Artificial intelligence for analyzing orthopedic trauma radiographs Deep learning algorithms-are they on par with humans for diagnosing fractures?

Background and purpose - Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this stud...

Full description

Saved in:
Bibliographic Details
Published in:Acta orthopaedica Vol. 88; no. 6; pp. 581 - 586
Main Authors: Olczak, Jakub, Fahlberg, Niklas, Maki, Atsuto, Razavian, Ali Sharif, Jilert, Anthony, Stark, André, Sköldenberg, Olof, Gordon, Max
Format: Journal Article
Language:English
Published: Sweden Taylor & Francis 02.11.2017
Medical Journals Sweden
Subjects:
ISSN:1745-3674, 1745-3682, 1745-3682
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background and purpose - Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods - We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd's Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network's performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results - All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen's kappa under these conditions was 0.76. Interpretation - This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics.
AbstractList Background and purpose — Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods — We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd’s Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network’s performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results — All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen’s kappa under these conditions was 0.76. Interpretation — This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics.
Background and purpose - Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods - We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd's Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network's performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results - All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen's kappa under these conditions was 0.76. Interpretation - This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics.
Author Olczak, Jakub
Razavian, Ali Sharif
Fahlberg, Niklas
Stark, André
Jilert, Anthony
Gordon, Max
Maki, Atsuto
Sköldenberg, Olof
AuthorAffiliation 2 Radiology clinic, Danderyd Hospital, Danderyd Hospital AB
1 Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital
3 Department of Robotics, Perception and Learning (RPL), School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
AuthorAffiliation_xml – name: 2 Radiology clinic, Danderyd Hospital, Danderyd Hospital AB
– name: 1 Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital
– name: 3 Department of Robotics, Perception and Learning (RPL), School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
Author_xml – sequence: 1
  givenname: Jakub
  surname: Olczak
  fullname: Olczak, Jakub
  organization: Department of Clinical Sciences, Karolinska Institutet
– sequence: 2
  givenname: Niklas
  surname: Fahlberg
  fullname: Fahlberg, Niklas
  organization: Radiology clinic, Danderyd Hospital, Danderyd Hospital AB
– sequence: 3
  givenname: Atsuto
  surname: Maki
  fullname: Maki, Atsuto
  organization: Department of Robotics, Perception and Learning (RPL), School of Computer Science and Communication, KTH Royal Institute of Technology
– sequence: 4
  givenname: Ali Sharif
  surname: Razavian
  fullname: Razavian, Ali Sharif
  organization: Department of Robotics, Perception and Learning (RPL), School of Computer Science and Communication, KTH Royal Institute of Technology
– sequence: 5
  givenname: Anthony
  surname: Jilert
  fullname: Jilert, Anthony
  organization: Radiology clinic, Danderyd Hospital, Danderyd Hospital AB
– sequence: 6
  givenname: André
  surname: Stark
  fullname: Stark, André
  organization: Department of Clinical Sciences, Karolinska Institutet
– sequence: 7
  givenname: Olof
  surname: Sköldenberg
  fullname: Sköldenberg, Olof
  organization: Department of Clinical Sciences, Karolinska Institutet
– sequence: 8
  givenname: Max
  surname: Gordon
  fullname: Gordon, Max
  email: max.gordon@ki.se
  organization: Department of Clinical Sciences, Karolinska Institutet
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28681679$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-220304$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
http://kipublications.ki.se/Default.aspx?queryparsed=id:137148607$$DView record from Swedish Publication Index (Karolinska Institutet)
BookMark eNqFUl1v0zAUtdAQ2wo_AZQ_kGLHdmwLCVGVr0mTeAFerRt_pN7cuHIypvLrSZauojyMJ18fn3N87Xsu0VmXOofQa4KXBEv8lgjGaS3YssJELAlljHH1DF1MeElrWZ0da8HO0WXf32BMJVP4BTqvZC1JLdQFWq_yEHwwAWIRusHFGFrXGVf4lAvoIO5_h64tUh42aedsMMWQ4W4LRQYbUptht-lfouceYu9eHdYF-vH50_f11_L625er9eq6NJzioRTG-UpWjXAKO0yA11x5GDeE8oYoSY03jnkhlbEWc-yosIJ5xQ1g7i2jC3Q1-9oEN3qXwxbyXicI-gFIudUwvsZEpznlILmnRvKKMVBSNLTBThjujXUNGb3K2au_d7u75sTtAN2OldNM8ZqIJ_kfw8_Vw-23w0ZXFaZ46vX9zB_JW2eN68Z_iyey05MubHSbfmleKybHSS3Qm78NjsrH0Y0EPhNMTn2fnT9SCNZTRPRjRPQUEX2IyKh794_OhAGGkKY-Qvyv-sOsDt2YkC3cpxytHmAfU_YZOhN6TZ-2-AP6ONcg
CitedBy_id crossref_primary_10_1038_s42256_019_0126_0
crossref_primary_10_1016_j_redii_2023_100029
crossref_primary_10_1007_s00117_023_01181_0
crossref_primary_10_3390_diagnostics13182927
crossref_primary_10_3390_diagnostics15050550
crossref_primary_10_1016_j_eswa_2024_125916
crossref_primary_10_1109_ACCESS_2021_3082952
crossref_primary_10_3390_biomedicines11113100
crossref_primary_10_23736_S0022_4707_24_15759_3
crossref_primary_10_1155_2021_2728388
crossref_primary_10_1049_cit2_12072
crossref_primary_10_1177_15589447241238372
crossref_primary_10_1371_journal_pone_0257361
crossref_primary_10_1007_s00068_020_01468_0
crossref_primary_10_1016_j_rcot_2021_01_025
crossref_primary_10_1053_j_ro_2020_07_015
crossref_primary_10_1002_jmri_26534
crossref_primary_10_1007_s00521_022_07510_z
crossref_primary_10_1007_s00256_019_03284_z
crossref_primary_10_1177_15563316251340303
crossref_primary_10_1016_j_jcrc_2024_154794
crossref_primary_10_1186_s12891_021_04714_7
crossref_primary_10_1002_jor_25538
crossref_primary_10_1002_jsp2_1327
crossref_primary_10_32604_cmc_2022_024965
crossref_primary_10_1136_jramc_2018_001055
crossref_primary_10_3390_cancers15154007
crossref_primary_10_1016_j_otsr_2021_102837
crossref_primary_10_1007_s11701_025_02561_5
crossref_primary_10_1038_s41598_022_12453_5
crossref_primary_10_3390_app11198791
crossref_primary_10_3390_app10144703
crossref_primary_10_1097_MD_0000000000043716
crossref_primary_10_1016_j_compbiomed_2025_110683
crossref_primary_10_1016_j_bbe_2020_12_002
crossref_primary_10_1007_s44411_025_00170_0
crossref_primary_10_3390_medicina58080998
crossref_primary_10_1016_j_clinimag_2020_01_008
crossref_primary_10_1177_23202068211005611
crossref_primary_10_1007_s10462_025_11296_6
crossref_primary_10_2147_JMDH_S536633
crossref_primary_10_1007_s10140_020_01773_6
crossref_primary_10_1097_CORR_0000000000001360
crossref_primary_10_1097_BSD_0000000000001119
crossref_primary_10_3233_THC_220501
crossref_primary_10_3389_fmed_2020_573522
crossref_primary_10_1007_s00068_020_01444_8
crossref_primary_10_1055_a_1511_8595
crossref_primary_10_1007_s10278_022_00741_5
crossref_primary_10_1007_s12647_022_00541_w
crossref_primary_10_1007_s00586_021_06799_z
crossref_primary_10_1109_JBHI_2022_3152267
crossref_primary_10_1186_s40634_023_00642_8
crossref_primary_10_2196_36199
crossref_primary_10_1007_s00590_024_04032_3
crossref_primary_10_1097_CORR_0000000000000848
crossref_primary_10_12998_wjcc_v11_i18_4231
crossref_primary_10_1007_s00330_021_07811_2
crossref_primary_10_1016_j_annemergmed_2019_12_024
crossref_primary_10_1016_j_jestch_2024_101883
crossref_primary_10_1016_j_jcot_2019_06_012
crossref_primary_10_31893_multirev_2025218
crossref_primary_10_1016_j_ejrad_2020_109188
crossref_primary_10_1302_0301_620X_107B6_BJJ_2024_1567_R1
crossref_primary_10_1038_s41598_021_81236_1
crossref_primary_10_52560_2713_0118_2025_4_81_91
crossref_primary_10_3390_bioengineering10060735
crossref_primary_10_1016_j_crad_2019_10_022
crossref_primary_10_1002_jbmr_4146
crossref_primary_10_4103_digm_digm_10_21
crossref_primary_10_1007_s42979_024_03155_y
crossref_primary_10_3390_jimaging10120322
crossref_primary_10_1007_s00330_021_08014_5
crossref_primary_10_1002_cpe_7307
crossref_primary_10_1080_20479700_2022_2097765
crossref_primary_10_1007_s11914_021_00701_y
crossref_primary_10_1177_23259671211014206
crossref_primary_10_1016_j_jham_2025_100339
crossref_primary_10_1007_s00247_023_05621_w
crossref_primary_10_1016_j_arth_2023_08_018
crossref_primary_10_1016_j_diii_2022_06_004
crossref_primary_10_1016_j_injury_2022_04_013
crossref_primary_10_3389_fimmu_2023_1278247
crossref_primary_10_1016_j_jbo_2024_100648
crossref_primary_10_1002_rmb2_12267
crossref_primary_10_3390_diagnostics14060596
crossref_primary_10_1002_rmb2_12266
crossref_primary_10_3389_fendo_2021_720728
crossref_primary_10_2196_19416
crossref_primary_10_13005_bpj_3169
crossref_primary_10_3390_app10041507
crossref_primary_10_3390_diagnostics12030632
crossref_primary_10_2106_JBJS_19_01128
crossref_primary_10_1155_2021_7006541
crossref_primary_10_3389_fpubh_2022_949366
crossref_primary_10_3390_medicina57040351
crossref_primary_10_1002_ima_22849
crossref_primary_10_1186_s12891_024_07798_z
crossref_primary_10_1007_s00256_021_03709_8
crossref_primary_10_1186_s12891_021_04260_2
crossref_primary_10_1007_s00330_022_09349_3
crossref_primary_10_3390_diagnostics13091657
crossref_primary_10_1007_s00068_024_02557_0
crossref_primary_10_3233_IDA_240431
crossref_primary_10_1007_s00330_022_09289_y
crossref_primary_10_1016_j_crad_2020_05_021
crossref_primary_10_1007_s11548_023_02831_3
crossref_primary_10_1186_s40798_024_00786_6
crossref_primary_10_1002_hcs2_72
crossref_primary_10_1111_edt_12965
crossref_primary_10_2106_JBJS_RVW_22_00086
crossref_primary_10_2106_JBJS_OA_22_00030
crossref_primary_10_1097_JS9_0000000000002187
crossref_primary_10_1016_j_cjtee_2024_10_006
crossref_primary_10_1007_s00068_022_02128_1
crossref_primary_10_1177_17504589231179302
crossref_primary_10_1007_s00068_024_02731_4
crossref_primary_10_1007_s12178_020_09600_8
crossref_primary_10_1155_2022_5841451
crossref_primary_10_4103_jfsm_jfsm_88_23
crossref_primary_10_1002_rse2_195
crossref_primary_10_1007_s12553_021_00543_9
crossref_primary_10_1097_CORR_0000000000002385
crossref_primary_10_1007_s00256_020_03463_3
crossref_primary_10_3892_mco_2019_1932
crossref_primary_10_1371_journal_pdig_0000560
crossref_primary_10_1016_j_compmedimag_2021_101937
crossref_primary_10_1001_jamanetworkopen_2021_6096
crossref_primary_10_1016_j_msksp_2018_11_012
crossref_primary_10_1038_s41746_019_0105_1
crossref_primary_10_1186_s13102_021_00243_x
crossref_primary_10_1007_s10140_020_01767_4
crossref_primary_10_1371_journal_pone_0248809
crossref_primary_10_1016_j_rcot_2023_06_014
crossref_primary_10_1016_j_legalmed_2022_102048
crossref_primary_10_1016_j_semss_2021_100876
crossref_primary_10_1109_ACCESS_2020_3004766
crossref_primary_10_3390_jcm11071885
crossref_primary_10_1007_s00256_020_03410_2
crossref_primary_10_1186_s12891_024_07884_2
crossref_primary_10_1007_s00142_023_00657_4
crossref_primary_10_1186_s13244_020_00932_0
crossref_primary_10_1111_anae_16733
crossref_primary_10_3390_jimaging7060100
crossref_primary_10_3390_jpm11060482
crossref_primary_10_7759_cureus_51631
crossref_primary_10_1007_s00256_020_03433_9
crossref_primary_10_3389_fbioe_2018_00075
crossref_primary_10_4103_jfsm_jfsm_35_24
crossref_primary_10_1016_j_otsr_2023_103652
crossref_primary_10_1186_s12891_024_07244_0
crossref_primary_10_1148_radiol_2018180547
crossref_primary_10_3390_jimaging9090180
crossref_primary_10_1097_CORR_0000000000001318
crossref_primary_10_1007_s11282_020_00468_5
crossref_primary_10_1016_j_arth_2019_05_048
crossref_primary_10_1016_j_cmpb_2021_106229
crossref_primary_10_1007_s10278_021_00519_1
crossref_primary_10_1016_j_knee_2019_11_020
crossref_primary_10_3389_fbioe_2025_1502669
crossref_primary_10_3390_bioengineering11040338
crossref_primary_10_1002_jor_26109
crossref_primary_10_1109_MM_2018_112130030
crossref_primary_10_1016_j_fas_2022_05_005
crossref_primary_10_1016_j_jcot_2020_03_006
crossref_primary_10_3389_fendo_2023_1025749
crossref_primary_10_3390_app14083451
crossref_primary_10_1002_jbmr_4292
crossref_primary_10_1016_j_ocl_2022_11_004
crossref_primary_10_1080_20479700_2022_2161146
crossref_primary_10_1097_CORR_0000000000001679
crossref_primary_10_1016_j_rhum_2023_07_018
crossref_primary_10_1007_s10742_025_00340_1
crossref_primary_10_1038_s41598_023_34176_x
crossref_primary_10_3390_diagnostics12102420
crossref_primary_10_1186_s12880_023_00975_x
crossref_primary_10_1016_j_engappai_2024_108326
crossref_primary_10_1371_journal_pone_0289808
crossref_primary_10_1002_jcu_23321
crossref_primary_10_1007_s12647_023_00633_1
crossref_primary_10_1002_mp_14705
crossref_primary_10_1109_ACCESS_2020_3029039
crossref_primary_10_1007_s00521_025_11539_1
crossref_primary_10_1177_20552076241279238
crossref_primary_10_2478_mspe_2022_0014
crossref_primary_10_1007_s00330_020_06856_z
crossref_primary_10_1007_s10278_019_00226_y
crossref_primary_10_1016_j_arth_2020_04_059
crossref_primary_10_1007_s00167_022_07220_y
crossref_primary_10_1109_TMI_2021_3134650
crossref_primary_10_1371_journal_pone_0322051
crossref_primary_10_1016_j_ejrad_2020_108925
crossref_primary_10_1097_BPO_0000000000002428
crossref_primary_10_3390_app11146293
crossref_primary_10_3390_app142411652
crossref_primary_10_1007_s11548_020_02150_x
crossref_primary_10_32604_cmc_2024_047377
crossref_primary_10_1007_s00330_024_10625_7
crossref_primary_10_1259_bjr_20221031
crossref_primary_10_4103_jhrs_jhrs_53_21
crossref_primary_10_5312_wjo_v13_i6_603
crossref_primary_10_1097_PRS_0000000000007627
crossref_primary_10_21015_vtse_v12i4_1971
crossref_primary_10_1111_1754_9485_12828
crossref_primary_10_2196_29839
crossref_primary_10_1002_jor_24617
crossref_primary_10_3390_jimaging7070105
crossref_primary_10_1016_j_asmart_2025_01_001
crossref_primary_10_3390_healthcare11111524
crossref_primary_10_1109_JPROC_2023_3273520
crossref_primary_10_2106_JBJS_24_00938
crossref_primary_10_1007_s00068_025_02931_6
crossref_primary_10_3390_jimaging11080281
crossref_primary_10_5312_wjo_v12_i9_685
crossref_primary_10_1002_jmri_27001
crossref_primary_10_1097_BSD_0000000000001082
crossref_primary_10_1186_s12891_025_09161_2
crossref_primary_10_1002_vro2_55
crossref_primary_10_1186_s12880_024_01316_2
crossref_primary_10_3389_fmedt_2022_995526
crossref_primary_10_2106_JBJS_RVW_23_00232
crossref_primary_10_3390_math9243227
crossref_primary_10_1177_17531934231152592
crossref_primary_10_3390_app14010133
crossref_primary_10_1007_s10140_024_02300_7
crossref_primary_10_1038_s41746_020_00352_w
crossref_primary_10_1007_s42417_023_01165_3
crossref_primary_10_1016_j_wneu_2024_04_025
crossref_primary_10_3390_math10162939
crossref_primary_10_1088_1742_6596_2637_1_012033
crossref_primary_10_1007_s00330_019_06167_y
crossref_primary_10_1007_s10278_018_0167_7
crossref_primary_10_1007_s00132_023_04436_9
crossref_primary_10_1089_heat_2019_0006
crossref_primary_10_1007_s00784_022_04427_8
crossref_primary_10_1007_s00586_022_07309_5
crossref_primary_10_1007_s00256_021_03876_8
crossref_primary_10_1007_s11548_021_02552_5
crossref_primary_10_1038_s41598_024_71654_2
crossref_primary_10_12677_acm_2025_1592603
crossref_primary_10_1002_ca_23615
crossref_primary_10_1016_j_suc_2022_11_002
crossref_primary_10_1016_j_future_2018_10_050
crossref_primary_10_7759_cureus_58364
crossref_primary_10_1186_s13244_022_01234_3
crossref_primary_10_1007_s44326_025_00066_x
crossref_primary_10_1097_CORR_0000000000001352
crossref_primary_10_1186_s13018_021_02845_0
crossref_primary_10_1007_s00259_019_04372_x
crossref_primary_10_1016_j_jcot_2023_102312
crossref_primary_10_1016_j_bushor_2025_06_007
crossref_primary_10_1177_02841851221122424
crossref_primary_10_1007_s13755_024_00288_5
crossref_primary_10_1159_000542228
crossref_primary_10_1007_s10140_023_02154_5
crossref_primary_10_1038_s41598_022_10666_2
crossref_primary_10_1016_j_arthro_2022_03_037
crossref_primary_10_1007_s00256_021_03733_8
crossref_primary_10_1016_j_jbspin_2022_105493
crossref_primary_10_1007_s00264_024_06125_4
crossref_primary_10_3390_app11188485
crossref_primary_10_1302_0301_620X_101B12_BJJ_2019_0850_R1
crossref_primary_10_1177_0846537120941671
crossref_primary_10_1186_s12891_019_2579_z
crossref_primary_10_1097_CORR_0000000000001448
crossref_primary_10_1097_CORR_0000000000001685
crossref_primary_10_1308_rcsann_2023_0017
crossref_primary_10_3390_diagnostics14171879
crossref_primary_10_2519_josptmethods_2024_0086
crossref_primary_10_3390_life13010133
crossref_primary_10_1007_s43465_024_01130_6
crossref_primary_10_1016_j_knee_2025_02_001
crossref_primary_10_1080_14737167_2023_2279107
crossref_primary_10_1016_j_ejrad_2020_109373
crossref_primary_10_1007_s00256_018_3016_3
crossref_primary_10_1007_s00586_022_07121_1
crossref_primary_10_2106_JBJS_RVW_21_00142
crossref_primary_10_3389_fped_2022_1005099
crossref_primary_10_1166_jmihi_2021_3899
crossref_primary_10_1016_j_injury_2024_111997
crossref_primary_10_1007_s10278_020_00399_x
crossref_primary_10_1007_s43465_019_00023_3
crossref_primary_10_1016_j_engappai_2023_106165
crossref_primary_10_1148_ryai_2019180001
crossref_primary_10_1016_j_clinbiomech_2025_106625
crossref_primary_10_2478_jaiscr_2022_0007
Cites_doi 10.1109/TMI.2016.2535302
10.1126/scitranslmed.3002564
10.1007/s11263-015-0816-y
10.1109/ICCV.2015.123
10.3113/FAI.2011.0861
10.1016/S0363-5023(96)80006-2
10.1117/12.2083124
10.1097/01.bot.0000155310.04886.37
10.1308/rcsann.2016.0237
10.1109/CVPR.2015.7298712
10.1109/WCICA.2014.7052856
10.1007/s00586-017-4956-3
10.1038/nature14539
10.1145/2647868.2654889
ContentType Journal Article
Copyright 2017 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation. 2017
Copyright_xml – notice: 2017 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation. 2017
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
5PM
ADTPV
AOWAS
D8V
D8T
ZZAVC
DOA
DOI 10.1080/17453674.2017.1344459
DatabaseName Taylor & Francis Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 0YH
  name: Taylor & Francis Online
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 1745-3682
EndPage 586
ExternalDocumentID oai_doaj_org_article_535a85f3c85244a987b3b0e7c5fcdeb1
oai_swepub_ki_se_495617
oai_DiVA_org_kth_220304
PMC5694800
28681679
10_1080_17453674_2017_1344459
1344459
Genre Article
Journal Article
GroupedDBID ---
.55
04C
0YH
23M
2QV
2WC
34G
36B
39C
4.4
5GY
5RE
5VS
6J9
6PF
AAFWJ
AAWTL
ABDBF
ABNNA
ACGFO
ACGFS
ACUHS
ADBBV
ADCVX
ADOJX
ADRAZ
ADRBQ
AEGXH
AENEX
AFKVX
AFPKN
AJWEG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AQTUD
BAWUL
BCNDV
BMSDO
CAG
CS3
DXH
E3Z
EAP
EBC
EBD
EBS
EBX
ECF
ECT
ECV
EHN
EIHBH
EJD
EMB
EMK
EMOBN
ENC
ENX
EPL
EPT
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
KQ8
M48
M4Z
O9-
OK1
OVT
P2P
Q~Q
RDKPK
RNS
RPM
SV3
TDBHL
TFDNU
TFW
TR2
TUS
W2D
WQ9
X7M
~1N
AAYXX
CITATION
.GJ
3O-
53G
AALIY
AFFNX
AWYRJ
C1A
CGR
COF
CUY
CVF
ECM
EIF
NPM
O5R
O5S
ZXP
5PM
ADTPV
AOWAS
D8V
D8T
ZZAVC
ID FETCH-LOGICAL-c530t-7cef282b7e90e01a5659fae90135b1983cfce4f789cdd050e37d74f95ca05fd43
IEDL.DBID 0YH
ISICitedReferencesCount 315
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000416605900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1745-3674
1745-3682
IngestDate Fri Oct 03 12:34:27 EDT 2025
Tue Nov 25 03:38:45 EST 2025
Tue Nov 04 17:23:01 EST 2025
Tue Nov 04 01:52:12 EST 2025
Mon Jul 21 06:05:42 EDT 2025
Sat Nov 29 06:10:28 EST 2025
Tue Nov 18 22:04:28 EST 2025
Mon Oct 20 23:47:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License open-access: https://creativecommons.org/licenses/by-nc/3.0: This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (https://creativecommons.org/licenses/by-nc/3.0)
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (https://creativecommons.org/licenses/by-nc/3.0)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-7cef282b7e90e01a5659fae90135b1983cfce4f789cdd050e37d74f95ca05fd43
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/17453674.2017.1344459
PMID 28681679
PageCount 6
ParticipantIDs swepub_primary_oai_DiVA_org_kth_220304
informaworld_taylorfrancis_310_1080_17453674_2017_1344459
doaj_primary_oai_doaj_org_article_535a85f3c85244a987b3b0e7c5fcdeb1
swepub_primary_oai_swepub_ki_se_495617
pubmed_primary_28681679
crossref_citationtrail_10_1080_17453674_2017_1344459
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5694800
crossref_primary_10_1080_17453674_2017_1344459
PublicationCentury 2000
PublicationDate 2017-11-02
PublicationDateYYYYMMDD 2017-11-02
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-02
  day: 02
PublicationDecade 2010
PublicationPlace Sweden
PublicationPlace_xml – name: Sweden
PublicationTitle Acta orthopaedica
PublicationTitleAlternate Acta Orthop
PublicationYear 2017
Publisher Taylor & Francis
Medical Journals Sweden
Publisher_xml – name: Taylor & Francis
– name: Medical Journals Sweden
References Rhodes M. (CIT0017) 2016
CIT0010
CIT0012
CIT0011
CIT0013
CIT0016
CIT0015
Hardy Q. (CIT0009) 2016
CIT0018
Chatfield K (CIT0006) 2014
Erickson B J (CIT0008) 2017; 37
CIT0019
DeAngelis S F. (CIT0007) 2014
Krizhevsky A (CIT0014) 2012
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Zbontar J (CIT0025) 2016; 17
CIT0003
CIT0002
CIT0024
CIT0005
CIT0004
29106336 - Acta Orthop. 2017 Dec;88(6):577
References_xml – volume-title: Machine learning: Bane or blessing for mankind
  year: 2014
  ident: CIT0007
– ident: CIT0024
  doi: 10.1109/TMI.2016.2535302
– ident: CIT0011
– ident: CIT0005
  doi: 10.1126/scitranslmed.3002564
– ident: CIT0018
  doi: 10.1007/s11263-015-0816-y
– ident: CIT0010
  doi: 10.1109/ICCV.2015.123
– ident: CIT0019
  doi: 10.3113/FAI.2011.0861
– ident: CIT0023
– ident: CIT0001
  doi: 10.1016/S0363-5023(96)80006-2
– ident: CIT0004
  doi: 10.1117/12.2083124
– ident: CIT0002
  doi: 10.1097/01.bot.0000155310.04886.37
– ident: CIT0016
– volume: 17
  start-page: 2
  issue: 1
  year: 2016
  ident: CIT0025
  publication-title: J Mach Learn Res
– ident: CIT0020
  doi: 10.1308/rcsann.2016.0237
– volume: 37
  start-page: 505
  issue: 2
  year: 2017
  ident: CIT0008
  publication-title: Radiogr Rev Publ Radiol Soc N Am Inc
– ident: CIT0022
  doi: 10.1109/CVPR.2015.7298712
– ident: CIT0021
  doi: 10.1109/WCICA.2014.7052856
– ident: CIT0003
– ident: CIT0012
  doi: 10.1007/s00586-017-4956-3
– ident: CIT0015
  doi: 10.1038/nature14539
– ident: CIT0013
  doi: 10.1145/2647868.2654889
– start-page: 1097
  volume-title: Adv Neural Inf Process Syst 25
  year: 2012
  ident: CIT0014
– volume-title: Return of the devil in the details: Delving deep into convolutional nets
  year: 2014
  ident: CIT0006
– volume-title: Artificial intelligence software is booming: But why now
  year: 2016
  ident: CIT0009
– volume-title: Whoa, Google’s AI is really good at Pictionary
  year: 2016
  ident: CIT0017
– reference: 29106336 - Acta Orthop. 2017 Dec;88(6):577
SSID ssj0038490
Score 2.643409
Snippet Background and purpose - Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and...
Background and purpose — Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and...
SourceID doaj
swepub
pubmedcentral
pubmed
crossref
informaworld
SourceType Open Website
Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 581
SubjectTerms Artificial Intelligence
Fractures, Bone - diagnosis
Humans
Radiographic Image Enhancement
Radiography - methods
Reproducibility of Results
Subtitle Deep learning algorithms-are they on par with humans for diagnosing fractures?
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELAvFaXvIBcUvrxPba5oIKpeJUcQDUm-X40Y3aZlfZLBKc-BHwB_kleOzsKqmQ9sItdmL5MRPPjMfzDUKv6pqUnom6sNTZgomgCulEtFJCzUrDDPM-J5sQZ2fy_Fx9GqX6gjthGR44L9wRp9xIHqiVPEoiE03kmtbEC8uDdXGjgd03aj1bYyrvwVQyNYRC8oLOBdvG7khyBHVQBde6xGFJGWMAVDqSSgm8_wZ06UhA3bw8OYEYTWLp9B66O-iT-DjP4z665dsH6DcUMzQEbkaYmzj2hA3AkPyIEguDy2a5Ak8Njn1srg3ujGsyhvX6DT7xfoWHrBIX2FxdLLumX1yv__z8ZTqPo-b4HS9bvDIdhtNcnNL9rVMfLl_gg3YBwrA20ah_-xB9Of3w-f3HYsi_UFhOSV8I60O0yGrhFfGkNFH3U8HEQkl5XSpJbbCeBSGVdY5w4qlwggXFrSE8OEYfoYN22fonCMdtxJHAZWmNieLQ1FHTqojwUvpokzo_Q2y7_toO4OSQI-NKlwOG6ZZsGsimB7LN0OGu2Sqjc-xr8A6Iu_sYwLVTRWQ5PbCc3sdyM6TGrKH7dLYSciIUTfcM4HFmn90QKjmX4AubITFhrMkYp2_aZpGAwPlcsajwz9DrzIKTJifN1-M0rct-oasKXOD__nCouoxPXoO9XIqn_2OZnqE7MPMUuFk9Rwd9t_Ev0G37rW_W3cv0v_4FCOlGYQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Artificial intelligence for analyzing orthopedic trauma radiographs
URI https://www.tandfonline.com/doi/abs/10.1080/17453674.2017.1344459
https://www.ncbi.nlm.nih.gov/pubmed/28681679
https://pubmed.ncbi.nlm.nih.gov/PMC5694800
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-220304
http://kipublications.ki.se/Default.aspx?queryparsed=id:137148607
https://doaj.org/article/535a85f3c85244a987b3b0e7c5fcdeb1
Volume 88
WOSCitedRecordID wos000416605900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1745-3682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038490
  issn: 1745-3674
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAWR
  databaseName: Taylor & Francis Online
  customDbUrl:
  eissn: 1745-3682
  dateEnd: 20211130
  omitProxy: false
  ssIdentifier: ssj0038490
  issn: 1745-3674
  databaseCode: 0YH
  dateStart: 20091001
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1745-3682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038490
  issn: 1745-3674
  databaseCode: TFW
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODCQ7xSoMoBcUuxY3ttH0th1VPFoUA5WX7SqGW32k059NczdpzVpgL1AJcodjLReDL2zNjjzwi9tRaTwIRtHPWuYSKqRnoBUUq0jBhmWAjDYRPi-FienqrPJZtwXdIqUwwdB6CIPFanzm3sesyIew9ONKczkWZEiNgnlDHG1V10r4XQJGV14e9H42BMJVNlTyRvEs24iedvn5mYp4zifwPDdMtS3cyinGCNZvs0f_QfWvYYPSzOaX0waNMTdCcsnqLDVBxwJupuC8CzBm5rkzBNrsH81Wn9Z3mZln1q4PPqp6lXxncDIPb6Gfoy_3RyeNSUoxcaxynuG-FChGDMiqBwwMSA26eigQKh3BIlqYsusCikct5jjgMVXrCouDOYR8_oc7SzWC7CS1TDCOJx5JI4Y8ASGgtOVotFkDJAOOpDhdgoce0KLnk6HuNCkwJfOkpFJ6noIpUK7W_ILgdgjtsIPqTfuXk54WrniuXqhy7dVHPKjeSROsnB7zFKCkstDsLx6DyYtQqpbWXQfZ5WicMZKJrewsCLQWE2LLRyJtMyWIXERJUmPE6fLLqzjAHOZ4qBr1-hd4PSTUg-dl8PcrPO-zPdtmn1-88vlqpzuAs6hcpE7P5DC1-hB6mYt2q2r9FOv7oKb9B996vv1qu93DH38qQHXE_m334DIeU4iQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMGFh3iF8sgBcUuxY3ttH_taFVH2tEBvluNHGxV2q23KgV-Px05WmwrUA9zi2BONnbFnxvZ8g9C7psHEM9FUljpbMRFUJZ2IXkpoGDHMMO9zsgkxm8mTE7UZCwPXKsGHDhkoIq3VMLlhM3q4EvchWtGcTgRsiRCxQyhjjKvb6A6Puhau9c2n34bVmEqm-qBIXgHNEMXzt8-M9FOC8b8GYrqhqq5foxyBjSYFNX34P7r2CD3ozdNyN8vTY3TLL56gfShmpImy3YDwLCO7pQFUk19RAZZwArS8gIOfMjJ69cOUK-PaDIl9-RR9mR7O94-qPvlCZTnFXSWsD9Eda4RX2GNiouGngokFQnlDlKQ2WM-CkMo6hzn2VDjBguLWYB4co8_Q1mK58C9QGdcQhwOXxBoTdaFpoplVY-Gl9NEhdb5AbBhybXtkckiQ8V2THsB0GBUNo6L7USnQzprsIkNz3ESwB_9z3RiQtdOL5epU9xNVc8qN5IFayaPlY5QUDW2wF5YH66JiK5DalAbdpY2VkLOgaHoDA8-zxKxZqOVEwkFYgcRIlkY8jmsW7VlCAecTxaK1X6D3WepGJAft193UrfPuTNc1nH__uWH_6jw-eQ3OMhEv_6GHb9G9o_nnY338cfZpG92HqhS4Wb9CW93qyr9Gd-3Prr1cvUmz9Dd5JDqs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagINQLD_EKzxwQtxQ7ttf2sbSsQKBVDwV6s_xso8LuajftgV-PX1ltKlAPcItjTzR2xp4Zj_0NAG-0hsgRphuDrWkI86LhlgUvxWuCFFHEuZxsgs1m_OREHJXThOtyrDL60D4DRaS1Ok7upfXDibh3wYimeMLijghiewgTQqi4CW4lcKwg0sfT78NijDkR5U4kbSLNcInnb58ZqaeE4n8Fw3RLU109RTnCGk36aXrvP_TsPrhbjNN6P0vTA3DDzR-Cg1jMOBN1twXgWQduaxUxTX4F9VfH-M9iGcM-deDz4qeqV8p2GRB7_Qh8nX44PvjYlNQLjaEY9g0zzgdnTDMnoINIBbNPeBUKCFONBMfGG0c848JYCyl0mFlGvKBGQeotwY_Bznwxd09BHVYQCz3lyCgVNKHSwchqIXOcu-COWlcBMoy4NAWXPKbH-CFRgS8dRkXGUZFlVCqwtyFbZmCO6wjex9-5aRxxtdOLxepUlmkqKaaKU48Np8HuUYIzjTV0zFBvbFBrFRDbwiD7tK3icw4Uia9h4EkWmA0LLZ_wGAarABuJ0ojHcc28O0sY4HQiSLD1K_A2C92I5LD7tp-6dd6fybaN0e8_NyyvzsOTk9FVRuzZP_TwNbhzdDiVXz7NPj8Hu7Em3dpsX4CdfnXhXoLb5rLv1qtXaY7-BmXcOVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+for+analyzing+orthopedic+trauma+radiographs&rft.jtitle=Acta+orthopaedica&rft.au=Olczak%2C+Jakub&rft.au=Fahlberg%2C+Niklas&rft.au=Maki%2C+Atsuto&rft.au=Razavian%2C+Ali+Sharif&rft.date=2017-11-02&rft.issn=1745-3674&rft.eissn=1745-3682&rft.volume=88&rft.issue=6&rft.spage=581&rft.epage=586&rft_id=info:doi/10.1080%2F17453674.2017.1344459&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17453674_2017_1344459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-3674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-3674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-3674&client=summon