Convolutional Neural Network for Object Detection in Garlic Root Cutting Equipment

Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning—a convolutional neural network—is proposed in this study. The you-only-look-once (YOLO) algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foods Jg. 11; H. 15; S. 2197
Hauptverfasser: Yang, Ke, Peng, Baoliang, Gu, Fengwei, Zhang, Yanhua, Wang, Shenying, Yu, Zhaoyang, Hu, Zhichao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 24.07.2022
MDPI
Schlagworte:
ISSN:2304-8158, 2304-8158
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning—a convolutional neural network—is proposed in this study. The you-only-look-once (YOLO) algorithm, which is based on lightweight and transfer learning, is the most advanced computer vision method for single large object detection. To detect the bulb, the YOLOv2 model was modified using an inverted residual module and residual structure. The modified model was trained based on images of bulbs with varied brightness, surface attachment, and shape, which enabled sufficient learning of the detector. The optimum minibatches and epochs were obtained by comparing the test results of different training parameters. Research shows that IRM-YOLOv2 is superior to the SqueezeNet, ShuffleNet, and YOLOv2 models of classical neural networks, as well as the YOLOv3 and YOLOv4 algorithm models. The confidence score, average accuracy, deviation, standard deviation, detection time, and storage space of IRM-YOLOv2 were 0.98228, 99.2%, 2.819 pixels, 4.153, 0.0356 s, and 24.2 MB, respectively. In addition, this study provides an important reference for the application of the YOLO algorithm in food research.
AbstractList Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning—a convolutional neural network—is proposed in this study. The you-only-look-once (YOLO) algorithm, which is based on lightweight and transfer learning, is the most advanced computer vision method for single large object detection. To detect the bulb, the YOLOv2 model was modified using an inverted residual module and residual structure. The modified model was trained based on images of bulbs with varied brightness, surface attachment, and shape, which enabled sufficient learning of the detector. The optimum minibatches and epochs were obtained by comparing the test results of different training parameters. Research shows that IRM-YOLOv2 is superior to the SqueezeNet, ShuffleNet, and YOLOv2 models of classical neural networks, as well as the YOLOv3 and YOLOv4 algorithm models. The confidence score, average accuracy, deviation, standard deviation, detection time, and storage space of IRM-YOLOv2 were 0.98228, 99.2%, 2.819 pixels, 4.153, 0.0356 s, and 24.2 MB, respectively. In addition, this study provides an important reference for the application of the YOLO algorithm in food research.
Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning-a convolutional neural network-is proposed in this study. The you-only-look-once (YOLO) algorithm, which is based on lightweight and transfer learning, is the most advanced computer vision method for single large object detection. To detect the bulb, the YOLOv2 model was modified using an inverted residual module and residual structure. The modified model was trained based on images of bulbs with varied brightness, surface attachment, and shape, which enabled sufficient learning of the detector. The optimum minibatches and epochs were obtained by comparing the test results of different training parameters. Research shows that IRM-YOLOv2 is superior to the SqueezeNet, ShuffleNet, and YOLOv2 models of classical neural networks, as well as the YOLOv3 and YOLOv4 algorithm models. The confidence score, average accuracy, deviation, standard deviation, detection time, and storage space of IRM-YOLOv2 were 0.98228, 99.2%, 2.819 pixels, 4.153, 0.0356 s, and 24.2 MB, respectively. In addition, this study provides an important reference for the application of the YOLO algorithm in food research.Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning-a convolutional neural network-is proposed in this study. The you-only-look-once (YOLO) algorithm, which is based on lightweight and transfer learning, is the most advanced computer vision method for single large object detection. To detect the bulb, the YOLOv2 model was modified using an inverted residual module and residual structure. The modified model was trained based on images of bulbs with varied brightness, surface attachment, and shape, which enabled sufficient learning of the detector. The optimum minibatches and epochs were obtained by comparing the test results of different training parameters. Research shows that IRM-YOLOv2 is superior to the SqueezeNet, ShuffleNet, and YOLOv2 models of classical neural networks, as well as the YOLOv3 and YOLOv4 algorithm models. The confidence score, average accuracy, deviation, standard deviation, detection time, and storage space of IRM-YOLOv2 were 0.98228, 99.2%, 2.819 pixels, 4.153, 0.0356 s, and 24.2 MB, respectively. In addition, this study provides an important reference for the application of the YOLO algorithm in food research.
Audience Academic
Author Zhang, Yanhua
Peng, Baoliang
Gu, Fengwei
Yang, Ke
Hu, Zhichao
Wang, Shenying
Yu, Zhaoyang
AuthorAffiliation 3 Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
2 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; wangshenying@caas.cn
1 Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; yk666666yk@126.com (K.Y.); pengbaoliang@caas.cn (B.P.); gufengwei@caas.cn (F.G.); zhangyanhua@caas.cn (Y.Z.)
AuthorAffiliation_xml – name: 1 Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; yk666666yk@126.com (K.Y.); pengbaoliang@caas.cn (B.P.); gufengwei@caas.cn (F.G.); zhangyanhua@caas.cn (Y.Z.)
– name: 2 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; wangshenying@caas.cn
– name: 3 Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
Author_xml – sequence: 1
  givenname: Ke
  surname: Yang
  fullname: Yang, Ke
– sequence: 2
  givenname: Baoliang
  surname: Peng
  fullname: Peng, Baoliang
– sequence: 3
  givenname: Fengwei
  surname: Gu
  fullname: Gu, Fengwei
– sequence: 4
  givenname: Yanhua
  surname: Zhang
  fullname: Zhang, Yanhua
– sequence: 5
  givenname: Shenying
  surname: Wang
  fullname: Wang, Shenying
– sequence: 6
  givenname: Zhaoyang
  surname: Yu
  fullname: Yu, Zhaoyang
– sequence: 7
  givenname: Zhichao
  surname: Hu
  fullname: Hu, Zhichao
BookMark eNqNUktrFTEYDVKxD7t0P-DGzdS8Hxuh3Na2UCwUXYdMkrnmOpPcZjIV_72Z3gre4sJk8YUv5xy-xzkGBzFFD8A7BM8IUfBjn5KbEEIMIyVegSNMIG0lYvLgr_chOJ2mDaxHISIJfgMOCZMKC4mPwP0qxcc0zCWkaIbmi5_zUyg_U_7R9Ck3d93G29Jc-FJDRTUhNlcmD8E29ymVZjWXEuK6uXyYw3b0sbwFr3szTP70OZ6Ab58vv66u29u7q5vV-W1rGYGl9ZJKKBziTIpeYtFTbKBgvhOEU4mh7WqglnHrkILUYE6dYBXvJLKIMHICbna6LpmN3uYwmvxLJxP0UyLltTa5BDt4TZw3vuuoYcZQ7nujGHcUEQGdhB0iVevTTms7d6N3trZR57Anuv8Tw3e9To9aEVKrU1Xgw7NATg-zn4oew2T9MJjo0zxpLJAkXCDyH1CuGJaS86XF9y-gmzTnuqhFEEImGGW0os52qLWpvYbYp1qirdf5MdjqmD7U_LnA1TJcyaUCsiPYnKYp-17bUMyy3EoMg0ZQL_bSe_aqrPYF6894_o3_DWfp0QU
CitedBy_id crossref_primary_10_3389_fpls_2024_1425100
crossref_primary_10_3389_fnut_2023_1308787
crossref_primary_10_3390_agronomy13030835
crossref_primary_10_3390_foods11203268
crossref_primary_10_3390_agriengineering6040214
crossref_primary_10_1111_1750_3841_70186
crossref_primary_10_3390_agriculture14122236
Cites_doi 10.1038/nature14539
10.3390/foods10040785
10.1016/j.compind.2020.103303
10.1016/j.compag.2020.105856
10.3390/foods10051063
10.1016/j.jfoodeng.2018.04.028
10.3390/s21082764
10.3390/foods11081127
10.1007/s11042-022-13097-3
10.1016/j.neucom.2021.03.048
10.1016/j.foodcont.2021.108339
10.3390/s22134704
10.1016/j.crfs.2021.10.003
10.1016/j.imavis.2021.104317
10.5121/csit.2019.91713
10.1016/j.neucom.2019.01.090
10.3390/pr8050595
10.1016/j.foodcont.2019.04.032
10.1016/j.fm.2015.07.008
10.3390/s19132953
10.1109/CVPR.2016.91
10.1016/j.colcom.2019.100176
10.1109/ICPR.2006.479
10.1016/j.compag.2022.106772
10.1109/CVPR.2015.7298594
10.1109/CVPR.2018.00474
10.1109/CVPR.2014.81
10.1109/CVPR.2016.90
10.1111/1541-4337.12868
10.1111/1541-4337.12912
10.1109/ICCV.2015.169
10.1016/j.neucom.2020.10.016
10.1109/CVPR.2017.690
10.3390/s20071999
10.3390/foods10040879
10.1007/978-3-319-46448-0_2
10.1145/3065386
10.1016/j.iot.2021.100359
10.1016/j.compag.2021.106547
10.1016/j.imavis.2022.104396
10.1016/j.compag.2020.105727
10.1016/j.jfca.2020.103771
10.1016/j.jfoodeng.2020.110036
10.1186/s13007-020-00624-2
10.3390/foods11111609
10.1016/j.neunet.2020.12.022
10.1109/TPAMI.2018.2858826
10.1016/j.fm.2021.103914
10.3390/sym12030408
10.1016/j.scs.2020.102600
10.1016/j.ecoinf.2021.101521
10.1111/1541-4337.12885
10.1016/j.jfoodeng.2020.109930
10.1016/j.lwt.2021.111832
10.1007/s10994-014-5456-x
10.1109/CVPR.2018.00716
10.1016/j.apor.2021.102783
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7QR
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/foods11152197
DatabaseName CrossRef
ProQuest Central (Corporate)
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef


Agricultural Science Database
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 2304-8158
ExternalDocumentID oai_doaj_org_article_3deaebb4a5aa46efa956d41370d80b13
PMC9331909
A723906989
10_3390_foods11152197
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51805282
– fundername: National Key R&D Program of China
  grantid: 2017YFD0701305-02
– fundername: Projects funded by the Jiangsu Modern Agricultural Machinery Equipment and Technology Demonstration and Extension
  grantid: NJ2020-24
GroupedDBID 53G
5VS
7X2
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
M0K
M48
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
RPM
3V.
7QR
7T7
8FD
8FK
ABUWG
AZQEC
C1K
COVID
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
7S9
L.6
5PM
ID FETCH-LOGICAL-c530t-e84807d16587f827f42a075eb7364820cb6484c56cd1904a264d75d16d81c1353
IEDL.DBID BENPR
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839857300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2304-8158
IngestDate Fri Oct 03 12:44:23 EDT 2025
Tue Nov 04 02:02:19 EST 2025
Sun Nov 09 09:39:53 EST 2025
Fri Sep 05 09:39:05 EDT 2025
Mon Jun 30 11:22:15 EDT 2025
Tue Nov 04 18:34:12 EST 2025
Tue Nov 18 22:23:24 EST 2025
Sat Nov 29 07:17:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-e84807d16587f827f42a075eb7364820cb6484c56cd1904a264d75d16d81c1353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2700575454?pq-origsite=%requestingapplication%
PMID 35892782
PQID 2700575454
PQPubID 2032399
ParticipantIDs doaj_primary_oai_doaj_org_article_3deaebb4a5aa46efa956d41370d80b13
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9331909
proquest_miscellaneous_2718367139
proquest_miscellaneous_2695288665
proquest_journals_2700575454
gale_infotracacademiconefile_A723906989
crossref_citationtrail_10_3390_foods11152197
crossref_primary_10_3390_foods11152197
PublicationCentury 2000
PublicationDate 20220724
PublicationDateYYYYMMDD 2022-07-24
PublicationDate_xml – month: 7
  year: 2022
  text: 20220724
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Foods
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yang (ref_33) 2022; 53
Zhang (ref_37) 2021; 68
Liu (ref_43) 2020; 16
ref_11
Xu (ref_57) 2022; 192
ref_54
Liu (ref_50) 2019; 338
ref_53
ref_52
Li (ref_27) 2021; 114
ref_19
ref_18
Amudhan (ref_69) 2022; 119
Krizhevsky (ref_67) 2017; 60
ref_61
ref_60
Kim (ref_35) 2021; 446
ref_25
ref_24
ref_68
ref_23
ref_66
ref_21
Jubayer (ref_31) 2021; 4
ref_65
ref_20
ref_64
Qian (ref_62) 2015; 99
ref_63
Chai (ref_28) 2021; 116
Deng (ref_16) 2021; 149
ref_29
ref_26
Loey (ref_55) 2020; 11
Zhu (ref_30) 2021; 13
Zhou (ref_45) 2020; 179
Loey (ref_38) 2021; 65
Montavon (ref_59) 2012; Volume 7700
Nasiri (ref_15) 2020; 283
Khan (ref_13) 2022; 21
ref_72
ref_71
ref_70
Tao (ref_2) 2018; 235
Liu (ref_58) 2021; 430
Thuyet (ref_56) 2020; 178
Lin (ref_22) 2018; 42
ref_36
ref_34
Katsigiannis (ref_8) 2022; 21
ref_32
Ma (ref_44) 2022; 194
Richter (ref_14) 2019; 104
ref_39
Wang (ref_12) 2021; 21
Nazari (ref_1) 2019; 30
Yu (ref_6) 2021; 52
Nasiri (ref_7) 2020; 278
Erickson (ref_9) 2015; 52
LeCun (ref_17) 2015; 521
ref_47
Oliveira (ref_73) 2021; 97
Qi (ref_51) 2020; 123
ref_42
ref_41
ref_40
Kwok (ref_10) 2022; 102
ref_49
ref_48
ref_5
Choi (ref_3) 2021; 130
ref_4
Kulkarni (ref_46) 2021; 136
References_xml – volume: 521
  start-page: 436
  year: 2015
  ident: ref_17
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_18
  doi: 10.3390/foods10040785
– ident: ref_5
– volume: 123
  start-page: 103303
  year: 2020
  ident: ref_51
  article-title: MYOLOv3-Tiny: A new convolutional neural network architecture for real-time detection of track fasteners
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2020.103303
– volume: 179
  start-page: 105856
  year: 2020
  ident: ref_45
  article-title: Real-time kiwifruit detection in orchard using deep learning on Android™ smartphones for yield estimation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105856
– ident: ref_68
– ident: ref_11
  doi: 10.3390/foods10051063
– volume: 235
  start-page: 79
  year: 2018
  ident: ref_2
  article-title: Contacting ultrasound enhanced hot-air convective drying of garlic slices: Mass transfer modeling and quality evaluation
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2018.04.028
– ident: ref_29
  doi: 10.3390/s21082764
– ident: ref_32
  doi: 10.3390/foods11081127
– ident: ref_39
– ident: ref_70
  doi: 10.1007/s11042-022-13097-3
– volume: 446
  start-page: 11
  year: 2021
  ident: ref_35
  article-title: Edge and Identity Preserving Network for Face Super-Resolution
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.048
– volume: 130
  start-page: 108399
  year: 2021
  ident: ref_3
  article-title: Determination of the geographic origin of garlic using the bioelement content and isotope signatures
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2021.108339
– ident: ref_49
  doi: 10.3390/s22134704
– volume: 4
  start-page: 724
  year: 2021
  ident: ref_31
  article-title: Detection of mold on the food surface using YOLOv5
  publication-title: Curr. Res. Food Sci.
  doi: 10.1016/j.crfs.2021.10.003
– ident: ref_61
– ident: ref_23
– volume: 116
  start-page: 104317
  year: 2021
  ident: ref_28
  article-title: ERF-YOLO: A YOLO algorithm compatible with fewer parameters and higher accuracy
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2021.104317
– ident: ref_34
  doi: 10.5121/csit.2019.91713
– volume: 338
  start-page: 191
  year: 2019
  ident: ref_50
  article-title: A novel scene classification model combining ResNet based transfer learning and data augmentation with a filter
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.090
– ident: ref_42
  doi: 10.3390/pr8050595
– volume: 104
  start-page: 318
  year: 2019
  ident: ref_14
  article-title: Food monitoring: Screening of the geographical origin of white asparagus using FT-NIR and machine learning
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2019.04.032
– volume: 52
  start-page: 138
  year: 2015
  ident: ref_9
  article-title: Contamination of knives and graters by bacterial foodborne pathogens during slicing and grating of produce
  publication-title: Food Microbiol.
  doi: 10.1016/j.fm.2015.07.008
– ident: ref_72
  doi: 10.3390/s19132953
– ident: ref_4
– ident: ref_21
  doi: 10.1109/CVPR.2016.91
– volume: 30
  start-page: 100176
  year: 2019
  ident: ref_1
  article-title: Garlic essential oil nanophytosomes as a natural food preservative: Its application in yogurt as food model
  publication-title: Colloid Interface Sci. Commun.
  doi: 10.1016/j.colcom.2019.100176
– ident: ref_52
– ident: ref_53
  doi: 10.1109/ICPR.2006.479
– volume: 194
  start-page: 106772
  year: 2022
  ident: ref_44
  article-title: Basic motion behavior recognition of single dairy cow based on improved Rexnet 3D network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106772
– ident: ref_66
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_40
  doi: 10.1109/CVPR.2018.00474
– volume: 52
  start-page: 111
  year: 2021
  ident: ref_6
  article-title: Operation Mechanism Analysis and Parameter Optimization of Garlic Root Floating Cutting Device
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 53
  start-page: 123
  year: 2022
  ident: ref_33
  article-title: Design and Experiment of Garlic Harvesting and Root Cutting Device Based on Deep Learning Object Determination
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 11
  start-page: 18
  year: 2020
  ident: ref_55
  article-title: Deep Learning in Plant Diseases Detection for Agricultural Crops: A Survey
  publication-title: Int. J. Serv. Sci. Manag. Eng. Technol. (IJSSMET)
– ident: ref_19
  doi: 10.1109/CVPR.2014.81
– ident: ref_48
  doi: 10.1109/CVPR.2016.90
– volume: 21
  start-page: 416
  year: 2021
  ident: ref_12
  article-title: Application of machine learning to the monitoring and prediction of food safety: A review
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12868
– volume: 21
  start-page: 1409
  year: 2022
  ident: ref_13
  article-title: Machine learning-based modeling in food processing applications: State of the art
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12912
– ident: ref_24
  doi: 10.1109/ICCV.2015.169
– volume: 430
  start-page: 174
  year: 2021
  ident: ref_58
  article-title: Robot recognizing humans intention and interacting with humans based on a multi-task model combining ST-GCN-LSTM model and YOLO model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.016
– ident: ref_26
  doi: 10.1109/CVPR.2017.690
– ident: ref_41
  doi: 10.3390/s20071999
– volume: Volume 7700
  start-page: 437
  year: 2012
  ident: ref_59
  article-title: Practical Recommendations for Gradient-Based Training of Deep Architectures
  publication-title: Neural Networks: Tricks of the Trade
– ident: ref_47
  doi: 10.3390/foods10040879
– ident: ref_20
  doi: 10.1007/978-3-319-46448-0_2
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_67
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 13
  start-page: 100359
  year: 2021
  ident: ref_30
  article-title: Support vector machine and YOLO for a mobile food grading system
  publication-title: Internet Things
  doi: 10.1016/j.iot.2021.100359
– volume: 192
  start-page: 106547
  year: 2022
  ident: ref_57
  article-title: Detection and classification of tea buds based on deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106547
– volume: 119
  start-page: 104396
  year: 2022
  ident: ref_69
  article-title: Lightweight and computationally faster Hypermetropic Convolutional Neural Network for small size object detection
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2022.104396
– ident: ref_63
– volume: 178
  start-page: 105727
  year: 2020
  ident: ref_56
  article-title: A robot system equipped with deep convolutional neural network for autonomous grading and sorting of root-trimmed garlics
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105727
– volume: 97
  start-page: 103771
  year: 2021
  ident: ref_73
  article-title: Classification of fermented cocoa beans (cut test) using computer vision
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2020.103771
– volume: 283
  start-page: 110036
  year: 2020
  ident: ref_15
  article-title: An automatic sorting system for unwashed eggs using deep learning
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2020.110036
– ident: ref_25
– volume: 16
  start-page: 83
  year: 2020
  ident: ref_43
  article-title: Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model
  publication-title: Plant Methods
  doi: 10.1186/s13007-020-00624-2
– ident: ref_71
  doi: 10.3390/foods11111609
– volume: 136
  start-page: 28
  year: 2021
  ident: ref_46
  article-title: Quantization Friendly MobileNet (QF-MobileNet) Architecture for Vision Based Applications on Embedded Platforms
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.12.022
– volume: 42
  start-page: 318
  year: 2018
  ident: ref_22
  article-title: Focal Loss for Dense Object Detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2858826
– volume: 102
  start-page: 103914
  year: 2022
  ident: ref_10
  article-title: Biofilm dispersal induced by mechanical cutting leads to heightened foodborne pathogen dissemination
  publication-title: Food Microbiol.
  doi: 10.1016/j.fm.2021.103914
– ident: ref_54
  doi: 10.3390/sym12030408
– volume: 65
  start-page: 102600
  year: 2021
  ident: ref_38
  article-title: Fighting against COVID-19: A novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102600
– volume: 68
  start-page: 101521
  year: 2021
  ident: ref_37
  article-title: Automatic stomata recognition and measurement based on improved YOLO deep learning model and entropy rate super pixel algorithm
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2021.101521
– ident: ref_64
– volume: 21
  start-page: 1086
  year: 2022
  ident: ref_8
  article-title: Cold plasma for the disinfection of industrial food-contact surfaces: An overview of current status and opportunities
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12885
– ident: ref_36
– ident: ref_60
– volume: 278
  start-page: 109930
  year: 2020
  ident: ref_7
  article-title: Smart deep learning-based approach for non-destructive freshness diagnosis of common carp fish
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2020.109930
– volume: 149
  start-page: 111832
  year: 2021
  ident: ref_16
  article-title: Online defect detection and automatic grading of carrots using computer vision combined with deep learning methods
  publication-title: LWT
  doi: 10.1016/j.lwt.2021.111832
– volume: 99
  start-page: 353
  year: 2015
  ident: ref_62
  article-title: Efficient distance metric learning by adaptive sampling and mini-batch stochastic gradient descent (SGD)
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-014-5456-x
– ident: ref_65
  doi: 10.1109/CVPR.2018.00716
– volume: 114
  start-page: 102783
  year: 2021
  ident: ref_27
  article-title: Toward in situ zooplankton detection with a densely connected YOLOV3 model
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102783
SSID ssj0000913832
Score 2.273658
Snippet Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2197
SubjectTerms Accuracy
Algorithms
Artificial neural networks
bulbs
Computer vision
convolutional neural network
Cutting equipment
Deep learning
Efficiency
Food processing
food research
Food safety
food safety control
Food science
Garlic
garlic root cutting
Harvest
Machine learning
Neural networks
object detection
Object recognition
Physiological aspects
Sensors
standard deviation
Transfer learning
YOLO
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMXxFMESmUkVC5E9TpObB_bbQunBVUg9WY5tiMirRLYzfb3M-NkV7sg4MIpUjzKYzzj-SYZfwPwVoSIqKLC7CQYk0tVm9wVzuVRKM09N8HVPDWbUIuFvr01n_dafVFN2EgPPCrurAjRxbqWrnROVrFxCOgDrryKB83r1K9WcGX2kqm0BpsZpl5iJNUsMK8_a_o-rNGxMVwRwdNeEEpc_b-vyL9WSe6FnetH8HDCi-x8fM7HcC92TyC7bOPATtlE6rlkiy2n_lO4mffd3WRPNBKJVwMPqdqbIURln2r69sIu45DKsDrWduyDWy1bz276fmDzTaqFZlc_Nm2qJnoGX6-vvsw_5lPjhNyXBR_yqGmjeJghulCNFqqRwiE0iLUqKokh39d4kL6sfEA8IB2CoqBKlA965qkRxnM46vouvgAmCCMhZDFBm9StDKdzpvHapUEFV00G77eatH5iFafmFkuL2QUp3h4oPoPTnfj3kU7jT4IXNC07IWLBTifQNuxkG_ZftpHBO5pUS76KD-XdtOUAX41Yr-y5EnhjaqGZwfF23u3kxGtL_-QRzcpSZvBmN4zuR_9UXBf7DcpUphSaSAP_IoPxv6gUYu0M1IFNHbze4UjXfktk36bARZKbl_9DH6_ggaDdG1zlQh7D0bDaxNdw398N7Xp1kjzoJ8I8Ibw
  priority: 102
  providerName: Directory of Open Access Journals
Title Convolutional Neural Network for Object Detection in Garlic Root Cutting Equipment
URI https://www.proquest.com/docview/2700575454
https://www.proquest.com/docview/2695288665
https://www.proquest.com/docview/2718367139
https://pubmed.ncbi.nlm.nih.gov/PMC9331909
https://doaj.org/article/3deaebb4a5aa46efa956d41370d80b13
Volume 11
WOSCitedRecordID wos000839857300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2304-8158
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913832
  issn: 2304-8158
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2304-8158
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913832
  issn: 2304-8158
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 2304-8158
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913832
  issn: 2304-8158
  databaseCode: M0K
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2304-8158
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913832
  issn: 2304-8158
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2304-8158
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913832
  issn: 2304-8158
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjgde-EZkG5WR0HghWpov209o6zpAaKWqQCpPkWM7EKlKtjbd38-d65YVxF54SaT4lDi6O_vn8_l3AG9iYxFV5Lg6MVKGKS9lqBKlQhtzEelIGlVGrtgEH4_FbCYnPuC29GmVmzHRDdSm1RQjP6ENUoQWaZa-v7oOqWoU7a76Ehp7sE9MZXEP9s9G48l0G2Uh1ku02TW5ZoLr-5Oqbc0SHRynLSJ6ujUZOc7-v0fmP7Mlb00_F4_-t-OP4aEHnux0bSlP4J5tnkJwXtuOHTPPDjpn4w05_zOYDtvmxhsmtVgi6MCbSxtniHXZl5KCOOzcdi6fq2F1wz6oxbzWbNq2HRuuXFI1G12vapeW9By-XYy-Dj-GvgJDqLMk6kIr6MS5GSBM4ZWIeZXGCjGGLXmSp4gddIm3VGe5NggsUoXoyvAM5Y0YaKqo8QJ6TdvYl8BiAluIfaQR0pU9Q7sYCHx3JlFDeRXAu40qCu3pyalKxrzAZQpprtjRXADHW_GrNS_HvwTPSK9bIaLTdg_axY_Ce2eRGKtsWaYqUyrNbaVw1WhweueREVE5SAJ4S1ZRkNNjp7TyZxfw14g-qzjlMX6YanEGcLSxgsKPBsvitwkE8HrbjH5MmzOqse0KZXKZxYLYB--QQSCR5BxBewB8xyh3fm-3pal_OtZwmeBoG8mDuzt4CA9iOuAR8TBOj6DXLVb2FdzXN129XPRhj89E3ztZ38Uv8HoZfcZnk0-Xk--_AL2zNHM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH-aOiS48I3IGGAkGBeipY4TxweEtrZj00aZqiHtFhzbZZGqZGvTIf4p_kbeS5OygthtB06R4qcmbt6n_fz7Abzm1mFWEWN1YpXyhcyUr0OtfcdlEphAWZ0FNdmEHA6T01N1vAY_27Mw1FbZ-sTaUdvS0Br5Nm2QYmohIvHh_MIn1ijaXW0pNBZqceh-fMeSbfb-oI_f9w3ne4OT3r7fsAr4JgqDyncJnaK2XQy9cpxwORZcY9x0mQxjgfHQZHgRJoqNxWApNGYMVkYob5OuWbBEoMtfF6GIeQfWdwfD49FyVYdQNtFGFmCeYaiC7XFZ2hk6FAyTBCx1JfjVHAF_R4I_uzOvhLu9e__bH3Uf7jaJNdtZWMIDWHPFQ_D6uavYFmvQTyds2JIPPIJRrywuG8OjEUcAJHip2-IZ5vLsc0aLVKzvqrpfrWB5wT7q6SQ3bFSWFevN66ZxNriY53Xb1WP4ciNTfAKdoizcU2CckknM7ZRNVE3rhnrfTfC3I4UaEY89eNd--tQ08OvEAjJJsQwjTUlXNMWDraX4-QJ35F-Cu6RHSyGCC69vlNNvaeN90tA67bJM6EhrEbuxxqrYYvoiA5sEWTf04C1pYUpODV_K6OZsBk6N4MHSHcnxwcQ16sFmq3Vp4-1m6W-V8-DVchj9FG0-6cKVc5SJVcQTQle8RgYTpTCWWJR4IFeMYGV6qyNFflajoqsQo0mgNq5_wZdwe__k01F6dDA8fAZ3OB1mCaTPxSZ0quncPYdb5rLKZ9MXjWkz-HrTRvILkB-Ixg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUJceCMMBRYJygUr9vqx3gNCbR5QFYUoAqk3s95dg6XIbhOniL_Gr2PGsUMDorceOFnyjmKvM8_d2e8DeMGNxawixurESOmGIpOuCpRyLReJpz1pVOY1ZBNiMklOTuR0B352Z2GorbLziY2jNpWmNfI-bZBiahFGYT9v2yKmw_Hb0zOXGKRop7Wj01iryLH98R3Lt-WboyH-1y85H48-Dd67LcOAq6PAq12b0Ilq42MYFnnCRR5yhTHUZiKIQ4yNOsNLqKNYGwycocLswYgI5U3i6zVjBLr_XRFIP-zB7uFoMp1tVngIcRPtZQ3sGQTS6-dVZZboXDBkEsjUhUDY8AX8HRX-7NS8EPrGt_7nj3YbbrYJNztYW8gd2LHlXXCGha3ZPmtRUeds0pES3IPZoCrPW4OkEUvAJHhp2uUZ5vjsY0aLV2xo66aPrWRFyd6pxbzQbFZVNRusmmZyNjpbFU071n34fCVTfAC9sirtQ2CckkzM-aRJZEP3hvbgJ_jbkUTtiHMHXndqkOoWlp3YQeYplmekNemW1jiwvxE_XeOR_EvwkHRqI0Qw4s2NavE1bb1SGhirbJaFKlIqjG2usFo2mNYIzyRe5gcOvCKNTMnZ4Utp1Z7ZwKkRbFh6IDg-mDhIHdjrNDBtveAy_a1-DjzfDKP_ok0pVdpqhTKxjHhCqIuXyGACFcQCixUHxJZBbE1ve6QsvjVo6TLAKOPJR5e_4DO4jpaRfjiaHD-GG5zOuHjC5eEe9OrFyj6Ba_q8LpaLp62VM_hy1TbyC3gHkYk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Neural+Network+for+Object+Detection+in+Garlic+Root+Cutting+Equipment&rft.jtitle=Foods&rft.au=Yang%2C+Ke&rft.au=Peng%2C+Baoliang&rft.au=Gu%2C+Fengwei&rft.au=Zhang%2C+Yanhua&rft.date=2022-07-24&rft.issn=2304-8158&rft.eissn=2304-8158&rft.volume=11&rft.issue=15&rft_id=info:doi/10.3390%2Ffoods11152197&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-8158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-8158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-8158&client=summon