Minimization of Sewage Network Overflow

We are interested in the optimal control of sewage networks. It is of high public interest to minimize the overflow of sewage onto the streets and to the natural environment that may occur during periods of heavy rain. The assumption of linear flow in a discrete time setting has proven to be adequat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water resources management Ročník 28; číslo 1; s. 41 - 63
Hlavní autoři: Joseph-Duran, Bernat, Jung, Michael N., Ocampo-Martinez, Carlos, Sager, Sebastian, Cembrano, Gabriela
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.01.2014
Springer
Springer Nature B.V
Témata:
ISSN:0920-4741, 1573-1650
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We are interested in the optimal control of sewage networks. It is of high public interest to minimize the overflow of sewage onto the streets and to the natural environment that may occur during periods of heavy rain. The assumption of linear flow in a discrete time setting has proven to be adequate for the practical control of larger systems. However, the possibility of overflow introduces a nonlinear and nondifferentiable element to the formulation, by means of a maximum of linear terms. This particular challenge can be addressed by smoothing methods that result in a nonlinear program (NLP) or by logical constraints that result in a mixed integer linear program (MILP). We discuss both approaches and present a novel tailored branch-and-bound algorithm that outperforms competing methods from the literature for a set of realistic rain scenarios.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0920-4741
1573-1650
DOI:10.1007/s11269-013-0468-z