Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells

Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 103; no. 32; p. 12167
Main Authors: Rodríguez, Larissa V, Alfonso, Zeni, Zhang, Rong, Leung, Joanne, Wu, Benjamin, Ignarro, Louis J
Format: Journal Article
Language:English
Published: United States 08.08.2006
Subjects:
ISSN:0027-8424
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative for smooth muscle repair. For such strategies to succeed, a reliable source of smooth muscle precursor cells must be identified. Adipose tissue provides an abundant source of multipotent cells. In this study, the capacity of processed lipoaspirate (PLA) and adipose-derived stem cells to differentiate into phenotypic and functional smooth muscle cells was evaluated. To induce differentiation, PLA cells were cultured in smooth muscle differentiation medium. Smooth muscle differentiation of PLA cells induced genetic expression of all smooth muscle markers and further confirmed by increased protein expression of smooth muscle cell-specific alpha actin (ASMA), calponin, caldesmon, SM22, myosin heavy chain (MHC), and smoothelin. Clonal studies of adipose derived multipotent cells demonstrated differentiation of these cells into smooth muscle cells in addition to trilineage differentiation capacity. Importantly, smooth muscle-differentiated cells, but not their precursors, exhibit the functional ability to contract and relax in direct response to pharmacologic agents. In conclusion, adipose-derived cells have the potential to differentiate into functional smooth muscle cells and, thus, adipose tissue can be a useful source of cells for treatment of injured tissues where smooth muscle plays an important role.
AbstractList Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative for smooth muscle repair. For such strategies to succeed, a reliable source of smooth muscle precursor cells must be identified. Adipose tissue provides an abundant source of multipotent cells. In this study, the capacity of processed lipoaspirate (PLA) and adipose-derived stem cells to differentiate into phenotypic and functional smooth muscle cells was evaluated. To induce differentiation, PLA cells were cultured in smooth muscle differentiation medium. Smooth muscle differentiation of PLA cells induced genetic expression of all smooth muscle markers and further confirmed by increased protein expression of smooth muscle cell-specific alpha actin (ASMA), calponin, caldesmon, SM22, myosin heavy chain (MHC), and smoothelin. Clonal studies of adipose derived multipotent cells demonstrated differentiation of these cells into smooth muscle cells in addition to trilineage differentiation capacity. Importantly, smooth muscle-differentiated cells, but not their precursors, exhibit the functional ability to contract and relax in direct response to pharmacologic agents. In conclusion, adipose-derived cells have the potential to differentiate into functional smooth muscle cells and, thus, adipose tissue can be a useful source of cells for treatment of injured tissues where smooth muscle plays an important role.
Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative for smooth muscle repair. For such strategies to succeed, a reliable source of smooth muscle precursor cells must be identified. Adipose tissue provides an abundant source of multipotent cells. In this study, the capacity of processed lipoaspirate (PLA) and adipose-derived stem cells to differentiate into phenotypic and functional smooth muscle cells was evaluated. To induce differentiation, PLA cells were cultured in smooth muscle differentiation medium. Smooth muscle differentiation of PLA cells induced genetic expression of all smooth muscle markers and further confirmed by increased protein expression of smooth muscle cell-specific alpha actin (ASMA), calponin, caldesmon, SM22, myosin heavy chain (MHC), and smoothelin. Clonal studies of adipose derived multipotent cells demonstrated differentiation of these cells into smooth muscle cells in addition to trilineage differentiation capacity. Importantly, smooth muscle-differentiated cells, but not their precursors, exhibit the functional ability to contract and relax in direct response to pharmacologic agents. In conclusion, adipose-derived cells have the potential to differentiate into functional smooth muscle cells and, thus, adipose tissue can be a useful source of cells for treatment of injured tissues where smooth muscle plays an important role.Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative for smooth muscle repair. For such strategies to succeed, a reliable source of smooth muscle precursor cells must be identified. Adipose tissue provides an abundant source of multipotent cells. In this study, the capacity of processed lipoaspirate (PLA) and adipose-derived stem cells to differentiate into phenotypic and functional smooth muscle cells was evaluated. To induce differentiation, PLA cells were cultured in smooth muscle differentiation medium. Smooth muscle differentiation of PLA cells induced genetic expression of all smooth muscle markers and further confirmed by increased protein expression of smooth muscle cell-specific alpha actin (ASMA), calponin, caldesmon, SM22, myosin heavy chain (MHC), and smoothelin. Clonal studies of adipose derived multipotent cells demonstrated differentiation of these cells into smooth muscle cells in addition to trilineage differentiation capacity. Importantly, smooth muscle-differentiated cells, but not their precursors, exhibit the functional ability to contract and relax in direct response to pharmacologic agents. In conclusion, adipose-derived cells have the potential to differentiate into functional smooth muscle cells and, thus, adipose tissue can be a useful source of cells for treatment of injured tissues where smooth muscle plays an important role.
Author Alfonso, Zeni
Zhang, Rong
Rodríguez, Larissa V
Leung, Joanne
Wu, Benjamin
Ignarro, Louis J
Author_xml – sequence: 1
  givenname: Larissa V
  surname: Rodríguez
  fullname: Rodríguez, Larissa V
  email: lrodriguez@mednet.ucla.edu
  organization: Department of Urology, University of California School of Medicine, Los Angeles, CA 90024, USA. lrodriguez@mednet.ucla.edu
– sequence: 2
  givenname: Zeni
  surname: Alfonso
  fullname: Alfonso, Zeni
– sequence: 3
  givenname: Rong
  surname: Zhang
  fullname: Zhang, Rong
– sequence: 4
  givenname: Joanne
  surname: Leung
  fullname: Leung, Joanne
– sequence: 5
  givenname: Benjamin
  surname: Wu
  fullname: Wu, Benjamin
– sequence: 6
  givenname: Louis J
  surname: Ignarro
  fullname: Ignarro, Louis J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16880387$$D View this record in MEDLINE/PubMed
BookMark eNo1kD1PwzAURT0U0VKY2ZAntpRnJ7HdEVV8SZVYYI4c55kaHDvEzsC_J6hlerq6R0dX74IsQgxIyDWDDQNZ3g1Bpw0IqFQNDMoFWQFwWaiKV0tykdInAGxrBedkyYRSUCq5Il87H0P8wOAM7Sef3RAzhkxTxp4a9D5RF-hh6nWgupvbhDS7lCaknbMWxxl2OuNM5UjtFEx2MWhPUx9jPszOZDweTZfkzGqf8Op01-T98eFt91zsX59edvf7wtQl5KKVqKQxgMDaqlXWtJ0S3GgN0nJAbbRhQmKl58hFh1KLLa-RMdtZqKTga3J79A5j_J4w5aZ36W-BDhin1AglOYhazeDNCZzaHrtmGF2vx5_m_z38F3sMaxQ
CitedBy_id crossref_primary_10_1111_j_1464_410X_2011_10206_x
crossref_primary_10_1007_s10103_007_0479_1
crossref_primary_10_1517_14712598_7_10_1483
crossref_primary_10_1007_s00192_009_1090_8
crossref_primary_10_1007_s11934_015_0569_8
crossref_primary_10_1007_s11934_007_0034_4
crossref_primary_10_1161_CIRCRESAHA_107_150201
crossref_primary_10_1161_ATVBAHA_107_141069
crossref_primary_10_2478_s11658_011_0005_0
crossref_primary_10_3389_fgene_2020_588602
crossref_primary_10_1080_14712598_2018_1439013
crossref_primary_10_5966_sctm_2012_0092
crossref_primary_10_1016_j_actbio_2020_01_033
crossref_primary_10_1111_j_1582_4934_2009_00915_x
crossref_primary_10_3389_fphys_2017_00534
crossref_primary_10_1016_j_cps_2014_12_007
crossref_primary_10_2217_17460751_4_1_109
crossref_primary_10_1002_jcp_30019
crossref_primary_10_1007_s12015_010_9144_3
crossref_primary_10_1517_17460441_2014_894975
crossref_primary_10_1002_ar_22798
crossref_primary_10_1007_s11934_011_0210_4
crossref_primary_10_1089_ten_2006_0420
crossref_primary_10_3390_app12094688
crossref_primary_10_1161_01_RES_0000266448_30370_a0
crossref_primary_10_1089_ten_tea_2009_0303
crossref_primary_10_1007_s13577_011_0022_3
crossref_primary_10_1016_j_biomaterials_2014_07_011
crossref_primary_10_2478_s11535_013_0145_x
crossref_primary_10_1111_j_1582_4934_2010_01017_x
crossref_primary_10_1155_2013_713959
crossref_primary_10_1016_j_biomaterials_2017_08_028
crossref_primary_10_1089_scd_2017_0020
crossref_primary_10_4252_wjsc_v2_i1_1
crossref_primary_10_1080_19768354_2010_525839
crossref_primary_10_3390_ijms19020517
crossref_primary_10_1093_cvr_cvs357
crossref_primary_10_1016_j_ejogrb_2022_08_028
crossref_primary_10_1042_CBI20100124
crossref_primary_10_1186_s13287_017_0585_3
crossref_primary_10_1093_cvr_cvs253
crossref_primary_10_1016_j_urology_2011_08_043
crossref_primary_10_1089_scd_2015_0343
crossref_primary_10_1089_ten_teb_2011_0264
crossref_primary_10_1186_s41702_020_0056_9
crossref_primary_10_1093_burnst_tkac028
crossref_primary_10_2353_ajpath_2010_091150
crossref_primary_10_1007_s00192_011_1432_1
crossref_primary_10_1371_journal_pone_0119010
crossref_primary_10_1007_s11934_010_0155_z
crossref_primary_10_1007_s10529_014_1554_x
crossref_primary_10_1100_2012_793823
crossref_primary_10_1016_j_diff_2010_05_004
crossref_primary_10_1039_C6CS00052E
crossref_primary_10_1111_cei_12270
crossref_primary_10_1111_iju_12137
crossref_primary_10_1016_j_jss_2012_01_047
crossref_primary_10_1186_s13036_018_0122_7
crossref_primary_10_2217_rme_14_11
crossref_primary_10_1042_BC20070102
crossref_primary_10_3727_096368915X686229
crossref_primary_10_1080_14653240902736266
crossref_primary_10_3390_ijms20205218
crossref_primary_10_5966_sctm_2015_0220
crossref_primary_10_1007_s00345_010_0508_8
crossref_primary_10_3390_cells9102158
crossref_primary_10_1089_scd_2011_0086
crossref_primary_10_1038_s41598_020_76796_7
crossref_primary_10_1155_2014_827540
crossref_primary_10_1016_j_btre_2025_e00878
crossref_primary_10_1371_journal_pone_0017771
crossref_primary_10_3390_cells14050343
crossref_primary_10_1089_ten_tea_2020_0118
crossref_primary_10_1517_14712598_7_6_791
crossref_primary_10_1517_14712590903563352
crossref_primary_10_1371_journal_pone_0164918
crossref_primary_10_1016_j_yexcr_2008_12_018
crossref_primary_10_1177_1090820X10373063
crossref_primary_10_1155_2016_6979368
crossref_primary_10_1016_S0210_4806_10_70006_1
crossref_primary_10_1155_2012_812693
crossref_primary_10_1002_nau_20833
crossref_primary_10_1007_s00441_019_03009_7
crossref_primary_10_1096_fj_12_218578
crossref_primary_10_1111_nmo_12182
crossref_primary_10_1016_j_revmed_2013_08_007
crossref_primary_10_1007_s10439_013_0883_6
crossref_primary_10_1016_j_urology_2012_10_030
crossref_primary_10_1007_s40005_018_00413_z
crossref_primary_10_1163_092050611X587538
crossref_primary_10_1634_stemcells_2008_0363
crossref_primary_10_3390_polym14050877
crossref_primary_10_1002_sctm_16_0329
crossref_primary_10_1016_S2173_5786_10_70006_8
crossref_primary_10_1088_1748_6041_11_3_031001
crossref_primary_10_1517_14712598_2016_1118460
crossref_primary_10_1111_j_1743_6109_2008_01190_x
crossref_primary_10_3390_ijms21249598
crossref_primary_10_1007_s12015_011_9244_8
crossref_primary_10_1002_jcb_22167
crossref_primary_10_1007_s00441_021_03478_9
crossref_primary_10_1016_j_procbio_2024_04_038
crossref_primary_10_1089_ten_teb_2014_0627
crossref_primary_10_1038_srep21883
crossref_primary_10_1016_j_bbrc_2010_09_012
crossref_primary_10_3727_096368914X685050
crossref_primary_10_1016_j_colsurfb_2016_06_023
crossref_primary_10_1089_ten_tea_2019_0216
crossref_primary_10_1007_s12631_012_0186_z
crossref_primary_10_1177_2041731419891256
crossref_primary_10_1371_journal_pone_0095583
crossref_primary_10_1155_2016_1267480
crossref_primary_10_1002_ar_22606
crossref_primary_10_1016_j_biomaterials_2012_01_014
crossref_primary_10_1155_2019_8907570
crossref_primary_10_1016_j_rec_2015_02_025
crossref_primary_10_5966_sctm_2012_0009
crossref_primary_10_1139_cjpp_2013_0377
crossref_primary_10_1002_jcb_24821
crossref_primary_10_1016_j_cmet_2014_03_025
crossref_primary_10_1002_mus_21781
crossref_primary_10_1016_j_biomaterials_2009_02_035
crossref_primary_10_1002_term_2223
crossref_primary_10_1194_jlr_R021089
crossref_primary_10_1111_j_1442_2042_2011_02865_x
crossref_primary_10_1007_s12265_010_9246_y
crossref_primary_10_1111_j_1525_1594_2009_00795_x
crossref_primary_10_1097_SAP_0000000000003376
crossref_primary_10_1007_s13233_015_3138_6
crossref_primary_10_3892_mmr_2013_1707
crossref_primary_10_1093_intimm_dxx002
crossref_primary_10_1016_j_bbrc_2009_10_080
crossref_primary_10_1016_j_jvs_2016_09_034
crossref_primary_10_1007_s00772_017_0349_5
crossref_primary_10_1016_j_medcle_2017_04_018
crossref_primary_10_3389_fcell_2022_901661
crossref_primary_10_1155_2015_734731
crossref_primary_10_1186_scrt528
crossref_primary_10_3892_mmr_2014_2280
crossref_primary_10_1007_s11596_010_0344_5
crossref_primary_10_1007_s12015_009_9084_y
crossref_primary_10_1016_j_biomaterials_2012_10_026
crossref_primary_10_1016_j_juro_2016_04_099
crossref_primary_10_1089_scd_2014_0132
crossref_primary_10_1016_j_actbio_2014_08_031
crossref_primary_10_1172_JCI28184
crossref_primary_10_1007_s12010_012_9932_0
crossref_primary_10_1002_stem_1023
crossref_primary_10_1097_01_prs_0000267699_99369_a8
crossref_primary_10_1177_1933719109344773
crossref_primary_10_1371_journal_pone_0020540
crossref_primary_10_1016_j_biomaterials_2015_09_008
crossref_primary_10_1002_nau_20448
crossref_primary_10_1091_mbc_e09_07_0589
crossref_primary_10_1111_j_1464_410X_2008_07507_x
crossref_primary_10_1002_jbm_a_35568
crossref_primary_10_1016_j_biomaterials_2010_02_011
crossref_primary_10_1016_j_nbt_2012_04_002
crossref_primary_10_1186_s13287_021_02488_2
crossref_primary_10_1155_2014_598793
crossref_primary_10_1016_j_tcm_2006_11_001
crossref_primary_10_1007_s11934_013_0352_7
crossref_primary_10_1016_j_amsu_2018_11_005
crossref_primary_10_1016_S1879_5226_11_60012_2
crossref_primary_10_1007_s00192_007_0553_z
crossref_primary_10_1016_j_diabres_2011_12_011
crossref_primary_10_3727_096368909X481764
crossref_primary_10_1371_journal_pone_0195315
crossref_primary_10_1089_ten_tec_2012_0054
crossref_primary_10_1111_j_1464_410X_2009_08352_x
crossref_primary_10_1016_j_jpurol_2014_03_010
crossref_primary_10_1093_humrep_dem265
crossref_primary_10_3390_biomedicines5010004
crossref_primary_10_1007_s00404_013_3028_0
crossref_primary_10_1155_2023_6404468
crossref_primary_10_2310_6670_2007_00053
crossref_primary_10_1016_j_biomaterials_2014_01_075
crossref_primary_10_1016_j_biomaterials_2011_05_086
crossref_primary_10_1097_SAP_0b013e31818c4b0c
crossref_primary_10_3892_mmr_2013_1796
crossref_primary_10_1016_S0007_9960_07_88704_9
crossref_primary_10_1007_s00167_011_1655_1
crossref_primary_10_1016_j_bbrc_2010_02_018
crossref_primary_10_1089_pho_2015_3978
crossref_primary_10_1007_s11745_014_3981_9
crossref_primary_10_1186_s13287_020_01648_0
crossref_primary_10_3109_14653240903350265
crossref_primary_10_1016_j_jss_2009_08_001
crossref_primary_10_1016_j_bcp_2010_01_027
crossref_primary_10_1111_iwj_12569
crossref_primary_10_1371_journal_pone_0083024
crossref_primary_10_1089_ten_tea_2014_0208
crossref_primary_10_1089_dna_2016_3546
crossref_primary_10_1016_j_jvs_2007_02_046
crossref_primary_10_1016_j_actbio_2019_07_032
crossref_primary_10_1007_s10616_020_00374_y
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.0604850103
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
ExternalDocumentID 16880387
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK067198-01
– fundername: NIDDK NIH HHS
  grantid: R01 DK067198
– fundername: NICHD NIH HHS
  grantid: 5-K12-HD01400
– fundername: NICHD NIH HHS
  grantid: K12 HD001400
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c530t-b7e87cc0e01b4b8fcbd862caa07f20eacac167e4a7f226de7a6925e11fdf04762
IEDL.DBID 7X8
ISICitedReferencesCount 263
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239701900062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0027-8424
IngestDate Sun Nov 09 11:28:07 EST 2025
Thu Apr 03 07:02:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-b7e87cc0e01b4b8fcbd862caa07f20eacac167e4a7f226de7a6925e11fdf04762
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/1567713
PMID 16880387
PQID 68720658
PQPubID 23479
ParticipantIDs proquest_miscellaneous_68720658
pubmed_primary_16880387
PublicationCentury 2000
PublicationDate 2006-08-08
PublicationDateYYYYMMDD 2006-08-08
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-08
  day: 08
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2006
SSID ssj0009580
Score 2.3692195
Snippet Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 12167
SubjectTerms Actins - metabolism
Adipose Tissue - cytology
Adipose Tissue - metabolism
Animals
Calcium-Binding Proteins - metabolism
Calmodulin-Binding Proteins - metabolism
Calponins
Cell Differentiation
Gene Expression Regulation
Humans
Microfilament Proteins - metabolism
Muscle, Smooth - metabolism
Myocytes, Smooth Muscle - cytology
Myocytes, Smooth Muscle - metabolism
Myosin Heavy Chains - metabolism
Rats
Rats, Sprague-Dawley
Title Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells
URI https://www.ncbi.nlm.nih.gov/pubmed/16880387
https://www.proquest.com/docview/68720658
Volume 103
WOSCitedRecordID wos000239701900062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKZWAByrM8PTDAYIgTJ3YkJIQqKhaqDiB1q_yUKiApJPD7OceJxIIYWCJFeVm-83fni_19CJ1zywXYVRKeC0OYsJIIRzVxUsfK5_c0UY3YBJ9MxGyWT3voptsL45dVdpjYALUpta-RX2eCxz5c3i7fideM8v9WWwGNFdRPIJHxPs1n4gflrggbUGLAYRazjtiHJ9fLQlZXnjZGpF7n4Pfssoky483_tW8LbbTZJb4L7jBAPVtso0E7fit80ZJMX-6gl9FrWZTgPQuNw6LCErLnGnteZ-yr-RVeFLhR8MPSwNXK4roxEu40VQAbagt31SX20TEUFXH1VoLx4Z0VtCC8aRc9j--fRg-kFV4gOk2imihuBdc6shFVTAmnlYGJj5Yy4i6OAKqlphm3TMJpnBnLZZbHqaXUGRcxgNc9tFqUhT1AGKKdMrlNYN6imclcngkmmHPwoTSyVA3RWdedc3Bs3ypZ2PKzmncdOkT7wSLzZeDfmNMMQCcR_PDPZ4_QeiiZeBbuY9R3MKTtCVrTX9BjH6eNv8BxMn38BlACzj4
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clonogenic+multipotent+stem+cells+in+human+adipose+tissue+differentiate+into+functional+smooth+muscle+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Rodr%C3%ADguez%2C+Larissa+V&rft.au=Alfonso%2C+Zeni&rft.au=Zhang%2C+Rong&rft.au=Leung%2C+Joanne&rft.date=2006-08-08&rft.issn=0027-8424&rft.volume=103&rft.issue=32&rft.spage=12167&rft_id=info:doi/10.1073%2Fpnas.0604850103&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon