Convolutional Neural Network for Object Detection in Garlic Root Cutting Equipment
Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning—a convolutional neural network—is proposed in this study. The you-only-look-once (YOLO) algorith...
Gespeichert in:
| Veröffentlicht in: | Foods Jg. 11; H. 15; S. 2197 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
24.07.2022
MDPI |
| Schlagworte: | |
| ISSN: | 2304-8158, 2304-8158 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning—a convolutional neural network—is proposed in this study. The you-only-look-once (YOLO) algorithm, which is based on lightweight and transfer learning, is the most advanced computer vision method for single large object detection. To detect the bulb, the YOLOv2 model was modified using an inverted residual module and residual structure. The modified model was trained based on images of bulbs with varied brightness, surface attachment, and shape, which enabled sufficient learning of the detector. The optimum minibatches and epochs were obtained by comparing the test results of different training parameters. Research shows that IRM-YOLOv2 is superior to the SqueezeNet, ShuffleNet, and YOLOv2 models of classical neural networks, as well as the YOLOv3 and YOLOv4 algorithm models. The confidence score, average accuracy, deviation, standard deviation, detection time, and storage space of IRM-YOLOv2 were 0.98228, 99.2%, 2.819 pixels, 4.153, 0.0356 s, and 24.2 MB, respectively. In addition, this study provides an important reference for the application of the YOLO algorithm in food research. |
|---|---|
| AbstractList | Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning—a convolutional neural network—is proposed in this study. The you-only-look-once (YOLO) algorithm, which is based on lightweight and transfer learning, is the most advanced computer vision method for single large object detection. To detect the bulb, the YOLOv2 model was modified using an inverted residual module and residual structure. The modified model was trained based on images of bulbs with varied brightness, surface attachment, and shape, which enabled sufficient learning of the detector. The optimum minibatches and epochs were obtained by comparing the test results of different training parameters. Research shows that IRM-YOLOv2 is superior to the SqueezeNet, ShuffleNet, and YOLOv2 models of classical neural networks, as well as the YOLOv3 and YOLOv4 algorithm models. The confidence score, average accuracy, deviation, standard deviation, detection time, and storage space of IRM-YOLOv2 were 0.98228, 99.2%, 2.819 pixels, 4.153, 0.0356 s, and 24.2 MB, respectively. In addition, this study provides an important reference for the application of the YOLO algorithm in food research. Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning-a convolutional neural network-is proposed in this study. The you-only-look-once (YOLO) algorithm, which is based on lightweight and transfer learning, is the most advanced computer vision method for single large object detection. To detect the bulb, the YOLOv2 model was modified using an inverted residual module and residual structure. The modified model was trained based on images of bulbs with varied brightness, surface attachment, and shape, which enabled sufficient learning of the detector. The optimum minibatches and epochs were obtained by comparing the test results of different training parameters. Research shows that IRM-YOLOv2 is superior to the SqueezeNet, ShuffleNet, and YOLOv2 models of classical neural networks, as well as the YOLOv3 and YOLOv4 algorithm models. The confidence score, average accuracy, deviation, standard deviation, detection time, and storage space of IRM-YOLOv2 were 0.98228, 99.2%, 2.819 pixels, 4.153, 0.0356 s, and 24.2 MB, respectively. In addition, this study provides an important reference for the application of the YOLO algorithm in food research.Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning-a convolutional neural network-is proposed in this study. The you-only-look-once (YOLO) algorithm, which is based on lightweight and transfer learning, is the most advanced computer vision method for single large object detection. To detect the bulb, the YOLOv2 model was modified using an inverted residual module and residual structure. The modified model was trained based on images of bulbs with varied brightness, surface attachment, and shape, which enabled sufficient learning of the detector. The optimum minibatches and epochs were obtained by comparing the test results of different training parameters. Research shows that IRM-YOLOv2 is superior to the SqueezeNet, ShuffleNet, and YOLOv2 models of classical neural networks, as well as the YOLOv3 and YOLOv4 algorithm models. The confidence score, average accuracy, deviation, standard deviation, detection time, and storage space of IRM-YOLOv2 were 0.98228, 99.2%, 2.819 pixels, 4.153, 0.0356 s, and 24.2 MB, respectively. In addition, this study provides an important reference for the application of the YOLO algorithm in food research. |
| Audience | Academic |
| Author | Zhang, Yanhua Peng, Baoliang Gu, Fengwei Yang, Ke Hu, Zhichao Wang, Shenying Yu, Zhaoyang |
| AuthorAffiliation | 3 Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China 2 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; wangshenying@caas.cn 1 Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; yk666666yk@126.com (K.Y.); pengbaoliang@caas.cn (B.P.); gufengwei@caas.cn (F.G.); zhangyanhua@caas.cn (Y.Z.) |
| AuthorAffiliation_xml | – name: 1 Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; yk666666yk@126.com (K.Y.); pengbaoliang@caas.cn (B.P.); gufengwei@caas.cn (F.G.); zhangyanhua@caas.cn (Y.Z.) – name: 2 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; wangshenying@caas.cn – name: 3 Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China |
| Author_xml | – sequence: 1 givenname: Ke surname: Yang fullname: Yang, Ke – sequence: 2 givenname: Baoliang surname: Peng fullname: Peng, Baoliang – sequence: 3 givenname: Fengwei surname: Gu fullname: Gu, Fengwei – sequence: 4 givenname: Yanhua surname: Zhang fullname: Zhang, Yanhua – sequence: 5 givenname: Shenying surname: Wang fullname: Wang, Shenying – sequence: 6 givenname: Zhaoyang surname: Yu fullname: Yu, Zhaoyang – sequence: 7 givenname: Zhichao surname: Hu fullname: Hu, Zhichao |
| BookMark | eNqNUktrFTEYDVKxD7t0P-DGzdS8Hxuh3Na2UCwUXYdMkrnmOpPcZjIV_72Z3gre4sJk8YUv5xy-xzkGBzFFD8A7BM8IUfBjn5KbEEIMIyVegSNMIG0lYvLgr_chOJ2mDaxHISIJfgMOCZMKC4mPwP0qxcc0zCWkaIbmi5_zUyg_U_7R9Ck3d93G29Jc-FJDRTUhNlcmD8E29ymVZjWXEuK6uXyYw3b0sbwFr3szTP70OZ6Ab58vv66u29u7q5vV-W1rGYGl9ZJKKBziTIpeYtFTbKBgvhOEU4mh7WqglnHrkILUYE6dYBXvJLKIMHICbna6LpmN3uYwmvxLJxP0UyLltTa5BDt4TZw3vuuoYcZQ7nujGHcUEQGdhB0iVevTTms7d6N3trZR57Anuv8Tw3e9To9aEVKrU1Xgw7NATg-zn4oew2T9MJjo0zxpLJAkXCDyH1CuGJaS86XF9y-gmzTnuqhFEEImGGW0os52qLWpvYbYp1qirdf5MdjqmD7U_LnA1TJcyaUCsiPYnKYp-17bUMyy3EoMg0ZQL_bSe_aqrPYF6894_o3_DWfp0QU |
| CitedBy_id | crossref_primary_10_3389_fpls_2024_1425100 crossref_primary_10_3389_fnut_2023_1308787 crossref_primary_10_3390_agronomy13030835 crossref_primary_10_3390_foods11203268 crossref_primary_10_3390_agriengineering6040214 crossref_primary_10_1111_1750_3841_70186 crossref_primary_10_3390_agriculture14122236 |
| Cites_doi | 10.1038/nature14539 10.3390/foods10040785 10.1016/j.compind.2020.103303 10.1016/j.compag.2020.105856 10.3390/foods10051063 10.1016/j.jfoodeng.2018.04.028 10.3390/s21082764 10.3390/foods11081127 10.1007/s11042-022-13097-3 10.1016/j.neucom.2021.03.048 10.1016/j.foodcont.2021.108339 10.3390/s22134704 10.1016/j.crfs.2021.10.003 10.1016/j.imavis.2021.104317 10.5121/csit.2019.91713 10.1016/j.neucom.2019.01.090 10.3390/pr8050595 10.1016/j.foodcont.2019.04.032 10.1016/j.fm.2015.07.008 10.3390/s19132953 10.1109/CVPR.2016.91 10.1016/j.colcom.2019.100176 10.1109/ICPR.2006.479 10.1016/j.compag.2022.106772 10.1109/CVPR.2015.7298594 10.1109/CVPR.2018.00474 10.1109/CVPR.2014.81 10.1109/CVPR.2016.90 10.1111/1541-4337.12868 10.1111/1541-4337.12912 10.1109/ICCV.2015.169 10.1016/j.neucom.2020.10.016 10.1109/CVPR.2017.690 10.3390/s20071999 10.3390/foods10040879 10.1007/978-3-319-46448-0_2 10.1145/3065386 10.1016/j.iot.2021.100359 10.1016/j.compag.2021.106547 10.1016/j.imavis.2022.104396 10.1016/j.compag.2020.105727 10.1016/j.jfca.2020.103771 10.1016/j.jfoodeng.2020.110036 10.1186/s13007-020-00624-2 10.3390/foods11111609 10.1016/j.neunet.2020.12.022 10.1109/TPAMI.2018.2858826 10.1016/j.fm.2021.103914 10.3390/sym12030408 10.1016/j.scs.2020.102600 10.1016/j.ecoinf.2021.101521 10.1111/1541-4337.12885 10.1016/j.jfoodeng.2020.109930 10.1016/j.lwt.2021.111832 10.1007/s10994-014-5456-x 10.1109/CVPR.2018.00716 10.1016/j.apor.2021.102783 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7QR 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU COVID DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
| DOI | 10.3390/foods11152197 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Central Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Agricultural Science Database MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Diet & Clinical Nutrition |
| EISSN | 2304-8158 |
| ExternalDocumentID | oai_doaj_org_article_3deaebb4a5aa46efa956d41370d80b13 PMC9331909 A723906989 10_3390_foods11152197 |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51805282 – fundername: National Key R&D Program of China grantid: 2017YFD0701305-02 – fundername: Projects funded by the Jiangsu Modern Agricultural Machinery Equipment and Technology Demonstration and Extension grantid: NJ2020-24 |
| GroupedDBID | 53G 5VS 7X2 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 M0K M48 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC RPM 3V. 7QR 7T7 8FD 8FK ABUWG AZQEC C1K COVID DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c530t-e84807d16587f827f42a075eb7364820cb6484c56cd1904a264d75d16d81c1353 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839857300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2304-8158 |
| IngestDate | Fri Oct 03 12:44:23 EDT 2025 Tue Nov 04 02:02:19 EST 2025 Sun Nov 09 09:39:53 EST 2025 Fri Sep 05 09:39:05 EDT 2025 Mon Jun 30 11:22:15 EDT 2025 Tue Nov 04 18:34:12 EST 2025 Tue Nov 18 22:23:24 EST 2025 Sat Nov 29 07:17:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c530t-e84807d16587f827f42a075eb7364820cb6484c56cd1904a264d75d16d81c1353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2700575454?pq-origsite=%requestingapplication% |
| PMID | 35892782 |
| PQID | 2700575454 |
| PQPubID | 2032399 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3deaebb4a5aa46efa956d41370d80b13 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9331909 proquest_miscellaneous_2718367139 proquest_miscellaneous_2695288665 proquest_journals_2700575454 gale_infotracacademiconefile_A723906989 crossref_citationtrail_10_3390_foods11152197 crossref_primary_10_3390_foods11152197 |
| PublicationCentury | 2000 |
| PublicationDate | 20220724 |
| PublicationDateYYYYMMDD | 2022-07-24 |
| PublicationDate_xml | – month: 7 year: 2022 text: 20220724 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Foods |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Yang (ref_33) 2022; 53 Zhang (ref_37) 2021; 68 Liu (ref_43) 2020; 16 ref_11 Xu (ref_57) 2022; 192 ref_54 Liu (ref_50) 2019; 338 ref_53 ref_52 Li (ref_27) 2021; 114 ref_19 ref_18 Amudhan (ref_69) 2022; 119 Krizhevsky (ref_67) 2017; 60 ref_61 ref_60 Kim (ref_35) 2021; 446 ref_25 ref_24 ref_68 ref_23 ref_66 ref_21 Jubayer (ref_31) 2021; 4 ref_65 ref_20 ref_64 Qian (ref_62) 2015; 99 ref_63 Chai (ref_28) 2021; 116 Deng (ref_16) 2021; 149 ref_29 ref_26 Loey (ref_55) 2020; 11 Zhu (ref_30) 2021; 13 Zhou (ref_45) 2020; 179 Loey (ref_38) 2021; 65 Montavon (ref_59) 2012; Volume 7700 Nasiri (ref_15) 2020; 283 Khan (ref_13) 2022; 21 ref_72 ref_71 ref_70 Tao (ref_2) 2018; 235 Liu (ref_58) 2021; 430 Thuyet (ref_56) 2020; 178 Lin (ref_22) 2018; 42 ref_36 ref_34 Katsigiannis (ref_8) 2022; 21 ref_32 Ma (ref_44) 2022; 194 Richter (ref_14) 2019; 104 ref_39 Wang (ref_12) 2021; 21 Nazari (ref_1) 2019; 30 Yu (ref_6) 2021; 52 Nasiri (ref_7) 2020; 278 Erickson (ref_9) 2015; 52 LeCun (ref_17) 2015; 521 ref_47 Oliveira (ref_73) 2021; 97 Qi (ref_51) 2020; 123 ref_42 ref_41 ref_40 Kwok (ref_10) 2022; 102 ref_49 ref_48 ref_5 Choi (ref_3) 2021; 130 ref_4 Kulkarni (ref_46) 2021; 136 |
| References_xml | – volume: 521 start-page: 436 year: 2015 ident: ref_17 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_18 doi: 10.3390/foods10040785 – ident: ref_5 – volume: 123 start-page: 103303 year: 2020 ident: ref_51 article-title: MYOLOv3-Tiny: A new convolutional neural network architecture for real-time detection of track fasteners publication-title: Comput. Ind. doi: 10.1016/j.compind.2020.103303 – volume: 179 start-page: 105856 year: 2020 ident: ref_45 article-title: Real-time kiwifruit detection in orchard using deep learning on Android™ smartphones for yield estimation publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105856 – ident: ref_68 – ident: ref_11 doi: 10.3390/foods10051063 – volume: 235 start-page: 79 year: 2018 ident: ref_2 article-title: Contacting ultrasound enhanced hot-air convective drying of garlic slices: Mass transfer modeling and quality evaluation publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2018.04.028 – ident: ref_29 doi: 10.3390/s21082764 – ident: ref_32 doi: 10.3390/foods11081127 – ident: ref_39 – ident: ref_70 doi: 10.1007/s11042-022-13097-3 – volume: 446 start-page: 11 year: 2021 ident: ref_35 article-title: Edge and Identity Preserving Network for Face Super-Resolution publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.048 – volume: 130 start-page: 108399 year: 2021 ident: ref_3 article-title: Determination of the geographic origin of garlic using the bioelement content and isotope signatures publication-title: Food Control doi: 10.1016/j.foodcont.2021.108339 – ident: ref_49 doi: 10.3390/s22134704 – volume: 4 start-page: 724 year: 2021 ident: ref_31 article-title: Detection of mold on the food surface using YOLOv5 publication-title: Curr. Res. Food Sci. doi: 10.1016/j.crfs.2021.10.003 – ident: ref_61 – ident: ref_23 – volume: 116 start-page: 104317 year: 2021 ident: ref_28 article-title: ERF-YOLO: A YOLO algorithm compatible with fewer parameters and higher accuracy publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2021.104317 – ident: ref_34 doi: 10.5121/csit.2019.91713 – volume: 338 start-page: 191 year: 2019 ident: ref_50 article-title: A novel scene classification model combining ResNet based transfer learning and data augmentation with a filter publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.090 – ident: ref_42 doi: 10.3390/pr8050595 – volume: 104 start-page: 318 year: 2019 ident: ref_14 article-title: Food monitoring: Screening of the geographical origin of white asparagus using FT-NIR and machine learning publication-title: Food Control doi: 10.1016/j.foodcont.2019.04.032 – volume: 52 start-page: 138 year: 2015 ident: ref_9 article-title: Contamination of knives and graters by bacterial foodborne pathogens during slicing and grating of produce publication-title: Food Microbiol. doi: 10.1016/j.fm.2015.07.008 – ident: ref_72 doi: 10.3390/s19132953 – ident: ref_4 – ident: ref_21 doi: 10.1109/CVPR.2016.91 – volume: 30 start-page: 100176 year: 2019 ident: ref_1 article-title: Garlic essential oil nanophytosomes as a natural food preservative: Its application in yogurt as food model publication-title: Colloid Interface Sci. Commun. doi: 10.1016/j.colcom.2019.100176 – ident: ref_52 – ident: ref_53 doi: 10.1109/ICPR.2006.479 – volume: 194 start-page: 106772 year: 2022 ident: ref_44 article-title: Basic motion behavior recognition of single dairy cow based on improved Rexnet 3D network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106772 – ident: ref_66 doi: 10.1109/CVPR.2015.7298594 – ident: ref_40 doi: 10.1109/CVPR.2018.00474 – volume: 52 start-page: 111 year: 2021 ident: ref_6 article-title: Operation Mechanism Analysis and Parameter Optimization of Garlic Root Floating Cutting Device publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 53 start-page: 123 year: 2022 ident: ref_33 article-title: Design and Experiment of Garlic Harvesting and Root Cutting Device Based on Deep Learning Object Determination publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 11 start-page: 18 year: 2020 ident: ref_55 article-title: Deep Learning in Plant Diseases Detection for Agricultural Crops: A Survey publication-title: Int. J. Serv. Sci. Manag. Eng. Technol. (IJSSMET) – ident: ref_19 doi: 10.1109/CVPR.2014.81 – ident: ref_48 doi: 10.1109/CVPR.2016.90 – volume: 21 start-page: 416 year: 2021 ident: ref_12 article-title: Application of machine learning to the monitoring and prediction of food safety: A review publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12868 – volume: 21 start-page: 1409 year: 2022 ident: ref_13 article-title: Machine learning-based modeling in food processing applications: State of the art publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12912 – ident: ref_24 doi: 10.1109/ICCV.2015.169 – volume: 430 start-page: 174 year: 2021 ident: ref_58 article-title: Robot recognizing humans intention and interacting with humans based on a multi-task model combining ST-GCN-LSTM model and YOLO model publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.016 – ident: ref_26 doi: 10.1109/CVPR.2017.690 – ident: ref_41 doi: 10.3390/s20071999 – volume: Volume 7700 start-page: 437 year: 2012 ident: ref_59 article-title: Practical Recommendations for Gradient-Based Training of Deep Architectures publication-title: Neural Networks: Tricks of the Trade – ident: ref_47 doi: 10.3390/foods10040879 – ident: ref_20 doi: 10.1007/978-3-319-46448-0_2 – volume: 60 start-page: 84 year: 2017 ident: ref_67 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 13 start-page: 100359 year: 2021 ident: ref_30 article-title: Support vector machine and YOLO for a mobile food grading system publication-title: Internet Things doi: 10.1016/j.iot.2021.100359 – volume: 192 start-page: 106547 year: 2022 ident: ref_57 article-title: Detection and classification of tea buds based on deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106547 – volume: 119 start-page: 104396 year: 2022 ident: ref_69 article-title: Lightweight and computationally faster Hypermetropic Convolutional Neural Network for small size object detection publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2022.104396 – ident: ref_63 – volume: 178 start-page: 105727 year: 2020 ident: ref_56 article-title: A robot system equipped with deep convolutional neural network for autonomous grading and sorting of root-trimmed garlics publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105727 – volume: 97 start-page: 103771 year: 2021 ident: ref_73 article-title: Classification of fermented cocoa beans (cut test) using computer vision publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2020.103771 – volume: 283 start-page: 110036 year: 2020 ident: ref_15 article-title: An automatic sorting system for unwashed eggs using deep learning publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2020.110036 – ident: ref_25 – volume: 16 start-page: 83 year: 2020 ident: ref_43 article-title: Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model publication-title: Plant Methods doi: 10.1186/s13007-020-00624-2 – ident: ref_71 doi: 10.3390/foods11111609 – volume: 136 start-page: 28 year: 2021 ident: ref_46 article-title: Quantization Friendly MobileNet (QF-MobileNet) Architecture for Vision Based Applications on Embedded Platforms publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.12.022 – volume: 42 start-page: 318 year: 2018 ident: ref_22 article-title: Focal Loss for Dense Object Detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2858826 – volume: 102 start-page: 103914 year: 2022 ident: ref_10 article-title: Biofilm dispersal induced by mechanical cutting leads to heightened foodborne pathogen dissemination publication-title: Food Microbiol. doi: 10.1016/j.fm.2021.103914 – ident: ref_54 doi: 10.3390/sym12030408 – volume: 65 start-page: 102600 year: 2021 ident: ref_38 article-title: Fighting against COVID-19: A novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102600 – volume: 68 start-page: 101521 year: 2021 ident: ref_37 article-title: Automatic stomata recognition and measurement based on improved YOLO deep learning model and entropy rate super pixel algorithm publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2021.101521 – ident: ref_64 – volume: 21 start-page: 1086 year: 2022 ident: ref_8 article-title: Cold plasma for the disinfection of industrial food-contact surfaces: An overview of current status and opportunities publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12885 – ident: ref_36 – ident: ref_60 – volume: 278 start-page: 109930 year: 2020 ident: ref_7 article-title: Smart deep learning-based approach for non-destructive freshness diagnosis of common carp fish publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2020.109930 – volume: 149 start-page: 111832 year: 2021 ident: ref_16 article-title: Online defect detection and automatic grading of carrots using computer vision combined with deep learning methods publication-title: LWT doi: 10.1016/j.lwt.2021.111832 – volume: 99 start-page: 353 year: 2015 ident: ref_62 article-title: Efficient distance metric learning by adaptive sampling and mini-batch stochastic gradient descent (SGD) publication-title: Mach. Learn. doi: 10.1007/s10994-014-5456-x – ident: ref_65 doi: 10.1109/CVPR.2018.00716 – volume: 114 start-page: 102783 year: 2021 ident: ref_27 article-title: Toward in situ zooplankton detection with a densely connected YOLOV3 model publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102783 |
| SSID | ssj0000913832 |
| Score | 2.273658 |
| Snippet | Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object... |
| SourceID | doaj pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2197 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks bulbs Computer vision convolutional neural network Cutting equipment Deep learning Efficiency Food processing food research Food safety food safety control Food science Garlic garlic root cutting Harvest Machine learning Neural networks object detection Object recognition Physiological aspects Sensors standard deviation Transfer learning YOLO |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMXxFMESmUkVC5E9TpObB_bbQunBVUg9WY5tiMirRLYzfb3M-NkV7sg4MIpUjzKYzzj-SYZfwPwVoSIqKLC7CQYk0tVm9wVzuVRKM09N8HVPDWbUIuFvr01n_dafVFN2EgPPCrurAjRxbqWrnROVrFxCOgDrryKB83r1K9WcGX2kqm0BpsZpl5iJNUsMK8_a_o-rNGxMVwRwdNeEEpc_b-vyL9WSe6FnetH8HDCi-x8fM7HcC92TyC7bOPATtlE6rlkiy2n_lO4mffd3WRPNBKJVwMPqdqbIURln2r69sIu45DKsDrWduyDWy1bz276fmDzTaqFZlc_Nm2qJnoGX6-vvsw_5lPjhNyXBR_yqGmjeJghulCNFqqRwiE0iLUqKokh39d4kL6sfEA8IB2CoqBKlA965qkRxnM46vouvgAmCCMhZDFBm9StDKdzpvHapUEFV00G77eatH5iFafmFkuL2QUp3h4oPoPTnfj3kU7jT4IXNC07IWLBTifQNuxkG_ZftpHBO5pUS76KD-XdtOUAX41Yr-y5EnhjaqGZwfF23u3kxGtL_-QRzcpSZvBmN4zuR_9UXBf7DcpUphSaSAP_IoPxv6gUYu0M1IFNHbze4UjXfktk36bARZKbl_9DH6_ggaDdG1zlQh7D0bDaxNdw398N7Xp1kjzoJ8I8Ibw priority: 102 providerName: Directory of Open Access Journals |
| Title | Convolutional Neural Network for Object Detection in Garlic Root Cutting Equipment |
| URI | https://www.proquest.com/docview/2700575454 https://www.proquest.com/docview/2695288665 https://www.proquest.com/docview/2718367139 https://pubmed.ncbi.nlm.nih.gov/PMC9331909 https://doaj.org/article/3deaebb4a5aa46efa956d41370d80b13 |
| Volume | 11 |
| WOSCitedRecordID | wos000839857300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2304-8158 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913832 issn: 2304-8158 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2304-8158 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913832 issn: 2304-8158 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 2304-8158 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913832 issn: 2304-8158 databaseCode: M0K dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2304-8158 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913832 issn: 2304-8158 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2304-8158 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913832 issn: 2304-8158 databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjgde-EZkG5WR0HghWpov209o6zpAaKWqQCpPkWM7EKlKtjbd38-d65YVxF54SaT4lDi6O_vn8_l3AG9iYxFV5Lg6MVKGKS9lqBKlQhtzEelIGlVGrtgEH4_FbCYnPuC29GmVmzHRDdSm1RQjP6ENUoQWaZa-v7oOqWoU7a76Ehp7sE9MZXEP9s9G48l0G2Uh1ku02TW5ZoLr-5Oqbc0SHRynLSJ6ujUZOc7-v0fmP7Mlb00_F4_-t-OP4aEHnux0bSlP4J5tnkJwXtuOHTPPDjpn4w05_zOYDtvmxhsmtVgi6MCbSxtniHXZl5KCOOzcdi6fq2F1wz6oxbzWbNq2HRuuXFI1G12vapeW9By-XYy-Dj-GvgJDqLMk6kIr6MS5GSBM4ZWIeZXGCjGGLXmSp4gddIm3VGe5NggsUoXoyvAM5Y0YaKqo8QJ6TdvYl8BiAluIfaQR0pU9Q7sYCHx3JlFDeRXAu40qCu3pyalKxrzAZQpprtjRXADHW_GrNS_HvwTPSK9bIaLTdg_axY_Ce2eRGKtsWaYqUyrNbaVw1WhweueREVE5SAJ4S1ZRkNNjp7TyZxfw14g-qzjlMX6YanEGcLSxgsKPBsvitwkE8HrbjH5MmzOqse0KZXKZxYLYB--QQSCR5BxBewB8xyh3fm-3pal_OtZwmeBoG8mDuzt4CA9iOuAR8TBOj6DXLVb2FdzXN129XPRhj89E3ztZ38Uv8HoZfcZnk0-Xk--_AL2zNHM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH-aOiS48I3IGGAkGBeipY4TxweEtrZj00aZqiHtFhzbZZGqZGvTIf4p_kbeS5OygthtB06R4qcmbt6n_fz7Abzm1mFWEWN1YpXyhcyUr0OtfcdlEphAWZ0FNdmEHA6T01N1vAY_27Mw1FbZ-sTaUdvS0Br5Nm2QYmohIvHh_MIn1ijaXW0pNBZqceh-fMeSbfb-oI_f9w3ne4OT3r7fsAr4JgqDyncJnaK2XQy9cpxwORZcY9x0mQxjgfHQZHgRJoqNxWApNGYMVkYob5OuWbBEoMtfF6GIeQfWdwfD49FyVYdQNtFGFmCeYaiC7XFZ2hk6FAyTBCx1JfjVHAF_R4I_uzOvhLu9e__bH3Uf7jaJNdtZWMIDWHPFQ_D6uavYFmvQTyds2JIPPIJRrywuG8OjEUcAJHip2-IZ5vLsc0aLVKzvqrpfrWB5wT7q6SQ3bFSWFevN66ZxNriY53Xb1WP4ciNTfAKdoizcU2CckknM7ZRNVE3rhnrfTfC3I4UaEY89eNd--tQ08OvEAjJJsQwjTUlXNMWDraX4-QJ35F-Cu6RHSyGCC69vlNNvaeN90tA67bJM6EhrEbuxxqrYYvoiA5sEWTf04C1pYUpODV_K6OZsBk6N4MHSHcnxwcQ16sFmq3Vp4-1m6W-V8-DVchj9FG0-6cKVc5SJVcQTQle8RgYTpTCWWJR4IFeMYGV6qyNFflajoqsQo0mgNq5_wZdwe__k01F6dDA8fAZ3OB1mCaTPxSZ0quncPYdb5rLKZ9MXjWkz-HrTRvILkB-Ixg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUJceCMMBRYJygUr9vqx3gNCbR5QFYUoAqk3s95dg6XIbhOniL_Gr2PGsUMDorceOFnyjmKvM8_d2e8DeMGNxawixurESOmGIpOuCpRyLReJpz1pVOY1ZBNiMklOTuR0B352Z2GorbLziY2jNpWmNfI-bZBiahFGYT9v2yKmw_Hb0zOXGKRop7Wj01iryLH98R3Lt-WboyH-1y85H48-Dd67LcOAq6PAq12b0Ilq42MYFnnCRR5yhTHUZiKIQ4yNOsNLqKNYGwycocLswYgI5U3i6zVjBLr_XRFIP-zB7uFoMp1tVngIcRPtZQ3sGQTS6-dVZZboXDBkEsjUhUDY8AX8HRX-7NS8EPrGt_7nj3YbbrYJNztYW8gd2LHlXXCGha3ZPmtRUeds0pES3IPZoCrPW4OkEUvAJHhp2uUZ5vjsY0aLV2xo66aPrWRFyd6pxbzQbFZVNRusmmZyNjpbFU071n34fCVTfAC9sirtQ2CckkzM-aRJZEP3hvbgJ_jbkUTtiHMHXndqkOoWlp3YQeYplmekNemW1jiwvxE_XeOR_EvwkHRqI0Qw4s2NavE1bb1SGhirbJaFKlIqjG2usFo2mNYIzyRe5gcOvCKNTMnZ4Utp1Z7ZwKkRbFh6IDg-mDhIHdjrNDBtveAy_a1-DjzfDKP_ok0pVdpqhTKxjHhCqIuXyGACFcQCixUHxJZBbE1ve6QsvjVo6TLAKOPJR5e_4DO4jpaRfjiaHD-GG5zOuHjC5eEe9OrFyj6Ba_q8LpaLp62VM_hy1TbyC3gHkYk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Neural+Network+for+Object+Detection+in+Garlic+Root+Cutting+Equipment&rft.jtitle=Foods&rft.au=Yang%2C+Ke&rft.au=Peng%2C+Baoliang&rft.au=Gu%2C+Fengwei&rft.au=Zhang%2C+Yanhua&rft.date=2022-07-24&rft.issn=2304-8158&rft.eissn=2304-8158&rft.volume=11&rft.issue=15&rft_id=info:doi/10.3390%2Ffoods11152197&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-8158&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-8158&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-8158&client=summon |