kiniwa (B159) 2007; 13
Cao (B40) 1996; 271
Ren (B78) 2014; 111
Brackett (B243) 2016; 113
Gottipati (B46) 2008; 20
Horrevorts (B101) 2018; 9
Reba (B127) 2014; 44
Kawai (B77) 2008; 1143
Zhao (B320) 2021; 31
Anderson (B117) 2019
Xing (B73) 2021; 29
Reis e Sousa (B96) 1999; 11
LeBouder (B176) 2003; 171
Kagan (B31) 2008; 9
Heil (B161) 2004; 303
Salazar (B239) 2014; 2
Wang (B152) 2004; 20
Zhang (B224) 2011; 186
Greulich (B310) 2019; 179
Li (B253) 2014; 33
Gao (B104) 2012; 272
Lai (B312) 2013; 41
Yamamoto (B81) 2003; 301
Pang (B305) 2013; 110
Jude (B331) 2003; 4
Johnson (B318) 2007; 178
Iwami (B177) 2000; 165
Rakoff-Nahoum (B230) 2007; 317
Zhang (B300) 2017; 352
Gringhuis (B309) 2010; 11
Peng (B160) 2005; 309
Okeke (B139) 2014; 193
Lin (B222) 2013; 57
Hoebe (B82) 2003; 4
Reiley (B192) 2006; 7
Lund (B325) 2004; 101
Cui (B202) 2010; 141
Basner-Tschakarjan (B313) 2006; 8
Zhang (B186) 2002; 277
Ajibade (B69) 2012; 36
Jurk (B164) 2002; 3
Wang (B195) 2009; 10
Cottalorda (B128) 2006; 36
Akira (B21) 2001; 2
Tournadre (B273) 2012; 64
Hua (B19) 2013; 10
D’Agostini (B236) 2005; 5
Horng (B28) 2001; 2
Hori (B150) 2003; 299
Mansur (B322) 2014; 12
Li (B142) 2019; 10
Tokunaga (B57) 2009; 11
Shimizu (B61) 2015; 266
Meng (B206) 2015; 211
Jarrossay (B111) 2001; 31
Motshwene (B38) 2009; 284
Tokunaga (B59) 2013; 154
Kagan (B33) 2006; 125
Sinnott (B126) 2016; 197
Palliser (B93) 2004; 172
Wu (B293) 2010; 41
Chen (B302) 2015; 11
Guinn (B238) 2018; 438
Radstake (B251) 2004; 50
Fujimoto (B286) 2004; 16
Cheng (B289) 2018; 128
Biswas (B125) 2009; 46
Cohen (B138) 2013; 4
Mohamed (B246) 2015; 35
Wang (B7) 2012
Botos (B16) 2011; 19
Kawasaki (B6) 2014; 5
Arpaia (B319) 2011; 144
Honda (B75) 2005; 434
Satkunanathan (B294) 2014; 88
Pietrobon (B308) 2021; 225
Pichlmair (B327) 2006; 314
Rahighi (B56) 2009; 136
González-Navajas (B136) 2010; 120
Wang (B266) 2019; 10
Anderson (B8) 1985; 42
Lo (B55) 2009; 33
Sato-Kaneko (B248) 2017; 2
Karim (B122) 2017; 47
Farrugia (B250) 2017; 2017
Lemaitre (B9) 1996; 86
Huik (B288) 2013; 20
Takeuchi (B1) 2010; 140
Iwasaki (B4) 2004; 5
Sharma (B106) 2020; 11
Guo (B105) 2017; 8
Bonham (B39) 2014; 156
Tabiasco (B143) 2006; 177
Sasaki (B62) 2015; 266
Behzadi (B333) 2021; 2021
Sheen (B102) 2017; 199
McClure (B17) 2014; 5
Allen (B201) 2011; 34
Moore (B209) 2008; 451
Zandi (B241) 2020; 121
LaRosa (B168) 2007; 108
Cappelletti (B274) 2011; 76
Xia (B51) 2009; 461
Sheng (B103) 2013; 2013
Walsh (B49) 2008; 3
Valencia Pacheco (B306) 2013; 44
Tapping (B278) 2003; 9
Deidier (B219) 1725
Lin (B214) 2016; 64
Woo (B155) 2001; 61
Iwasaki (B328) 2010; 327
Zheng (B283) 2021; 22
Naugler (B231) 2007; 317
Fore (B12) 2020; 20
Tattoli (B204) 2008; 9
Kumar (B119) 2021; 225
Pham-Ledard (B234) 2014; 150
Fitzgerald (B88) 2003; 4
Qu (B141) 2019; 2019
Yang (B227) 2010; 29
Zong (B272) 2013; 72
Liu (B167) 2006; 103
Sugiura (B317) 2013; 6
Garcia-Ortiz (B263) 2010; 69
Zhang (B131) 2013; 190
Chaichana (B301) 2017; 11
Schoenemeyer (B80) 2005; 280
Reiley (B191) 2007; 204
Awomoyi (B321) 2007; 179
Kurt-Jones (B297) 2000; 1
Medzhitov (B15) 2001; 1
Latz (B26) 2007; 8
Gohda (B84) 2004; 173
Peng (B158) 2007; 27
Iwai (B63) 2014; 15
Wang (B120) 2001; 22
Asami (B332) 2021; 30
Kobayashi (B187) 2002; 110
Henrick (B13) 2019; 10
Liu (B66) 2006; 103
Du (B212) 2018; 37
Cui (B173) 2014; 10
Diebold (B326) 2004; 303
O’Neill (B34) 2007; 7
Lamothe (B70) 2012; 7
Tripathy (B256) 2017; 7
Chang (B134) 2013; 110
Rudd (B291) 2006; 176
Fourcade (B249) 2008; 31
Yamamoto (B29) 2003; 4
Xu (B257) 2012; 302
Dajon (B220) 2017; 222
Ma (B311) 2014; 426
Lai (B145) 2018; 32
Conrad (B264) 2010; 464
Kim (B254) 2021; 11
Medzhitov (B22) 1997; 91
Urry (B169) 2009; 119
Garlanda (B179) 2004; 101
McWhirter (B86) 2004; 101
Kawai (B11) 2010; 11
Reiling (B323) 2002; 169
Davis (B255) 2015; 24
Trombetta (B99) 2003; 299
Sun (B240) 2021; 39
Fujita (B58) 2014; 34
Li (B162) 2019; 29
Di (B144) 2019; 9
Cusson-Hermance (B83) 2005; 280
Tong (B196) 2012; 22
Morales (B237) 1976; 116
Chen (B215) 2016; 64
Cros (B268) 2010; 33
Lee (B129) 2009; 9
Guo (B261) 2021; 70
Fillatreau (B262) 2021; 17
Windheim (B45) 2008; 28
Crellin (B170) 2005; 175
Banchereau (B91) 1998; 392
Conze (B47) 2008; 28
Zang (B315) 2020; 18
Boone (B189) 2004; 5
Treon (B233) 2012; 367
Imanishi (B124) 2007; 178
Chen (B299) 2021; 95
Zanin-Zhorov (B137) 2007; 179
Aderem (B24) 2000; 406
Fitzgerald (B35) 2020; 180
Lee (B190) 2010; 29
Zhang (B284) 2021; 139
Park (B259) 2004; 1037
Regli (B304) 2020; 31
Blasius (B25) 2010; 32
Chang (B85) 2009; 10
Cardoso (B307) 2013; 8
Lamothe (B48) 2007; 282
Elass (B280) 2005; 73
Ah Kioon (B269) 2018; 10
Fontenot (B151) 2003; 4
Fitzgerald (B27) 2001; 413
Sato (B67) 2006; 18
Shi (B208) 2008; 9
Stenzel (B281) 2008; 172
Lind (B14) 2021; 16
Reynolds (B135) 2012; 109
Chen (B216) 2019; 7
Kovalenko (B194) 2003; 424
Abel (B324) 2002; 169
Walker (B148) 2003; 112
Ea (B52) 2006; 22
Brint (B178) 2004; 5
Guiducci (B277) 2013; 210
Baumann (B175) 2010; 207
Ajibade (B72) 2013; 34
Ito (B95) 2002; 195
Nair-Gupta (B97) 2014; 158
Miranda (B295) 2019; 87
Wald (B180) 2003; 4
Tang (B298) 2016; 6
Hsu (B242) 2011; 71
To (B329) 2019; 9
Liu (B89) 2015; 347
Sahoo (B140) 2018; 8
Liew (B172) 2005; 5
He (B226) 2007; 44
Tartey (B235) 2021; 81
Nakagawa (B182) 2002; 17
Hu (B50) 2017; 8
Blander (B98) 2006; 440
Shembade (B188) 2010; 327
Zhang (B285) 2007; 317
Anand (B198) 2012; 488
Sutmuller (B18) 2006; 27
Sironi (B287) 2012; 188
Wang (B247) 2016; 113
Fitzgerald (B30) 2003; 198
Sepehri (B260) 2016; 21
Qi (B223) 2020; 8
Ciechomska (B270) 2016; 68
Cai (B3) 2014; 54
Xing (B132) 2019; 195
Roelofs (B252) 2009; 68
Lombardi (B107) 2009; 182
Noad (B60) 2017; 2
Zhao (B90) 2016; 113
Souyris (B265) 2018; 3
Dolina (B108) 2020; 31
Bubna (B244) 2015; 47
Wick (B258) 2014; 11
Komai-Koma (B123) 2004; 101
Wang (B121) 2008; 27
Ear (B71) 2010; 184
Schneider (B197) 2012; 13
Vignali (B147) 2008; 8
Sato (B64) 2005; 6
Boonstra (B115) 2003; 197
Khattri (B149) 2003; 4
Tan (B217) 2017; 68
Janssens (B185) 2002; 12
Sacre (B275) 2007; 170
Hayden (B5) 2011; 21
Wu (B53) 2006; 8
Celhar (B267) 2019; 10
Shang (B163) 2020; 10
Zanoni (B174) 2011; 147
Misch (B303) 2013; 14
Mandraju (B109) 2014; 192
Burns (B184) 2003; 197
Feng (B211) 2017; 7
Honda (B74) 2005; 434
Liu (B290) 2020; 160
References_xml – volume: 2013
  year: 2013
  ident: B103
  article-title: Enhanced Dendritic Cell-Mediated Antigen-Specific CD4+ T Cell Responses: IFN-Gamma Aids TLR Stimulation
  publication-title: J Drug Deliv
  doi: 10.1155/2013/516749
– volume: 3
  year: 2008
  ident: B49
  article-title: TRAF6 Autoubiquitination-Independent Activation of the Nfκb and MAPK Pathways in Response to IL-1 and RANKL
  publication-title: PloS One
  doi: 10.1371/journal.pone.0004064
– volume: 10
  year: 2004
  ident: B153
  article-title: Specific Recruitment of Regulatory T Cells in Ovarian Carcinoma Fosters Immune Privilege and Predicts Reduced Survival
  publication-title: Nat Med
  doi: 10.1038/nm1093
– volume: 144
  year: 2011
  ident: B319
  article-title: TLR Signaling is Required for Salmonella Typhimurium Virulence
  publication-title: Cell
  doi: 10.1016/j.cell.2011.01.031
– volume: 11
  year: 2020
  ident: B106
  article-title: The TLR5 Agonist Flagellin Shapes Phenotypical and Functional Activation of Lung Mucosal Antigen Presenting Cells in Neonatal Mice
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.00171
– volume: 27
  year: 2006
  ident: B18
  article-title: Toll-Like Receptors on Regulatory T Cells: Expanding Immune Regulation
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2006.06.005
– volume: 12
  year: 2012
  ident: B210
  article-title: NLRC5: A Key Regulator of MHC Class I-Dependent Immune Responses
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3339
– volume: 116
  year: 2019
  ident: B225
  article-title: TLR1/2 Ligand Enhances Antitumor Efficacy of CTLA-4 Blockade by Increasing Intratumoral Treg Depletion
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1819004116
– volume: 11
  year: 2010
  ident: B309
  article-title: HIV-1 Exploits Innate Signaling by TLR8 and DC-SIGN for Productive Infection of Dendritic Cells
  publication-title: Nat Immunol
  doi: 10.1038/ni.1858
– volume: 188
  year: 2012
  ident: B287
  article-title: A Common Polymorphism in TLR3 Confers Natural Resistance to HIV-1 Infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1102179
– volume: 277
  year: 2002
  ident: B186
  article-title: Negative Regulation of Toll-Like Receptor-Mediated Signaling by Tollip
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109537200
– volume: 172
  year: 2008
  ident: B281
  article-title: Both TLR2 and TLR4 are Required for the Effective Immune Response in Staphylococcus Aureus-Induced Experimental Murine Brain Abscess
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2008.070567
– volume: 28
  year: 2008
  ident: B45
  article-title: Interleukin-1 (IL-1) Induces the Lys63-Linked Polyubiquitination of IL-1 Receptor-Associated Kinase 1 to Facilitate NEMO Binding and the Activation of IkappaBalpha Kinase
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.02380-06
– volume: 8
  start-page: 398
  year: 2006
  ident: B53
  article-title: Sensing of Lys 63-Linked Polyubiquitination by NEMO is a Key Event in NF-κB Activation
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1384
– volume: 22
  year: 2006
  ident: B52
  article-title: Activation of IKK by TNFα Requires Site-Specific Ubiquitination of RIP1 and Polyubiquitin Binding by NEMO
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.03.026
– volume: 9
  year: 2009
  ident: B129
  article-title: Expression and Function of TLR2 on CD4 Versus CD8 T Cells
  publication-title: Immune Netw
  doi: 10.4110/in.2009.9.4.127
– volume: 31
  year: 2001
  ident: B111
  article-title: Specialization and Complementarity in Microbial Molecule Recognition by Human Myeloid and Plasmacytoid Dendritic Cells
  publication-title: Eur J Immunol
  doi: 10.1002/1521-4141(200111)31:11<3388::AID-IMMU3388>3.0.CO;2-Q
– volume: 86
  year: 1996
  ident: B9
  article-title: The Dorsoventral Regulatory Gene Cassette Spätzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80172-5
– volume: 280
  year: 2005
  ident: B80
  article-title: The Interferon Regulatory Factor, IRF5, Is a Central Mediator of Toll-Like Receptor 7 Signaling
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M412584200
– volume: 327
  year: 2010
  ident: B328
  article-title: Regulation of Adaptive Immunity by the Innate Immune System
  publication-title: Science
  doi: 10.1126/science.1183021
– volume: 23
  start-page: 47 e1
  year: 2017
  ident: B296
  article-title: TLR4 Genetic Variation is Associated With Inflammatory Responses in Gram-Positive Sepsis
  publication-title: Clin Microbiol Infect
  doi: 10.1016/j.cmi.2016.08.028
– volume: 9
  year: 2016
  ident: B43
  article-title: Comprehensive RNAi-Based Screening of Human and Mouse TLR Pathways Identifies Species-Specific Preferences in Signaling Protein Use
  publication-title: Sci Signal
  doi: 10.1126/scisignal.aab2191
– volume: 101
  year: 2004
  ident: B86
  article-title: IFN-Regulatory Factor 3-Dependent Gene Expression is Defective in Tbk1-Deficient Mouse Embryonic Fibroblasts
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2237236100
– volume: 11
  year: 2011
  ident: B118
  article-title: TLR-Dependent T Cell Activation in Autoimmunity
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3095
– volume: 20
  year: 2004
  ident: B152
  article-title: Tumor-Specific Human CD4(+) Regulatory T Cells and Their Ligands: Implications for Immunotherapy
  publication-title: Immunity
  doi: 10.1016/s1074-7613(03)00359-5
– volume: 11
  year: 2010
  ident: B11
  article-title: The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-Like Receptors
  publication-title: Nat Immunol
  doi: 10.1038/ni.1863
– volume: 44
  year: 2014
  ident: B127
  article-title: TLR2 Engagement on CD4+T Cells Enhances Effector Functions and Protective Responses to Mycobacterium Tuberculosis
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201344100
– volume-title: Innate Immune Regulation and Cancer Immunotherapy
  year: 2012
  ident: B7
  article-title: Innate Immune Signaling and Negative Regulators in Cancer
  doi: 10.1007/978-1-4419-9914-6_6
– volume: 2
  start-page: 17063
  year: 2017
  ident: B60
  article-title: Randow: LUBAC-Synthesized Linear Ubiquitin Chains Restrict Cytosol-Invading Bacteria by Activating Autophagy and NF-KappaB
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2017.63
– volume: 266
  start-page: 190
  year: 2015
  ident: B61
  article-title: Linear Ubiquitination in Immunity
  publication-title: Immunol Rev
  doi: 10.1111/imr.12309
– volume: 176
  year: 2006
  ident: B291
  article-title: Deletion of TLR3 Alters the Pulmonary Immune Environment and Mucus Production During Respiratory Syncytial Virus Infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.176.3.1937
– volume: 10
  year: 2009
  ident: B85
  article-title: Peli1 Facilitates TRIF-Dependent Toll-Like Receptor Signaling and Proinflammatory Cytokine Production
  publication-title: Nat Immunol
  doi: 10.1038/ni.1777
– volume: 41
  year: 2013
  ident: B312
  article-title: Toll-Like Receptor 9 (TLR9) Gene Polymorphisms Associated With Increased Susceptibility of Human Papillomavirus-16 Infection in Patients With Cervical Cancer
  publication-title: J Int Med Res
  doi: 10.1177/0300060513483398
– volume: 72
  year: 2013
  ident: B272
  article-title: TLR4 as Receptor for HMGB1 Induced Muscle Dysfunction in Myositis
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2012-202207
– volume: 17
  start-page: 98
  year: 2021
  ident: B262
  article-title: Toll-Like Receptor Signalling in B Cells During Systemic Lupus Erythematosus
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/s41584-020-00544-4
– volume: 303
  year: 2004
  ident: B326
  article-title: Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA
  publication-title: Science
  doi: 10.1126/science.1093616
– volume: 111
  year: 2014
  ident: B78
  article-title: IKK Beta is an IRF5 Kinase That Instigates Inflammation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1418516111
– volume: 91
  year: 1997
  ident: B22
  article-title: Innate Immunity: The Virtues of a Nonclonal System of Recognition
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80412-2
– volume: 29
  start-page: 959
  year: 2021
  ident: B73
  article-title: Microbiota Regulate Innate Immune Signaling and Protective Immunity Against Cancer
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.03.016
– volume: 140
  year: 2010
  ident: B1
  article-title: Pattern Recognition Receptors and Inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
– volume: 204
  year: 2007
  ident: B191
  article-title: Deubiquitinating Enzyme CYLD Negatively Regulates the Ubiquitin-Dependent Kinase Tak1 and Prevents Abnormal T Cell Responses
  publication-title: J Exp Med
  doi: 10.1084/jem.20062694
– volume: 186
  start-page: 994
  year: 2011
  ident: B200
  article-title: NLRC5 Deficiency Does Not Influence Cytokine Induction by Virus and Bacteria Infections
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1002094
– volume: 288
  year: 2000
  ident: B100
  article-title: Transport of Peptide-MHC Class II Complexes in Developing Dendritic Cells
  publication-title: Science
  doi: 10.1126/science.288.5465.522
– volume: 174
  year: 2005
  ident: B156
  article-title: Recognition of a New ARTC1 Peptide Ligand Uniquely Expressed in Tumor Cells by Antigen-Specific CD4(+) Regulatory T Cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.174.5.2661
– volume: 1143
  start-page: 1
  year: 2008
  ident: B77
  article-title: Toll-Like Receptor and RIG-1-Like Receptor Signaling
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1443.020
– volume: 7
  year: 2006
  ident: B192
  article-title: Regulation of T Cell Development by the Deubiquitinating Enzyme CYLD
  publication-title: Nat Immunol
  doi: 10.1038/ni1315
– volume: 2
  year: 2001
  ident: B28
  article-title: TIRAP: An Adapter Molecule in the Toll Signaling Pathway
  publication-title: Nat Immunol
  doi: 10.1038/ni0901-835
– volume: 31
  year: 2013
  ident: B116
  article-title: The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-020711-074950
– volume: 10
  year: 2014
  ident: B173
  article-title: Mechanisms and Pathways of Innate Immune Activation and Regulation in Health and Cancer
  publication-title: Hum Vaccines Immunother
  doi: 10.4161/21645515.2014.979640
– volume: 392
  year: 1998
  ident: B91
  article-title: Dendritic Cells and the Control of Immunity
  publication-title: Nature
  doi: 10.1038/32588
– volume: 11
  start-page: 20169
  year: 2021
  ident: B254
  article-title: Association of TLR 9 Gene Polymorphisms With Remission in Patients With Rheumatoid Arthritis Receiving TNF-Alpha Inhibitors and Development of Machine Learning Models
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-99625-x
– volume: 2019
  year: 2019
  ident: B141
  article-title: TLR7 Modulated T Cell Response in the Mesenteric Lymph Node of Schistosoma Japonicum-Infected C57BL/6 Mice
  publication-title: J Immunol Res
  doi: 10.1155/2019/2691808
– volume: 101
  year: 2004
  ident: B123
  article-title: TLR2 is Expressed on Activated T Cells as a Costimulatory Receptor
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0400171101
– volume: 197
  year: 2003
  ident: B171
  article-title: Regulatory T Cells Selectively Express Toll-Like Receptors and are Activated by Lipopolysaccharide
  publication-title: J Exp Med
  doi: 10.1084/jem.20021633
– volume: 33
  year: 2003
  ident: B114
  article-title: Toll-Like Receptor Expression in Murine DC Subsets: Lack of TLR7 Expression by CD8 Alpha(+) DC Correlates With Unresponsiveness to Imidazoquinolines
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200323797
– volume: 10
  start-page: 744
  year: 2009
  ident: B195
  article-title: The E3 Ubiquitin Ligase Nrdp1 ’Preferentially’ Promotes TLR-Mediated Production of Type I Interferon
  publication-title: Nat Immunol
  doi: 10.1038/ni.1742
– volume: 14
  year: 2014
  ident: B36
  article-title: SMOCs: Supramolecular Organizing Centres That Control Innate Immunity
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3757
– volume: 9
  start-page: 2366
  year: 2019
  ident: B329
  article-title: Intranasal and Epicutaneous Administration of Toll-Like Receptor 7 (TLR7) Agonists Provides Protection Against Influenza A Virus-Induced Morbidity in Mice
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-38864-5
– volume: 2
  start-page: e231
  year: 2008
  ident: B279
  article-title: Human TLR1 Deficiency Is Associated With Impaired Mycobacterial Signaling and Protection From Leprosy Reversal Reaction
  publication-title: PloS Negl Trop Dis
  doi: 10.1371/journal.pntd.0000231
– volume: 426
  year: 2014
  ident: B311
  article-title: Recognition of Herpes Simplex Viruses: Toll-Like Receptors and Beyond
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2013.11.012
– volume: 5
  year: 2014
  ident: B6
  article-title: Toll-Like Receptor Signaling Pathways
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2014.00461
– volume: 352
  year: 2017
  ident: B300
  article-title: TLR-4/miRNA-32-5p/FSTL1 Signaling Regulates Mycobacterial Survival and Inflammatory Responses in Mycobacterium Tuberculosis-Infected Macrophages
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2017.02.025
– volume: 6
  year: 2005
  ident: B64
  article-title: Essential Function for the Kinase TAK1 in Innate and Adaptive Immune Responses
  publication-title: Nat Immunol
  doi: 10.1038/ni1255
– volume: 116
  year: 2006
  ident: B166
  article-title: Toll-Like Receptor 2 Controls Expansion and Function of Regulatory T Cells
  publication-title: J Clin Invest
  doi: 10.1172/jci25439
– volume: 301
  year: 2003
  ident: B81
  article-title: Role of Adaptor TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway
  publication-title: Science
  doi: 10.1126/science.1087262
– volume: 2021
  year: 2021
  ident: B333
  article-title: Toll-Like Receptors: General Molecular and Structural Biology
  publication-title: J Immunol Res
  doi: 10.1155/2021/9914854
– volume: 10
  year: 2013
  ident: B19
  article-title: TLR Signaling in B-Cell Development and Activation
  publication-title: Cell Mol Immunol
  doi: 10.1038/cmi.2012.61
– volume: 207
  year: 2010
  ident: B175
  article-title: CD14 is a Coreceptor of Toll-Like Receptors 7 and 9
  publication-title: J Exp Med
  doi: 10.1084/jem.20101111
– volume: 4
  year: 2003
  ident: B82
  article-title: Upregulation of Costimulatory Molecules Induced by Lipopolysaccharide and Double-Stranded RNA Occurs by Trif-Dependent and Trif-Independent Pathways
  publication-title: Nat Immunol
  doi: 10.1038/ni1010
– volume: 112
  year: 2003
  ident: B148
  article-title: Induction of FoxP3 and Acquisition of T Regulatory Activity by Stimulated Human CD4(+)CD25(-) T Cells
  publication-title: J Clin Invest
  doi: 10.1172/jci200319441
– volume: 141
  year: 2010
  ident: B202
  article-title: NLRC5 Negatively Regulates the NF-Kappa B and Type I Interferon Signaling Pathways
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.040
– volume: 64
  year: 2012
  ident: B273
  article-title: Immature Muscle Precursors are a Source of Interferon-Beta in Myositis: Role of Toll-Like Receptor 3 Activation and Contribution to HLA Class I Up-Regulation
  publication-title: Arthritis Rheum
  doi: 10.1002/art.33350
– volume: 34
  year: 2014
  ident: B58
  article-title: Mechanism Underlying IkappaB Kinase Activation Mediated by the Linear Ubiquitin Chain Assembly Complex
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01538-13
– volume: 110
  start-page: 191
  year: 2002
  ident: B187
  article-title: IRAK-M is a Negative Regulator of Toll-Like Receptor Signaling
  publication-title: Cell
  doi: 10.1016/s0092-8674(02)00827-9
– volume: 156
  year: 2014
  ident: B39
  article-title: A Promiscuous Lipid-Binding Protein Diversifies the Subcellular Sites of Toll-Like Receptor Signal Transduction
  publication-title: Cell
  doi: 10.1016/j.cell.2014.01.019
– volume: 18
  start-page: 135
  year: 2020
  ident: B315
  article-title: Adenovirus Infection Promotes the Formation of Glioma Stem Cells From Glioblastoma Cells Through the TLR9/NEAT1/STAT3 Pathway
  publication-title: Cell Commun Signal
  doi: 10.1186/s12964-020-00598-7
– volume: 21
  year: 2004
  ident: B181
  article-title: TRAIL-R as a Negative Regulator of Innate Immune Cell Responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2004.11.008
– volume: 47
  year: 2015
  ident: B244
  article-title: Imiquimod - Its Role in the Treatment of Cutaneous Malignancies
  publication-title: Indian J Pharmacol
  doi: 10.4103/0253-7613.161249
– volume: 300
  year: 2003
  ident: B87
  article-title: Triggering the Interferon Antiviral Response Through an IKK-Related Pathway
  publication-title: Science
  doi: 10.1126/science.1081315
– volume: 8
  year: 2017
  ident: B205
  article-title: NLRP11 Attenuates Toll-Like Receptor Signalling by Targeting TRAF6 for Degradation via the Ubiquitin Ligase RNF19A
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02073-3
– volume: 87
  year: 2019
  ident: B295
  article-title: Toll-Like Receptor 3-TRIF Pathway Activation by Neospora Caninum RNA Enhances Infection Control in Mice
  publication-title: Infect Immun
  doi: 10.1128/IAI.00739-18
– volume: 10
  year: 2019
  ident: B267
  article-title: TLR7 Protein Expression in Mild and Severe Lupus-Prone Models Is Regulated in a Leukocyte, Genetic, and IRAK4 Dependent Manner
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.01546
– volume: 165
  year: 2000
  ident: B177
  article-title: Cutting Edge: Naturally Occurring Soluble Form of Mouse Toll-Like Receptor 4 Inhibits Lipopolysaccharide Signaling
  publication-title: J Immunol
  doi: 10.4049/jimmunol.165.12.6682
– volume: 1037
  year: 2004
  ident: B259
  article-title: Association of the Polymorphism for Toll-Like Receptor 2 With Type 1 Diabetes Susceptibility
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1337.028
– volume: 193
  start-page: 655
  year: 2014
  ident: B139
  article-title: Regulatory T Cells Restrain CD4<sup<+</sup< T Cells From Causing Unregulated Immune Activation and Hypersensitivity to Lipopolysaccharide Challenge
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1303064
– volume: 73
  year: 2005
  ident: B280
  article-title: Mycobacterial Lipomannan Induces Matrix Metalloproteinase-9 Expression in Human Macrophagic Cells Through a Toll-Like Receptor 1 (TLR1)/TLR2- and CD14-Dependent Mechanism
  publication-title: Infect Immun
  doi: 10.1128/IAI.73.10.7064-7068.2005
– volume: 5
  start-page: 495
  year: 2004
  ident: B207
  article-title: Triad3A, an E3 Ubiquitin-Protein Ligase Regulating Toll-Like Receptors
  publication-title: Nat Immunol
  doi: 10.1038/ni1066
– volume: 68
  year: 2016
  ident: B270
  article-title: Histone Demethylation and Toll-Like Receptor 8-Dependent Cross-Talk in Monocytes Promotes Transdifferentiation of Fibroblasts in Systemic Sclerosis Via Fra-2
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.39602
– volume: 1
  year: 2001
  ident: B15
  article-title: Toll-Like Receptors and Innate Immunity
  publication-title: Nat Rev Immunol
  doi: 10.1038/35100529
– volume: 19
  year: 2007
  ident: B157
  article-title: Regulatory T Cells and Cancer
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2007.02.004
– volume: 35
  year: 2015
  ident: B246
  article-title: Effect of Toll-Like Receptor 7 and 9 Targeted Therapy to Prevent the Development of Hepatocellular Carcinoma
  publication-title: Liver Int
  doi: 10.1111/liv.12626
– volume: 111
  year: 2014
  ident: B79
  article-title: Protein Kinase IKK Beta-Catalyzed Phosphorylation of IRF5 at Ser462 Induces its Dimerization and Nuclear Translocation in Myeloid Cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1418399111
– volume: 424
  year: 2003
  ident: B193
  article-title: CYLD Is a Deubiquitinating Enzyme That Negatively Regulates NF-Kappa B Activation by TNFR Family Members
  publication-title: Nature
  doi: 10.1038/nature01803
– volume: 101
  year: 2004
  ident: B179
  article-title: Intestinal Inflammation in Mice Deficient in Tir8, an Inhibitory Member of the IL-1 Receptor Family
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0308680101
– volume: 21
  start-page: 2
  year: 2016
  ident: B260
  article-title: Toll-Like Receptor 2 and Type 2 Diabetes
  publication-title: Cell Mol Biol Lett
  doi: 10.1186/s11658-016-0002-4
– volume: 51
  start-page: 91
  year: 2012
  ident: B314
  article-title: Adenovirus Type 35, But Not Type 5, Stimulates NK Cell Activation via Plasmacytoid Dendritic Cells and TLR9 Signaling
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2012.02.119
– volume: 10
  year: 2019
  ident: B221
  article-title: The Role of TLRs in Anti-Cancer Immunity and Tumor Rejection
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.02388
– volume: 4
  year: 2003
  ident: B88
  article-title: IKK Epsilon and TBK1 are Essential Components of the IRF3 Signaling Pathway
  publication-title: Nat Immunol
  doi: 10.1038/ni921
– volume: 42
  year: 1985
  ident: B8
  article-title: Establishment of Dorsal-Ventral Polarity in the Drosophila Embryo: Genetic Studies on the Role of the Toll Gene Product
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90274-0
– volume: 12
  year: 2002
  ident: B185
  article-title: Regulation of Interleukin-1-and Lipopolysaccharide-Induced NF-Kappa B Activation by Alternative Splicing of Myd88
  publication-title: Curr Biol
  doi: 10.1016/s0960-9822(02)00712-1
– volume: 44
  year: 2013
  ident: B306
  article-title: Expression and Activation of Intracellular Receptors TLR7, TLR8 and TLR9 in Peripheral Blood Monocytes From HIV-Infected Patients
  publication-title: Colomb Med (Cali)
  doi: 10.25100/cm.v44i2.1183
– volume: 27
  year: 2008
  ident: B121
  article-title: Toll-Like Receptors and Immune Regulation: Implications for Cancer Therapy
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210906
– volume: 211
  year: 2015
  ident: B206
  article-title: Reversible Ubiquitination Shapes NLRC5 Function and Modulates NF-κb Activation Switch
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201505091
– volume: 192
  year: 2014
  ident: B109
  article-title: Differential Ability of Surface and Endosomal TLRs to Induce CD8 T Cell Responses In Vivo
  publication-title: J Immunol (Baltimore Md 1950)
  doi: 10.4049/jimmunol.1302244
– volume: 272
  year: 2012
  ident: B104
  article-title: Deficiency in TLR2 But Not in TLR4 Impairs Dendritic Cells Derived IL-10 Responses to Schistosome Antigens
  publication-title: Cell Immunol
  doi: 10.1016/j.cellimm.2011.10.007
– volume: 8
  year: 2013
  ident: B307
  article-title: TLR7/TLR8 Activation Restores Defective Cytokine Secretion by Myeloid Dendritic Cells But Not by Plasmacytoid Dendritic Cells in HIV-Infected Pregnant Women and Newborns
  publication-title: PloS One
  doi: 10.1371/journal.pone.0067036
– volume: 5
  year: 2014
  ident: B17
  article-title: TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2014.00386
– volume: 105
  year: 2020
  ident: B133
  article-title: Myeloid Differentiation Factor 88 Signaling in Donor T Cells Accelerates Graft-Versus-Host Disease
  publication-title: Haematologica
  doi: 10.3324/haematol.2018.203380
– volume: 388
  year: 1997
  ident: B10
  article-title: A Human Homologue of the Drosophila Toll Protein Signals Activation of Adaptive Immunity
  publication-title: Nature
  doi: 10.1038/41131
– volume: 64
  year: 2016
  ident: B215
  article-title: TRIM14 Inhibits cGAS Degradation Mediated by Selective Autophagy Receptor P62 to Promote Innate Immune Responses
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.08.025
– volume: 14
  year: 2013
  ident: B44
  article-title: Molecular Control of the NEMO Family of Ubiquitin-Binding Proteins
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3644
– volume: 29
  start-page: 92
  year: 2010
  ident: B227
  article-title: Reduced Expression of Toll-Like Receptor 4 Inhibits Human Breast Cancer Cells Proliferation and Inflammatory Cytokines Secretion
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/1756-9966-29-92
– volume: 8
  year: 2017
  ident: B105
  article-title: The Novel Toll-Like Receptor 2 Agonist SUP3 Enhances Antigen Presentation and T Cell Activation by Dendritic Cells
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.00158
– volume: 303
  year: 2004
  ident: B161
  article-title: Species-Specific Recognition of Single-Stranded RNA via Toll-Like Receptor 7 and 8
  publication-title: Science
  doi: 10.1126/science.1093620
– volume: 317
  year: 2007
  ident: B231
  article-title: Gender Disparity in Liver Cancer Due to Sex Differences in MyD88-Dependent IL-6 Production
  publication-title: Science
  doi: 10.1126/science.1140485
– volume: 61
  year: 2001
  ident: B155
  article-title: Regulatory CD4(+)CD25(+) T Cells in Tumors From Patients With Early-Stage non-Small Cell Lung Cancer and Late-Stage Ovarian Cancer
  publication-title: Cancer Res
– volume: 95
  year: 2021
  ident: B299
  article-title: TLR4 Regulates Rabies Virus-Induced Humoral Immunity Through Recruitment of cDC2 to Lymph Organs
  publication-title: J Virol
  doi: 10.1128/JVI.00829-21
– volume: 465
  year: 2010
  ident: B37
  article-title: Helical Assembly in the MyD88-IRAK4-IRAK2 Complex in TLR/IL-1R Signalling
  publication-title: Nature
  doi: 10.1038/nature09121
– volume: 222
  start-page: 89
  year: 2017
  ident: B220
  article-title: Toll-Like Receptor Stimulation in Cancer: A Pro- and Anti-Tumor Double-Edged Sword
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2016.06.009
– volume: 172
  year: 2004
  ident: B165
  article-title: Toll-Like Receptor 2 Suppresses Immunity Against Candida Albicans Through Induction of IL-10 and Regulatory T Cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.6.3712
– volume: 175
  year: 2005
  ident: B170
  article-title: Human CD4(+) T Cells Express TLR5 and its Ligand Flagellin Enhances the Suppressive Capacity and Expression of FOXP3 in CD4(+)CD25(+) T Regulatory Cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.175.12.8051
– volume: 33
  year: 2010
  ident: B268
  article-title: Human CD14dim Monocytes Patrol and Sense Nucleic Acids and Viruses via TLR7 and TLR8 Receptors
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.08.012
– volume: 99
  year: 2002
  ident: B41
  article-title: IRAK-4: A Novel Member of the IRAK Family With the Properties of an IRAK-Kinase
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.082100399
– volume: 71
  year: 2011
  ident: B242
  article-title: LPS-Induced TLR4 Signaling in Human Colorectal Cancer Cells Increases β1 Integrin-Mediated Cell Adhesion and Liver Metastasis
  publication-title: J Cancer Res
  doi: 10.1158/0008-5472.CAN-10-2833
– volume: 22
  year: 2021
  ident: B283
  article-title: TLR2 Senses the SARS-CoV-2 Envelope Protein to Produce Inflammatory Cytokines
  publication-title: Nat Immunol
  doi: 10.1038/s41590-021-00937-x
– volume: 16
  year: 2020
  ident: B282
  article-title: TLR2 and Endosomal TLR-Mediated Secretion of IL-10 and Immune Suppression in Response to Phagosome-Confined Listeria Monocytogenes
  publication-title: PloS Pathog
  doi: 10.1371/journal.ppat.1008622
– volume: 7
  year: 2006
  ident: B68
  article-title: The Kinase TAK1 Integrates Antigen and Cytokine Receptor Signaling for T Cell Development, Survival and Function
  publication-title: Nat Immunol
  doi: 10.1038/ni1355
– volume: 31
  year: 2020
  ident: B304
  article-title: TLR7 Sensing by Neutrophils Is Critical for the Control of Cutaneous Leishmaniasis
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2020.107746
– volume: 10
  year: 2019
  ident: B13
  article-title: TLR10 Senses HIV-1 Proteins and Significantly Enhances HIV-1 Infection
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.00482
– volume: 34
  year: 2011
  ident: B199
  article-title: NLRX1 Negatively Regulates TLR-Induced NF-Kappa B Signaling by Targeting TRAF6 and IKK
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.02.022
– volume: 179
  start-page: 41
  year: 2007
  ident: B137
  article-title: Cutting Edge: T Cells Respond to Lipopolysaccharide Innately via TLR4 Signaling
  publication-title: J Immunol
  doi: 10.4049/jimmunol.179.1.41
– volume: 30
  year: 2021
  ident: B332
  article-title: Structural and Functional Understanding of the Toll-Like Receptors
  publication-title: Protein Sci
  doi: 10.1002/pro.4043
– volume: 266
  year: 2015
  ident: B62
  article-title: Roles of Linear Ubiquitinylation, a Crucial Regulator of NF-κb and Cell Death, in the Immune System
  publication-title: Immunol Rev
  doi: 10.1111/imr.12308
– volume: 225
  year: 2021
  ident: B308
  article-title: Antiviral Response Induced by TLR7/TLR8 Activation Inhibits HIV-1 Infection in Cord Blood Macrophages
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiab389
– volume: 11
  year: 2015
  ident: B302
  article-title: Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection
  publication-title: PloS Pathog
  doi: 10.1371/journal.ppat.1005053
– volume: 110
  year: 2013
  ident: B134
  article-title: MyD88 is Essential to Sustain mTOR Activation Necessary to Promote T Helper 17 Cell Proliferation by Linking IL-1 and IL-23 Signaling
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1206048110
– volume: 7
  start-page: 2002680
  year: 2020
  ident: B213
  article-title: USP38 Couples Histone Ubiquitination and Methylation via KDM5B to Resolve Inflammation
  publication-title: Adv Sci (Weinheim Baden-Wurttemberg Germany)
  doi: 10.1002/advs.202002680
– volume: 282
  year: 2007
  ident: B48
  article-title: Site-Specific Lys-63-Linked Tumor Necrosis Factor Receptor-Associated Factor 6 Auto-Ubiquitination is a Critical Determinant of I Kappa B Kinase Activation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M609503200
– volume: 36
  start-page: 43
  year: 2012
  ident: B69
  article-title: TAK1 Negatively Regulates NF-Kappa B and P38 MAP Kinase Activation in Gr-1(+)CD11b(+) Neutrophils
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.12.010
– volume: 309
  year: 2005
  ident: B160
  article-title: Toll-Like, Receptor 8-Mediated Reversal of CD4(+) Regulatory T Cell Function
  publication-title: Science
  doi: 10.1126/science.1113401
– volume: 103
  year: 2006
  ident: B167
  article-title: Toll-Like Receptor 2 Signaling Modulates the Functions of CD4+ CD25+ Regulatory T Cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0601554103
– volume: 7
  year: 2017
  ident: B211
  article-title: LRRC25 Functions as an Inhibitor of NF-κb Signaling Pathway by Promoting P65/RelA for Autophagic Degradation
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-12573-3
– volume: 109
  year: 2012
  ident: B135
  article-title: Toll-Like Receptor 4 Signaling in T Cells Promotes Autoimmune Inflammation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1120585109
– volume: 5
  year: 2004
  ident: B189
  article-title: The Ubiquitin-Modifying Enzyme A20 is Required for Termination of Toll-Like Receptor Responses
  publication-title: Nat Immunol
  doi: 10.1038/ni1110
– volume: 64
  year: 2016
  ident: B214
  article-title: USP38 Inhibits Type I Interferon Signaling by Editing TBK1 Ubiquitination Through NLRP4 Signalosome
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.08.029
– volume: 121
  year: 2020
  ident: B241
  article-title: The Anticancer Effect of the TLR4 Inhibition Using TAK-242 (Resatorvid) Either as a Single Agent or in Combination With Chemotherapy: A Novel Therapeutic Potential for Breast Cancer
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.29397
– volume: 13
  year: 2012
  ident: B197
  article-title: The Innate Immune Sensor NLRC3 Attenuates Toll-Like Receptor Signaling via Modification of the Signaling Adaptor TRAF6 and Transcription Factor NF-Kappa B
  publication-title: Nat Immunol
  doi: 10.1038/ni.2378
– volume: 49
  year: 2009
  ident: B292
  article-title: Upregulation of TLR7 and TLR3 Gene Expression in the Lung of Respiratory Syncytial Virus Infected Mice
  publication-title: Wei Sheng Wu Xue Bao
– volume: 29
  year: 2010
  ident: B190
  article-title: Regulation of Natural Killer T-Cell Development by Deubiquitinase CYLD
  publication-title: EMBO J
  doi: 10.1038/emboj.2010.31
– volume: 5
  year: 2005
  ident: B236
  article-title: Antitumour Effect of OM-174 and Cyclophosphamide on Murine B16 Melanoma in Different Experimental Conditions
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2005.02.013
– volume: 128
  year: 2018
  ident: B289
  article-title: TLR3 Agonist and CD40-Targeting Vaccination Induces Immune Responses and Reduces HIV-1 Reservoirs
  publication-title: J Clin Invest
  doi: 10.1172/JCI99005
– volume: 8
  start-page: 814
  year: 2017
  ident: B50
  article-title: Oligomerization-Primed Coiled-Coil Domain Interaction With Ubc13 Confers Processivity to TRAF6 Ubiquitin Ligase Activity
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01290-0
– volume: 190
  year: 2013
  ident: B131
  article-title: MyD88 Signaling in CD4 T Cells Promotes IFN-γ Production and Hematopoietic Progenitor Cell Expansion in Response to Intracellular Bacterial Infection
  publication-title: J Immunol (Baltimore Md 1950)
  doi: 10.4049/jimmunol.1203024
– volume: 169
  year: 2002
  ident: B323
  article-title: Cutting Edge: Toll-Like Receptor (TLR)2- and TLR4-Mediated Pathogen Recognition in Resistance to Airborne Infection With Mycobacterium Tuberculosis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.169.7.3480
– volume: 8
  start-page: A146
  year: 2020
  ident: B223
  article-title: 245 Human TLR8 Knock-in Mice Potentiate Immunotherapy Responses of MC38 Syngeneic Tumors
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2020-SITC2020.0245
– volume: 113
  year: 2009
  ident: B65
  article-title: A Critical Role of TAK1 in B-Cell Receptor–Mediated Nuclear Factor κb Activation
  publication-title: Blood
  doi: 10.1182/blood-2008-08-176057
– volume: 57
  year: 2013
  ident: B222
  article-title: Loss of Immunity-Supported Senescence Enhances Susceptibility to Hepatocellular Carcinogenesis and Progression in Toll-Like Receptor 2-Deficient Mice
  publication-title: Hepatology
  doi: 10.1002/hep.25991
– volume: 168
  start-page: 4531
  year: 2002
  ident: B110
  article-title: Quantitative Expression of Toll-Like Receptor 1–10 mRNA in Cellular Subsets of Human Peripheral Blood Mononuclear Cells and Sensitivity to CpG Oligodeoxynucleotides
  publication-title: J Immunol
  doi: 10.4049/jimmunol.168.9.4531
– volume: 27
  year: 2007
  ident: B158
  article-title: Tumor-Infiltrating Gamma Delta T Cells Suppress T and Dendritic Cell Function via Mechanisms Controlled by a Unique Toll-Like Receptor Signaling Pathway
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.05.020
– volume: 197
  year: 2003
  ident: B184
  article-title: Inhibition of Interleukin 1 Receptor/Toll-Like Receptor Signaling Through the Alternatively Spliced, Short Form of MyD88 is Due to its Failure to Recruit IRAK-4
  publication-title: J Exp Med
  doi: 10.1084/jem.20021790
– volume: 10
  year: 2020
  ident: B163
  article-title: Ovarian Cancer Cells Promote Glycolysis Metabolism and TLR8-Mediated Metabolic Control of Human CD4+ T Cells
  publication-title: Front Oncol
  doi: 10.3389/fonc.2020.570899
– volume: 6
  year: 2013
  ident: B317
  article-title: TLR1-Induced Chemokine Production is Critical for Mucosal Immunity Against Yersinia Enterocolitica
  publication-title: Mucosal Immunol
  doi: 10.1038/mi.2013.5
– volume: 314
  start-page: 997
  year: 2006
  ident: B327
  article-title: RIG-I-Mediated Antiviral Responses to Single-Stranded RNA Bearing 5’-Phosphates
  publication-title: Science
  doi: 10.1126/science.1132998
– volume: 440
  year: 2006
  ident: B94
  article-title: IκB Kinase-α is Critical for Interferon-α Production Induced by Toll-Like Receptors 7 and 9
  publication-title: Nature
  doi: 10.1038/nature04641
– volume: 69
  year: 2010
  ident: B263
  article-title: Association of TLR7 Copy Number Variation With Susceptibility to Childhood-Onset Systemic Lupus Erythematosus in Mexican Population
  publication-title: Ann Rheum Dis
  doi: 10.1136/ard.2009.124313
– volume: 68
  start-page: 293
  year: 2017
  ident: B217
  article-title: Assembly of the WHIP-TRIM14-PPP6C Mitochondrial Complex Promotes RIG-I-Mediated Antiviral Signaling
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.09.035
– volume: 166
  start-page: 249
  year: 2001
  ident: B113
  article-title: Regulation of Toll-Like Receptors in Human Monocytes and Dendritic Cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.1.249
– volume: 32
  year: 2010
  ident: B25
  article-title: Intracellular Toll-Like Receptors
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.03.012
– volume: 11
  year: 2009
  ident: B57
  article-title: Involvement of Linear Polyubiquitylation of NEMO in NF-κb Activation
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1821
– volume: 170
  year: 2007
  ident: B275
  article-title: The Toll-Like Receptor Adaptor Proteins MyD88 and Mal/TIRAP Contribute to the Inflammatory and Destructive Processes in a Human Model of Rheumatoid Arthritis
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2007.060657
– volume: 434
  year: 2005
  ident: B75
  article-title: IRF-7 is the Master Regulator of Type-I Interferon-Dependent Immune Responses
  publication-title: Nature
  doi: 10.1038/nature03464
– volume: 327
  year: 2010
  ident: B188
  article-title: Inhibition of NF-Kappa B Signaling by A20 Through Disruption of Ubiquitin Enzyme Complexes
  publication-title: Science
  doi: 10.1126/science.1182364
– volume: 179
  start-page: 1264
  year: 2019
  ident: B310
  article-title: TLR8 Is a Sensor of RNase T2 Degradation Products
  publication-title: Cell
  doi: 10.1016/j.cell.2019.11.001
– volume: 197
  start-page: 68
  year: 2016
  ident: B126
  article-title: Direct TLR-2 Costimulation Unmasks the Proinflammatory Potential of Neonatal CD4(+) T Cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1501297
– volume: 9
  year: 2008
  ident: B31
  article-title: TRAM Couples Endocytosis of Toll-Like Receptor 4 to the Induction of Interferon-Beta
  publication-title: Nat Immunol
  doi: 10.1038/ni1569
– volume: 113
  start-page: E3403
  year: 2016
  ident: B90
  article-title: Structural Basis for Concerted Recruitment and Activation of IRF-3 by Innate Immune Adaptor Proteins
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1603269113
– volume: 186
  year: 2011
  ident: B224
  article-title: TLR1/TLR2 Agonist Induces Tumor Regression by Reciprocal Modulation of Effector and Regulatory T Cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1002320
– volume: 17
  year: 2002
  ident: B183
  article-title: SOCS1/JAB is a Negative Regulator of LPS-Induced Macrophage Activation
  publication-title: Immunity
  doi: 10.1016/s1074-7613(02)00446-6
– volume: 5
  year: 2005
  ident: B172
  article-title: Negative Regulation of Toll-Like Receptor-Mediated Immune Responses
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri1630
– volume: 2017
  year: 2017
  ident: B250
  article-title: The Role of Toll-Like Receptors in Autoimmune Diseases Through Failure of the Self-Recognition Mechanism
  publication-title: Int J Inflam
  doi: 10.1155/2017/8391230
– volume: 13
  start-page: 142
  year: 2021
  ident: B335
  article-title: TLR Agonists as Vaccine Adjuvants Targeting Cancer and Infectious Diseases
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13020142
– volume: 136
  year: 2009
  ident: B56
  article-title: Specific Recognition of Linear Ubiquitin Chains by NEMO is Important for NF-kappaB Activation
  publication-title: Cell
  doi: 10.1016/j.cell.2009.03.007
– volume: 34
  year: 2013
  ident: B72
  article-title: Cell Type-Specific Function of TAK1 in Innate Immune Signaling
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2013.03.007
– volume: 29
  start-page: 103
  year: 2019
  ident: B162
  article-title: TLR8-Mediated Metabolic Control of Human Treg Function: A Mechanistic Target for Cancer Immunotherapy
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2018.09.020
– volume: 2
  year: 2014
  ident: B239
  article-title: Therapeutic in Situ Autovaccination Against Solid Cancers With Intratumoral Poly-ICLC: Case Report, Hypothesis, and Clinical Trial
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-14-0024
– volume: 10
  year: 2019
  ident: B142
  article-title: Toll-Like Receptor 7 Activation Enhances CD8+ T Cell Effector Functions by Promoting Cellular Glycolysis
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.02191
– volume: 116
  year: 1976
  ident: B237
  article-title: Intracavitary Bacillus Calmette-Guerin in the Treatment of Superficial Bladder Tumors
  publication-title: J Urol
  doi: 10.1016/s0022-5347(17)58737-6
– volume: 119
  year: 2009
  ident: B169
  article-title: Ligation of TLR9 Induced on Human IL-10-Secreting Tregs by 1alpha,25-Dihydroxyvitamin D3 Abrogates Regulatory Function
  publication-title: J Clin Invest
  doi: 10.1172/JCI32354
– volume: 16
  start-page: 55
  year: 2004
  ident: B286
  article-title: Polyriboinosinic Polyribocytidylic Acid [Poly(I:C)]/TLR3 Signaling Allows Class I Processing of Exogenous Protein and Induction of HIV-Specific CD8+ Cytotoxic T Lymphocytes
  publication-title: Int Immunol
  doi: 10.1093/intimm/dxh025
– volume: 182
  year: 2009
  ident: B130
  article-title: TLR2 Engagement on CD8 T Cells Enables Generation of Functional Memory Cells in Response to a Suboptimal TCR Signal
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0801167
– volume: 103
  year: 2006
  ident: B32
  article-title: The Myristoylation of TRIF-Related Adaptor Molecule Is Essential for Toll-Like Receptor 4 Signal Transduction
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0510041103
– volume: 88
  year: 2014
  ident: B294
  article-title: Respiratory Syncytial Virus Infection, TLR3 Ligands, and Proinflammatory Cytokines Induce CD161 Ligand LLT1 Expression on the Respiratory Epithelium
  publication-title: J Virol
  doi: 10.1128/JVI.02789-13
– volume: 154
  year: 2013
  ident: B59
  article-title: Linear Ubiquitination-Mediated NF-κb Regulation and its Related Disorders
  publication-title: J Biochem
  doi: 10.1093/jb/mvt079
– volume: 16
  start-page: 1
  year: 2021
  ident: B14
  article-title: Regulation of the Nucleic Acid-Sensing Toll-Like Receptors
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-021-00577-0
– volume: 7
  start-page: 244
  year: 2019
  ident: B245
  article-title: Intratumoral Immunotherapy With TLR7/8 Agonist MEDI9197 Modulates the Tumor Microenvironment Leading to Enhanced Activity When Combined With Other Immunotherapies
  publication-title: J Immunother Cancer
  doi: 10.1186/s40425-019-0724-8
– volume: 2
  year: 2001
  ident: B21
  article-title: Toll-Like Receptors: Critical Proteins Linking Innate and Acquired Immunity
  publication-title: Nat Immunol
  doi: 10.1038/90609
– volume: 8
  year: 2007
  ident: B26
  article-title: Ligand-Induced Conformational Changes Allosterically Activate Toll-Like Receptor 9
  publication-title: Nat Immunol
  doi: 10.1038/ni1479
– volume: 424
  year: 2003
  ident: B194
  article-title: The Tumour Suppressor CYLD Negatively Regulates NF-Kappa B Signalling by Deubiquitination
  publication-title: Nature
  doi: 10.1038/nature01802
– volume: 110
  year: 2013
  ident: B305
  article-title: Efficient Influenza A Virus Replication in the Respiratory Tract Requires Signals From TLR7 and RIG-I
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1303275110
– volume: 68
  year: 2009
  ident: B252
  article-title: Type I Interferons Might Form the Link Between Toll-Like Receptor (TLR) 3/7 and TLR4-Mediated Synovial Inflammation in Rheumatoid Arthritis (RA)
  publication-title: Ann Rheum Dis
  doi: 10.1136/ard.2007.086421
– volume: 4
  year: 2003
  ident: B149
  article-title: An Essential Role for Scurfin in CD4(+)CD25(+) T Regulatory Cells
  publication-title: Nat Immunol
  doi: 10.1038/ni909
– volume: 158
  year: 2014
  ident: B97
  article-title: TLR Signals Induce Phagosomal MHC-I Delivery From the Endosomal Recycling Compartment to Allow Cross-Presentation
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.054
– volume: 177
  year: 2006
  ident: B143
  article-title: Human Effector CD8+ T Lymphocytes Express TLR3 as a Functional Coreceptor
  publication-title: J Immunol
  doi: 10.4049/jimmunol.177.12.8708
– volume: 9
  year: 2018
  ident: B101
  article-title: Toll-Like Receptor 4 Triggering Promotes Cytosolic Routing of DC-SIGN-Targeted Antigens for Presentation on MHC Class I
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.01231
– volume-title: Adv Immunol
  year: 2019
  ident: B117
  article-title: Models of Dendritic Cell Development Correlate Ontogeny With Function
  doi: 10.1016/bs.ai.2019.09.001
– volume: 20
  year: 2008
  ident: B46
  article-title: IRAK1: A Critical Signaling Mediator of Innate Immunity
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2007.08.009
– volume: 171
  year: 2003
  ident: B176
  article-title: Soluble Forms of Toll-Like Receptor (TLR)2 Capable of Modulating TLR2 Signaling are Present in Human Plasma and Breast Milk
  publication-title: J Immunol
  doi: 10.4049/jimmunol.171.12.6680
– volume: 198
  year: 2003
  ident: B30
  article-title: LPS-TLR4 Signaling to IRF-3/7 and NF-Kappa B Involves the Toll Adapters TRAM and TRIF
  publication-title: J Exp Med
  doi: 10.1084/jem.20031023
– volume: 4
  year: 2003
  ident: B29
  article-title: TRAM is Specifically Involved in the Toll-Like Receptor 4-Mediated MyD88-Independent Signaling Pathway
  publication-title: Nat Immunol
  doi: 10.1038/ni986
– volume: 4
  year: 2003
  ident: B151
  article-title: Foxp3 Programs the Development and Function of CD4(+)CD25(+) Regulatory T Cells
  publication-title: Nat Immunol
  doi: 10.1038/ni904
– volume: 7
  year: 2007
  ident: B34
  article-title: The Family of Five: TIR-Domain-Containing Adaptors in Toll-Like Receptor Signalling
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2079
– volume: 10
  year: 2020
  ident: B146
  article-title: Third-Generation Anti-CD19 Chimeric Antigen Receptor T-Cells Incorporating a TLR2 Domain for Relapsed or Refractory B-Cell Lymphoma: A Phase I Clinical Trial Protocol (ENABLE)
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-034629
– volume: 8
  year: 2006
  ident: B313
  article-title: Adenovirus Efficiently Transduces Plasmacytoid Dendritic Cells Resulting in TLR9-Dependent Maturation and IFN-Alpha Production
  publication-title: J Gene Med
  doi: 10.1002/jgm.964
– volume: 2
  year: 2001
  ident: B92
  article-title: Toll-Like Receptors Control Activation of Adaptive Immune Responses
  publication-title: Nat Immunol
  doi: 10.1038/ni712
– volume: 160
  year: 2020
  ident: B290
  article-title: HIV Infection Suppresses TLR3 Activation-Mediated Antiviral Immunity in Microglia and Macrophages
  publication-title: Immunology
  doi: 10.1111/imm.13181
– volume: 280
  year: 2005
  ident: B83
  article-title: Rip1 Mediates the Trif-Dependent Toll-Like Receptor 3- and 4-Induced NF-κB Activation But Does Not Contribute to Interferon Regulatory Factor 3 Activation*
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M506831200
– volume: 32
  year: 2018
  ident: B145
  article-title: Toll-Like Receptor 2 Costimulation Potentiates the Antitumor Efficacy of CAR T Cells
  publication-title: Leukemia
  doi: 10.1038/leu.2017.249
– volume: 139
  year: 2021
  ident: B284
  article-title: Host Defense Against Neospora Caninum Infection via IL-12p40 Production Through TLR2/TLR3-AKT-ERK Signaling Pathway in C57BL/6 Mice
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2021.08.019
– volume: 173
  start-page: 2913
  year: 2004
  ident: B84
  article-title: Cutting Edge: TNFR-Associated Factor (TRAF) 6 Is Essential for MyD88-Dependent Pathway But Not Toll/IL-1 Receptor Domain-Containing Adaptor-Inducing IFN-β (TRIF)-Dependent Pathway in TLR Signaling
  publication-title: J Immunol
  doi: 10.4049/jimmunol.173.5.2913
– volume: 76
  year: 2011
  ident: B274
  article-title: Type I Interferon and Toll-Like Receptor Expression Characterizes Inflammatory Myopathies
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31821f440a
– volume: 367
  year: 2012
  ident: B233
  article-title: MYD88 L265P Somatic Mutation in Waldenström’s Macroglobulinemia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1200710
– volume: 31
  start-page: 107249
  year: 2020
  ident: B108
  article-title: TLR9 Sensing of Self-DNA Controls Cell-Mediated Immunity to Listeria Infection via Rapid Conversion of Conventional CD4+ T Cells to Treg
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2020.01.040
– volume: 22
  year: 2001
  ident: B120
  article-title: The Role of MHC Class II-Restricted Tumor Antigens and CD4(+) T Cells in Antitumor Immunity
  publication-title: Trends Immunol
  doi: 10.1016/s1471-4906(01)01896-8
– volume: 347
  year: 2015
  ident: B89
  article-title: Phosphorylation of Innate Immune Adaptor Proteins MAVS, STING, and TRIF Induces IRF3 Activation
  publication-title: Science
  doi: 10.1126/science.aaa2630
– volume: 147
  year: 2011
  ident: B174
  article-title: CD14 Controls the LPS-Induced Endocytosis of Toll-Like Receptor 4
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.051
– volume: 12
  start-page: 177
  year: 2014
  ident: B322
  article-title: The Regulatory Toll-Like Receptor 4 Genetic Polymorphism Rs11536889 is Associated With Renal, Coagulation and Hepatic Organ Failure in Sepsis Patients
  publication-title: J Transl Med
  doi: 10.1186/1479-5876-12-177
– volume: 178
  year: 2007
  ident: B124
  article-title: Cutting Edge: TLR2 Directly Triggers Th1 Effector Functions
  publication-title: J Immunol
  doi: 10.4049/jimmunol.178.11.6715
– volume: 197
  year: 2003
  ident: B115
  article-title: Flexibility of Mouse Classical and Plasmacytoid-Derived Dendritic Cells in Directing T Helper Type 1 and 2 Cell Development: Dependency on Antigen Dose and Differential Toll-Like Receptor Ligation
  publication-title: J Exp Med
  doi: 10.1084/jem.20021908
– volume: 150
  year: 2014
  ident: B234
  article-title: High Frequency and Clinical Prognostic Value of MYD88 L265P Mutation in Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg-Type
  publication-title: JAMA Dermatol
  doi: 10.1001/jamadermatol.2014.821
– volume: 169
  year: 2002
  ident: B154
  article-title: Prevalence of Regulatory T Cells is Increased in Peripheral Blood and Tumor Microenvironment of Patients With Pancreas or Breast Adenocarcinoma
  publication-title: J Immunol
  doi: 10.4049/jimmunol.169.5.2756
– volume: 225
  year: 2021
  ident: B119
  article-title: Toll-Like Receptors in Adaptive Immunity
  publication-title: Handb Exp Pharmacol
  doi: 10.1007/164_2021_543
– volume: 31
  year: 2021
  ident: B320
  article-title: SARS-CoV-2 Spike Protein Interacts With and Activates TLR41
  publication-title: Cell Res
  doi: 10.1038/s41422-021-00495-9
– volume: 101
  year: 2004
  ident: B325
  article-title: Recognition of Single-Stranded RNA Viruses by Toll-Like Receptor 7
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0400937101
– volume: 464
  year: 2010
  ident: B264
  article-title: Origins and Functional Impact of Copy Number Variation in the Human Genome
  publication-title: Nature
  doi: 10.1038/nature08516
– volume: 169
  year: 2002
  ident: B324
  article-title: Toll-Like Receptor 4 Expression is Required to Control Chronic Mycobacterium Tuberculosis Infection in Mice
  publication-title: J Immunol
  doi: 10.4049/jimmunol.169.6.3155
– volume: 488
  year: 2012
  ident: B198
  article-title: NLRP6 Negatively Regulates Innate Immunity and Host Defence Against Bacterial Pathogens
  publication-title: Nature
  doi: 10.1038/nature11250
– volume: 13
  start-page: 25
  year: 2020
  ident: B229
  article-title: Toll-Like Receptor-6 Signaling Prevents Inflammation and Impacts Composition of the Microbiota During Inflammation-Induced Colorectal Cancer
  publication-title: Cancer Prev Res
  doi: 10.1158/1940-6207.CAPR-19-0286
– volume: 34
  year: 2011
  ident: B201
  article-title: NLRX1 Protein Attenuates Inflammatory Responses to Infection by Interfering With the RIG-I-MAVS and TRAF6-NF-Kappa B Signaling Pathways
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.03.026
– volume: 4
  year: 2003
  ident: B180
  article-title: SIGIRR, a Negative Regulator of Toll-Like Receptor-Interleukin 1 Receptor Signaling
  publication-title: Nat Immunol
  doi: 10.1038/ni968
– volume: 470
  year: 2011
  ident: B232
  article-title: Oncogenically Active MYD88 Mutations in Human Lymphoma
  publication-title: Nature
  doi: 10.1038/nature09671
– volume: 24
  year: 2015
  ident: B255
  article-title: Associations of Toll-Like Receptor (TLR)-4 Single Nucleotide Polymorphisms and Rheumatoid Arthritis Disease Progression: An Observational Cohort Study
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2014.12.030
– volume: 143
  year: 2014
  ident: B271
  article-title: Serum Amyloid A Induces Interleukin-6 in Dermal Fibroblasts via Toll-Like Receptor 2, Interleukin-1 Receptor-Associated Kinase 4 and Nuclear Factor-Kappab
  publication-title: Immunology
  doi: 10.1111/imm.12260
– volume: 9
  year: 2003
  ident: B278
  article-title: Mycobacterial Lipoarabinomannan Mediates Physical Interactions Between TLR1 and TLR2 to Induce Signaling
  publication-title: J Endotoxin Res
  doi: 10.1179/096805103225001477
– volume: 37
  year: 2018
  ident: B212
  article-title: LRRC25 Inhibits Type I IFN Signaling by Targeting ISG15-Associated RIG-I for Autophagic Degradation
  publication-title: EMBO J
  doi: 10.15252/embj.201796781
– volume: 172
  start-page: 3415
  year: 2004
  ident: B93
  article-title: Myeloid Differentiation Factor 88 Is Required for Cross-Priming In Vivo
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.6.3415
– volume: 279
  year: 2004
  ident: B42
  article-title: Sequential Autophosphorylation Steps in the Interleukin-1 Receptor-Associated Kinase-1 Regulate its Availability as an Adapter in Interleukin-1 Signaling
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M309251200
– volume: 81
  year: 2021
  ident: B235
  article-title: A MyD88/IL1R Axis Regulates PD-1 Expression on Tumor-Associated Macrophages and Sustains Their Immunosuppressive Function in Melanoma
  publication-title: J Cancer Res
  doi: 10.1158/0008-5472.CAN-20-3510
– volume: 46
  year: 2009
  ident: B125
  article-title: Porin of Shigella Dysenteriae Directly Promotes Toll-Like Receptor 2-Mediated CD4(+) T Cell Survival and Effector Function
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2009.06.006
– volume: 4
  year: 2003
  ident: B331
  article-title: Subversion of the Innate Immune System by a Retrovirus
  publication-title: Nat Immunol
  doi: 10.1038/ni926
– volume: 284
  year: 2009
  ident: B38
  article-title: An Oligomeric Signaling Platform Formed by the Toll-Like Receptor Signal Transducers MyD88 and IRAK-4
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.022392
– volume: 103
  start-page: 11677
  year: 2006
  ident: B66
  article-title: Essential Role of TAK1 in Thymocyte Development and Activation
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0603089103
– volume-title: Essentials of Medical Biochemistry
  year: 2011
  ident: B20
  article-title: Chapter 33 - Immunology
– volume: 438
  start-page: 1
  year: 2018
  ident: B238
  article-title: IFN-Gamma Synergism With Poly I:C Reduces Growth of Murine and Human Cancer Cells With Simultaneous Changes in Cell Cycle and Immune Checkpoint Proteins
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2018.09.003
– volume: 13
  year: 2007
  ident: B159
  article-title: CD8+ Foxp3+ Regulatory T Cells Mediate Immunosuppression in Prostate Cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.ccr-07-0842
– year: 1725
  ident: B219
  article-title: Deux Dissertations Medecinales et Chirurgicales, L’une Sur La Maladie Venerienne, L’autre Sur La Nature & La Curation Des Tumeurs. Chez Charles Maurice d’Houry
– volume: 9
  start-page: 293
  year: 2008
  ident: B204
  article-title: NLRX1 is a Mitochondrial NOD-Like Receptor That Amplifies NF-Kappa B and JNK Pathways by Inducing Reactive Oxygen Species Production
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.7401161
– volume: 44
  year: 2007
  ident: B226
  article-title: TLR4 Signaling Promotes Immune Escape of Human Lung Cancer Cells by Inducing Immunosuppressive Cytokines and Apoptosis Resistance
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2007.01.022
– volume: 39
  start-page: 1361
  year: 2021
  ident: B240
  article-title: Activating a Collaborative Innate-Adaptive Immune Response to Control Metastasis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2021.08.005
– volume: 413
  start-page: 78
  year: 2001
  ident: B27
  article-title: Mal (MyD88-Adapter-Like) Is Required for Toll-Like Receptor-4 Signal Transduction
  publication-title: Nature
  doi: 10.1038/35092578
– volume: 111
  year: 2014
  ident: B218
  article-title: TRIM14 is a Mitochondrial Adaptor That Facilitates Retinoic Acid-Inducible Gene-I–like Receptor-Mediated Innate Immune Response
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1316941111
– volume: 210
  year: 2013
  ident: B277
  article-title: RNA Recognition by Human TLR8 can Lead to Autoimmune Inflammation
  publication-title: J Exp Med
  doi: 10.1084/jem.20131044
– volume: 195
  year: 2002
  ident: B95
  article-title: Interferon-α and Interleukin-12 Are Induced Differentially by Toll-Like Receptor 7 Ligands in Human Blood Dendritic Cell Subsets
  publication-title: J Exp Med
  doi: 10.1084/jem.20020207
– volume: 2
  year: 2017
  ident: B248
  article-title: Combination Immunotherapy With TLR Agonists and Checkpoint Inhibitors Suppresses Head and Neck Cancer
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.93397
– volume: 28
  year: 2008
  ident: B47
  article-title: Lys63-Linked Polyubiquitination of IRAK-1 is Required for Interleukin-1 Receptor- and Toll-Like Receptor-Mediated NF-kappaB Activation
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.02098-07
– volume: 14
  year: 2013
  ident: B303
  article-title: A TLR6 Polymorphism is Associated With Increased Risk of Legionnaires’ Disease
  publication-title: Genes Immun
  doi: 10.1038/gene.2013.34
– volume: 8
  year: 2008
  ident: B147
  article-title: How Regulatory T Cells Work
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2343
– volume: 31
  year: 2008
  ident: B249
  article-title: Immunization With Analog Peptide in Combination With CpG and Montanide Expands Tumor Antigen-Specific CD8+ T Cells in Melanoma Patients
  publication-title: J Immunother
  doi: 10.1097/CJI.0b013e318183af0b
– volume: 317
  year: 2007
  ident: B285
  article-title: TLR3 Deficiency in Patients With Herpes Simplex Encephalitis
  publication-title: Science
  doi: 10.1126/science.1139522
– volume: 178
  year: 2007
  ident: B318
  article-title: Cutting Edge: A Common Polymorphism Impairs Cell Surface Trafficking and Functional Responses of TLR1 But Protects Against Leprosy
  publication-title: J Immunol
  doi: 10.4049/jimmunol.178.12.7520
– volume: 179
  year: 2007
  ident: B321
  article-title: Association of TLR4 Polymorphisms With Symptomatic Respiratory Syncytial Virus Infection in High-Risk Infants and Young Children
  publication-title: J Immunol
  doi: 10.4049/jimmunol.179.5.3171
– volume: 20
  year: 2020
  ident: B12
  article-title: TLR10 and Its Unique Anti-Inflammatory Properties and Potential Use as a Target in Therapeutics
  publication-title: Immune Netw
  doi: 10.4110/in.2020.20.e21
– volume: 50
  year: 2004
  ident: B251
  article-title: Expression of Toll-Like Receptors 2 and 4 in Rheumatoid Synovial Tissue and Regulation by Proinflammatory Cytokines Interleukin-12 and Interleukin-18 via Interferon-Gamma
  publication-title: Arthritis Rheum
  doi: 10.1002/art.20678
– volume: 22
  year: 2012
  ident: B196
  article-title: Enhanced TLR-Induced NF-Kappa B Signaling and Type I Interferon Responses in NLRC5 Deficient Mice
  publication-title: Cell Res
  doi: 10.1038/cr.2012.53
– volume: 113
  year: 2016
  ident: B243
  article-title: Toll-Like Receptor-5 Agonist, Entolimod, Suppresses Metastasis and Induces Immunity by Stimulating an NK-Dendritic-CD8+ T-Cell Axis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1521359113
– volume: 7
  year: 2012
  ident: B70
  article-title: Deletion of TAK1 in the Myeloid Lineage Results in the Spontaneous Development of Myelomonocytic Leukemia in Mice
  publication-title: PloS One
  doi: 10.1371/journal.pone.0051228
– volume: 184
  year: 2010
  ident: B71
  article-title: Constitutive Association of TGF-β–Activated Kinase 1 With the IκB Kinase Complex in the Nucleus and Cytoplasm of Human Neutrophils and Its Impact on Downstream Processes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0902958
– volume: 11
  year: 2014
  ident: B258
  article-title: The Role of Heat Shock Proteins in Atherosclerosis
  publication-title: Nat Rev Cardiol
  doi: 10.1038/nrcardio.2014.91
– volume: 21
  year: 2011
  ident: B5
  article-title: NF-kappaB in Immunobiology
  publication-title: Cell Res
  doi: 10.1038/cr.2011.13
– volume: 199
  year: 2017
  ident: B102
  article-title: TLR-Induced Murine Dendritic Cell (DC) Activation Requires DC-Intrinsic Complement
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1700339
– volume: 1
  start-page: 398
  year: 2000
  ident: B297
  article-title: Pattern Recognition Receptors TLR4 and CD14 Mediate Response to Respiratory Syncytial Virus
  publication-title: Nat Immunol
  doi: 10.1038/80833
– volume: 6
  year: 2016
  ident: B298
  article-title: Viperin Inhibits Rabies Virus Replication via Reduced Cholesterol and Sphingomyelin and is Regulated Upstream by TLR4
  publication-title: Sci Rep
  doi: 10.1038/srep30529
– volume: 284
  year: 1999
  ident: B23
  article-title: Phylogenetic Perspectives in Innate Immunity
  publication-title: Science
  doi: 10.1126/science.284.5418.1313
– volume: 209
  year: 2012
  ident: B316
  article-title: A Specific Role for TLR1 in Protective T(H)17 Immunity During Mucosal Infection
  publication-title: J Exp Med
  doi: 10.1084/jem.20112339
– volume: 4
  start-page: 211
  year: 2013
  ident: B138
  article-title: Signaling via TLR2 and TLR4 Directly Down-Regulates T Cell Effector Functions: The Regulatory Face of Danger Signals
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2013.00211
– volume: 461
  year: 2009
  ident: B51
  article-title: Direct Activation of Protein Kinases by Unanchored Polyubiquitin Chains
  publication-title: Nature
  doi: 10.1038/nature08247
– volume: 10
  year: 2019
  ident: B266
  article-title: High TLR7 Expression Drives the Expansion of CD19(+)CD24(hi)CD38(hi) Transitional B Cells and Autoantibody Production in SLE Patients
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.01243
– volume: 41
  start-page: 600
  year: 2010
  ident: B293
  article-title: Activation of TLR3 Pathway in the Pathogenesis of Nephrotic Syndrome Induced by Respiratory Syncytial Virus in Rat Model
  publication-title: Sichuan Da Xue Xue Bao Yi Xue Ban
– volume: 9
  year: 2008
  ident: B208
  article-title: TRIM30 Alpha Negatively Regulates TLR-Mediated NF-Kappa B Activation by Targeting TAB2 and TAB3 for Degradation
  publication-title: Nat Immunol
  doi: 10.1038/ni1577
– volume: 451
  year: 2008
  ident: B209
  article-title: NLRX1 is a Regulator of Mitochondrial Antiviral Immunity
  publication-title: Nature
  doi: 10.1038/nature06501
– volume: 33
  year: 2014
  ident: B253
  article-title: Toll-Like Receptor (TLR)-3: A Potent Driving Force Behind Rheumatoid Arthritis
  publication-title: Clin Rheumatol
  doi: 10.1007/s10067-013-2418-9
– volume: 18
  year: 2006
  ident: B67
  article-title: TAK1 is Indispensable for Development of T Cells and Prevention of Colitis by the Generation of Regulatory T Cells
  publication-title: Int Immunol
  doi: 10.1093/intimm/dxl082
– volume: 33
  year: 2009
  ident: B55
  article-title: Structural Basis for Recognition of Diubiquitins by NEMO
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.01.012
– volume: 299
  year: 2003
  ident: B150
  article-title: Control of Regulatory T Cell Development by the Transcription Factor Foxp3
  publication-title: Science
  doi: 10.1126/science.1079490
– volume: 3
  year: 2018
  ident: B265
  article-title: TLR7 Escapes X Chromosome Inactivation in Immune Cells
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.aap8855
– volume: 7
  start-page: 933
  year: 2017
  ident: B256
  article-title: Direct Recognition of LPS Drive TLR4 Expressing CD8+ T Cell Activation in Patients With Rheumatoid Arthritis
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-01033-7
– volume: 47
  year: 2017
  ident: B122
  article-title: Toll Like Receptor 2 Engagement on CD4(+) T Cells Promotes TH9 Differentiation and Function
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201646846
– volume: 271
  year: 1996
  ident: B40
  article-title: IRAK: A Kinase Associated With the Interleukin-1 Receptor
  publication-title: Science
  doi: 10.1126/science.271.5252.1128
– volume: 194
  year: 2001
  ident: B112
  article-title: Subsets of Human Dendritic Cell Precursors Express Different Toll-Like Receptors and Respond to Different Microbial Antigens
  publication-title: J Exp Med
  doi: 10.1084/jem.194.6.863
– volume: 9
  year: 2014
  ident: B228
  article-title: Toll-Like Receptor 4 Prompts Human Breast Cancer Cells Invasiveness via Lipopolysaccharide Stimulation and is Overexpressed in Patients With Lymph Node Metastasis
  publication-title: PloS One
  doi: 10.1371/journal.pone.0109980
– volume: 195
  year: 2019
  ident: B132
  article-title: Host MyD88 Signaling Protects Against Acute Graft-Versus-Host Disease After Allogeneic Bone Marrow Transplantation
  publication-title: Clin Exp Immunol
  doi: 10.1111/cei.13215
– volume: 11
  year: 2017
  ident: B301
  article-title: A Nonsense Mutation in TLR5 is Associated With Survival and Reduced IL-10 and TNF-Alpha Levels in Human Melioidosis
  publication-title: PloS Negl Trop Dis
  doi: 10.1371/journal.pntd.0005587
– volume: 120
  year: 2010
  ident: B136
  article-title: TLR4 Signaling in Effector CD4+ T Cells Regulates TCR Activation and Experimental Colitis in Mice
  publication-title: J Clin Invest
  doi: 10.1172/JCI40055
– volume: 317
  year: 2007
  ident: B230
  article-title: Regulation of Spontaneous Intestinal Tumorigenesis Through the Adaptor Protein Myd88
  publication-title: Science
  doi: 10.1126/science.1140488
– volume: 113
  year: 2016
  ident: B247
  article-title: Intratumoral Injection of a CpG Oligonucleotide Reverts Resistance to PD-1 Blockade by Expanding Multifunctional CD8+ T Cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1608555113
– volume: 18
  start-page: 561
  year: 2018
  ident: B330
  article-title: Association of TLR8 and TLR9 Polymorphisms With Tuberculosis in a Chinese Han Population: A Case-Control Study
  publication-title: BMC Infect Dis
  doi: 10.1186/s12879-018-3485-y
– volume: 180
  year: 2020
  ident: B35
  article-title: Toll-Like Receptors and the Control of Immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.041
– volume: 8
  start-page: 7118
  year: 2018
  ident: B140
  article-title: VIPER Regulates Naive T Cell Activation and Effector Responses: Implication in TLR4 Associated Acute Stage T Cell Responses
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-25549-8
– volume: 3
  year: 2002
  ident: B164
  article-title: Human TLR7 or TLR8 Independently Confer Responsiveness to the Antiviral Compound R-848
  publication-title: Nat Immunol
  doi: 10.1038/ni0602-499
– volume: 116
  year: 2006
  ident: B276
  article-title: Innate Immunity Mediated by TLR9 Modulates Pathogenicity in an Animal Model of Multiple Sclerosis
  publication-title: J Clin Invest
  doi: 10.1172/JCI26078
– volume: 9
  year: 2019
  ident: B144
  article-title: Combined Adjuvant of Poly I:C Improves Antitumor Effects of CAR-T Cells
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.00241
– volume: 70
  year: 2021
  ident: B261
  article-title: Toll-Like Receptor 2 (TLR2) Knockout Abrogates Diabetic and Obese Phenotypes While Restoring Endothelial Function via Inhibition of NOX1
  publication-title: Diabetes
  doi: 10.2337/db20-0591
– volume: 108
  year: 2007
  ident: B168
  article-title: CpG DNA Inhibits CD4+CD25+ Treg Suppression Through Direct MyD88-Dependent Costimulation of Effector CD4+ T Cells
  publication-title: Immunol Lett
  doi: 10.1016/j.imlet.2006.12.007
– volume: 125
  year: 2006
  ident: B33
  article-title: Phosphoinositide-Mediated Adaptor Recruitment Controls Toll-Like Receptor Signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2006.03.047
– volume: 458
  year: 2009
  ident: B54
  article-title: Ubiquitylation in Innate and Adaptive Immunity
  publication-title: Nature
  doi: 10.1038/nature07959
– volume: 15
  year: 2014
  ident: B63
  article-title: Linear Ubiquitin Chains: NF-κb Signalling, Cell Death and Beyond
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3836
– volume: 27
  start-page: 11
  year: 2017
  ident: B334
  article-title: Immune Targets and Neoantigens for Cancer Immunotherapy and Precision Medicine
  publication-title: Cell Res
  doi: 10.1038/cr.2016.155
– volume: 434
  year: 2005
  ident: B76
  article-title: Integral Role of IRF-5 in the Gene Induction Programme Activated by Toll-Like Receptors
  publication-title: Nature
  doi: 10.1038/nature03308
– volume: 299
  year: 2003
  ident: B99
  article-title: Activation of Lysosomal Function During Dendritic Cell Maturation
  publication-title: Science
  doi: 10.1126/science.1080106
– volume: 5
  year: 2004
  ident: B4
  article-title: Toll-Like Receptor Control of the Adaptive Immune Responses
  publication-title: Nat Immunol
  doi: 10.1038/ni1112
– volume: 124
  start-page: 783
  year: 2006
  ident: B2
  article-title: Pathogen Recognition and Innate Immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.015
– volume: 406
  year: 2000
  ident: B24
  article-title: Toll-Like Receptors in the Induction of the Innate Immune Response
  publication-title: Nature
  doi: 10.1038/35021228
– volume: 11
  year: 1999
  ident: B96
  article-title: The Role of Dendritic Cells in the Induction and Regulation of Immunity to Microbial Infection
  publication-title: Curr Opin Immunol
  doi: 10.1016/S0952-7915(99)80066-1
– volume: 54
  year: 2014
  ident: B3
  article-title: The cGAS-cGAMP-STING Pathway of Cytosolic DNA Sensing and Signaling
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.03.040
– volume: 434
  year: 2005
  ident: B74
  article-title: Spatiotemporal Regulation of MyD88–IRF-7 Signalling for Robust Type-I Interferon Induction
  publication-title: Nature
  doi: 10.1038/nature03547
– volume: 5
  year: 2004
  ident: B178
  article-title: ST2 is an Inhibitor of Interleukin 1 Receptor and Toll-Like Receptor 4 Signaling and Maintains Endotoxin Tolerance
  publication-title: Nat Immunol
  doi: 10.1038/ni1050
– volume: 19
  year: 2011
  ident: B16
  article-title: The Structural Biology of Toll-Like Receptors
  publication-title: Structure
  doi: 10.1016/j.str.2011.02.004
– volume: 17
  year: 2002
  ident: B182
  article-title: SOCS-1 Participates in Negative Regulation of LPS Responses
  publication-title: Immunity
  doi: 10.1016/s1074-7613(02)00449-1
– volume: 302
  year: 2012
  ident: B257
  article-title: Molecular Chaperones and Heat Shock Proteins in Atherosclerosis
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00646.2011
– volume: 20
  start-page: 78
  year: 2013
  ident: B288
  article-title: Association Between TLR3 Rs3775291 and Resistance to HIV Among Highly Exposed Caucasian Intravenous Drug Users
  publication-title: Infect Genet Evol
  doi: 10.1016/j.meegid.2013.08.008
– volume: 10
  year: 2018
  ident: B269
  article-title: Plasmacytoid Dendritic Cells Promote Systemic Sclerosis With a Key Role for TLR8
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aam8458
– volume: 182
  year: 2009
  ident: B107
  article-title: Human Dendritic Cells Stimulated via TLR7 and/or TLR8 Induce the Sequential Production of Il-10, IFN-γ, and IL-17A by Naive CD4+ T Cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0801969
– volume: 440
  year: 2006
  ident: B98
  article-title: Toll-Dependent Selection of Microbial Antigens for Presentation by Dendritic Cells
  publication-title: Nature
  doi: 10.1038/nature04596
– volume: 36
  year: 2006
  ident: B128
  article-title: TLR2 Engagement on CD8 T Cells Lowers the Threshold for Optimal Antigen-Induced T Cell Activation
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200636181
– volume: 185
  year: 2010
  ident: B203
  article-title: NLRC5 Limits the Activation of Inflammatory Pathways
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0903900
– volume: 7
  start-page: 1901261
  year: 2019
  ident: B216
  article-title: TRIM14 Promotes Noncanonical NF-κb Activation by Modulating P100/P52 Stability via Selective Autophagy
  publication-title: Adv Sci (Weinheim Baden-Wurttemberg Germany)
  doi: 10.1002/advs.201901261
SSID ssj0000493335
Score 2.707259
SecondaryResourceType review_article
Snippet Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 812774
SubjectTerms Adaptive Immunity
autoimmune diseases
cell-mediated immunity
Immunity, Cellular
Immunity, Innate - physiology
Immunology
infectious diseases
Signal Transduction
signaling pathway
T cells
Toll-Like Receptors
Title Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity
URI https://www.ncbi.nlm.nih.gov/pubmed/35309296
https://www.proquest.com/docview/2641515042
https://pubmed.ncbi.nlm.nih.gov/PMC8927970
https://doaj.org/article/9e0162d7522a4fa4a697b7f2a4faa325
Volume 13
WOSCitedRecordID wos000773218200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA5a9OBB_O34o0TwJIydnUwmeUddWhRsEa2wt5BkXupoO1u6s0Iv_u2-JNtlV0QvXgYyyTDhey_J90jyPcZeQgeu9TApJQQsGyt9qbWzZW1pJnTQKBt0Sjahjo70bAYfN1J9xTNhWR44A7cHSKSk7hTxBNsE29gWlFMhFayok3opsZ6NYOpb5r1CCJm3MSkKg73Qn50tKR6s69e0pinVbC1ESa__TyTz97OSG4vPwR12e8Ua-Zvc27vsGg732M2cR_LyPpsekzXLD_135EQD8ZziaP65P4kcezjhduj4-3HBP81PkfcDnyI1PkwpOpBq0gWR8fIB-3Kwfzx9V66yI5Sexs1Y1m4idY3QSYq4rLTYIaAUXnunJ9gFGdEKWngVkFgEVAE8El8iBtc47UA8ZDvDfMDHjOvKO98K0fkmNEBjOgQBFbYKtauc6wpWXUFl_Eo6PGawODUUQkR0TULXRHRNRrdgr9afnGfdjL81fhvxXzeMktfpBTmCWTmC-ZcjFOzFlfUMDZG472EHnC8XhjhfpG00PRXsUbbm-ldCiooYYlswtWXnrb5s1wz91yTDraFWoKon_6PzT9ktwiNe8o8HZZ6xnfFiic_ZDf9j7BcXu-y6mund5OL0PPy5_wuqYAF_
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toll-Like+Receptor+Signaling+and+Its+Role+in+Cell-Mediated+Immunity&rft.jtitle=Frontiers+in+immunology&rft.au=Duan%2C+Tianhao&rft.au=Du%2C+Yang&rft.au=Xing%2C+Changsheng&rft.au=Wang%2C+Helen+Y.&rft.date=2022-03-03&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=13&rft_id=info:doi/10.3389%2Ffimmu.2022.812774&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2022_812774
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon