Multilevel Monte Carlo Path Simulation
We show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and a Euler discretisation, the computational cost to achieve...
Uloženo v:
| Vydáno v: | Operations research Ročník 56; číslo 3; s. 607 - 617 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Linthicum, MD
INFORMS
01.05.2008
Institute for Operations Research and the Management Sciences |
| Témata: | |
| ISSN: | 0030-364X, 1526-5463 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and a Euler discretisation, the computational cost to achieve an accuracy of O ( ) is reduced from O ( –3 ) to O ( –2 (log ) 2 ). The analysis is supported by numerical results showing significant computational savings. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0030-364X 1526-5463 |
| DOI: | 10.1287/opre.1070.0496 |