Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by...
Gespeichert in:
| Veröffentlicht in: | Frontiers in immunology Jg. 13; S. 812774 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
Frontiers Media S.A
03.03.2022
|
| Schlagworte: | |
| ISSN: | 1664-3224, 1664-3224 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host’s defense against infectious diseases, autoimmune diseases, and cancer. |
|---|---|
| AbstractList | Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer. Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer. |
| Author | Wang, Rong-Fu Xing, Changsheng Duan, Tianhao Du, Yang Wang, Helen Y. |
| AuthorAffiliation | 3 Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles, CA , United States 2 Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California , Los Angeles, CA , United States 1 Department of Medicine, Keck School of Medicine, University of Southern California , Los Angeles, CA , United States |
| AuthorAffiliation_xml | – name: 2 Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California , Los Angeles, CA , United States – name: 1 Department of Medicine, Keck School of Medicine, University of Southern California , Los Angeles, CA , United States – name: 3 Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles, CA , United States |
| Author_xml | – sequence: 1 givenname: Tianhao surname: Duan fullname: Duan, Tianhao – sequence: 2 givenname: Yang surname: Du fullname: Du, Yang – sequence: 3 givenname: Changsheng surname: Xing fullname: Xing, Changsheng – sequence: 4 givenname: Helen Y. surname: Wang fullname: Wang, Helen Y. – sequence: 5 givenname: Rong-Fu surname: Wang fullname: Wang, Rong-Fu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35309296$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kUtvEzEUhS1URB_0B7BBs2Qzwc_xeIOEokIjBSGVsrY8nuvgMmMH20Hqv8dJWtQi4Y19fc_5ruVzjk5CDIDQG4IXjPXqvfPzvFtQTOmiJ1RK_gKdka7jLaOUnzw5n6LLnO9wXVwxxsQrdMoEw4qq7gwtb-M0tWv_E5obsLAtMTXf_CaYyYdNY8LYrEpubuIEjQ_NEqr4C4zeFKid-oDgy_1r9NKZKcPlw36Bvn-6ul1et-uvn1fLj-vWCkZKSwciegpqFIpIIwyMoEAw29uhJzA6wZ3hrmdWOiCYKuyUBcGF6AQf-kGxC7Q6csdo7vQ2-dmkex2N14eLmDbapOLtBFoBJh0dpaDU7LGmU3KQ7lAYRkVlfTiytrthhtFCKMlMz6DPO8H_0Jv4W_eKSiVxBbx7AKT4awe56NlnW__HBIi7rGnHiSACc1qlb5_O-jvkMYUqkEeBTTHnBE5bX0zxcT_aT5pgvY9cHyLX-8j1MfLqJP84H-H_9_wBADyvWA |
| CitedBy_id | crossref_primary_10_3390_biomedicines12040893 crossref_primary_10_1016_j_intimp_2024_112764 crossref_primary_10_1007_s43538_024_00355_1 crossref_primary_10_1080_07391102_2025_2530064 crossref_primary_10_3389_fmicb_2025_1541140 crossref_primary_10_1007_s10787_025_01913_9 crossref_primary_10_3389_fimmu_2024_1465952 crossref_primary_10_3390_ani13091515 crossref_primary_10_1016_j_imbio_2025_152869 crossref_primary_10_4049_jimmunol_2200395 crossref_primary_10_1038_s41556_024_01388_w crossref_primary_10_1186_s12885_025_14051_w crossref_primary_10_3390_biology12070924 crossref_primary_10_1016_j_fsi_2024_109591 crossref_primary_10_3389_fpubh_2024_1340673 crossref_primary_10_3389_fimmu_2024_1391395 crossref_primary_10_1016_j_mam_2024_101323 crossref_primary_10_1016_j_cbd_2025_101512 crossref_primary_10_1016_j_ijbiomac_2025_147475 crossref_primary_10_1007_s11033_025_10843_2 crossref_primary_10_1016_j_cellimm_2024_104878 crossref_primary_10_7717_peerj_19828 crossref_primary_10_1016_j_jep_2022_115743 crossref_primary_10_1093_hmg_ddae155 crossref_primary_10_1016_j_sajb_2025_06_019 crossref_primary_10_1016_j_ymthe_2025_05_009 crossref_primary_10_3390_v17010035 crossref_primary_10_1016_j_bioorg_2024_107835 crossref_primary_10_3389_fcell_2024_1370042 crossref_primary_10_3390_pharmaceutics16010024 crossref_primary_10_1080_22221751_2025_2459136 crossref_primary_10_1016_j_heliyon_2024_e36512 crossref_primary_10_3390_cells13141172 crossref_primary_10_1038_s42003_024_06544_4 crossref_primary_10_1515_biol_2022_1003 crossref_primary_10_1016_j_cbd_2025_101638 crossref_primary_10_1007_s11427_024_2835_y crossref_primary_10_1016_j_biopha_2024_117235 crossref_primary_10_1016_j_phymed_2025_156967 crossref_primary_10_1016_j_ijbiomac_2024_136391 crossref_primary_10_1016_j_jep_2024_118000 crossref_primary_10_1038_s41598_024_52565_8 crossref_primary_10_15789_2220_7619_ABT_17871 crossref_primary_10_1080_29933935_2025_2470805 crossref_primary_10_1002_cam4_6247 crossref_primary_10_3390_ph17030402 crossref_primary_10_1016_j_actbio_2025_06_020 crossref_primary_10_1016_j_microb_2025_100393 crossref_primary_10_3390_biology13010008 crossref_primary_10_1007_s12026_025_09592_y crossref_primary_10_1016_j_psj_2023_102770 crossref_primary_10_3390_ijms26083658 crossref_primary_10_1002_path_6275 crossref_primary_10_3389_fimmu_2024_1271926 crossref_primary_10_1134_S1068162024606670 crossref_primary_10_3390_vaccines13040365 crossref_primary_10_1016_j_fsi_2023_109057 crossref_primary_10_21926_rpn_2502007 crossref_primary_10_3389_fceld_2024_1503799 crossref_primary_10_3389_fimmu_2023_1009137 crossref_primary_10_4103_2311_8571_395061 crossref_primary_10_1186_s13018_024_04931_5 crossref_primary_10_3389_fimmu_2023_1264889 crossref_primary_10_1097_ACI_0000000000001010 crossref_primary_10_1007_s13353_024_00868_x crossref_primary_10_1371_journal_ppat_1012854 crossref_primary_10_1002_pros_24756 crossref_primary_10_1016_j_bmcl_2025_130259 crossref_primary_10_1186_s12951_025_03410_1 crossref_primary_10_22207_JPAM_19_2_07 crossref_primary_10_3389_fimmu_2025_1579113 crossref_primary_10_1016_j_mattod_2024_08_006 crossref_primary_10_3390_cells14120930 crossref_primary_10_3390_pharmaceutics16091140 crossref_primary_10_1007_s00210_025_04550_9 crossref_primary_10_3892_mmr_2025_13585 crossref_primary_10_1371_journal_pone_0316699 crossref_primary_10_3390_ijms26157099 crossref_primary_10_1016_j_apsb_2025_09_007 crossref_primary_10_3390_biom14121481 crossref_primary_10_1186_s13567_025_01500_4 crossref_primary_10_3390_medicina60091545 crossref_primary_10_3389_fcimb_2024_1384420 crossref_primary_10_1007_s00210_025_04221_9 crossref_primary_10_3389_fendo_2023_1124334 crossref_primary_10_1186_s12974_025_03531_2 crossref_primary_10_1093_sxmrev_qeaf032 crossref_primary_10_1016_j_bioactmat_2025_01_028 crossref_primary_10_1038_s12276_025_01443_y crossref_primary_10_3390_jpm14070753 crossref_primary_10_1016_j_jep_2023_117055 crossref_primary_10_1016_j_tox_2023_153596 crossref_primary_10_3390_biom15010043 crossref_primary_10_1038_s41582_023_00915_x crossref_primary_10_15252_embr_202357828 crossref_primary_10_3390_ijms26115244 crossref_primary_10_3389_fimmu_2024_1462352 crossref_primary_10_1007_s00018_025_05631_x crossref_primary_10_1128_jvi_01156_25 crossref_primary_10_3390_ijms26157281 crossref_primary_10_1080_09273948_2024_2406310 crossref_primary_10_1016_j_cyto_2023_156278 crossref_primary_10_1016_j_bbi_2023_11_011 crossref_primary_10_3389_fimmu_2024_1410090 crossref_primary_10_1016_j_bbi_2025_106081 crossref_primary_10_2147_JIR_S488400 crossref_primary_10_1016_j_mce_2025_112630 crossref_primary_10_3389_fimmu_2024_1437430 crossref_primary_10_3389_fmed_2023_1289194 crossref_primary_10_1016_j_jgeb_2025_100519 crossref_primary_10_1016_j_aquaculture_2025_742925 crossref_primary_10_3390_life15010088 crossref_primary_10_3748_wjg_v31_i22_106575 crossref_primary_10_1007_s11033_024_10146_y crossref_primary_10_1016_j_ijbiomac_2024_137208 crossref_primary_10_3389_fimmu_2024_1363958 crossref_primary_10_1002_cbf_4056 crossref_primary_10_3389_fimmu_2023_1209970 crossref_primary_10_1111_sji_13337 crossref_primary_10_3389_fimmu_2024_1508985 crossref_primary_10_2174_0113892037324425241018061548 crossref_primary_10_1007_s00432_023_05084_4 crossref_primary_10_3390_ijms25179751 crossref_primary_10_3390_microorganisms11092169 crossref_primary_10_3389_fcimb_2024_1393680 crossref_primary_10_1021_acsbiomaterials_4c01984 crossref_primary_10_1186_s12964_023_01077_5 crossref_primary_10_3389_fcimb_2023_1146381 crossref_primary_10_3389_fimmu_2025_1610296 crossref_primary_10_3389_fimmu_2023_1276512 crossref_primary_10_1002_eji_202250271 crossref_primary_10_1016_j_jep_2024_118681 crossref_primary_10_3389_fimmu_2024_1403764 crossref_primary_10_1016_j_seminoncol_2025_152344 crossref_primary_10_3390_ijms24065967 crossref_primary_10_3390_ijms26031139 crossref_primary_10_1097_COH_0000000000000856 crossref_primary_10_1016_j_cyto_2024_156800 crossref_primary_10_1016_j_vetimm_2025_110881 crossref_primary_10_3389_fmicb_2025_1542142 crossref_primary_10_1016_j_intimp_2024_112658 crossref_primary_10_1016_j_micinf_2024_105428 crossref_primary_10_3389_fmed_2025_1458281 crossref_primary_10_3390_ijms241713259 crossref_primary_10_1155_2024_5320926 crossref_primary_10_1186_s12879_024_10272_9 crossref_primary_10_1016_j_intimp_2023_110176 crossref_primary_10_3390_nu16040558 crossref_primary_10_1038_s42003_024_06872_5 crossref_primary_10_1016_j_ijbiomac_2024_133188 crossref_primary_10_4103_apjtm_apjtm_567_23 crossref_primary_10_1016_j_jaut_2025_103377 crossref_primary_10_3389_fimmu_2023_1239142 crossref_primary_10_1186_s12864_023_09313_5 crossref_primary_10_1134_S1070363224613474 crossref_primary_10_1016_j_lfs_2024_123196 crossref_primary_10_4274_tji_galenos_2024_26213 crossref_primary_10_70389_PJI_100008 crossref_primary_10_1016_j_bbcan_2025_189352 crossref_primary_10_3390_jcm13154531 crossref_primary_10_1016_j_tips_2024_10_013 crossref_primary_10_1186_s40537_024_00881_1 crossref_primary_10_1016_j_coi_2025_102618 crossref_primary_10_1016_j_cytogfr_2025_03_001 crossref_primary_10_3390_ijms252011310 crossref_primary_10_1016_j_arr_2025_102812 crossref_primary_10_1016_j_ejphar_2025_177749 crossref_primary_10_3390_pathogens14040394 crossref_primary_10_3390_cimb46120799 crossref_primary_10_1155_2022_5985255 crossref_primary_10_3389_fendo_2024_1356959 crossref_primary_10_3389_fimmu_2025_1581385 crossref_primary_10_1186_s12864_024_10888_w crossref_primary_10_1242_dmm_050770 crossref_primary_10_12677_tcm_2025_148536 crossref_primary_10_1186_s12964_025_02384_9 crossref_primary_10_3389_fimmu_2025_1573635 crossref_primary_10_1093_cvr_cvaf158 crossref_primary_10_1016_j_rvsc_2025_105607 crossref_primary_10_1021_prechem_5c00012 crossref_primary_10_3389_fphar_2022_866574 crossref_primary_10_1038_s41598_024_67000_1 crossref_primary_10_1016_j_phymed_2024_156063 crossref_primary_10_1016_j_xphs_2024_09_006 crossref_primary_10_3389_fbioe_2023_1266799 crossref_primary_10_1016_j_jff_2025_106704 crossref_primary_10_3390_cancers15184626 crossref_primary_10_3389_fimmu_2023_1206025 crossref_primary_10_1038_s41586_024_07410_3 crossref_primary_10_1016_j_bbadis_2024_167155 crossref_primary_10_1016_j_carbpol_2024_122980 crossref_primary_10_4014_jmb_2503_03013 crossref_primary_10_1016_j_fsi_2022_09_035 crossref_primary_10_3390_cancers16223810 crossref_primary_10_1021_acs_jafc_5c01550 crossref_primary_10_3389_fimmu_2023_1249098 crossref_primary_10_1038_s41598_024_63567_x crossref_primary_10_1186_s12885_024_12944_w crossref_primary_10_1016_j_meegid_2024_105703 crossref_primary_10_1038_s41388_023_02649_y crossref_primary_10_3390_cancers16233974 crossref_primary_10_3390_agriculture13122192 crossref_primary_10_3389_fimmu_2023_1130423 crossref_primary_10_1016_j_dib_2024_110294 crossref_primary_10_3390_pathogens14030223 crossref_primary_10_1016_j_microb_2025_100324 crossref_primary_10_3390_vaccines12040415 crossref_primary_10_1016_j_bbi_2024_10_031 crossref_primary_10_3390_antiox12061290 crossref_primary_10_3390_ijms25105351 crossref_primary_10_7759_cureus_62310 crossref_primary_10_1016_j_ijbiomac_2025_146756 crossref_primary_10_3390_ijms25041955 crossref_primary_10_1007_s00203_025_04371_7 crossref_primary_10_3389_fnagi_2024_1347987 crossref_primary_10_1007_s11103_024_01502_4 crossref_primary_10_1016_j_ijbiomac_2025_141282 crossref_primary_10_1016_j_biopha_2025_117858 crossref_primary_10_12677_tcm_2024_135158 crossref_primary_10_1107_S2052252523002956 crossref_primary_10_1016_j_bbcan_2024_189229 crossref_primary_10_1111_aos_16661 crossref_primary_10_1080_0886022X_2025_2502875 crossref_primary_10_1016_j_bbcan_2024_189107 crossref_primary_10_1016_j_micpath_2024_107189 crossref_primary_10_3389_fimmu_2024_1339467 crossref_primary_10_1002_prot_26703 crossref_primary_10_1016_j_cell_2025_05_016 crossref_primary_10_3389_fimmu_2023_1128774 crossref_primary_10_1016_j_bcp_2024_116174 crossref_primary_10_3390_genes16070781 crossref_primary_10_1016_j_expneurol_2025_115374 crossref_primary_10_1016_j_jiph_2024_102540 crossref_primary_10_1016_j_cej_2025_161208 crossref_primary_10_1134_S1022795423090028 crossref_primary_10_3390_biomedicines12051051 crossref_primary_10_3390_ph18060885 crossref_primary_10_1016_j_medj_2024_03_001 crossref_primary_10_3390_cancers16142608 crossref_primary_10_3390_md23070290 crossref_primary_10_1016_j_pupt_2025_102361 crossref_primary_10_1016_j_carbpol_2023_121490 crossref_primary_10_1016_j_acci_2024_08_006 crossref_primary_10_4103_NRR_NRR_D_24_00963 crossref_primary_10_3390_ijms26188960 crossref_primary_10_3389_fmicb_2023_1158777 crossref_primary_10_14202_vetworld_2025_1014_1024 crossref_primary_10_1002_ptr_8203 crossref_primary_10_1016_j_arr_2025_102872 crossref_primary_10_1038_s41435_025_00323_9 crossref_primary_10_1002_eji_202250326 crossref_primary_10_1016_j_jafr_2025_102358 crossref_primary_10_1016_j_lfs_2025_123886 crossref_primary_10_1016_j_bbi_2024_11_012 crossref_primary_10_3390_cells12101351 crossref_primary_10_1016_j_psj_2024_103833 crossref_primary_10_1208_s12248_025_01105_x crossref_primary_10_1016_j_jpha_2025_101195 crossref_primary_10_3390_v16091408 crossref_primary_10_3390_foods12071468 crossref_primary_10_1007_s11262_025_02136_4 crossref_primary_10_1007_s12672_025_02509_z crossref_primary_10_3389_ebm_2024_10120 crossref_primary_10_3389_fnbeh_2024_1341901 crossref_primary_10_3390_toxics12120887 crossref_primary_10_3390_pathogens12030457 crossref_primary_10_3390_ijms26146862 crossref_primary_10_1155_2024_8634515 crossref_primary_10_1016_j_jep_2025_120026 crossref_primary_10_1016_j_pmpp_2025_102954 crossref_primary_10_3390_ijms26020505 crossref_primary_10_12677_acm_2025_1582390 crossref_primary_10_3389_fimmu_2024_1475073 crossref_primary_10_1080_21645515_2024_2317439 crossref_primary_10_31083_j_fbl2811307 crossref_primary_10_1002_jbt_70361 crossref_primary_10_1007_s10439_024_03523_y crossref_primary_10_1093_nutrit_nuae066 crossref_primary_10_1155_vmi_2638167 crossref_primary_10_12968_jpar_2024_0120 crossref_primary_10_1016_j_ecoenv_2025_117950 crossref_primary_10_3389_fimmu_2023_1213629 crossref_primary_10_1016_j_intimp_2025_114556 crossref_primary_10_3389_fimmu_2024_1513206 crossref_primary_10_3390_cimb46100670 crossref_primary_10_1177_15473287251366979 crossref_primary_10_3389_fimmu_2024_1512353 crossref_primary_10_3389_fimmu_2024_1408377 crossref_primary_10_1007_s43450_023_00372_z crossref_primary_10_1007_s11914_023_00774_x crossref_primary_10_3389_fnins_2025_1542264 crossref_primary_10_1016_j_micpath_2024_107136 crossref_primary_10_1016_j_tibs_2025_04_004 crossref_primary_10_2147_CCID_S405491 crossref_primary_10_3390_biom14081007 crossref_primary_10_4049_jimmunol_2300419 crossref_primary_10_3389_fimmu_2025_1480025 crossref_primary_10_1186_s40104_024_01070_z crossref_primary_10_3390_biomedicines13092288 crossref_primary_10_1136_jitc_2024_009552 crossref_primary_10_3390_cancers17020226 crossref_primary_10_3390_biom14010136 crossref_primary_10_1016_j_aquaculture_2025_743020 crossref_primary_10_3389_fimmu_2024_1287940 crossref_primary_10_7554_eLife_84708 crossref_primary_10_1007_s00203_024_04179_x crossref_primary_10_1016_j_animal_2024_101151 crossref_primary_10_1371_journal_ppat_1013147 crossref_primary_10_3389_fimmu_2024_1456470 crossref_primary_10_3389_fcimb_2022_910654 crossref_primary_10_1038_s41467_024_46555_7 crossref_primary_10_1016_j_dci_2025_105443 crossref_primary_10_3389_fimmu_2024_1480675 crossref_primary_10_3390_cells12192359 crossref_primary_10_3389_fimmu_2024_1458884 crossref_primary_10_3389_fimmu_2022_1058599 crossref_primary_10_1016_j_jep_2023_116763 crossref_primary_10_1016_j_ijbiomac_2024_134628 crossref_primary_10_3390_ijms25169053 crossref_primary_10_1002_adtp_202500087 crossref_primary_10_3389_fmicb_2025_1540534 crossref_primary_10_1016_j_biopha_2024_116646 crossref_primary_10_1007_s13105_025_01111_9 crossref_primary_10_3389_fnut_2025_1526053 crossref_primary_10_59717_j_xinn_life_2025_100132 crossref_primary_10_1016_j_heliyon_2024_e29683 crossref_primary_10_1007_s11596_024_2912_0 crossref_primary_10_1016_j_chemosphere_2024_142826 crossref_primary_10_1007_s12013_025_01830_2 crossref_primary_10_1111_exd_15083 crossref_primary_10_1007_s00284_025_04408_6 crossref_primary_10_1002_eji_202350476 crossref_primary_10_3390_antiox13040443 crossref_primary_10_3390_ijms251810152 crossref_primary_10_3390_biomedicines12010138 crossref_primary_10_3390_ijms25010141 crossref_primary_10_3389_fcimb_2024_1342684 crossref_primary_10_1016_j_jep_2025_120463 crossref_primary_10_1016_j_gene_2025_149634 crossref_primary_10_1002_mc_23784 crossref_primary_10_3389_fimmu_2025_1605185 crossref_primary_10_3390_pathogens12070969 crossref_primary_10_1007_s11030_024_11082_6 crossref_primary_10_1007_s12017_025_08855_z crossref_primary_10_1016_j_ijbiomac_2024_138092 crossref_primary_10_3390_nu16193266 crossref_primary_10_3389_fcimb_2025_1533658 crossref_primary_10_3389_fimmu_2023_1198211 crossref_primary_10_1093_neuonc_noae182 crossref_primary_10_1016_j_heliyon_2024_e29588 crossref_primary_10_1016_j_theriogenology_2024_11_021 crossref_primary_10_3389_fimmu_2022_963819 crossref_primary_10_1093_biolre_ioad181 crossref_primary_10_3390_ijms25137006 crossref_primary_10_3390_fishes9120493 crossref_primary_10_1002_advs_202103701 crossref_primary_10_1111_imr_13174 crossref_primary_10_1186_s40104_024_01018_3 crossref_primary_10_1186_s12929_025_01151_9 crossref_primary_10_1038_s41380_025_03127_5 crossref_primary_10_3390_biology11071091 crossref_primary_10_1016_j_intimp_2024_113068 crossref_primary_10_1002_pep2_70007 crossref_primary_10_1016_j_fsi_2024_110092 crossref_primary_10_1016_j_humimm_2024_111169 crossref_primary_10_1007_s12035_025_04754_3 crossref_primary_10_1016_j_waojou_2025_101026 crossref_primary_10_3390_ijms252011267 crossref_primary_10_1155_2024_8922878 crossref_primary_10_1136_jitc_2024_010681 crossref_primary_10_1016_j_hlife_2025_02_007 crossref_primary_10_1128_spectrum_02715_24 crossref_primary_10_2174_0113816128347345241028063515 crossref_primary_10_1007_s44411_025_00319_x crossref_primary_10_3389_fanim_2025_1623311 crossref_primary_10_2174_0113816128348771240925100639 crossref_primary_10_1016_j_cyto_2025_156861 crossref_primary_10_1080_15685551_2024_2448122 crossref_primary_10_1016_j_heliyon_2024_e36220 crossref_primary_10_1134_S1022795423110145 crossref_primary_10_1002_mco2_70297 crossref_primary_10_1016_j_smim_2024_101925 crossref_primary_10_1007_s10067_024_07125_w crossref_primary_10_1016_j_carres_2025_109583 crossref_primary_10_3389_fendo_2023_1217579 crossref_primary_10_3390_ijms24129818 crossref_primary_10_1016_j_aquaculture_2024_741740 crossref_primary_10_1016_j_fsi_2025_110691 crossref_primary_10_3390_molecules28041625 crossref_primary_10_1016_j_mehy_2025_111710 crossref_primary_10_1111_iji_70002 crossref_primary_10_1016_j_aquaculture_2025_743095 crossref_primary_10_1371_journal_ppat_1012474 crossref_primary_10_1016_j_vetimm_2025_110900 crossref_primary_10_1016_j_jep_2024_118733 crossref_primary_10_1016_j_humimm_2024_111188 crossref_primary_10_1080_20477724_2025_2478362 crossref_primary_10_3390_pharmaceutics14081671 crossref_primary_10_1128_iai_00506_24 crossref_primary_10_3389_fmicb_2023_1249718 crossref_primary_10_3349_ymj_2024_0447 crossref_primary_10_3390_ijms26114985 crossref_primary_10_3390_biomimetics8070543 crossref_primary_10_3390_v15091916 crossref_primary_10_1007_s00011_024_01924_2 crossref_primary_10_1097_COH_0000000000000848 crossref_primary_10_1111_imm_13880 crossref_primary_10_1016_j_fsi_2025_110686 crossref_primary_10_3390_cells14161273 crossref_primary_10_3390_genes14122118 crossref_primary_10_3389_fimmu_2024_1438030 crossref_primary_10_3390_jcm13102793 crossref_primary_10_3390_nu17172898 crossref_primary_10_1186_s12964_024_01473_5 crossref_primary_10_3390_cells12091332 crossref_primary_10_1111_myc_13800 crossref_primary_10_3390_cells12162055 crossref_primary_10_3389_fgene_2022_1053655 crossref_primary_10_2147_JIR_S535701 crossref_primary_10_1186_s12906_024_04628_6 crossref_primary_10_3390_cells13080687 crossref_primary_10_1007_s12672_025_03508_w crossref_primary_10_1186_s12864_025_11853_x crossref_primary_10_1038_s41598_025_13875_7 crossref_primary_10_3389_fbioe_2022_1037147 crossref_primary_10_2147_JIR_S508098 crossref_primary_10_1038_s41598_024_84062_3 crossref_primary_10_1007_s00705_024_06114_3 crossref_primary_10_3390_biom14070748 crossref_primary_10_3390_metabo15060349 crossref_primary_10_1111_omi_12490 crossref_primary_10_17816_MAJ639999 crossref_primary_10_3390_metabo14070388 crossref_primary_10_1007_s00281_024_01003_y crossref_primary_10_3390_ijms252212066 crossref_primary_10_1007_s12015_023_10674_3 crossref_primary_10_3892_etm_2023_11999 crossref_primary_10_3389_fmicb_2023_1256385 crossref_primary_10_3390_ijms232416137 crossref_primary_10_3390_ijms26189069 crossref_primary_10_1016_j_jep_2023_116394 crossref_primary_10_3389_fimmu_2025_1534241 crossref_primary_10_1002_mco2_714 crossref_primary_10_1016_j_ijbiomac_2023_127252 crossref_primary_10_3389_fnut_2024_1496616 crossref_primary_10_3390_biology13090692 crossref_primary_10_3390_microorganisms11071849 crossref_primary_10_3389_fmolb_2023_1204025 crossref_primary_10_3390_vaccines13090957 crossref_primary_10_1016_j_carbpol_2024_123175 crossref_primary_10_1016_j_intimp_2023_110547 crossref_primary_10_3233_JAD_230801 crossref_primary_10_1038_s41551_025_01366_z crossref_primary_10_1016_j_taap_2022_116344 crossref_primary_10_3390_ph15111376 crossref_primary_10_3389_fcvm_2025_1570582 crossref_primary_10_1038_s41422_024_00971_y crossref_primary_10_1186_s12931_024_03050_3 crossref_primary_10_1016_j_ejmech_2025_117289 crossref_primary_10_3389_fvets_2024_1388438 crossref_primary_10_3389_fimmu_2025_1515718 crossref_primary_10_3390_cancers15030748 crossref_primary_10_3390_life12070962 crossref_primary_10_1007_s40588_024_00214_z crossref_primary_10_1016_j_jddst_2024_105847 crossref_primary_10_1016_j_ijpharm_2025_126180 crossref_primary_10_1016_j_intimp_2024_112833 crossref_primary_10_1097_BOR_0000000000001072 crossref_primary_10_1007_s10787_024_01525_9 crossref_primary_10_3390_biomedicines10092142 crossref_primary_10_1016_j_prp_2025_155940 crossref_primary_10_3390_vaccines13090944 crossref_primary_10_1007_s12013_024_01628_8 crossref_primary_10_3390_ijms26073126 crossref_primary_10_1002_mabi_202500388 crossref_primary_10_3390_molecules27217352 crossref_primary_10_3390_jcm13020325 crossref_primary_10_3390_pathogens12010092 crossref_primary_10_1128_aem_02174_23 crossref_primary_10_3390_ijms25010420 crossref_primary_10_1002_mco2_658 crossref_primary_10_1038_s41598_024_67553_1 crossref_primary_10_1016_j_apsb_2024_09_008 crossref_primary_10_1080_13543776_2025_2556819 crossref_primary_10_3390_biomedicines10071476 crossref_primary_10_1186_s12883_025_04068_w crossref_primary_10_1016_j_yexcr_2024_114314 crossref_primary_10_3390_ijms25095037 crossref_primary_10_1097_j_pain_0000000000003759 crossref_primary_10_1007_s10482_025_02097_6 crossref_primary_10_1016_j_omto_2023_08_010 crossref_primary_10_1089_derm_2023_0311 crossref_primary_10_1080_0886022X_2025_2495836 crossref_primary_10_3389_fmolb_2024_1486576 crossref_primary_10_1016_j_imbio_2023_152725 crossref_primary_10_3390_pharmaceutics16080983 crossref_primary_10_1016_j_imu_2025_101645 crossref_primary_10_3389_fimmu_2024_1406762 crossref_primary_10_3390_gastroent15030040 crossref_primary_10_3390_ijms26157101 crossref_primary_10_3389_fimmu_2025_1617773 crossref_primary_10_1007_s12032_024_02561_9 crossref_primary_10_1080_1744666X_2024_2391915 crossref_primary_10_1016_j_biomaterials_2025_123692 crossref_primary_10_1016_j_msard_2024_105512 crossref_primary_10_1111_jre_13394 crossref_primary_10_1016_j_micpath_2023_106005 crossref_primary_10_3389_fimmu_2024_1404108 crossref_primary_10_1007_s00203_024_04051_y crossref_primary_10_3390_ijms25031553 crossref_primary_10_1096_fj_202501352R crossref_primary_10_1002_fft2_481 crossref_primary_10_1093_jleuko_qiae140 crossref_primary_10_1007_s12325_025_03291_8 crossref_primary_10_1016_j_jbc_2023_104587 crossref_primary_10_3390_ijms26052229 crossref_primary_10_21926_obm_genet_2304206 |
| Cites_doi | 10.1155/2013/516749 10.1371/journal.pone.0004064 10.1038/nm1093 10.1016/j.cell.2011.01.031 10.3389/fimmu.2020.00171 10.1016/j.it.2006.06.005 10.1038/nri3339 10.1073/pnas.1819004116 10.1038/ni.1858 10.4049/jimmunol.1102179 10.1074/jbc.M109537200 10.2353/ajpath.2008.070567 10.1128/MCB.02380-06 10.1038/ncb1384 10.1016/j.molcel.2006.03.026 10.4110/in.2009.9.4.127 10.1002/1521-4141(200111)31:11<3388::AID-IMMU3388>3.0.CO;2-Q 10.1016/S0092-8674(00)80172-5 10.1074/jbc.M412584200 10.1126/science.1183021 10.1016/j.cmi.2016.08.028 10.1126/scisignal.aab2191 10.1073/pnas.2237236100 10.1038/nri3095 10.1016/s1074-7613(03)00359-5 10.1038/ni.1863 10.1002/eji.201344100 10.1007/978-1-4419-9914-6_6 10.1038/nmicrobiol.2017.63 10.1111/imr.12309 10.4049/jimmunol.176.3.1937 10.1038/ni.1777 10.1177/0300060513483398 10.1136/annrheumdis-2012-202207 10.1038/s41584-020-00544-4 10.1126/science.1093616 10.1073/pnas.1418516111 10.1016/S0092-8674(00)80412-2 10.1016/j.chom.2021.03.016 10.1016/j.cell.2010.01.022 10.1084/jem.20062694 10.4049/jimmunol.1002094 10.1126/science.288.5465.522 10.4049/jimmunol.174.5.2661 10.1196/annals.1443.020 10.1038/ni1315 10.1038/ni0901-835 10.1146/annurev-immunol-020711-074950 10.4161/21645515.2014.979640 10.1038/32588 10.1038/s41598-021-99625-x 10.1155/2019/2691808 10.1073/pnas.0400171101 10.1084/jem.20021633 10.1002/eji.200323797 10.1038/ni.1742 10.1038/nri3757 10.1038/s41598-019-38864-5 10.1371/journal.pntd.0000231 10.1016/j.jmb.2013.11.012 10.3389/fimmu.2014.00461 10.1016/j.yexcr.2017.02.025 10.1038/ni1255 10.1172/jci25439 10.1126/science.1087262 10.1155/2021/9914854 10.1038/cmi.2012.61 10.1084/jem.20101111 10.1038/ni1010 10.1172/jci200319441 10.1016/j.cell.2010.03.040 10.1002/art.33350 10.1128/MCB.01538-13 10.1016/s0092-8674(02)00827-9 10.1016/j.cell.2014.01.019 10.1186/s12964-020-00598-7 10.1016/j.immuni.2004.11.008 10.4103/0253-7613.161249 10.1126/science.1081315 10.1038/s41467-017-02073-3 10.1128/IAI.00739-18 10.3389/fimmu.2019.01546 10.4049/jimmunol.165.12.6682 10.1196/annals.1337.028 10.4049/jimmunol.1303064 10.1128/IAI.73.10.7064-7068.2005 10.1038/ni1066 10.1002/art.39602 10.1038/35100529 10.1016/j.coi.2007.02.004 10.1111/liv.12626 10.1073/pnas.1418399111 10.1038/nature01803 10.1073/pnas.0308680101 10.1186/s11658-016-0002-4 10.1016/j.molimm.2012.02.119 10.3389/fimmu.2019.02388 10.1038/ni921 10.1016/0092-8674(85)90274-0 10.1016/s0960-9822(02)00712-1 10.25100/cm.v44i2.1183 10.1038/sj.onc.1210906 10.1083/jcb.201505091 10.4049/jimmunol.1302244 10.1016/j.cellimm.2011.10.007 10.1371/journal.pone.0067036 10.3389/fimmu.2014.00386 10.3324/haematol.2018.203380 10.1038/41131 10.1016/j.molcel.2016.08.025 10.1038/nrm3644 10.1186/1756-9966-29-92 10.3389/fimmu.2017.00158 10.1126/science.1093620 10.1126/science.1140485 10.1128/JVI.00829-21 10.1038/nature09121 10.1016/j.imbio.2016.06.009 10.4049/jimmunol.172.6.3712 10.4049/jimmunol.175.12.8051 10.1016/j.immuni.2010.08.012 10.1073/pnas.082100399 10.1158/0008-5472.CAN-10-2833 10.1038/s41590-021-00937-x 10.1371/journal.ppat.1008622 10.1038/ni1355 10.1016/j.celrep.2020.107746 10.3389/fimmu.2019.00482 10.1016/j.immuni.2011.02.022 10.4049/jimmunol.179.1.41 10.1002/pro.4043 10.1111/imr.12308 10.1093/infdis/jiab389 10.1371/journal.ppat.1005053 10.1073/pnas.1206048110 10.1002/advs.202002680 10.1074/jbc.M609503200 10.1016/j.immuni.2011.12.010 10.1126/science.1113401 10.1073/pnas.0601554103 10.1038/s41598-017-12573-3 10.1073/pnas.1120585109 10.1038/ni1110 10.1016/j.molcel.2016.08.029 10.1002/jcb.29397 10.1038/ni.2378 10.1038/emboj.2010.31 10.1016/j.intimp.2005.02.013 10.1172/JCI99005 10.1038/s41467-017-01290-0 10.4049/jimmunol.1203024 10.4049/jimmunol.169.7.3480 10.1136/jitc-2020-SITC2020.0245 10.1182/blood-2008-08-176057 10.1002/hep.25991 10.4049/jimmunol.168.9.4531 10.1016/j.immuni.2007.05.020 10.1084/jem.20021790 10.3389/fonc.2020.570899 10.1038/mi.2013.5 10.1126/science.1132998 10.1038/nature04641 10.1136/ard.2009.124313 10.1016/j.molcel.2017.09.035 10.4049/jimmunol.166.1.249 10.1016/j.immuni.2010.03.012 10.1038/ncb1821 10.2353/ajpath.2007.060657 10.1038/nature03464 10.1126/science.1182364 10.1016/j.cell.2019.11.001 10.4049/jimmunol.1501297 10.1038/ni1569 10.1073/pnas.1603269113 10.4049/jimmunol.1002320 10.1016/s1074-7613(02)00446-6 10.1038/nri1630 10.1155/2017/8391230 10.3390/pharmaceutics13020142 10.1016/j.cell.2009.03.007 10.1016/j.it.2013.03.007 10.1016/j.cmet.2018.09.020 10.1158/2326-6066.CIR-14-0024 10.3389/fimmu.2019.02191 10.1016/s0022-5347(17)58737-6 10.1172/JCI32354 10.1093/intimm/dxh025 10.4049/jimmunol.0801167 10.1073/pnas.0510041103 10.1128/JVI.02789-13 10.1093/jb/mvt079 10.1038/s41577-021-00577-0 10.1186/s40425-019-0724-8 10.1038/90609 10.1038/ni1479 10.1038/nature01802 10.1073/pnas.1303275110 10.1136/ard.2007.086421 10.1038/ni909 10.1016/j.cell.2014.04.054 10.4049/jimmunol.177.12.8708 10.3389/fimmu.2018.01231 10.1016/bs.ai.2019.09.001 10.1016/j.cellsig.2007.08.009 10.4049/jimmunol.171.12.6680 10.1084/jem.20031023 10.1038/ni986 10.1038/ni904 10.1038/nri2079 10.1136/bmjopen-2019-034629 10.1002/jgm.964 10.1038/ni712 10.1111/imm.13181 10.1074/jbc.M506831200 10.1038/leu.2017.249 10.1016/j.molimm.2021.08.019 10.4049/jimmunol.173.5.2913 10.1212/WNL.0b013e31821f440a 10.1056/NEJMoa1200710 10.1016/j.celrep.2020.01.040 10.1016/s1471-4906(01)01896-8 10.1126/science.aaa2630 10.1016/j.cell.2011.09.051 10.1186/1479-5876-12-177 10.4049/jimmunol.178.11.6715 10.1084/jem.20021908 10.1001/jamadermatol.2014.821 10.4049/jimmunol.169.5.2756 10.1007/164_2021_543 10.1038/s41422-021-00495-9 10.1073/pnas.0400937101 10.1038/nature08516 10.4049/jimmunol.169.6.3155 10.1038/nature11250 10.1158/1940-6207.CAPR-19-0286 10.1016/j.immuni.2011.03.026 10.1038/ni968 10.1038/nature09671 10.1016/j.intimp.2014.12.030 10.1111/imm.12260 10.1179/096805103225001477 10.15252/embj.201796781 10.4049/jimmunol.172.6.3415 10.1074/jbc.M309251200 10.1158/0008-5472.CAN-20-3510 10.1016/j.molimm.2009.06.006 10.1038/ni926 10.1074/jbc.M109.022392 10.1073/pnas.0603089103 10.1016/j.canlet.2018.09.003 10.1158/1078-0432.ccr-07-0842 10.1038/sj.embor.7401161 10.1016/j.molimm.2007.01.022 10.1016/j.ccell.2021.08.005 10.1038/35092578 10.1073/pnas.1316941111 10.1084/jem.20131044 10.1084/jem.20020207 10.1172/jci.insight.93397 10.1128/MCB.02098-07 10.1038/gene.2013.34 10.1038/nri2343 10.1097/CJI.0b013e318183af0b 10.1126/science.1139522 10.4049/jimmunol.178.12.7520 10.4049/jimmunol.179.5.3171 10.4110/in.2020.20.e21 10.1002/art.20678 10.1038/cr.2012.53 10.1073/pnas.1521359113 10.1371/journal.pone.0051228 10.4049/jimmunol.0902958 10.1038/nrcardio.2014.91 10.1038/cr.2011.13 10.4049/jimmunol.1700339 10.1038/80833 10.1038/srep30529 10.1126/science.284.5418.1313 10.1084/jem.20112339 10.3389/fimmu.2013.00211 10.1038/nature08247 10.3389/fimmu.2019.01243 10.1038/ni1577 10.1038/nature06501 10.1007/s10067-013-2418-9 10.1093/intimm/dxl082 10.1016/j.molcel.2009.01.012 10.1126/science.1079490 10.1126/sciimmunol.aap8855 10.1038/s41598-017-01033-7 10.1002/eji.201646846 10.1126/science.271.5252.1128 10.1084/jem.194.6.863 10.1371/journal.pone.0109980 10.1111/cei.13215 10.1371/journal.pntd.0005587 10.1172/JCI40055 10.1126/science.1140488 10.1073/pnas.1608555113 10.1186/s12879-018-3485-y 10.1016/j.cell.2020.02.041 10.1038/s41598-018-25549-8 10.1038/ni0602-499 10.1172/JCI26078 10.3389/fonc.2019.00241 10.2337/db20-0591 10.1016/j.imlet.2006.12.007 10.1016/j.cell.2006.03.047 10.1038/nature07959 10.1038/nrm3836 10.1038/cr.2016.155 10.1038/nature03308 10.1126/science.1080106 10.1038/ni1112 10.1016/j.cell.2006.02.015 10.1038/35021228 10.1016/S0952-7915(99)80066-1 10.1016/j.molcel.2014.03.040 10.1038/nature03547 10.1038/ni1050 10.1016/j.str.2011.02.004 10.1016/s1074-7613(02)00449-1 10.1152/ajpheart.00646.2011 10.1016/j.meegid.2013.08.008 10.1126/scitranslmed.aam8458 10.4049/jimmunol.0801969 10.1038/nature04596 10.1002/eji.200636181 10.4049/jimmunol.0903900 10.1002/advs.201901261 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Duan, Du, Xing, Wang and Wang. Copyright © 2022 Duan, Du, Xing, Wang and Wang 2022 Duan, Du, Xing, Wang and Wang |
| Copyright_xml | – notice: Copyright © 2022 Duan, Du, Xing, Wang and Wang. – notice: Copyright © 2022 Duan, Du, Xing, Wang and Wang 2022 Duan, Du, Xing, Wang and Wang |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.3389/fimmu.2022.812774 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-3224 |
| ExternalDocumentID | oai_doaj_org_article_9e0162d7522a4fa4a697b7f2a4faa325 PMC8927970 35309296 10_3389_fimmu_2022_812774 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Review Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: U54 CA210181 – fundername: NCI NIH HHS grantid: R01 CA101795 – fundername: NCI NIH HHS grantid: R01 CA246547 – fundername: ; grantid: U54CA210181 – fundername: ; grantid: BC151081, LC200368 – fundername: ; grantid: R01CA101795, R01CA246547 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI CGR CUY CVF ECM EIF IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c531t-2b1582e9d5917a5aede9e53c8cb81edf54fa4f83c7fe10290f9ce5455654b8b93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 583 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773218200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-3224 |
| IngestDate | Fri Oct 03 12:42:49 EDT 2025 Thu Aug 21 13:30:30 EDT 2025 Fri Sep 05 11:50:42 EDT 2025 Thu Jan 02 22:53:45 EST 2025 Sat Nov 29 05:52:07 EST 2025 Tue Nov 18 22:24:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | autoimmune diseases toll-like receptors infectious diseases signaling pathway cancer T cells cell-mediated immunity |
| Language | English |
| License | Copyright © 2022 Duan, Du, Xing, Wang and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c531t-2b1582e9d5917a5aede9e53c8cb81edf54fa4f83c7fe10290f9ce5455654b8b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Subhasis Chattopadhyay, National Institute of Science Education and Research (NISER), India Reviewed by: Subhransu Sekhar Sahoo, Purdue University, United States; Sarang Tartey, IGM Biosciences, United States This article was submitted to T Cell Biology, a section of the journal Frontiers in Immunology |
| OpenAccessLink | https://doaj.org/article/9e0162d7522a4fa4a697b7f2a4faa325 |
| PMID | 35309296 |
| PQID | 2641515042 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9e0162d7522a4fa4a697b7f2a4faa325 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8927970 proquest_miscellaneous_2641515042 pubmed_primary_35309296 crossref_citationtrail_10_3389_fimmu_2022_812774 crossref_primary_10_3389_fimmu_2022_812774 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-03 |
| PublicationDateYYYYMMDD | 2022-03-03 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in immunology |
| PublicationTitleAlternate | Front Immunol |
| PublicationYear | 2022 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Mercier (B130) 2009; 182 Li (B41) 2002; 99 Netea (B165) 2004; 172 Zhao (B213) 2020; 7 Chantratita (B296) 2017; 23 Curiel (B153) 2004; 10 Misch (B279) 2008; 2 Sun (B43) 2016; 9 Clark (B44) 2013; 14 Merad (B116) 2013; 31 Wu (B205) 2017; 8 Lopez-Pelaez (B79) 2014; 111 O’Reilly (B271) 2014; 143 Bhoj (B54) 2009; 458 Kadowaki (B112) 2001; 194 Medzhitov (B10) 1997; 388 Diehl (B181) 2004; 21 Hoshino (B94) 2006; 440 Yang (B228) 2014; 9 Prinz (B276) 2006; 116 Kagan (B36) 2014; 14 Lin (B37) 2010; 465 Mills (B118) 2011; 11 Chuang (B207) 2004; 5 Luchner (B335) 2021; 13 Trompouki (B193) 2003; 424 Caramalho (B171) 2003; 197 Benko (B203) 2010; 185 Akira (B2) 2006; 124 Kim (B229) 2020; 13 Zhou (B218) 2014; 111 Sharma (B225) 2019; 116 Wang (B334) 2017; 27 Hoffmann (B23) 1999; 284 Huang (B292) 2009; 49 Turley (B100) 2000; 288 DePaolo (B316) 2012; 209 Visintin (B113) 2001; 166 Satomi (B133) 2020; 105 Nguyen (B282) 2020; 16 George (B146) 2020; 10 Bhagavan (B20) 2011 Liyanage (B154) 2002; 169 Sharma (B87) 2003; 300 Hornung (B110) 2002; 168 Urban-Wojciuk (B221) 2019; 10 Schuman (B65) 2009; 113 Xia (B199) 2011; 34 Kumar (B200) 2011; 186 Rowe (B32) 2006; 103 Pahl (B314) 2012; 51 Wang (B330) 2018; 18 Wang (B157) 2007; 19 Kinjyo (B183) 2002; 17 Wan (B68) 2006; 7 Schnare (B92) 2001; 2 Kobayashi (B210) 2012; 12 Ngo (B232) 2011; 470 Takaoka (B76) 2005; 434 Mullins (B245) 2019; 7 Kollewe (B42) 2004; 279 Edwards (B114) 2003; 33 Sutmuller (B166) 2006; 116 Wang (B156) 2005; 174 Kiniwa (B159) 2007; 13 Cao (B40) 1996; 271 Ren (B78) 2014; 111 Brackett (B243) 2016; 113 Gottipati (B46) 2008; 20 Horrevorts (B101) 2018; 9 Reba (B127) 2014; 44 Kawai (B77) 2008; 1143 Zhao (B320) 2021; 31 Anderson (B117) 2019 Xing (B73) 2021; 29 Reis e Sousa (B96) 1999; 11 LeBouder (B176) 2003; 171 Kagan (B31) 2008; 9 Heil (B161) 2004; 303 Salazar (B239) 2014; 2 Wang (B152) 2004; 20 Zhang (B224) 2011; 186 Greulich (B310) 2019; 179 Li (B253) 2014; 33 Gao (B104) 2012; 272 Lai (B312) 2013; 41 Yamamoto (B81) 2003; 301 Pang (B305) 2013; 110 Jude (B331) 2003; 4 Johnson (B318) 2007; 178 Iwami (B177) 2000; 165 Rakoff-Nahoum (B230) 2007; 317 Zhang (B300) 2017; 352 Gringhuis (B309) 2010; 11 Peng (B160) 2005; 309 Okeke (B139) 2014; 193 Lin (B222) 2013; 57 Hoebe (B82) 2003; 4 Reiley (B192) 2006; 7 Lund (B325) 2004; 101 Cui (B202) 2010; 141 Basner-Tschakarjan (B313) 2006; 8 Zhang (B186) 2002; 277 Ajibade (B69) 2012; 36 Jurk (B164) 2002; 3 Wang (B195) 2009; 10 Cottalorda (B128) 2006; 36 Akira (B21) 2001; 2 Tournadre (B273) 2012; 64 Hua (B19) 2013; 10 D’Agostini (B236) 2005; 5 Horng (B28) 2001; 2 Hori (B150) 2003; 299 Mansur (B322) 2014; 12 Li (B142) 2019; 10 Tokunaga (B57) 2009; 11 Shimizu (B61) 2015; 266 Meng (B206) 2015; 211 Jarrossay (B111) 2001; 31 Motshwene (B38) 2009; 284 Tokunaga (B59) 2013; 154 Kagan (B33) 2006; 125 Sinnott (B126) 2016; 197 Palliser (B93) 2004; 172 Wu (B293) 2010; 41 Chen (B302) 2015; 11 Guinn (B238) 2018; 438 Radstake (B251) 2004; 50 Fujimoto (B286) 2004; 16 Cheng (B289) 2018; 128 Biswas (B125) 2009; 46 Cohen (B138) 2013; 4 Mohamed (B246) 2015; 35 Wang (B7) 2012 Botos (B16) 2011; 19 Kawasaki (B6) 2014; 5 Arpaia (B319) 2011; 144 Honda (B75) 2005; 434 Satkunanathan (B294) 2014; 88 Pietrobon (B308) 2021; 225 Pichlmair (B327) 2006; 314 Rahighi (B56) 2009; 136 González-Navajas (B136) 2010; 120 Wang (B266) 2019; 10 Anderson (B8) 1985; 42 Lo (B55) 2009; 33 Sato-Kaneko (B248) 2017; 2 Karim (B122) 2017; 47 Farrugia (B250) 2017; 2017 Lemaitre (B9) 1996; 86 Huik (B288) 2013; 20 Takeuchi (B1) 2010; 140 Iwasaki (B4) 2004; 5 Sharma (B106) 2020; 11 Guo (B105) 2017; 8 Bonham (B39) 2014; 156 Tabiasco (B143) 2006; 177 Sasaki (B62) 2015; 266 Behzadi (B333) 2021; 2021 Sheen (B102) 2017; 199 McClure (B17) 2014; 5 Allen (B201) 2011; 34 Moore (B209) 2008; 451 Zandi (B241) 2020; 121 LaRosa (B168) 2007; 108 Cappelletti (B274) 2011; 76 Xia (B51) 2009; 461 Sheng (B103) 2013; 2013 Walsh (B49) 2008; 3 Valencia Pacheco (B306) 2013; 44 Tapping (B278) 2003; 9 Deidier (B219) 1725 Lin (B214) 2016; 64 Woo (B155) 2001; 61 Iwasaki (B328) 2010; 327 Zheng (B283) 2021; 22 Naugler (B231) 2007; 317 Fore (B12) 2020; 20 Tattoli (B204) 2008; 9 Kumar (B119) 2021; 225 Pham-Ledard (B234) 2014; 150 Fitzgerald (B88) 2003; 4 Qu (B141) 2019; 2019 Yang (B227) 2010; 29 Zong (B272) 2013; 72 Liu (B167) 2006; 103 Sugiura (B317) 2013; 6 Garcia-Ortiz (B263) 2010; 69 Zhang (B131) 2013; 190 Chaichana (B301) 2017; 11 Schoenemeyer (B80) 2005; 280 Reiley (B191) 2007; 204 Awomoyi (B321) 2007; 179 Kurt-Jones (B297) 2000; 1 Medzhitov (B15) 2001; 1 Latz (B26) 2007; 8 Gohda (B84) 2004; 173 Peng (B158) 2007; 27 Iwai (B63) 2014; 15 Wang (B120) 2001; 22 Asami (B332) 2021; 30 Kobayashi (B187) 2002; 110 Henrick (B13) 2019; 10 Liu (B66) 2006; 103 Du (B212) 2018; 37 Cui (B173) 2014; 10 Diebold (B326) 2004; 303 O’Neill (B34) 2007; 7 Lamothe (B70) 2012; 7 Tripathy (B256) 2017; 7 Chang (B134) 2013; 110 Rudd (B291) 2006; 176 Fourcade (B249) 2008; 31 Yamamoto (B29) 2003; 4 Xu (B257) 2012; 302 Dajon (B220) 2017; 222 Ma (B311) 2014; 426 Lai (B145) 2018; 32 Conrad (B264) 2010; 464 Kim (B254) 2021; 11 Medzhitov (B22) 1997; 91 Urry (B169) 2009; 119 Garlanda (B179) 2004; 101 McWhirter (B86) 2004; 101 Kawai (B11) 2010; 11 Reiling (B323) 2002; 169 Davis (B255) 2015; 24 Trombetta (B99) 2003; 299 Sun (B240) 2021; 39 Fujita (B58) 2014; 34 Li (B162) 2019; 29 Di (B144) 2019; 9 Cusson-Hermance (B83) 2005; 280 Tong (B196) 2012; 22 Morales (B237) 1976; 116 Chen (B215) 2016; 64 Cros (B268) 2010; 33 Lee (B129) 2009; 9 Guo (B261) 2021; 70 Fillatreau (B262) 2021; 17 Windheim (B45) 2008; 28 Crellin (B170) 2005; 175 Banchereau (B91) 1998; 392 Conze (B47) 2008; 28 Zang (B315) 2020; 18 Boone (B189) 2004; 5 Treon (B233) 2012; 367 Imanishi (B124) 2007; 178 Chen (B299) 2021; 95 Zanin-Zhorov (B137) 2007; 179 Aderem (B24) 2000; 406 Fitzgerald (B35) 2020; 180 Lee (B190) 2010; 29 Zhang (B284) 2021; 139 Park (B259) 2004; 1037 Regli (B304) 2020; 31 Blasius (B25) 2010; 32 Chang (B85) 2009; 10 Cardoso (B307) 2013; 8 Lamothe (B48) 2007; 282 Elass (B280) 2005; 73 Ah Kioon (B269) 2018; 10 Fontenot (B151) 2003; 4 Fitzgerald (B27) 2001; 413 Sato (B67) 2006; 18 Shi (B208) 2008; 9 Stenzel (B281) 2008; 172 Lind (B14) 2021; 16 Reynolds (B135) 2012; 109 Chen (B216) 2019; 7 Kovalenko (B194) 2003; 424 Abel (B324) 2002; 169 Walker (B148) 2003; 112 Ea (B52) 2006; 22 Brint (B178) 2004; 5 Guiducci (B277) 2013; 210 Baumann (B175) 2010; 207 Ajibade (B72) 2013; 34 Ito (B95) 2002; 195 Nair-Gupta (B97) 2014; 158 Miranda (B295) 2019; 87 Wald (B180) 2003; 4 Tang (B298) 2016; 6 Hsu (B242) 2011; 71 To (B329) 2019; 9 Liu (B89) 2015; 347 Sahoo (B140) 2018; 8 Liew (B172) 2005; 5 He (B226) 2007; 44 Tartey (B235) 2021; 81 Nakagawa (B182) 2002; 17 Hu (B50) 2017; 8 Blander (B98) 2006; 440 Shembade (B188) 2010; 327 Zhang (B285) 2007; 317 Anand (B198) 2012; 488 Sutmuller (B18) 2006; 27 Sironi (B287) 2012; 188 Wang (B247) 2016; 113 Fitzgerald (B30) 2003; 198 Sepehri (B260) 2016; 21 Qi (B223) 2020; 8 Ciechomska (B270) 2016; 68 Cai (B3) 2014; 54 Xing (B132) 2019; 195 Roelofs (B252) 2009; 68 Lombardi (B107) 2009; 182 Noad (B60) 2017; 2 Zhao (B90) 2016; 113 Souyris (B265) 2018; 3 Dolina (B108) 2020; 31 Bubna (B244) 2015; 47 Wick (B258) 2014; 11 Komai-Koma (B123) 2004; 101 Wang (B121) 2008; 27 Ear (B71) 2010; 184 Schneider (B197) 2012; 13 Vignali (B147) 2008; 8 Sato (B64) 2005; 6 Boonstra (B115) 2003; 197 Khattri (B149) 2003; 4 Tan (B217) 2017; 68 Janssens (B185) 2002; 12 Sacre (B275) 2007; 170 Hayden (B5) 2011; 21 Wu (B53) 2006; 8 Celhar (B267) 2019; 10 Shang (B163) 2020; 10 Zanoni (B174) 2011; 147 Misch (B303) 2013; 14 Mandraju (B109) 2014; 192 Burns (B184) 2003; 197 Feng (B211) 2017; 7 Honda (B74) 2005; 434 Liu (B290) 2020; 160 |
| References_xml | – volume: 2013 year: 2013 ident: B103 article-title: Enhanced Dendritic Cell-Mediated Antigen-Specific CD4+ T Cell Responses: IFN-Gamma Aids TLR Stimulation publication-title: J Drug Deliv doi: 10.1155/2013/516749 – volume: 3 year: 2008 ident: B49 article-title: TRAF6 Autoubiquitination-Independent Activation of the Nfκb and MAPK Pathways in Response to IL-1 and RANKL publication-title: PloS One doi: 10.1371/journal.pone.0004064 – volume: 10 year: 2004 ident: B153 article-title: Specific Recruitment of Regulatory T Cells in Ovarian Carcinoma Fosters Immune Privilege and Predicts Reduced Survival publication-title: Nat Med doi: 10.1038/nm1093 – volume: 144 year: 2011 ident: B319 article-title: TLR Signaling is Required for Salmonella Typhimurium Virulence publication-title: Cell doi: 10.1016/j.cell.2011.01.031 – volume: 11 year: 2020 ident: B106 article-title: The TLR5 Agonist Flagellin Shapes Phenotypical and Functional Activation of Lung Mucosal Antigen Presenting Cells in Neonatal Mice publication-title: Front Immunol doi: 10.3389/fimmu.2020.00171 – volume: 27 year: 2006 ident: B18 article-title: Toll-Like Receptors on Regulatory T Cells: Expanding Immune Regulation publication-title: Trends Immunol doi: 10.1016/j.it.2006.06.005 – volume: 12 year: 2012 ident: B210 article-title: NLRC5: A Key Regulator of MHC Class I-Dependent Immune Responses publication-title: Nat Rev Immunol doi: 10.1038/nri3339 – volume: 116 year: 2019 ident: B225 article-title: TLR1/2 Ligand Enhances Antitumor Efficacy of CTLA-4 Blockade by Increasing Intratumoral Treg Depletion publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1819004116 – volume: 11 year: 2010 ident: B309 article-title: HIV-1 Exploits Innate Signaling by TLR8 and DC-SIGN for Productive Infection of Dendritic Cells publication-title: Nat Immunol doi: 10.1038/ni.1858 – volume: 188 year: 2012 ident: B287 article-title: A Common Polymorphism in TLR3 Confers Natural Resistance to HIV-1 Infection publication-title: J Immunol doi: 10.4049/jimmunol.1102179 – volume: 277 year: 2002 ident: B186 article-title: Negative Regulation of Toll-Like Receptor-Mediated Signaling by Tollip publication-title: J Biol Chem doi: 10.1074/jbc.M109537200 – volume: 172 year: 2008 ident: B281 article-title: Both TLR2 and TLR4 are Required for the Effective Immune Response in Staphylococcus Aureus-Induced Experimental Murine Brain Abscess publication-title: Am J Pathol doi: 10.2353/ajpath.2008.070567 – volume: 28 year: 2008 ident: B45 article-title: Interleukin-1 (IL-1) Induces the Lys63-Linked Polyubiquitination of IL-1 Receptor-Associated Kinase 1 to Facilitate NEMO Binding and the Activation of IkappaBalpha Kinase publication-title: Mol Cell Biol doi: 10.1128/MCB.02380-06 – volume: 8 start-page: 398 year: 2006 ident: B53 article-title: Sensing of Lys 63-Linked Polyubiquitination by NEMO is a Key Event in NF-κB Activation publication-title: Nat Cell Biol doi: 10.1038/ncb1384 – volume: 22 year: 2006 ident: B52 article-title: Activation of IKK by TNFα Requires Site-Specific Ubiquitination of RIP1 and Polyubiquitin Binding by NEMO publication-title: Mol Cell doi: 10.1016/j.molcel.2006.03.026 – volume: 9 year: 2009 ident: B129 article-title: Expression and Function of TLR2 on CD4 Versus CD8 T Cells publication-title: Immune Netw doi: 10.4110/in.2009.9.4.127 – volume: 31 year: 2001 ident: B111 article-title: Specialization and Complementarity in Microbial Molecule Recognition by Human Myeloid and Plasmacytoid Dendritic Cells publication-title: Eur J Immunol doi: 10.1002/1521-4141(200111)31:11<3388::AID-IMMU3388>3.0.CO;2-Q – volume: 86 year: 1996 ident: B9 article-title: The Dorsoventral Regulatory Gene Cassette Spätzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults publication-title: Cell doi: 10.1016/S0092-8674(00)80172-5 – volume: 280 year: 2005 ident: B80 article-title: The Interferon Regulatory Factor, IRF5, Is a Central Mediator of Toll-Like Receptor 7 Signaling publication-title: J Biol Chem doi: 10.1074/jbc.M412584200 – volume: 327 year: 2010 ident: B328 article-title: Regulation of Adaptive Immunity by the Innate Immune System publication-title: Science doi: 10.1126/science.1183021 – volume: 23 start-page: 47 e1 year: 2017 ident: B296 article-title: TLR4 Genetic Variation is Associated With Inflammatory Responses in Gram-Positive Sepsis publication-title: Clin Microbiol Infect doi: 10.1016/j.cmi.2016.08.028 – volume: 9 year: 2016 ident: B43 article-title: Comprehensive RNAi-Based Screening of Human and Mouse TLR Pathways Identifies Species-Specific Preferences in Signaling Protein Use publication-title: Sci Signal doi: 10.1126/scisignal.aab2191 – volume: 101 year: 2004 ident: B86 article-title: IFN-Regulatory Factor 3-Dependent Gene Expression is Defective in Tbk1-Deficient Mouse Embryonic Fibroblasts publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2237236100 – volume: 11 year: 2011 ident: B118 article-title: TLR-Dependent T Cell Activation in Autoimmunity publication-title: Nat Rev Immunol doi: 10.1038/nri3095 – volume: 20 year: 2004 ident: B152 article-title: Tumor-Specific Human CD4(+) Regulatory T Cells and Their Ligands: Implications for Immunotherapy publication-title: Immunity doi: 10.1016/s1074-7613(03)00359-5 – volume: 11 year: 2010 ident: B11 article-title: The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-Like Receptors publication-title: Nat Immunol doi: 10.1038/ni.1863 – volume: 44 year: 2014 ident: B127 article-title: TLR2 Engagement on CD4+T Cells Enhances Effector Functions and Protective Responses to Mycobacterium Tuberculosis publication-title: Eur J Immunol doi: 10.1002/eji.201344100 – volume-title: Innate Immune Regulation and Cancer Immunotherapy year: 2012 ident: B7 article-title: Innate Immune Signaling and Negative Regulators in Cancer doi: 10.1007/978-1-4419-9914-6_6 – volume: 2 start-page: 17063 year: 2017 ident: B60 article-title: Randow: LUBAC-Synthesized Linear Ubiquitin Chains Restrict Cytosol-Invading Bacteria by Activating Autophagy and NF-KappaB publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2017.63 – volume: 266 start-page: 190 year: 2015 ident: B61 article-title: Linear Ubiquitination in Immunity publication-title: Immunol Rev doi: 10.1111/imr.12309 – volume: 176 year: 2006 ident: B291 article-title: Deletion of TLR3 Alters the Pulmonary Immune Environment and Mucus Production During Respiratory Syncytial Virus Infection publication-title: J Immunol doi: 10.4049/jimmunol.176.3.1937 – volume: 10 year: 2009 ident: B85 article-title: Peli1 Facilitates TRIF-Dependent Toll-Like Receptor Signaling and Proinflammatory Cytokine Production publication-title: Nat Immunol doi: 10.1038/ni.1777 – volume: 41 year: 2013 ident: B312 article-title: Toll-Like Receptor 9 (TLR9) Gene Polymorphisms Associated With Increased Susceptibility of Human Papillomavirus-16 Infection in Patients With Cervical Cancer publication-title: J Int Med Res doi: 10.1177/0300060513483398 – volume: 72 year: 2013 ident: B272 article-title: TLR4 as Receptor for HMGB1 Induced Muscle Dysfunction in Myositis publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2012-202207 – volume: 17 start-page: 98 year: 2021 ident: B262 article-title: Toll-Like Receptor Signalling in B Cells During Systemic Lupus Erythematosus publication-title: Nat Rev Rheumatol doi: 10.1038/s41584-020-00544-4 – volume: 303 year: 2004 ident: B326 article-title: Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA publication-title: Science doi: 10.1126/science.1093616 – volume: 111 year: 2014 ident: B78 article-title: IKK Beta is an IRF5 Kinase That Instigates Inflammation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1418516111 – volume: 91 year: 1997 ident: B22 article-title: Innate Immunity: The Virtues of a Nonclonal System of Recognition publication-title: Cell doi: 10.1016/S0092-8674(00)80412-2 – volume: 29 start-page: 959 year: 2021 ident: B73 article-title: Microbiota Regulate Innate Immune Signaling and Protective Immunity Against Cancer publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.03.016 – volume: 140 year: 2010 ident: B1 article-title: Pattern Recognition Receptors and Inflammation publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 204 year: 2007 ident: B191 article-title: Deubiquitinating Enzyme CYLD Negatively Regulates the Ubiquitin-Dependent Kinase Tak1 and Prevents Abnormal T Cell Responses publication-title: J Exp Med doi: 10.1084/jem.20062694 – volume: 186 start-page: 994 year: 2011 ident: B200 article-title: NLRC5 Deficiency Does Not Influence Cytokine Induction by Virus and Bacteria Infections publication-title: J Immunol doi: 10.4049/jimmunol.1002094 – volume: 288 year: 2000 ident: B100 article-title: Transport of Peptide-MHC Class II Complexes in Developing Dendritic Cells publication-title: Science doi: 10.1126/science.288.5465.522 – volume: 174 year: 2005 ident: B156 article-title: Recognition of a New ARTC1 Peptide Ligand Uniquely Expressed in Tumor Cells by Antigen-Specific CD4(+) Regulatory T Cells publication-title: J Immunol doi: 10.4049/jimmunol.174.5.2661 – volume: 1143 start-page: 1 year: 2008 ident: B77 article-title: Toll-Like Receptor and RIG-1-Like Receptor Signaling publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1443.020 – volume: 7 year: 2006 ident: B192 article-title: Regulation of T Cell Development by the Deubiquitinating Enzyme CYLD publication-title: Nat Immunol doi: 10.1038/ni1315 – volume: 2 year: 2001 ident: B28 article-title: TIRAP: An Adapter Molecule in the Toll Signaling Pathway publication-title: Nat Immunol doi: 10.1038/ni0901-835 – volume: 31 year: 2013 ident: B116 article-title: The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-020711-074950 – volume: 10 year: 2014 ident: B173 article-title: Mechanisms and Pathways of Innate Immune Activation and Regulation in Health and Cancer publication-title: Hum Vaccines Immunother doi: 10.4161/21645515.2014.979640 – volume: 392 year: 1998 ident: B91 article-title: Dendritic Cells and the Control of Immunity publication-title: Nature doi: 10.1038/32588 – volume: 11 start-page: 20169 year: 2021 ident: B254 article-title: Association of TLR 9 Gene Polymorphisms With Remission in Patients With Rheumatoid Arthritis Receiving TNF-Alpha Inhibitors and Development of Machine Learning Models publication-title: Sci Rep doi: 10.1038/s41598-021-99625-x – volume: 2019 year: 2019 ident: B141 article-title: TLR7 Modulated T Cell Response in the Mesenteric Lymph Node of Schistosoma Japonicum-Infected C57BL/6 Mice publication-title: J Immunol Res doi: 10.1155/2019/2691808 – volume: 101 year: 2004 ident: B123 article-title: TLR2 is Expressed on Activated T Cells as a Costimulatory Receptor publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0400171101 – volume: 197 year: 2003 ident: B171 article-title: Regulatory T Cells Selectively Express Toll-Like Receptors and are Activated by Lipopolysaccharide publication-title: J Exp Med doi: 10.1084/jem.20021633 – volume: 33 year: 2003 ident: B114 article-title: Toll-Like Receptor Expression in Murine DC Subsets: Lack of TLR7 Expression by CD8 Alpha(+) DC Correlates With Unresponsiveness to Imidazoquinolines publication-title: Eur J Immunol doi: 10.1002/eji.200323797 – volume: 10 start-page: 744 year: 2009 ident: B195 article-title: The E3 Ubiquitin Ligase Nrdp1 ’Preferentially’ Promotes TLR-Mediated Production of Type I Interferon publication-title: Nat Immunol doi: 10.1038/ni.1742 – volume: 14 year: 2014 ident: B36 article-title: SMOCs: Supramolecular Organizing Centres That Control Innate Immunity publication-title: Nat Rev Immunol doi: 10.1038/nri3757 – volume: 9 start-page: 2366 year: 2019 ident: B329 article-title: Intranasal and Epicutaneous Administration of Toll-Like Receptor 7 (TLR7) Agonists Provides Protection Against Influenza A Virus-Induced Morbidity in Mice publication-title: Sci Rep doi: 10.1038/s41598-019-38864-5 – volume: 2 start-page: e231 year: 2008 ident: B279 article-title: Human TLR1 Deficiency Is Associated With Impaired Mycobacterial Signaling and Protection From Leprosy Reversal Reaction publication-title: PloS Negl Trop Dis doi: 10.1371/journal.pntd.0000231 – volume: 426 year: 2014 ident: B311 article-title: Recognition of Herpes Simplex Viruses: Toll-Like Receptors and Beyond publication-title: J Mol Biol doi: 10.1016/j.jmb.2013.11.012 – volume: 5 year: 2014 ident: B6 article-title: Toll-Like Receptor Signaling Pathways publication-title: Front Immunol doi: 10.3389/fimmu.2014.00461 – volume: 352 year: 2017 ident: B300 article-title: TLR-4/miRNA-32-5p/FSTL1 Signaling Regulates Mycobacterial Survival and Inflammatory Responses in Mycobacterium Tuberculosis-Infected Macrophages publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2017.02.025 – volume: 6 year: 2005 ident: B64 article-title: Essential Function for the Kinase TAK1 in Innate and Adaptive Immune Responses publication-title: Nat Immunol doi: 10.1038/ni1255 – volume: 116 year: 2006 ident: B166 article-title: Toll-Like Receptor 2 Controls Expansion and Function of Regulatory T Cells publication-title: J Clin Invest doi: 10.1172/jci25439 – volume: 301 year: 2003 ident: B81 article-title: Role of Adaptor TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway publication-title: Science doi: 10.1126/science.1087262 – volume: 2021 year: 2021 ident: B333 article-title: Toll-Like Receptors: General Molecular and Structural Biology publication-title: J Immunol Res doi: 10.1155/2021/9914854 – volume: 10 year: 2013 ident: B19 article-title: TLR Signaling in B-Cell Development and Activation publication-title: Cell Mol Immunol doi: 10.1038/cmi.2012.61 – volume: 207 year: 2010 ident: B175 article-title: CD14 is a Coreceptor of Toll-Like Receptors 7 and 9 publication-title: J Exp Med doi: 10.1084/jem.20101111 – volume: 4 year: 2003 ident: B82 article-title: Upregulation of Costimulatory Molecules Induced by Lipopolysaccharide and Double-Stranded RNA Occurs by Trif-Dependent and Trif-Independent Pathways publication-title: Nat Immunol doi: 10.1038/ni1010 – volume: 112 year: 2003 ident: B148 article-title: Induction of FoxP3 and Acquisition of T Regulatory Activity by Stimulated Human CD4(+)CD25(-) T Cells publication-title: J Clin Invest doi: 10.1172/jci200319441 – volume: 141 year: 2010 ident: B202 article-title: NLRC5 Negatively Regulates the NF-Kappa B and Type I Interferon Signaling Pathways publication-title: Cell doi: 10.1016/j.cell.2010.03.040 – volume: 64 year: 2012 ident: B273 article-title: Immature Muscle Precursors are a Source of Interferon-Beta in Myositis: Role of Toll-Like Receptor 3 Activation and Contribution to HLA Class I Up-Regulation publication-title: Arthritis Rheum doi: 10.1002/art.33350 – volume: 34 year: 2014 ident: B58 article-title: Mechanism Underlying IkappaB Kinase Activation Mediated by the Linear Ubiquitin Chain Assembly Complex publication-title: Mol Cell Biol doi: 10.1128/MCB.01538-13 – volume: 110 start-page: 191 year: 2002 ident: B187 article-title: IRAK-M is a Negative Regulator of Toll-Like Receptor Signaling publication-title: Cell doi: 10.1016/s0092-8674(02)00827-9 – volume: 156 year: 2014 ident: B39 article-title: A Promiscuous Lipid-Binding Protein Diversifies the Subcellular Sites of Toll-Like Receptor Signal Transduction publication-title: Cell doi: 10.1016/j.cell.2014.01.019 – volume: 18 start-page: 135 year: 2020 ident: B315 article-title: Adenovirus Infection Promotes the Formation of Glioma Stem Cells From Glioblastoma Cells Through the TLR9/NEAT1/STAT3 Pathway publication-title: Cell Commun Signal doi: 10.1186/s12964-020-00598-7 – volume: 21 year: 2004 ident: B181 article-title: TRAIL-R as a Negative Regulator of Innate Immune Cell Responses publication-title: Immunity doi: 10.1016/j.immuni.2004.11.008 – volume: 47 year: 2015 ident: B244 article-title: Imiquimod - Its Role in the Treatment of Cutaneous Malignancies publication-title: Indian J Pharmacol doi: 10.4103/0253-7613.161249 – volume: 300 year: 2003 ident: B87 article-title: Triggering the Interferon Antiviral Response Through an IKK-Related Pathway publication-title: Science doi: 10.1126/science.1081315 – volume: 8 year: 2017 ident: B205 article-title: NLRP11 Attenuates Toll-Like Receptor Signalling by Targeting TRAF6 for Degradation via the Ubiquitin Ligase RNF19A publication-title: Nat Commun doi: 10.1038/s41467-017-02073-3 – volume: 87 year: 2019 ident: B295 article-title: Toll-Like Receptor 3-TRIF Pathway Activation by Neospora Caninum RNA Enhances Infection Control in Mice publication-title: Infect Immun doi: 10.1128/IAI.00739-18 – volume: 10 year: 2019 ident: B267 article-title: TLR7 Protein Expression in Mild and Severe Lupus-Prone Models Is Regulated in a Leukocyte, Genetic, and IRAK4 Dependent Manner publication-title: Front Immunol doi: 10.3389/fimmu.2019.01546 – volume: 165 year: 2000 ident: B177 article-title: Cutting Edge: Naturally Occurring Soluble Form of Mouse Toll-Like Receptor 4 Inhibits Lipopolysaccharide Signaling publication-title: J Immunol doi: 10.4049/jimmunol.165.12.6682 – volume: 1037 year: 2004 ident: B259 article-title: Association of the Polymorphism for Toll-Like Receptor 2 With Type 1 Diabetes Susceptibility publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1337.028 – volume: 193 start-page: 655 year: 2014 ident: B139 article-title: Regulatory T Cells Restrain CD4<sup<+</sup< T Cells From Causing Unregulated Immune Activation and Hypersensitivity to Lipopolysaccharide Challenge publication-title: J Immunol doi: 10.4049/jimmunol.1303064 – volume: 73 year: 2005 ident: B280 article-title: Mycobacterial Lipomannan Induces Matrix Metalloproteinase-9 Expression in Human Macrophagic Cells Through a Toll-Like Receptor 1 (TLR1)/TLR2- and CD14-Dependent Mechanism publication-title: Infect Immun doi: 10.1128/IAI.73.10.7064-7068.2005 – volume: 5 start-page: 495 year: 2004 ident: B207 article-title: Triad3A, an E3 Ubiquitin-Protein Ligase Regulating Toll-Like Receptors publication-title: Nat Immunol doi: 10.1038/ni1066 – volume: 68 year: 2016 ident: B270 article-title: Histone Demethylation and Toll-Like Receptor 8-Dependent Cross-Talk in Monocytes Promotes Transdifferentiation of Fibroblasts in Systemic Sclerosis Via Fra-2 publication-title: Arthritis Rheumatol doi: 10.1002/art.39602 – volume: 1 year: 2001 ident: B15 article-title: Toll-Like Receptors and Innate Immunity publication-title: Nat Rev Immunol doi: 10.1038/35100529 – volume: 19 year: 2007 ident: B157 article-title: Regulatory T Cells and Cancer publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2007.02.004 – volume: 35 year: 2015 ident: B246 article-title: Effect of Toll-Like Receptor 7 and 9 Targeted Therapy to Prevent the Development of Hepatocellular Carcinoma publication-title: Liver Int doi: 10.1111/liv.12626 – volume: 111 year: 2014 ident: B79 article-title: Protein Kinase IKK Beta-Catalyzed Phosphorylation of IRF5 at Ser462 Induces its Dimerization and Nuclear Translocation in Myeloid Cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1418399111 – volume: 424 year: 2003 ident: B193 article-title: CYLD Is a Deubiquitinating Enzyme That Negatively Regulates NF-Kappa B Activation by TNFR Family Members publication-title: Nature doi: 10.1038/nature01803 – volume: 101 year: 2004 ident: B179 article-title: Intestinal Inflammation in Mice Deficient in Tir8, an Inhibitory Member of the IL-1 Receptor Family publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0308680101 – volume: 21 start-page: 2 year: 2016 ident: B260 article-title: Toll-Like Receptor 2 and Type 2 Diabetes publication-title: Cell Mol Biol Lett doi: 10.1186/s11658-016-0002-4 – volume: 51 start-page: 91 year: 2012 ident: B314 article-title: Adenovirus Type 35, But Not Type 5, Stimulates NK Cell Activation via Plasmacytoid Dendritic Cells and TLR9 Signaling publication-title: Mol Immunol doi: 10.1016/j.molimm.2012.02.119 – volume: 10 year: 2019 ident: B221 article-title: The Role of TLRs in Anti-Cancer Immunity and Tumor Rejection publication-title: Front Immunol doi: 10.3389/fimmu.2019.02388 – volume: 4 year: 2003 ident: B88 article-title: IKK Epsilon and TBK1 are Essential Components of the IRF3 Signaling Pathway publication-title: Nat Immunol doi: 10.1038/ni921 – volume: 42 year: 1985 ident: B8 article-title: Establishment of Dorsal-Ventral Polarity in the Drosophila Embryo: Genetic Studies on the Role of the Toll Gene Product publication-title: Cell doi: 10.1016/0092-8674(85)90274-0 – volume: 12 year: 2002 ident: B185 article-title: Regulation of Interleukin-1-and Lipopolysaccharide-Induced NF-Kappa B Activation by Alternative Splicing of Myd88 publication-title: Curr Biol doi: 10.1016/s0960-9822(02)00712-1 – volume: 44 year: 2013 ident: B306 article-title: Expression and Activation of Intracellular Receptors TLR7, TLR8 and TLR9 in Peripheral Blood Monocytes From HIV-Infected Patients publication-title: Colomb Med (Cali) doi: 10.25100/cm.v44i2.1183 – volume: 27 year: 2008 ident: B121 article-title: Toll-Like Receptors and Immune Regulation: Implications for Cancer Therapy publication-title: Oncogene doi: 10.1038/sj.onc.1210906 – volume: 211 year: 2015 ident: B206 article-title: Reversible Ubiquitination Shapes NLRC5 Function and Modulates NF-κb Activation Switch publication-title: J Cell Biol doi: 10.1083/jcb.201505091 – volume: 192 year: 2014 ident: B109 article-title: Differential Ability of Surface and Endosomal TLRs to Induce CD8 T Cell Responses In Vivo publication-title: J Immunol (Baltimore Md 1950) doi: 10.4049/jimmunol.1302244 – volume: 272 year: 2012 ident: B104 article-title: Deficiency in TLR2 But Not in TLR4 Impairs Dendritic Cells Derived IL-10 Responses to Schistosome Antigens publication-title: Cell Immunol doi: 10.1016/j.cellimm.2011.10.007 – volume: 8 year: 2013 ident: B307 article-title: TLR7/TLR8 Activation Restores Defective Cytokine Secretion by Myeloid Dendritic Cells But Not by Plasmacytoid Dendritic Cells in HIV-Infected Pregnant Women and Newborns publication-title: PloS One doi: 10.1371/journal.pone.0067036 – volume: 5 year: 2014 ident: B17 article-title: TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens publication-title: Front Immunol doi: 10.3389/fimmu.2014.00386 – volume: 105 year: 2020 ident: B133 article-title: Myeloid Differentiation Factor 88 Signaling in Donor T Cells Accelerates Graft-Versus-Host Disease publication-title: Haematologica doi: 10.3324/haematol.2018.203380 – volume: 388 year: 1997 ident: B10 article-title: A Human Homologue of the Drosophila Toll Protein Signals Activation of Adaptive Immunity publication-title: Nature doi: 10.1038/41131 – volume: 64 year: 2016 ident: B215 article-title: TRIM14 Inhibits cGAS Degradation Mediated by Selective Autophagy Receptor P62 to Promote Innate Immune Responses publication-title: Mol Cell doi: 10.1016/j.molcel.2016.08.025 – volume: 14 year: 2013 ident: B44 article-title: Molecular Control of the NEMO Family of Ubiquitin-Binding Proteins publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3644 – volume: 29 start-page: 92 year: 2010 ident: B227 article-title: Reduced Expression of Toll-Like Receptor 4 Inhibits Human Breast Cancer Cells Proliferation and Inflammatory Cytokines Secretion publication-title: J Exp Clin Cancer Res doi: 10.1186/1756-9966-29-92 – volume: 8 year: 2017 ident: B105 article-title: The Novel Toll-Like Receptor 2 Agonist SUP3 Enhances Antigen Presentation and T Cell Activation by Dendritic Cells publication-title: Front Immunol doi: 10.3389/fimmu.2017.00158 – volume: 303 year: 2004 ident: B161 article-title: Species-Specific Recognition of Single-Stranded RNA via Toll-Like Receptor 7 and 8 publication-title: Science doi: 10.1126/science.1093620 – volume: 317 year: 2007 ident: B231 article-title: Gender Disparity in Liver Cancer Due to Sex Differences in MyD88-Dependent IL-6 Production publication-title: Science doi: 10.1126/science.1140485 – volume: 61 year: 2001 ident: B155 article-title: Regulatory CD4(+)CD25(+) T Cells in Tumors From Patients With Early-Stage non-Small Cell Lung Cancer and Late-Stage Ovarian Cancer publication-title: Cancer Res – volume: 95 year: 2021 ident: B299 article-title: TLR4 Regulates Rabies Virus-Induced Humoral Immunity Through Recruitment of cDC2 to Lymph Organs publication-title: J Virol doi: 10.1128/JVI.00829-21 – volume: 465 year: 2010 ident: B37 article-title: Helical Assembly in the MyD88-IRAK4-IRAK2 Complex in TLR/IL-1R Signalling publication-title: Nature doi: 10.1038/nature09121 – volume: 222 start-page: 89 year: 2017 ident: B220 article-title: Toll-Like Receptor Stimulation in Cancer: A Pro- and Anti-Tumor Double-Edged Sword publication-title: Immunobiology doi: 10.1016/j.imbio.2016.06.009 – volume: 172 year: 2004 ident: B165 article-title: Toll-Like Receptor 2 Suppresses Immunity Against Candida Albicans Through Induction of IL-10 and Regulatory T Cells publication-title: J Immunol doi: 10.4049/jimmunol.172.6.3712 – volume: 175 year: 2005 ident: B170 article-title: Human CD4(+) T Cells Express TLR5 and its Ligand Flagellin Enhances the Suppressive Capacity and Expression of FOXP3 in CD4(+)CD25(+) T Regulatory Cells publication-title: J Immunol doi: 10.4049/jimmunol.175.12.8051 – volume: 33 year: 2010 ident: B268 article-title: Human CD14dim Monocytes Patrol and Sense Nucleic Acids and Viruses via TLR7 and TLR8 Receptors publication-title: Immunity doi: 10.1016/j.immuni.2010.08.012 – volume: 99 year: 2002 ident: B41 article-title: IRAK-4: A Novel Member of the IRAK Family With the Properties of an IRAK-Kinase publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.082100399 – volume: 71 year: 2011 ident: B242 article-title: LPS-Induced TLR4 Signaling in Human Colorectal Cancer Cells Increases β1 Integrin-Mediated Cell Adhesion and Liver Metastasis publication-title: J Cancer Res doi: 10.1158/0008-5472.CAN-10-2833 – volume: 22 year: 2021 ident: B283 article-title: TLR2 Senses the SARS-CoV-2 Envelope Protein to Produce Inflammatory Cytokines publication-title: Nat Immunol doi: 10.1038/s41590-021-00937-x – volume: 16 year: 2020 ident: B282 article-title: TLR2 and Endosomal TLR-Mediated Secretion of IL-10 and Immune Suppression in Response to Phagosome-Confined Listeria Monocytogenes publication-title: PloS Pathog doi: 10.1371/journal.ppat.1008622 – volume: 7 year: 2006 ident: B68 article-title: The Kinase TAK1 Integrates Antigen and Cytokine Receptor Signaling for T Cell Development, Survival and Function publication-title: Nat Immunol doi: 10.1038/ni1355 – volume: 31 year: 2020 ident: B304 article-title: TLR7 Sensing by Neutrophils Is Critical for the Control of Cutaneous Leishmaniasis publication-title: Cell Rep doi: 10.1016/j.celrep.2020.107746 – volume: 10 year: 2019 ident: B13 article-title: TLR10 Senses HIV-1 Proteins and Significantly Enhances HIV-1 Infection publication-title: Front Immunol doi: 10.3389/fimmu.2019.00482 – volume: 34 year: 2011 ident: B199 article-title: NLRX1 Negatively Regulates TLR-Induced NF-Kappa B Signaling by Targeting TRAF6 and IKK publication-title: Immunity doi: 10.1016/j.immuni.2011.02.022 – volume: 179 start-page: 41 year: 2007 ident: B137 article-title: Cutting Edge: T Cells Respond to Lipopolysaccharide Innately via TLR4 Signaling publication-title: J Immunol doi: 10.4049/jimmunol.179.1.41 – volume: 30 year: 2021 ident: B332 article-title: Structural and Functional Understanding of the Toll-Like Receptors publication-title: Protein Sci doi: 10.1002/pro.4043 – volume: 266 year: 2015 ident: B62 article-title: Roles of Linear Ubiquitinylation, a Crucial Regulator of NF-κb and Cell Death, in the Immune System publication-title: Immunol Rev doi: 10.1111/imr.12308 – volume: 225 year: 2021 ident: B308 article-title: Antiviral Response Induced by TLR7/TLR8 Activation Inhibits HIV-1 Infection in Cord Blood Macrophages publication-title: J Infect Dis doi: 10.1093/infdis/jiab389 – volume: 11 year: 2015 ident: B302 article-title: Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection publication-title: PloS Pathog doi: 10.1371/journal.ppat.1005053 – volume: 110 year: 2013 ident: B134 article-title: MyD88 is Essential to Sustain mTOR Activation Necessary to Promote T Helper 17 Cell Proliferation by Linking IL-1 and IL-23 Signaling publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1206048110 – volume: 7 start-page: 2002680 year: 2020 ident: B213 article-title: USP38 Couples Histone Ubiquitination and Methylation via KDM5B to Resolve Inflammation publication-title: Adv Sci (Weinheim Baden-Wurttemberg Germany) doi: 10.1002/advs.202002680 – volume: 282 year: 2007 ident: B48 article-title: Site-Specific Lys-63-Linked Tumor Necrosis Factor Receptor-Associated Factor 6 Auto-Ubiquitination is a Critical Determinant of I Kappa B Kinase Activation publication-title: J Biol Chem doi: 10.1074/jbc.M609503200 – volume: 36 start-page: 43 year: 2012 ident: B69 article-title: TAK1 Negatively Regulates NF-Kappa B and P38 MAP Kinase Activation in Gr-1(+)CD11b(+) Neutrophils publication-title: Immunity doi: 10.1016/j.immuni.2011.12.010 – volume: 309 year: 2005 ident: B160 article-title: Toll-Like, Receptor 8-Mediated Reversal of CD4(+) Regulatory T Cell Function publication-title: Science doi: 10.1126/science.1113401 – volume: 103 year: 2006 ident: B167 article-title: Toll-Like Receptor 2 Signaling Modulates the Functions of CD4+ CD25+ Regulatory T Cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0601554103 – volume: 7 year: 2017 ident: B211 article-title: LRRC25 Functions as an Inhibitor of NF-κb Signaling Pathway by Promoting P65/RelA for Autophagic Degradation publication-title: Sci Rep doi: 10.1038/s41598-017-12573-3 – volume: 109 year: 2012 ident: B135 article-title: Toll-Like Receptor 4 Signaling in T Cells Promotes Autoimmune Inflammation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1120585109 – volume: 5 year: 2004 ident: B189 article-title: The Ubiquitin-Modifying Enzyme A20 is Required for Termination of Toll-Like Receptor Responses publication-title: Nat Immunol doi: 10.1038/ni1110 – volume: 64 year: 2016 ident: B214 article-title: USP38 Inhibits Type I Interferon Signaling by Editing TBK1 Ubiquitination Through NLRP4 Signalosome publication-title: Mol Cell doi: 10.1016/j.molcel.2016.08.029 – volume: 121 year: 2020 ident: B241 article-title: The Anticancer Effect of the TLR4 Inhibition Using TAK-242 (Resatorvid) Either as a Single Agent or in Combination With Chemotherapy: A Novel Therapeutic Potential for Breast Cancer publication-title: J Cell Biochem doi: 10.1002/jcb.29397 – volume: 13 year: 2012 ident: B197 article-title: The Innate Immune Sensor NLRC3 Attenuates Toll-Like Receptor Signaling via Modification of the Signaling Adaptor TRAF6 and Transcription Factor NF-Kappa B publication-title: Nat Immunol doi: 10.1038/ni.2378 – volume: 49 year: 2009 ident: B292 article-title: Upregulation of TLR7 and TLR3 Gene Expression in the Lung of Respiratory Syncytial Virus Infected Mice publication-title: Wei Sheng Wu Xue Bao – volume: 29 year: 2010 ident: B190 article-title: Regulation of Natural Killer T-Cell Development by Deubiquitinase CYLD publication-title: EMBO J doi: 10.1038/emboj.2010.31 – volume: 5 year: 2005 ident: B236 article-title: Antitumour Effect of OM-174 and Cyclophosphamide on Murine B16 Melanoma in Different Experimental Conditions publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2005.02.013 – volume: 128 year: 2018 ident: B289 article-title: TLR3 Agonist and CD40-Targeting Vaccination Induces Immune Responses and Reduces HIV-1 Reservoirs publication-title: J Clin Invest doi: 10.1172/JCI99005 – volume: 8 start-page: 814 year: 2017 ident: B50 article-title: Oligomerization-Primed Coiled-Coil Domain Interaction With Ubc13 Confers Processivity to TRAF6 Ubiquitin Ligase Activity publication-title: Nat Commun doi: 10.1038/s41467-017-01290-0 – volume: 190 year: 2013 ident: B131 article-title: MyD88 Signaling in CD4 T Cells Promotes IFN-γ Production and Hematopoietic Progenitor Cell Expansion in Response to Intracellular Bacterial Infection publication-title: J Immunol (Baltimore Md 1950) doi: 10.4049/jimmunol.1203024 – volume: 169 year: 2002 ident: B323 article-title: Cutting Edge: Toll-Like Receptor (TLR)2- and TLR4-Mediated Pathogen Recognition in Resistance to Airborne Infection With Mycobacterium Tuberculosis publication-title: J Immunol doi: 10.4049/jimmunol.169.7.3480 – volume: 8 start-page: A146 year: 2020 ident: B223 article-title: 245 Human TLR8 Knock-in Mice Potentiate Immunotherapy Responses of MC38 Syngeneic Tumors publication-title: J Immunother Cancer doi: 10.1136/jitc-2020-SITC2020.0245 – volume: 113 year: 2009 ident: B65 article-title: A Critical Role of TAK1 in B-Cell Receptor–Mediated Nuclear Factor κb Activation publication-title: Blood doi: 10.1182/blood-2008-08-176057 – volume: 57 year: 2013 ident: B222 article-title: Loss of Immunity-Supported Senescence Enhances Susceptibility to Hepatocellular Carcinogenesis and Progression in Toll-Like Receptor 2-Deficient Mice publication-title: Hepatology doi: 10.1002/hep.25991 – volume: 168 start-page: 4531 year: 2002 ident: B110 article-title: Quantitative Expression of Toll-Like Receptor 1–10 mRNA in Cellular Subsets of Human Peripheral Blood Mononuclear Cells and Sensitivity to CpG Oligodeoxynucleotides publication-title: J Immunol doi: 10.4049/jimmunol.168.9.4531 – volume: 27 year: 2007 ident: B158 article-title: Tumor-Infiltrating Gamma Delta T Cells Suppress T and Dendritic Cell Function via Mechanisms Controlled by a Unique Toll-Like Receptor Signaling Pathway publication-title: Immunity doi: 10.1016/j.immuni.2007.05.020 – volume: 197 year: 2003 ident: B184 article-title: Inhibition of Interleukin 1 Receptor/Toll-Like Receptor Signaling Through the Alternatively Spliced, Short Form of MyD88 is Due to its Failure to Recruit IRAK-4 publication-title: J Exp Med doi: 10.1084/jem.20021790 – volume: 10 year: 2020 ident: B163 article-title: Ovarian Cancer Cells Promote Glycolysis Metabolism and TLR8-Mediated Metabolic Control of Human CD4+ T Cells publication-title: Front Oncol doi: 10.3389/fonc.2020.570899 – volume: 6 year: 2013 ident: B317 article-title: TLR1-Induced Chemokine Production is Critical for Mucosal Immunity Against Yersinia Enterocolitica publication-title: Mucosal Immunol doi: 10.1038/mi.2013.5 – volume: 314 start-page: 997 year: 2006 ident: B327 article-title: RIG-I-Mediated Antiviral Responses to Single-Stranded RNA Bearing 5’-Phosphates publication-title: Science doi: 10.1126/science.1132998 – volume: 440 year: 2006 ident: B94 article-title: IκB Kinase-α is Critical for Interferon-α Production Induced by Toll-Like Receptors 7 and 9 publication-title: Nature doi: 10.1038/nature04641 – volume: 69 year: 2010 ident: B263 article-title: Association of TLR7 Copy Number Variation With Susceptibility to Childhood-Onset Systemic Lupus Erythematosus in Mexican Population publication-title: Ann Rheum Dis doi: 10.1136/ard.2009.124313 – volume: 68 start-page: 293 year: 2017 ident: B217 article-title: Assembly of the WHIP-TRIM14-PPP6C Mitochondrial Complex Promotes RIG-I-Mediated Antiviral Signaling publication-title: Mol Cell doi: 10.1016/j.molcel.2017.09.035 – volume: 166 start-page: 249 year: 2001 ident: B113 article-title: Regulation of Toll-Like Receptors in Human Monocytes and Dendritic Cells publication-title: J Immunol doi: 10.4049/jimmunol.166.1.249 – volume: 32 year: 2010 ident: B25 article-title: Intracellular Toll-Like Receptors publication-title: Immunity doi: 10.1016/j.immuni.2010.03.012 – volume: 11 year: 2009 ident: B57 article-title: Involvement of Linear Polyubiquitylation of NEMO in NF-κb Activation publication-title: Nat Cell Biol doi: 10.1038/ncb1821 – volume: 170 year: 2007 ident: B275 article-title: The Toll-Like Receptor Adaptor Proteins MyD88 and Mal/TIRAP Contribute to the Inflammatory and Destructive Processes in a Human Model of Rheumatoid Arthritis publication-title: Am J Pathol doi: 10.2353/ajpath.2007.060657 – volume: 434 year: 2005 ident: B75 article-title: IRF-7 is the Master Regulator of Type-I Interferon-Dependent Immune Responses publication-title: Nature doi: 10.1038/nature03464 – volume: 327 year: 2010 ident: B188 article-title: Inhibition of NF-Kappa B Signaling by A20 Through Disruption of Ubiquitin Enzyme Complexes publication-title: Science doi: 10.1126/science.1182364 – volume: 179 start-page: 1264 year: 2019 ident: B310 article-title: TLR8 Is a Sensor of RNase T2 Degradation Products publication-title: Cell doi: 10.1016/j.cell.2019.11.001 – volume: 197 start-page: 68 year: 2016 ident: B126 article-title: Direct TLR-2 Costimulation Unmasks the Proinflammatory Potential of Neonatal CD4(+) T Cells publication-title: J Immunol doi: 10.4049/jimmunol.1501297 – volume: 9 year: 2008 ident: B31 article-title: TRAM Couples Endocytosis of Toll-Like Receptor 4 to the Induction of Interferon-Beta publication-title: Nat Immunol doi: 10.1038/ni1569 – volume: 113 start-page: E3403 year: 2016 ident: B90 article-title: Structural Basis for Concerted Recruitment and Activation of IRF-3 by Innate Immune Adaptor Proteins publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1603269113 – volume: 186 year: 2011 ident: B224 article-title: TLR1/TLR2 Agonist Induces Tumor Regression by Reciprocal Modulation of Effector and Regulatory T Cells publication-title: J Immunol doi: 10.4049/jimmunol.1002320 – volume: 17 year: 2002 ident: B183 article-title: SOCS1/JAB is a Negative Regulator of LPS-Induced Macrophage Activation publication-title: Immunity doi: 10.1016/s1074-7613(02)00446-6 – volume: 5 year: 2005 ident: B172 article-title: Negative Regulation of Toll-Like Receptor-Mediated Immune Responses publication-title: Nat Rev Immunol doi: 10.1038/nri1630 – volume: 2017 year: 2017 ident: B250 article-title: The Role of Toll-Like Receptors in Autoimmune Diseases Through Failure of the Self-Recognition Mechanism publication-title: Int J Inflam doi: 10.1155/2017/8391230 – volume: 13 start-page: 142 year: 2021 ident: B335 article-title: TLR Agonists as Vaccine Adjuvants Targeting Cancer and Infectious Diseases publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13020142 – volume: 136 year: 2009 ident: B56 article-title: Specific Recognition of Linear Ubiquitin Chains by NEMO is Important for NF-kappaB Activation publication-title: Cell doi: 10.1016/j.cell.2009.03.007 – volume: 34 year: 2013 ident: B72 article-title: Cell Type-Specific Function of TAK1 in Innate Immune Signaling publication-title: Trends Immunol doi: 10.1016/j.it.2013.03.007 – volume: 29 start-page: 103 year: 2019 ident: B162 article-title: TLR8-Mediated Metabolic Control of Human Treg Function: A Mechanistic Target for Cancer Immunotherapy publication-title: Cell Metab doi: 10.1016/j.cmet.2018.09.020 – volume: 2 year: 2014 ident: B239 article-title: Therapeutic in Situ Autovaccination Against Solid Cancers With Intratumoral Poly-ICLC: Case Report, Hypothesis, and Clinical Trial publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-14-0024 – volume: 10 year: 2019 ident: B142 article-title: Toll-Like Receptor 7 Activation Enhances CD8+ T Cell Effector Functions by Promoting Cellular Glycolysis publication-title: Front Immunol doi: 10.3389/fimmu.2019.02191 – volume: 116 year: 1976 ident: B237 article-title: Intracavitary Bacillus Calmette-Guerin in the Treatment of Superficial Bladder Tumors publication-title: J Urol doi: 10.1016/s0022-5347(17)58737-6 – volume: 119 year: 2009 ident: B169 article-title: Ligation of TLR9 Induced on Human IL-10-Secreting Tregs by 1alpha,25-Dihydroxyvitamin D3 Abrogates Regulatory Function publication-title: J Clin Invest doi: 10.1172/JCI32354 – volume: 16 start-page: 55 year: 2004 ident: B286 article-title: Polyriboinosinic Polyribocytidylic Acid [Poly(I:C)]/TLR3 Signaling Allows Class I Processing of Exogenous Protein and Induction of HIV-Specific CD8+ Cytotoxic T Lymphocytes publication-title: Int Immunol doi: 10.1093/intimm/dxh025 – volume: 182 year: 2009 ident: B130 article-title: TLR2 Engagement on CD8 T Cells Enables Generation of Functional Memory Cells in Response to a Suboptimal TCR Signal publication-title: J Immunol doi: 10.4049/jimmunol.0801167 – volume: 103 year: 2006 ident: B32 article-title: The Myristoylation of TRIF-Related Adaptor Molecule Is Essential for Toll-Like Receptor 4 Signal Transduction publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0510041103 – volume: 88 year: 2014 ident: B294 article-title: Respiratory Syncytial Virus Infection, TLR3 Ligands, and Proinflammatory Cytokines Induce CD161 Ligand LLT1 Expression on the Respiratory Epithelium publication-title: J Virol doi: 10.1128/JVI.02789-13 – volume: 154 year: 2013 ident: B59 article-title: Linear Ubiquitination-Mediated NF-κb Regulation and its Related Disorders publication-title: J Biochem doi: 10.1093/jb/mvt079 – volume: 16 start-page: 1 year: 2021 ident: B14 article-title: Regulation of the Nucleic Acid-Sensing Toll-Like Receptors publication-title: Nat Rev Immunol doi: 10.1038/s41577-021-00577-0 – volume: 7 start-page: 244 year: 2019 ident: B245 article-title: Intratumoral Immunotherapy With TLR7/8 Agonist MEDI9197 Modulates the Tumor Microenvironment Leading to Enhanced Activity When Combined With Other Immunotherapies publication-title: J Immunother Cancer doi: 10.1186/s40425-019-0724-8 – volume: 2 year: 2001 ident: B21 article-title: Toll-Like Receptors: Critical Proteins Linking Innate and Acquired Immunity publication-title: Nat Immunol doi: 10.1038/90609 – volume: 8 year: 2007 ident: B26 article-title: Ligand-Induced Conformational Changes Allosterically Activate Toll-Like Receptor 9 publication-title: Nat Immunol doi: 10.1038/ni1479 – volume: 424 year: 2003 ident: B194 article-title: The Tumour Suppressor CYLD Negatively Regulates NF-Kappa B Signalling by Deubiquitination publication-title: Nature doi: 10.1038/nature01802 – volume: 110 year: 2013 ident: B305 article-title: Efficient Influenza A Virus Replication in the Respiratory Tract Requires Signals From TLR7 and RIG-I publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1303275110 – volume: 68 year: 2009 ident: B252 article-title: Type I Interferons Might Form the Link Between Toll-Like Receptor (TLR) 3/7 and TLR4-Mediated Synovial Inflammation in Rheumatoid Arthritis (RA) publication-title: Ann Rheum Dis doi: 10.1136/ard.2007.086421 – volume: 4 year: 2003 ident: B149 article-title: An Essential Role for Scurfin in CD4(+)CD25(+) T Regulatory Cells publication-title: Nat Immunol doi: 10.1038/ni909 – volume: 158 year: 2014 ident: B97 article-title: TLR Signals Induce Phagosomal MHC-I Delivery From the Endosomal Recycling Compartment to Allow Cross-Presentation publication-title: Cell doi: 10.1016/j.cell.2014.04.054 – volume: 177 year: 2006 ident: B143 article-title: Human Effector CD8+ T Lymphocytes Express TLR3 as a Functional Coreceptor publication-title: J Immunol doi: 10.4049/jimmunol.177.12.8708 – volume: 9 year: 2018 ident: B101 article-title: Toll-Like Receptor 4 Triggering Promotes Cytosolic Routing of DC-SIGN-Targeted Antigens for Presentation on MHC Class I publication-title: Front Immunol doi: 10.3389/fimmu.2018.01231 – volume-title: Adv Immunol year: 2019 ident: B117 article-title: Models of Dendritic Cell Development Correlate Ontogeny With Function doi: 10.1016/bs.ai.2019.09.001 – volume: 20 year: 2008 ident: B46 article-title: IRAK1: A Critical Signaling Mediator of Innate Immunity publication-title: Cell Signal doi: 10.1016/j.cellsig.2007.08.009 – volume: 171 year: 2003 ident: B176 article-title: Soluble Forms of Toll-Like Receptor (TLR)2 Capable of Modulating TLR2 Signaling are Present in Human Plasma and Breast Milk publication-title: J Immunol doi: 10.4049/jimmunol.171.12.6680 – volume: 198 year: 2003 ident: B30 article-title: LPS-TLR4 Signaling to IRF-3/7 and NF-Kappa B Involves the Toll Adapters TRAM and TRIF publication-title: J Exp Med doi: 10.1084/jem.20031023 – volume: 4 year: 2003 ident: B29 article-title: TRAM is Specifically Involved in the Toll-Like Receptor 4-Mediated MyD88-Independent Signaling Pathway publication-title: Nat Immunol doi: 10.1038/ni986 – volume: 4 year: 2003 ident: B151 article-title: Foxp3 Programs the Development and Function of CD4(+)CD25(+) Regulatory T Cells publication-title: Nat Immunol doi: 10.1038/ni904 – volume: 7 year: 2007 ident: B34 article-title: The Family of Five: TIR-Domain-Containing Adaptors in Toll-Like Receptor Signalling publication-title: Nat Rev Immunol doi: 10.1038/nri2079 – volume: 10 year: 2020 ident: B146 article-title: Third-Generation Anti-CD19 Chimeric Antigen Receptor T-Cells Incorporating a TLR2 Domain for Relapsed or Refractory B-Cell Lymphoma: A Phase I Clinical Trial Protocol (ENABLE) publication-title: BMJ Open doi: 10.1136/bmjopen-2019-034629 – volume: 8 year: 2006 ident: B313 article-title: Adenovirus Efficiently Transduces Plasmacytoid Dendritic Cells Resulting in TLR9-Dependent Maturation and IFN-Alpha Production publication-title: J Gene Med doi: 10.1002/jgm.964 – volume: 2 year: 2001 ident: B92 article-title: Toll-Like Receptors Control Activation of Adaptive Immune Responses publication-title: Nat Immunol doi: 10.1038/ni712 – volume: 160 year: 2020 ident: B290 article-title: HIV Infection Suppresses TLR3 Activation-Mediated Antiviral Immunity in Microglia and Macrophages publication-title: Immunology doi: 10.1111/imm.13181 – volume: 280 year: 2005 ident: B83 article-title: Rip1 Mediates the Trif-Dependent Toll-Like Receptor 3- and 4-Induced NF-κB Activation But Does Not Contribute to Interferon Regulatory Factor 3 Activation* publication-title: J Biol Chem doi: 10.1074/jbc.M506831200 – volume: 32 year: 2018 ident: B145 article-title: Toll-Like Receptor 2 Costimulation Potentiates the Antitumor Efficacy of CAR T Cells publication-title: Leukemia doi: 10.1038/leu.2017.249 – volume: 139 year: 2021 ident: B284 article-title: Host Defense Against Neospora Caninum Infection via IL-12p40 Production Through TLR2/TLR3-AKT-ERK Signaling Pathway in C57BL/6 Mice publication-title: Mol Immunol doi: 10.1016/j.molimm.2021.08.019 – volume: 173 start-page: 2913 year: 2004 ident: B84 article-title: Cutting Edge: TNFR-Associated Factor (TRAF) 6 Is Essential for MyD88-Dependent Pathway But Not Toll/IL-1 Receptor Domain-Containing Adaptor-Inducing IFN-β (TRIF)-Dependent Pathway in TLR Signaling publication-title: J Immunol doi: 10.4049/jimmunol.173.5.2913 – volume: 76 year: 2011 ident: B274 article-title: Type I Interferon and Toll-Like Receptor Expression Characterizes Inflammatory Myopathies publication-title: Neurology doi: 10.1212/WNL.0b013e31821f440a – volume: 367 year: 2012 ident: B233 article-title: MYD88 L265P Somatic Mutation in Waldenström’s Macroglobulinemia publication-title: N Engl J Med doi: 10.1056/NEJMoa1200710 – volume: 31 start-page: 107249 year: 2020 ident: B108 article-title: TLR9 Sensing of Self-DNA Controls Cell-Mediated Immunity to Listeria Infection via Rapid Conversion of Conventional CD4+ T Cells to Treg publication-title: Cell Rep doi: 10.1016/j.celrep.2020.01.040 – volume: 22 year: 2001 ident: B120 article-title: The Role of MHC Class II-Restricted Tumor Antigens and CD4(+) T Cells in Antitumor Immunity publication-title: Trends Immunol doi: 10.1016/s1471-4906(01)01896-8 – volume: 347 year: 2015 ident: B89 article-title: Phosphorylation of Innate Immune Adaptor Proteins MAVS, STING, and TRIF Induces IRF3 Activation publication-title: Science doi: 10.1126/science.aaa2630 – volume: 147 year: 2011 ident: B174 article-title: CD14 Controls the LPS-Induced Endocytosis of Toll-Like Receptor 4 publication-title: Cell doi: 10.1016/j.cell.2011.09.051 – volume: 12 start-page: 177 year: 2014 ident: B322 article-title: The Regulatory Toll-Like Receptor 4 Genetic Polymorphism Rs11536889 is Associated With Renal, Coagulation and Hepatic Organ Failure in Sepsis Patients publication-title: J Transl Med doi: 10.1186/1479-5876-12-177 – volume: 178 year: 2007 ident: B124 article-title: Cutting Edge: TLR2 Directly Triggers Th1 Effector Functions publication-title: J Immunol doi: 10.4049/jimmunol.178.11.6715 – volume: 197 year: 2003 ident: B115 article-title: Flexibility of Mouse Classical and Plasmacytoid-Derived Dendritic Cells in Directing T Helper Type 1 and 2 Cell Development: Dependency on Antigen Dose and Differential Toll-Like Receptor Ligation publication-title: J Exp Med doi: 10.1084/jem.20021908 – volume: 150 year: 2014 ident: B234 article-title: High Frequency and Clinical Prognostic Value of MYD88 L265P Mutation in Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg-Type publication-title: JAMA Dermatol doi: 10.1001/jamadermatol.2014.821 – volume: 169 year: 2002 ident: B154 article-title: Prevalence of Regulatory T Cells is Increased in Peripheral Blood and Tumor Microenvironment of Patients With Pancreas or Breast Adenocarcinoma publication-title: J Immunol doi: 10.4049/jimmunol.169.5.2756 – volume: 225 year: 2021 ident: B119 article-title: Toll-Like Receptors in Adaptive Immunity publication-title: Handb Exp Pharmacol doi: 10.1007/164_2021_543 – volume: 31 year: 2021 ident: B320 article-title: SARS-CoV-2 Spike Protein Interacts With and Activates TLR41 publication-title: Cell Res doi: 10.1038/s41422-021-00495-9 – volume: 101 year: 2004 ident: B325 article-title: Recognition of Single-Stranded RNA Viruses by Toll-Like Receptor 7 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0400937101 – volume: 464 year: 2010 ident: B264 article-title: Origins and Functional Impact of Copy Number Variation in the Human Genome publication-title: Nature doi: 10.1038/nature08516 – volume: 169 year: 2002 ident: B324 article-title: Toll-Like Receptor 4 Expression is Required to Control Chronic Mycobacterium Tuberculosis Infection in Mice publication-title: J Immunol doi: 10.4049/jimmunol.169.6.3155 – volume: 488 year: 2012 ident: B198 article-title: NLRP6 Negatively Regulates Innate Immunity and Host Defence Against Bacterial Pathogens publication-title: Nature doi: 10.1038/nature11250 – volume: 13 start-page: 25 year: 2020 ident: B229 article-title: Toll-Like Receptor-6 Signaling Prevents Inflammation and Impacts Composition of the Microbiota During Inflammation-Induced Colorectal Cancer publication-title: Cancer Prev Res doi: 10.1158/1940-6207.CAPR-19-0286 – volume: 34 year: 2011 ident: B201 article-title: NLRX1 Protein Attenuates Inflammatory Responses to Infection by Interfering With the RIG-I-MAVS and TRAF6-NF-Kappa B Signaling Pathways publication-title: Immunity doi: 10.1016/j.immuni.2011.03.026 – volume: 4 year: 2003 ident: B180 article-title: SIGIRR, a Negative Regulator of Toll-Like Receptor-Interleukin 1 Receptor Signaling publication-title: Nat Immunol doi: 10.1038/ni968 – volume: 470 year: 2011 ident: B232 article-title: Oncogenically Active MYD88 Mutations in Human Lymphoma publication-title: Nature doi: 10.1038/nature09671 – volume: 24 year: 2015 ident: B255 article-title: Associations of Toll-Like Receptor (TLR)-4 Single Nucleotide Polymorphisms and Rheumatoid Arthritis Disease Progression: An Observational Cohort Study publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2014.12.030 – volume: 143 year: 2014 ident: B271 article-title: Serum Amyloid A Induces Interleukin-6 in Dermal Fibroblasts via Toll-Like Receptor 2, Interleukin-1 Receptor-Associated Kinase 4 and Nuclear Factor-Kappab publication-title: Immunology doi: 10.1111/imm.12260 – volume: 9 year: 2003 ident: B278 article-title: Mycobacterial Lipoarabinomannan Mediates Physical Interactions Between TLR1 and TLR2 to Induce Signaling publication-title: J Endotoxin Res doi: 10.1179/096805103225001477 – volume: 37 year: 2018 ident: B212 article-title: LRRC25 Inhibits Type I IFN Signaling by Targeting ISG15-Associated RIG-I for Autophagic Degradation publication-title: EMBO J doi: 10.15252/embj.201796781 – volume: 172 start-page: 3415 year: 2004 ident: B93 article-title: Myeloid Differentiation Factor 88 Is Required for Cross-Priming In Vivo publication-title: J Immunol doi: 10.4049/jimmunol.172.6.3415 – volume: 279 year: 2004 ident: B42 article-title: Sequential Autophosphorylation Steps in the Interleukin-1 Receptor-Associated Kinase-1 Regulate its Availability as an Adapter in Interleukin-1 Signaling publication-title: J Biol Chem doi: 10.1074/jbc.M309251200 – volume: 81 year: 2021 ident: B235 article-title: A MyD88/IL1R Axis Regulates PD-1 Expression on Tumor-Associated Macrophages and Sustains Their Immunosuppressive Function in Melanoma publication-title: J Cancer Res doi: 10.1158/0008-5472.CAN-20-3510 – volume: 46 year: 2009 ident: B125 article-title: Porin of Shigella Dysenteriae Directly Promotes Toll-Like Receptor 2-Mediated CD4(+) T Cell Survival and Effector Function publication-title: Mol Immunol doi: 10.1016/j.molimm.2009.06.006 – volume: 4 year: 2003 ident: B331 article-title: Subversion of the Innate Immune System by a Retrovirus publication-title: Nat Immunol doi: 10.1038/ni926 – volume: 284 year: 2009 ident: B38 article-title: An Oligomeric Signaling Platform Formed by the Toll-Like Receptor Signal Transducers MyD88 and IRAK-4 publication-title: J Biol Chem doi: 10.1074/jbc.M109.022392 – volume: 103 start-page: 11677 year: 2006 ident: B66 article-title: Essential Role of TAK1 in Thymocyte Development and Activation publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0603089103 – volume-title: Essentials of Medical Biochemistry year: 2011 ident: B20 article-title: Chapter 33 - Immunology – volume: 438 start-page: 1 year: 2018 ident: B238 article-title: IFN-Gamma Synergism With Poly I:C Reduces Growth of Murine and Human Cancer Cells With Simultaneous Changes in Cell Cycle and Immune Checkpoint Proteins publication-title: Cancer Lett doi: 10.1016/j.canlet.2018.09.003 – volume: 13 year: 2007 ident: B159 article-title: CD8+ Foxp3+ Regulatory T Cells Mediate Immunosuppression in Prostate Cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.ccr-07-0842 – year: 1725 ident: B219 article-title: Deux Dissertations Medecinales et Chirurgicales, L’une Sur La Maladie Venerienne, L’autre Sur La Nature & La Curation Des Tumeurs. Chez Charles Maurice d’Houry – volume: 9 start-page: 293 year: 2008 ident: B204 article-title: NLRX1 is a Mitochondrial NOD-Like Receptor That Amplifies NF-Kappa B and JNK Pathways by Inducing Reactive Oxygen Species Production publication-title: EMBO Rep doi: 10.1038/sj.embor.7401161 – volume: 44 year: 2007 ident: B226 article-title: TLR4 Signaling Promotes Immune Escape of Human Lung Cancer Cells by Inducing Immunosuppressive Cytokines and Apoptosis Resistance publication-title: Mol Immunol doi: 10.1016/j.molimm.2007.01.022 – volume: 39 start-page: 1361 year: 2021 ident: B240 article-title: Activating a Collaborative Innate-Adaptive Immune Response to Control Metastasis publication-title: Cancer Cell doi: 10.1016/j.ccell.2021.08.005 – volume: 413 start-page: 78 year: 2001 ident: B27 article-title: Mal (MyD88-Adapter-Like) Is Required for Toll-Like Receptor-4 Signal Transduction publication-title: Nature doi: 10.1038/35092578 – volume: 111 year: 2014 ident: B218 article-title: TRIM14 is a Mitochondrial Adaptor That Facilitates Retinoic Acid-Inducible Gene-I–like Receptor-Mediated Innate Immune Response publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1316941111 – volume: 210 year: 2013 ident: B277 article-title: RNA Recognition by Human TLR8 can Lead to Autoimmune Inflammation publication-title: J Exp Med doi: 10.1084/jem.20131044 – volume: 195 year: 2002 ident: B95 article-title: Interferon-α and Interleukin-12 Are Induced Differentially by Toll-Like Receptor 7 Ligands in Human Blood Dendritic Cell Subsets publication-title: J Exp Med doi: 10.1084/jem.20020207 – volume: 2 year: 2017 ident: B248 article-title: Combination Immunotherapy With TLR Agonists and Checkpoint Inhibitors Suppresses Head and Neck Cancer publication-title: JCI Insight doi: 10.1172/jci.insight.93397 – volume: 28 year: 2008 ident: B47 article-title: Lys63-Linked Polyubiquitination of IRAK-1 is Required for Interleukin-1 Receptor- and Toll-Like Receptor-Mediated NF-kappaB Activation publication-title: Mol Cell Biol doi: 10.1128/MCB.02098-07 – volume: 14 year: 2013 ident: B303 article-title: A TLR6 Polymorphism is Associated With Increased Risk of Legionnaires’ Disease publication-title: Genes Immun doi: 10.1038/gene.2013.34 – volume: 8 year: 2008 ident: B147 article-title: How Regulatory T Cells Work publication-title: Nat Rev Immunol doi: 10.1038/nri2343 – volume: 31 year: 2008 ident: B249 article-title: Immunization With Analog Peptide in Combination With CpG and Montanide Expands Tumor Antigen-Specific CD8+ T Cells in Melanoma Patients publication-title: J Immunother doi: 10.1097/CJI.0b013e318183af0b – volume: 317 year: 2007 ident: B285 article-title: TLR3 Deficiency in Patients With Herpes Simplex Encephalitis publication-title: Science doi: 10.1126/science.1139522 – volume: 178 year: 2007 ident: B318 article-title: Cutting Edge: A Common Polymorphism Impairs Cell Surface Trafficking and Functional Responses of TLR1 But Protects Against Leprosy publication-title: J Immunol doi: 10.4049/jimmunol.178.12.7520 – volume: 179 year: 2007 ident: B321 article-title: Association of TLR4 Polymorphisms With Symptomatic Respiratory Syncytial Virus Infection in High-Risk Infants and Young Children publication-title: J Immunol doi: 10.4049/jimmunol.179.5.3171 – volume: 20 year: 2020 ident: B12 article-title: TLR10 and Its Unique Anti-Inflammatory Properties and Potential Use as a Target in Therapeutics publication-title: Immune Netw doi: 10.4110/in.2020.20.e21 – volume: 50 year: 2004 ident: B251 article-title: Expression of Toll-Like Receptors 2 and 4 in Rheumatoid Synovial Tissue and Regulation by Proinflammatory Cytokines Interleukin-12 and Interleukin-18 via Interferon-Gamma publication-title: Arthritis Rheum doi: 10.1002/art.20678 – volume: 22 year: 2012 ident: B196 article-title: Enhanced TLR-Induced NF-Kappa B Signaling and Type I Interferon Responses in NLRC5 Deficient Mice publication-title: Cell Res doi: 10.1038/cr.2012.53 – volume: 113 year: 2016 ident: B243 article-title: Toll-Like Receptor-5 Agonist, Entolimod, Suppresses Metastasis and Induces Immunity by Stimulating an NK-Dendritic-CD8+ T-Cell Axis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1521359113 – volume: 7 year: 2012 ident: B70 article-title: Deletion of TAK1 in the Myeloid Lineage Results in the Spontaneous Development of Myelomonocytic Leukemia in Mice publication-title: PloS One doi: 10.1371/journal.pone.0051228 – volume: 184 year: 2010 ident: B71 article-title: Constitutive Association of TGF-β–Activated Kinase 1 With the IκB Kinase Complex in the Nucleus and Cytoplasm of Human Neutrophils and Its Impact on Downstream Processes publication-title: J Immunol doi: 10.4049/jimmunol.0902958 – volume: 11 year: 2014 ident: B258 article-title: The Role of Heat Shock Proteins in Atherosclerosis publication-title: Nat Rev Cardiol doi: 10.1038/nrcardio.2014.91 – volume: 21 year: 2011 ident: B5 article-title: NF-kappaB in Immunobiology publication-title: Cell Res doi: 10.1038/cr.2011.13 – volume: 199 year: 2017 ident: B102 article-title: TLR-Induced Murine Dendritic Cell (DC) Activation Requires DC-Intrinsic Complement publication-title: J Immunol doi: 10.4049/jimmunol.1700339 – volume: 1 start-page: 398 year: 2000 ident: B297 article-title: Pattern Recognition Receptors TLR4 and CD14 Mediate Response to Respiratory Syncytial Virus publication-title: Nat Immunol doi: 10.1038/80833 – volume: 6 year: 2016 ident: B298 article-title: Viperin Inhibits Rabies Virus Replication via Reduced Cholesterol and Sphingomyelin and is Regulated Upstream by TLR4 publication-title: Sci Rep doi: 10.1038/srep30529 – volume: 284 year: 1999 ident: B23 article-title: Phylogenetic Perspectives in Innate Immunity publication-title: Science doi: 10.1126/science.284.5418.1313 – volume: 209 year: 2012 ident: B316 article-title: A Specific Role for TLR1 in Protective T(H)17 Immunity During Mucosal Infection publication-title: J Exp Med doi: 10.1084/jem.20112339 – volume: 4 start-page: 211 year: 2013 ident: B138 article-title: Signaling via TLR2 and TLR4 Directly Down-Regulates T Cell Effector Functions: The Regulatory Face of Danger Signals publication-title: Front Immunol doi: 10.3389/fimmu.2013.00211 – volume: 461 year: 2009 ident: B51 article-title: Direct Activation of Protein Kinases by Unanchored Polyubiquitin Chains publication-title: Nature doi: 10.1038/nature08247 – volume: 10 year: 2019 ident: B266 article-title: High TLR7 Expression Drives the Expansion of CD19(+)CD24(hi)CD38(hi) Transitional B Cells and Autoantibody Production in SLE Patients publication-title: Front Immunol doi: 10.3389/fimmu.2019.01243 – volume: 41 start-page: 600 year: 2010 ident: B293 article-title: Activation of TLR3 Pathway in the Pathogenesis of Nephrotic Syndrome Induced by Respiratory Syncytial Virus in Rat Model publication-title: Sichuan Da Xue Xue Bao Yi Xue Ban – volume: 9 year: 2008 ident: B208 article-title: TRIM30 Alpha Negatively Regulates TLR-Mediated NF-Kappa B Activation by Targeting TAB2 and TAB3 for Degradation publication-title: Nat Immunol doi: 10.1038/ni1577 – volume: 451 year: 2008 ident: B209 article-title: NLRX1 is a Regulator of Mitochondrial Antiviral Immunity publication-title: Nature doi: 10.1038/nature06501 – volume: 33 year: 2014 ident: B253 article-title: Toll-Like Receptor (TLR)-3: A Potent Driving Force Behind Rheumatoid Arthritis publication-title: Clin Rheumatol doi: 10.1007/s10067-013-2418-9 – volume: 18 year: 2006 ident: B67 article-title: TAK1 is Indispensable for Development of T Cells and Prevention of Colitis by the Generation of Regulatory T Cells publication-title: Int Immunol doi: 10.1093/intimm/dxl082 – volume: 33 year: 2009 ident: B55 article-title: Structural Basis for Recognition of Diubiquitins by NEMO publication-title: Mol Cell doi: 10.1016/j.molcel.2009.01.012 – volume: 299 year: 2003 ident: B150 article-title: Control of Regulatory T Cell Development by the Transcription Factor Foxp3 publication-title: Science doi: 10.1126/science.1079490 – volume: 3 year: 2018 ident: B265 article-title: TLR7 Escapes X Chromosome Inactivation in Immune Cells publication-title: Sci Immunol doi: 10.1126/sciimmunol.aap8855 – volume: 7 start-page: 933 year: 2017 ident: B256 article-title: Direct Recognition of LPS Drive TLR4 Expressing CD8+ T Cell Activation in Patients With Rheumatoid Arthritis publication-title: Sci Rep doi: 10.1038/s41598-017-01033-7 – volume: 47 year: 2017 ident: B122 article-title: Toll Like Receptor 2 Engagement on CD4(+) T Cells Promotes TH9 Differentiation and Function publication-title: Eur J Immunol doi: 10.1002/eji.201646846 – volume: 271 year: 1996 ident: B40 article-title: IRAK: A Kinase Associated With the Interleukin-1 Receptor publication-title: Science doi: 10.1126/science.271.5252.1128 – volume: 194 year: 2001 ident: B112 article-title: Subsets of Human Dendritic Cell Precursors Express Different Toll-Like Receptors and Respond to Different Microbial Antigens publication-title: J Exp Med doi: 10.1084/jem.194.6.863 – volume: 9 year: 2014 ident: B228 article-title: Toll-Like Receptor 4 Prompts Human Breast Cancer Cells Invasiveness via Lipopolysaccharide Stimulation and is Overexpressed in Patients With Lymph Node Metastasis publication-title: PloS One doi: 10.1371/journal.pone.0109980 – volume: 195 year: 2019 ident: B132 article-title: Host MyD88 Signaling Protects Against Acute Graft-Versus-Host Disease After Allogeneic Bone Marrow Transplantation publication-title: Clin Exp Immunol doi: 10.1111/cei.13215 – volume: 11 year: 2017 ident: B301 article-title: A Nonsense Mutation in TLR5 is Associated With Survival and Reduced IL-10 and TNF-Alpha Levels in Human Melioidosis publication-title: PloS Negl Trop Dis doi: 10.1371/journal.pntd.0005587 – volume: 120 year: 2010 ident: B136 article-title: TLR4 Signaling in Effector CD4+ T Cells Regulates TCR Activation and Experimental Colitis in Mice publication-title: J Clin Invest doi: 10.1172/JCI40055 – volume: 317 year: 2007 ident: B230 article-title: Regulation of Spontaneous Intestinal Tumorigenesis Through the Adaptor Protein Myd88 publication-title: Science doi: 10.1126/science.1140488 – volume: 113 year: 2016 ident: B247 article-title: Intratumoral Injection of a CpG Oligonucleotide Reverts Resistance to PD-1 Blockade by Expanding Multifunctional CD8+ T Cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1608555113 – volume: 18 start-page: 561 year: 2018 ident: B330 article-title: Association of TLR8 and TLR9 Polymorphisms With Tuberculosis in a Chinese Han Population: A Case-Control Study publication-title: BMC Infect Dis doi: 10.1186/s12879-018-3485-y – volume: 180 year: 2020 ident: B35 article-title: Toll-Like Receptors and the Control of Immunity publication-title: Cell doi: 10.1016/j.cell.2020.02.041 – volume: 8 start-page: 7118 year: 2018 ident: B140 article-title: VIPER Regulates Naive T Cell Activation and Effector Responses: Implication in TLR4 Associated Acute Stage T Cell Responses publication-title: Sci Rep doi: 10.1038/s41598-018-25549-8 – volume: 3 year: 2002 ident: B164 article-title: Human TLR7 or TLR8 Independently Confer Responsiveness to the Antiviral Compound R-848 publication-title: Nat Immunol doi: 10.1038/ni0602-499 – volume: 116 year: 2006 ident: B276 article-title: Innate Immunity Mediated by TLR9 Modulates Pathogenicity in an Animal Model of Multiple Sclerosis publication-title: J Clin Invest doi: 10.1172/JCI26078 – volume: 9 year: 2019 ident: B144 article-title: Combined Adjuvant of Poly I:C Improves Antitumor Effects of CAR-T Cells publication-title: Front Oncol doi: 10.3389/fonc.2019.00241 – volume: 70 year: 2021 ident: B261 article-title: Toll-Like Receptor 2 (TLR2) Knockout Abrogates Diabetic and Obese Phenotypes While Restoring Endothelial Function via Inhibition of NOX1 publication-title: Diabetes doi: 10.2337/db20-0591 – volume: 108 year: 2007 ident: B168 article-title: CpG DNA Inhibits CD4+CD25+ Treg Suppression Through Direct MyD88-Dependent Costimulation of Effector CD4+ T Cells publication-title: Immunol Lett doi: 10.1016/j.imlet.2006.12.007 – volume: 125 year: 2006 ident: B33 article-title: Phosphoinositide-Mediated Adaptor Recruitment Controls Toll-Like Receptor Signaling publication-title: Cell doi: 10.1016/j.cell.2006.03.047 – volume: 458 year: 2009 ident: B54 article-title: Ubiquitylation in Innate and Adaptive Immunity publication-title: Nature doi: 10.1038/nature07959 – volume: 15 year: 2014 ident: B63 article-title: Linear Ubiquitin Chains: NF-κb Signalling, Cell Death and Beyond publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3836 – volume: 27 start-page: 11 year: 2017 ident: B334 article-title: Immune Targets and Neoantigens for Cancer Immunotherapy and Precision Medicine publication-title: Cell Res doi: 10.1038/cr.2016.155 – volume: 434 year: 2005 ident: B76 article-title: Integral Role of IRF-5 in the Gene Induction Programme Activated by Toll-Like Receptors publication-title: Nature doi: 10.1038/nature03308 – volume: 299 year: 2003 ident: B99 article-title: Activation of Lysosomal Function During Dendritic Cell Maturation publication-title: Science doi: 10.1126/science.1080106 – volume: 5 year: 2004 ident: B4 article-title: Toll-Like Receptor Control of the Adaptive Immune Responses publication-title: Nat Immunol doi: 10.1038/ni1112 – volume: 124 start-page: 783 year: 2006 ident: B2 article-title: Pathogen Recognition and Innate Immunity publication-title: Cell doi: 10.1016/j.cell.2006.02.015 – volume: 406 year: 2000 ident: B24 article-title: Toll-Like Receptors in the Induction of the Innate Immune Response publication-title: Nature doi: 10.1038/35021228 – volume: 11 year: 1999 ident: B96 article-title: The Role of Dendritic Cells in the Induction and Regulation of Immunity to Microbial Infection publication-title: Curr Opin Immunol doi: 10.1016/S0952-7915(99)80066-1 – volume: 54 year: 2014 ident: B3 article-title: The cGAS-cGAMP-STING Pathway of Cytosolic DNA Sensing and Signaling publication-title: Mol Cell doi: 10.1016/j.molcel.2014.03.040 – volume: 434 year: 2005 ident: B74 article-title: Spatiotemporal Regulation of MyD88–IRF-7 Signalling for Robust Type-I Interferon Induction publication-title: Nature doi: 10.1038/nature03547 – volume: 5 year: 2004 ident: B178 article-title: ST2 is an Inhibitor of Interleukin 1 Receptor and Toll-Like Receptor 4 Signaling and Maintains Endotoxin Tolerance publication-title: Nat Immunol doi: 10.1038/ni1050 – volume: 19 year: 2011 ident: B16 article-title: The Structural Biology of Toll-Like Receptors publication-title: Structure doi: 10.1016/j.str.2011.02.004 – volume: 17 year: 2002 ident: B182 article-title: SOCS-1 Participates in Negative Regulation of LPS Responses publication-title: Immunity doi: 10.1016/s1074-7613(02)00449-1 – volume: 302 year: 2012 ident: B257 article-title: Molecular Chaperones and Heat Shock Proteins in Atherosclerosis publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00646.2011 – volume: 20 start-page: 78 year: 2013 ident: B288 article-title: Association Between TLR3 Rs3775291 and Resistance to HIV Among Highly Exposed Caucasian Intravenous Drug Users publication-title: Infect Genet Evol doi: 10.1016/j.meegid.2013.08.008 – volume: 10 year: 2018 ident: B269 article-title: Plasmacytoid Dendritic Cells Promote Systemic Sclerosis With a Key Role for TLR8 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aam8458 – volume: 182 year: 2009 ident: B107 article-title: Human Dendritic Cells Stimulated via TLR7 and/or TLR8 Induce the Sequential Production of Il-10, IFN-γ, and IL-17A by Naive CD4+ T Cells publication-title: J Immunol doi: 10.4049/jimmunol.0801969 – volume: 440 year: 2006 ident: B98 article-title: Toll-Dependent Selection of Microbial Antigens for Presentation by Dendritic Cells publication-title: Nature doi: 10.1038/nature04596 – volume: 36 year: 2006 ident: B128 article-title: TLR2 Engagement on CD8 T Cells Lowers the Threshold for Optimal Antigen-Induced T Cell Activation publication-title: Eur J Immunol doi: 10.1002/eji.200636181 – volume: 185 year: 2010 ident: B203 article-title: NLRC5 Limits the Activation of Inflammatory Pathways publication-title: J Immunol doi: 10.4049/jimmunol.0903900 – volume: 7 start-page: 1901261 year: 2019 ident: B216 article-title: TRIM14 Promotes Noncanonical NF-κb Activation by Modulating P100/P52 Stability via Selective Autophagy publication-title: Adv Sci (Weinheim Baden-Wurttemberg Germany) doi: 10.1002/advs.201901261 |
| SSID | ssj0000493335 |
| Score | 2.707259 |
| SecondaryResourceType | review_article |
| Snippet | Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 812774 |
| SubjectTerms | Adaptive Immunity autoimmune diseases cell-mediated immunity Immunity, Cellular Immunity, Innate - physiology Immunology infectious diseases Signal Transduction signaling pathway T cells Toll-Like Receptors |
| Title | Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35309296 https://www.proquest.com/docview/2641515042 https://pubmed.ncbi.nlm.nih.gov/PMC8927970 https://doaj.org/article/9e0162d7522a4fa4a697b7f2a4faa325 |
| Volume | 13 |
| WOSCitedRecordID | wos000773218200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA5a9OBB_O34o0TwJIydnUwmeUddWhRsEa2wt5BkXupoO1u6s0Iv_u2-JNtlV0QvXgYyyTDhey_J90jyPcZeQgeu9TApJQQsGyt9qbWzZW1pJnTQKBt0Sjahjo70bAYfN1J9xTNhWR44A7cHSKSk7hTxBNsE29gWlFMhFayok3opsZ6NYOpb5r1CCJm3MSkKg73Qn50tKR6s69e0pinVbC1ESa__TyTz97OSG4vPwR12e8Ua-Zvc27vsGg732M2cR_LyPpsekzXLD_135EQD8ZziaP65P4kcezjhduj4-3HBP81PkfcDnyI1PkwpOpBq0gWR8fIB-3Kwfzx9V66yI5Sexs1Y1m4idY3QSYq4rLTYIaAUXnunJ9gFGdEKWngVkFgEVAE8El8iBtc47UA8ZDvDfMDHjOvKO98K0fkmNEBjOgQBFbYKtauc6wpWXUFl_Eo6PGawODUUQkR0TULXRHRNRrdgr9afnGfdjL81fhvxXzeMktfpBTmCWTmC-ZcjFOzFlfUMDZG472EHnC8XhjhfpG00PRXsUbbm-ldCiooYYlswtWXnrb5s1wz91yTDraFWoKon_6PzT9ktwiNe8o8HZZ6xnfFiic_ZDf9j7BcXu-y6mund5OL0PPy5_wuqYAF_ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toll-Like+Receptor+Signaling+and+Its+Role+in+Cell-Mediated+Immunity&rft.jtitle=Frontiers+in+immunology&rft.au=Duan%2C+Tianhao&rft.au=Du%2C+Yang&rft.au=Xing%2C+Changsheng&rft.au=Wang%2C+Helen+Y.&rft.date=2022-03-03&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=13&rft_id=info:doi/10.3389%2Ffimmu.2022.812774&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2022_812774 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |