Multilevel Monte Carlo Path Simulation

We show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and a Euler discretisation, the computational cost to achieve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Operations research Ročník 56; číslo 3; s. 607 - 617
Hlavní autor: Giles, Michael B
Médium: Journal Article
Jazyk:angličtina
Vydáno: Linthicum, MD INFORMS 01.05.2008
Institute for Operations Research and the Management Sciences
Témata:
ISSN:0030-364X, 1526-5463
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and a Euler discretisation, the computational cost to achieve an accuracy of O ( ) is reduced from O ( –3 ) to O ( –2 (log ) 2 ). The analysis is supported by numerical results showing significant computational savings.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0030-364X
1526-5463
DOI:10.1287/opre.1070.0496