Comparing Large Language Models and Human Programmers for Generating Programming Code

The performance of seven large language models (LLMs) in generating programming code using various prompt strategies, programming languages, and task difficulties is systematically evaluated. GPT‐4 substantially outperforms other LLMs, including Gemini Ultra and Claude 2. The coding performance of G...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced science Ročník 12; číslo 8; s. e2412279 - n/a
Hlavní autori: Hou, Wenpin, Ji, Zhicheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany John Wiley & Sons, Inc 01.02.2025
John Wiley and Sons Inc
Wiley
Predmet:
ISSN:2198-3844, 2198-3844
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The performance of seven large language models (LLMs) in generating programming code using various prompt strategies, programming languages, and task difficulties is systematically evaluated. GPT‐4 substantially outperforms other LLMs, including Gemini Ultra and Claude 2. The coding performance of GPT‐4 varies considerably with different prompt strategies. In most LeetCode and GeeksforGeeks coding contests evaluated in this study, GPT‐4, employing the optimal prompt strategy, outperforms 85 percent of human participants in a competitive environment, many of whom are students and professionals with moderate programming experience. GPT‐4 demonstrates strong capabilities in translating code between different programming languages and in learning from past errors. The computational efficiency of the code generated by GPT‐4 is comparable to that of human programmers. GPT‐4 is also capable of handling broader programming tasks, including front‐end design and database operations. These results suggest that GPT‐4 has the potential to serve as a reliable assistant in programming code generation and software development. A programming assistant is designed based on an optimal prompt strategy to facilitate the practical use of LLMs for programming. The performance of seven large language models is evaluated for programming code generation across various prompts, languages, and task difficulties. GPT‐4 consistently outperforms other models and excels in tasks such as code translation, error learning, and efficient code generation. It surpasses 85% of human participants in most LeetCode and GeeksforGeeks contests when using the optimal prompt strategy.
AbstractList Abstract The performance of seven large language models (LLMs) in generating programming code using various prompt strategies, programming languages, and task difficulties is systematically evaluated. GPT‐4 substantially outperforms other LLMs, including Gemini Ultra and Claude 2. The coding performance of GPT‐4 varies considerably with different prompt strategies. In most LeetCode and GeeksforGeeks coding contests evaluated in this study, GPT‐4, employing the optimal prompt strategy, outperforms 85 percent of human participants in a competitive environment, many of whom are students and professionals with moderate programming experience. GPT‐4 demonstrates strong capabilities in translating code between different programming languages and in learning from past errors. The computational efficiency of the code generated by GPT‐4 is comparable to that of human programmers. GPT‐4 is also capable of handling broader programming tasks, including front‐end design and database operations. These results suggest that GPT‐4 has the potential to serve as a reliable assistant in programming code generation and software development. A programming assistant is designed based on an optimal prompt strategy to facilitate the practical use of LLMs for programming.
The performance of seven large language models (LLMs) in generating programming code using various prompt strategies, programming languages, and task difficulties is systematically evaluated. GPT-4 substantially outperforms other LLMs, including Gemini Ultra and Claude 2. The coding performance of GPT-4 varies considerably with different prompt strategies. In most LeetCode and GeeksforGeeks coding contests evaluated in this study, GPT-4, employing the optimal prompt strategy, outperforms 85 percent of human participants in a competitive environment, many of whom are students and professionals with moderate programming experience. GPT-4 demonstrates strong capabilities in translating code between different programming languages and in learning from past errors. The computational efficiency of the code generated by GPT-4 is comparable to that of human programmers. GPT-4 is also capable of handling broader programming tasks, including front-end design and database operations. These results suggest that GPT-4 has the potential to serve as a reliable assistant in programming code generation and software development. A programming assistant is designed based on an optimal prompt strategy to facilitate the practical use of LLMs for programming.The performance of seven large language models (LLMs) in generating programming code using various prompt strategies, programming languages, and task difficulties is systematically evaluated. GPT-4 substantially outperforms other LLMs, including Gemini Ultra and Claude 2. The coding performance of GPT-4 varies considerably with different prompt strategies. In most LeetCode and GeeksforGeeks coding contests evaluated in this study, GPT-4, employing the optimal prompt strategy, outperforms 85 percent of human participants in a competitive environment, many of whom are students and professionals with moderate programming experience. GPT-4 demonstrates strong capabilities in translating code between different programming languages and in learning from past errors. The computational efficiency of the code generated by GPT-4 is comparable to that of human programmers. GPT-4 is also capable of handling broader programming tasks, including front-end design and database operations. These results suggest that GPT-4 has the potential to serve as a reliable assistant in programming code generation and software development. A programming assistant is designed based on an optimal prompt strategy to facilitate the practical use of LLMs for programming.
The performance of seven large language models (LLMs) in generating programming code using various prompt strategies, programming languages, and task difficulties is systematically evaluated. GPT‐4 substantially outperforms other LLMs, including Gemini Ultra and Claude 2. The coding performance of GPT‐4 varies considerably with different prompt strategies. In most LeetCode and GeeksforGeeks coding contests evaluated in this study, GPT‐4, employing the optimal prompt strategy, outperforms 85 percent of human participants in a competitive environment, many of whom are students and professionals with moderate programming experience. GPT‐4 demonstrates strong capabilities in translating code between different programming languages and in learning from past errors. The computational efficiency of the code generated by GPT‐4 is comparable to that of human programmers. GPT‐4 is also capable of handling broader programming tasks, including front‐end design and database operations. These results suggest that GPT‐4 has the potential to serve as a reliable assistant in programming code generation and software development. A programming assistant is designed based on an optimal prompt strategy to facilitate the practical use of LLMs for programming.
The performance of seven large language models (LLMs) in generating programming code using various prompt strategies, programming languages, and task difficulties is systematically evaluated. GPT‐4 substantially outperforms other LLMs, including Gemini Ultra and Claude 2. The coding performance of GPT‐4 varies considerably with different prompt strategies. In most LeetCode and GeeksforGeeks coding contests evaluated in this study, GPT‐4, employing the optimal prompt strategy, outperforms 85 percent of human participants in a competitive environment, many of whom are students and professionals with moderate programming experience. GPT‐4 demonstrates strong capabilities in translating code between different programming languages and in learning from past errors. The computational efficiency of the code generated by GPT‐4 is comparable to that of human programmers. GPT‐4 is also capable of handling broader programming tasks, including front‐end design and database operations. These results suggest that GPT‐4 has the potential to serve as a reliable assistant in programming code generation and software development. A programming assistant is designed based on an optimal prompt strategy to facilitate the practical use of LLMs for programming.
The performance of seven large language models (LLMs) in generating programming code using various prompt strategies, programming languages, and task difficulties is systematically evaluated. GPT‐4 substantially outperforms other LLMs, including Gemini Ultra and Claude 2. The coding performance of GPT‐4 varies considerably with different prompt strategies. In most LeetCode and GeeksforGeeks coding contests evaluated in this study, GPT‐4, employing the optimal prompt strategy, outperforms 85 percent of human participants in a competitive environment, many of whom are students and professionals with moderate programming experience. GPT‐4 demonstrates strong capabilities in translating code between different programming languages and in learning from past errors. The computational efficiency of the code generated by GPT‐4 is comparable to that of human programmers. GPT‐4 is also capable of handling broader programming tasks, including front‐end design and database operations. These results suggest that GPT‐4 has the potential to serve as a reliable assistant in programming code generation and software development. A programming assistant is designed based on an optimal prompt strategy to facilitate the practical use of LLMs for programming. The performance of seven large language models is evaluated for programming code generation across various prompts, languages, and task difficulties. GPT‐4 consistently outperforms other models and excels in tasks such as code translation, error learning, and efficient code generation. It surpasses 85% of human participants in most LeetCode and GeeksforGeeks contests when using the optimal prompt strategy.
The performance of seven large language models (LLMs) in generating programming code using various prompt strategies, programming languages, and task difficulties is systematically evaluated. GPT‐4 substantially outperforms other LLMs, including Gemini Ultra and Claude 2. The coding performance of GPT‐4 varies considerably with different prompt strategies. In most LeetCode and GeeksforGeeks coding contests evaluated in this study, GPT‐4, employing the optimal prompt strategy, outperforms 85 percent of human participants in a competitive environment, many of whom are students and professionals with moderate programming experience. GPT‐4 demonstrates strong capabilities in translating code between different programming languages and in learning from past errors. The computational efficiency of the code generated by GPT‐4 is comparable to that of human programmers. GPT‐4 is also capable of handling broader programming tasks, including front‐end design and database operations. These results suggest that GPT‐4 has the potential to serve as a reliable assistant in programming code generation and software development. A programming assistant is designed based on an optimal prompt strategy to facilitate the practical use of LLMs for programming. The performance of seven large language models is evaluated for programming code generation across various prompts, languages, and task difficulties. GPT‐4 consistently outperforms other models and excels in tasks such as code translation, error learning, and efficient code generation. It surpasses 85% of human participants in most LeetCode and GeeksforGeeks contests when using the optimal prompt strategy.
Author Ji, Zhicheng
Hou, Wenpin
AuthorAffiliation 1 Department of Biostatistics Mailman School of Public Health Columbia University New York City NY 10032 USA
2 Department of Biostatistics and Bioinformatics Duke University School of Medicine Durham NC 07024 USA
AuthorAffiliation_xml – name: 2 Department of Biostatistics and Bioinformatics Duke University School of Medicine Durham NC 07024 USA
– name: 1 Department of Biostatistics Mailman School of Public Health Columbia University New York City NY 10032 USA
Author_xml – sequence: 1
  givenname: Wenpin
  surname: Hou
  fullname: Hou, Wenpin
  email: wh2526@cumc.columbia.edu
  organization: Columbia University
– sequence: 2
  givenname: Zhicheng
  orcidid: 0000-0002-9457-4704
  surname: Ji
  fullname: Ji, Zhicheng
  email: zhicheng.ji@duke.edu
  organization: Duke University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39736107$$D View this record in MEDLINE/PubMed
BookMark eNqFkstvEzEQxi1URB_0yhGtxIVLgp9r7wlVKX1IQSBBuVqOPV422rWDnS3qf4-XNFVbCXHxjDzf99NoZo7RQYgBEHpD8JxgTD8Yd5vnFFNOKJXNC3RESaNmTHF-8Cg_RKc5rzHGRDDJiXqFDlkjWU2wPEI3izhsTOpCWy1NaqG8oR1NST5HB32uTHDV1TiYUH1NsU1mGCDlysdUXUKAZLaTdV-a8kXxvUYvvekznN7HE3Rz8en74mq2_HJ5vThbzqxgpJlRwwjhYEEBFQ0XovbK29phVQLFgtbGMkpWkpfo-co5wmvpvWy8WFlp2Qm63nFdNGu9Sd1g0p2OptN_P2JqtUnbzvagSe2kqhtsKBXcKqEMrikGq4CA9G5ifdyxNuNqAGchbJPpn0CfVkL3U7fxVhOiuBJUFsL7e0KKv0bIWz102ULfmwBxzJoRgRkXHDdF-u6ZdB3HFMqsikqWXdWST8C3j1t66GW_viLgO4FNMecEXttuW1YSpw67XhOsp0PR06Hoh0Mptvkz2578T4PYGX53Pdz9R63Pzn98I2W6DfsDVizPOw
CitedBy_id crossref_primary_10_3390_jcm14176169
crossref_primary_10_3390_app15169089
crossref_primary_10_1145_3715758
crossref_primary_10_2478_picbe_2025_0045
crossref_primary_10_48175_IJARSCT_26358
crossref_primary_10_1093_bib_bbaf492
crossref_primary_10_1007_s10928_025_09984_5
crossref_primary_10_1093_scan_nsaf071
Cites_doi 10.1371/journal.pdig.0000198
10.1126/science.abq1158
10.1016/j.diii.2023.02.003
10.1145/3196398.3196408
10.1038/s41592-024-02235-4
10.15302/J-QB-023-0327
10.1145/3587102.3588814
10.1111/j.2517-6161.1995.tb02031.x
10.1145/3568812.3603474
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley‐VCH GmbH
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley‐VCH GmbH
– notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202412279
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library (subscription)
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_16d78690a2254c858a0620ec8e1e7fdc
PMC11848527
39736107
10_1002_advs_202412279
ADVS10629
Genre researchArticle
Journal Article
Comparative Study
GrantInformation_xml – fundername: NIH
  funderid: R00HG011468
– fundername: NIGMS NIH HHS
  grantid: R35 GM150887
– fundername: NHGRI NIH HHS
  grantid: K99 HG011468
– fundername: NIH HHS
  grantid: R00HG011468
– fundername: NHGRI NIH HHS
  grantid: R00 HG011468
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAMMB
AAZKR
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFBPY
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PUEGO
ROL
RPM
WIN
AAYXX
AFFHD
CITATION
EJD
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c5319-2a3114ece8e2594556f8fc6d088fc20526ac321b74ac3f4bdd1467ff79f5bc7c3
IEDL.DBID 24P
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001388348600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Fri Oct 03 12:53:21 EDT 2025
Tue Nov 04 02:05:27 EST 2025
Thu Sep 04 19:20:38 EDT 2025
Wed Aug 13 07:06:49 EDT 2025
Tue Jul 22 01:42:07 EDT 2025
Sat Nov 29 07:21:38 EST 2025
Tue Nov 18 22:34:55 EST 2025
Sun Sep 21 06:24:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords large language models
human‐computer interaction
computer programming
artificial intelligence
Language English
License Attribution
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5319-2a3114ece8e2594556f8fc6d088fc20526ac321b74ac3f4bdd1467ff79f5bc7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9457-4704
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202412279
PMID 39736107
PQID 3170006747
PQPubID 4365299
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_16d78690a2254c858a0620ec8e1e7fdc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11848527
proquest_miscellaneous_3150345409
proquest_journals_3170006747
pubmed_primary_39736107
crossref_citationtrail_10_1002_advs_202412279
crossref_primary_10_1002_advs_202412279
wiley_primary_10_1002_advs_202412279_ADVS10629
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2025
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2023; 21
2022; 35
2023; 104
2018
2023; 2
2023; 11
2024
2023
2021
1995; 57
2022; 378
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
Wei J. (e_1_2_9_26_1) 2022; 35
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
Phung T. (e_1_2_9_9_1) 2023; 21
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – start-page: 14
  year: 2023
  end-page: 15
– volume: 21
  year: 2023
  publication-title: Int. J. Manag.
– volume: 21
  year: 2023
  publication-title: Nat. Meth.
– volume: 57
  start-page: 289
  year: 1995
  publication-title: J. Royal Stat.Soc.: Ser. B (Methodological)
– volume: 104
  start-page: 269
  year: 2023
  publication-title: Diagn. Interventional Imaging
– year: 2021
– year: 2023
– year: 2024
– volume: 378
  start-page: 1092
  year: 2022
  publication-title: Science
– volume: 35
  year: 2022
  publication-title: Adv. Neural. Inf. Process. Syst.
– start-page: 476
  year: 2018
  end-page: 486
– volume: 11
  start-page: 105
  year: 2023
  publication-title: Quant. Biol.
– volume: 2
  year: 2023
  publication-title: PLoS Digit.Health
– start-page: 61
  year: 2023
  end-page: 67
– volume: 35
  year: 2022
  ident: e_1_2_9_26_1
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: e_1_2_9_28_1
– ident: e_1_2_9_3_1
– ident: e_1_2_9_6_1
– ident: e_1_2_9_10_1
  doi: 10.1371/journal.pdig.0000198
– ident: e_1_2_9_25_1
– ident: e_1_2_9_17_1
– ident: e_1_2_9_1_1
– ident: e_1_2_9_20_1
  doi: 10.1126/science.abq1158
– volume: 21
  year: 2023
  ident: e_1_2_9_9_1
  publication-title: Int. J. Manag.
– ident: e_1_2_9_16_1
– ident: e_1_2_9_13_1
– ident: e_1_2_9_15_1
  doi: 10.1016/j.diii.2023.02.003
– ident: e_1_2_9_4_1
– ident: e_1_2_9_2_1
– ident: e_1_2_9_21_1
– ident: e_1_2_9_24_1
– ident: e_1_2_9_27_1
– ident: e_1_2_9_19_1
  doi: 10.1145/3196398.3196408
– ident: e_1_2_9_8_1
– ident: e_1_2_9_12_1
  doi: 10.1038/s41592-024-02235-4
– ident: e_1_2_9_14_1
  doi: 10.15302/J-QB-023-0327
– ident: e_1_2_9_18_1
– ident: e_1_2_9_22_1
– ident: e_1_2_9_23_1
– ident: e_1_2_9_7_1
  doi: 10.1145/3587102.3588814
– ident: e_1_2_9_29_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_9_5_1
  doi: 10.1145/3568812.3603474
– ident: e_1_2_9_11_1
SSID ssj0001537418
Score 2.4065888
Snippet The performance of seven large language models (LLMs) in generating programming code using various prompt strategies, programming languages, and task...
Abstract The performance of seven large language models (LLMs) in generating programming code using various prompt strategies, programming languages, and task...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2412279
SubjectTerms artificial intelligence
Computer programming
Datasets
Design
Feedback
Humans
human‐computer interaction
Large Language Models
Performance evaluation
Programming Languages
Python
Software
Software development
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIb9cXEQT1UG2TdJMedVE8iAg-8BbSPFSQKq76-51JumUXFS9e2rJJSpjMZL7JTr8hZDc4EUQt8qy2VZ2J2hSZci7PHK85K7mUPmb53l3Iy0t1f19djZX6wpywRA-cBHdU9J3EqkkGFE9YVSqT91nurfKFl8FZ3H1zWY0FU-n7YI60LCOWxpwdGfeJ7NzgsJAzb8ILRbL-nxDm90TJcQAbPdDZPJlroSM9TlNeIFO-WSQLrXEO6X7LIH2wRG4Hqbpg80AvMNMbrulUkmLps-chNY2j8fieXqX8LDy9poBfaXoJ5kJ3Tfg8gHHL5Pbs9GZwnrX1EzKLlpUxwyHa8dYrD0GOKMt-UMH2HWwswTIkejGWs6KWAu6wYs7hthmCrEJZW2n5CpluXhq_RqhhtuIVBIOWeyEY-DAAWnmA4MoUEjBgj2QjeWrbkotjjYtnnWiRmUb5607-PbLX9X9NtBq_9jzB5el6IR12_AGURLdKov9Skh7ZHC2ubm10qDlSE4KzFrJHdrpmsC78y8Q0_uUD-5Q5R5JCmMdq0oVuJoDkOIBPGK0mtGRiqpMtzdNjZPCGqE6oksHQw6hQf8hAA0S5htidVev_IY0NMsuwinHMPd8k0-9vH36LzNjP96fh23Y0pC_gpB-f
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEG8UffBFBRUO0dSEBH2o7Lbda_fJ6EXiA5JLFMJb0-0HkJA9vAX-fma6vYULfjz4cne5tnvtTWf6m-nkN4RsRy-jbGTBGlc3TDa2ZNr7gnnRCF4JpULK8j3aVwcH-vi4nuaAW5fTKhc2MRlqP3MYI98VSCQHplWqTxe_GFaNwtvVXELjIXkEyKbElK7vfHobY4Efk6VecDUWfNf6a-TohmMLmfOWzqJE2f87nHk_XfIujE3n0N6z_13Bc_I0I1D6ud8yq-RBaNfIatbxjr7PRNQfXpDDSV-ksD2h-5gwDq99cJNiBbXzjtrW03QLQKd9mhcGwSnAYNo_BFOqhyb8PIFxL8nh3tefk28sl2FgDhWUcSvAaQou6AC-kqyqcdTRjT3Yp-g48sVYJ3jZKAnvIHjv0frGqOpYNU458YqstLM2bBBquatFDT6lE0FKDkch4LUigo9mSwVQckTYQiDGZY5yLJVxbnp2ZW5QgGYQ4IjsDP0venaOP_b8gvIdeiGrdvpiNj8xWUlNOfYKK3RZMHLS6UrbYsyL4HQog4rejcjWQrImq3pnbsU6Iu-GZlBSvHmxbZhdYZ-qEMh1CPNY7zfTMBMAhAIwLIzWS9tsaarLLe3ZaSICB-dQ6orD0I9pR_7jPzCAdH6UsKR68-8LeU2ecCxznJLTt8jK5fwqvCGP3fXlWTd_m3TsBhd_LdM
  priority: 102
  providerName: ProQuest
Title Comparing Large Language Models and Human Programmers for Generating Programming Code
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202412279
https://www.ncbi.nlm.nih.gov/pubmed/39736107
https://www.proquest.com/docview/3170006747
https://www.proquest.com/docview/3150345409
https://pubmed.ncbi.nlm.nih.gov/PMC11848527
https://doaj.org/article/16d78690a2254c858a0620ec8e1e7fdc
Volume 12
WOSCitedRecordID wos001388348600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Science Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdg5YGXwfgYhVEZCQl4iJbYTu08smoTk7YSAYPyFDn-GJOmdGq2_f3c2Wm2CBBCvDhtbKeOc2f_7nL9HSGvvRVe1CJNalPUiah1lihr08TymrOcS-lClO_XIzmfq8WiKG_9iz_yQ_QON9SMsF6jguu63b0hDdX2Gum2YQdCEry7ZJRlXKJcM1HeeFng50Rw8oFmqoQrIdbMjSnbHV5isDMFAv_foc5fgydvg9qwKx08-P_7eUg2O0RK30cR2iJ3XPOIbHU639K3HTH1u8fkZBaTFjan9AgDyKGMzk6KGdXOW6obS8NbAVrGsC90ilOAxTReBEOs-yr8PIN-T8jJwf6X2YekS8uQGFTYhGkORpQzTjmwnUSeT73yZmphvfKGIX-MNpxltRRwBEGwFldj72Xh89pIw5-SjWbZuGeEamYKXoCNabgTgsHWCPgt9WCz6UwCtByTZP1IKtNxlmPqjPMqsi2zCmet6mdtTN707S8iW8cfW-7hE-5bIct2OLFcnVad0lbZ1ErM2KVh0RNG5UqnU5Y6o1zmpLdmTHbW8lF1qt9WHBkPAQMIOSav-mpQWnwToxu3vMI2ecqR-xDGsR3FqR8JAEQOmBZ6q4GgDYY6rGnOfgRicDAWhcoZdI2S9pc5qAD5fM7glorn_9rhBbnPMBFyCF_fIRuXqyv3ktwz15dn7WoSdBBKuVATMtrbn5efJsHZAeUx-xhKqB-Vh8fld_j27XD-E1IhOR8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYILUJ4LBYwEAg6hie2snQNCsFC16rJaibbqzTh-lEpVtmzaIv4Uv5EZ51FWvE49cNms1nbkSb4Zz9iz3xDyJDgRRCnSpLRFmYjSZIlyLk0cLznLuZQ-ZvnujuVkovb2iukS-d79FwbTKjubGA21m1ncI1_jSCQHplXI10dfEqwahaerXQmNBhZb_ttXCNnqV5vv4P0-ZWz9_fZoI2mrCiQW8ZYwwyEG8NYrD66_yPNhUMEOHahbsAzpT4zlLCulgCvI4RwakxBkEfLSSsvhvhfIRYHMYpgqyKZnezognMhUxw2ZsjXjTpETHJZJZOpbWPtiiYDf-bW_pmf-7DbHdW_92v_2xK6Tq62HTd80KrFClnx1g6y0Nqymz1ui7Rc3yc6oKcJY7dMxJsTDZ7N5S7FC3GFNTeVoPOWg0yaNDTf5Kbj5tLkJpoz3Tfh9BONukZ1zEe82Wa5mlb9LqGG24AXEzJZ7IRgs9eCPpgFiUJNJcJUHJOkAoG3LwY6lQA51wx7NNAJG94AZkGd9_6OGfeSPPd8invpeyBoef5jN93VrhHQ2dBIrkBkw4sKqXJl0yFJvlc-8DM4OyGqHJN2aslqfwWhAHvfNYITwZMlUfnaCffKUI5cjzONOA95-JuDwcvDRYbRagPXCVBdbqoPPkegcgl-hcgZDX0YN-Mcz0ODJfcxApOLe3wV5RC5vbH8Y6_HmZOs-ucKwpHNMxF8ly8fzE_-AXLKnxwf1_GHUb0o-nbd6_AD0iYrr
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuQHkGCiwSCDiY2LvrrH1ACFIiooYoEhSVk1nvo1SqnBK3Rfw1fh0zfpWI16kHLnGU3bV27G9mZ3Yn3wA89FZ6mcswyE2aBzLXUZBYGwZW5ILHQilXZfl-mKrZLNndTedr8L39LwylVbY2sTLUdmFoj3wgiEgOTatUA9-kRcy3xi8OvwRUQYpOWttyGjVEtt23rxi-lc8nW_iuH3E-fv1-9CZoKgwEhrAXcC0wHnDGJQ7DABnHQ594M7Soet5wokLRRvAoVxKvKJO1ZFi8V6mPc6OMwPueg3WclOQ9WJ9P3s4_nu7woKgySlqmyJAPtD0hhnBcNIm3b2UlrAoG_M7L_TVZ82cnuloFx5f_5-d3BS41vjd7WSvLBqy54ipsNNatZE8aCu6n12BnVJdnLPbYlFLl8bPe1mVUO-6gZLqwrDr_YPM6wY22_xkGAKy-CSWTd030fYTjrsPOmYh3A3rFonC3gGluUpFiNG2Ek5KjE4CeaugxOtWRQie6D0ELhsw07OxUJOQgq3mleUbgyTrw9OFx1_-w5iX5Y89XhK2uF_GJVz8slntZY56yaGgV1SbTaN6lSeJEh0MeOpO4yClvTR82W1RljZErs1NI9eFB14zmic6cdOEWx9QnDgWxPOI8btZA7maCrrBA7x1HJysQX5nqakux_7miQMewWCYxx6HPKm34xzPI0Md7F6FI6e2_C3IfLqBWZNPJbPsOXORU67nK0N-E3tHy2N2F8-bkaL9c3muUncGns9aPHySvlTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Large+Language+Models+and+Human+Programmers+for+Generating+Programming+Code&rft.jtitle=Advanced+science&rft.au=Hou%2C+Wenpin&rft.au=Ji%2C+Zhicheng&rft.date=2025-02-01&rft.eissn=2198-3844&rft.volume=12&rft.issue=8&rft.spage=e2412279&rft_id=info:doi/10.1002%2Fadvs.202412279&rft_id=info%3Apmid%2F39736107&rft.externalDocID=39736107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon