Carrier dynamics in Landau-quantized graphene featuring strong Auger scattering

The energy spectrum of common two-dimensional electron gases consists of a harmonic (that is, equidistant) ladder of Landau levels, thus preventing the possibility of optically addressing individual transitions. In graphene, however, owing to its non-harmonic spectrum, individual levels can be addre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics Jg. 11; H. 1; S. 75 - 81
Hauptverfasser: Mittendorff, Martin, Wendler, Florian, Malic, Ermin, Knorr, Andreas, Orlita, Milan, Potemski, Marek, Berger, Claire, de Heer, Walter A., Schneider, Harald, Helm, Manfred, Winnerl, Stephan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 01.01.2015
Nature Publishing Group
Nature Publishing Group [2005-....]
Schlagworte:
ISSN:1745-2473, 1745-2481
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The energy spectrum of common two-dimensional electron gases consists of a harmonic (that is, equidistant) ladder of Landau levels, thus preventing the possibility of optically addressing individual transitions. In graphene, however, owing to its non-harmonic spectrum, individual levels can be addressed selectively. Here, we report a time-resolved experiment directly pumping discrete Landau levels in graphene. Energetically degenerate Landau-level transitions from n = −1 to n = 0 and from n = 0 to n = 1 are distinguished by applying circularly polarized THz light. An analysis based on a microscopic theory shows that the zeroth Landau level is actually depleted by strong Auger scattering, even though it is optically pumped at the same time. The surprisingly strong electron–electron interaction responsible for this effect is directly evidenced through a sign reversal of the pump–probe signal. Landau levels in graphene are not equidistant so that transitions between them can be individually probed. Time-resolved optical pumping experiments reveal strong electron–electron scattering resulting in an Auger-depleted zeroth order Landau level.
AbstractList The energy spectrum of common two-dimensional electron gases consists of a harmonic (that is, equidistant) ladder of Landau levels, thus preventing the possibility of optically addressing individual transitions. In graphene, however, owing to its non-harmonic spectrum, individual levels can be addressed selectively. Here, we report a time-resolved experiment directly pumping discrete Landau levels in graphene. Energetically degenerate Landau-level transitions from n = -1 to n = 0 and from n = 0 to n = 1 are distinguished by applying circularly polarized THz light. An analysis based on a microscopic theory shows that the zeroth Landau level is actually depleted by strong Auger scattering, even though it is optically pumped at the same time. The surprisingly strong electron-electron interaction responsible for this effect is directly evidenced through a sign reversal of the pump-probe signal.
The energy spectrum of common two-dimensional electron gases consists of a harmonic (that is, equidistant) ladder of Landau levels, thus preventing the possibility of optically addressing individual transitions. In graphene, however, owing to its non-harmonic spectrum, individual levels can be addressed selectively. Here, we report a time-resolved experiment directly pumping discrete Landau levels in graphene. Energetically degenerate Landau-level transitions from n = −1 to n = 0 and from n = 0 to n = 1 are distinguished by applying circularly polarized THz light. An analysis based on a microscopic theory shows that the zeroth Landau level is actually depleted by strong Auger scattering, even though it is optically pumped at the same time. The surprisingly strong electron–electron interaction responsible for this effect is directly evidenced through a sign reversal of the pump–probe signal. Landau levels in graphene are not equidistant so that transitions between them can be individually probed. Time-resolved optical pumping experiments reveal strong electron–electron scattering resulting in an Auger-depleted zeroth order Landau level.
The energy spectrum of common two-dimensional electron gases consists of a harmonic, i.e. equidistant ladder of Landau levels, thus preventing the possibility to optically address individual transitions. In graphene, however, due to its non-harmonic spectrum, individual levels can be addressed selectively. We report here the first time-resolved experiment directly pumping discrete Landau levels in graphene. Energetically degenerate Landau-level transitions from n =-1 to n = 0 and from n = 0 to n = 1 are distinguished by applying circularly polarized THz light. In agreement with our experimental results, an analysis based on microscopic theory shows that the zeroth Landau level is actually depleted by strong Auger scattering, even though it is optically pumped at the same time. Such a phenomenon has never been observed before in any system to our knowledge. The surprisingly strong electron-electron interaction responsible for this effect is directly evidenced through a sign reversal of the pump-probe signal.
Author Potemski, Marek
Mittendorff, Martin
de Heer, Walter A.
Malic, Ermin
Orlita, Milan
Berger, Claire
Schneider, Harald
Wendler, Florian
Knorr, Andreas
Helm, Manfred
Winnerl, Stephan
Author_xml – sequence: 1
  givenname: Martin
  surname: Mittendorff
  fullname: Mittendorff, Martin
  email: mhm@umd.edu
  organization: Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510119 01314 Dresden, Germany, Technische Universität Dresden, Present address: University of Maryland, College Park, Maryland 20742, USA
– sequence: 2
  givenname: Florian
  surname: Wendler
  fullname: Wendler, Florian
  organization: Technische Universität Berlin, Hardenbergstraße 36 10623 Berlin, Germany
– sequence: 3
  givenname: Ermin
  surname: Malic
  fullname: Malic, Ermin
  organization: Technische Universität Berlin, Hardenbergstraße 36 10623 Berlin, Germany
– sequence: 4
  givenname: Andreas
  surname: Knorr
  fullname: Knorr, Andreas
  organization: Technische Universität Berlin, Hardenbergstraße 36 10623 Berlin, Germany
– sequence: 5
  givenname: Milan
  surname: Orlita
  fullname: Orlita, Milan
  organization: Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA 38042 Grenoble, France, Charles University Faculty of Mathematics and Physics, Ke Karlovu 5 121 16 Praha, Czech Republic
– sequence: 6
  givenname: Marek
  surname: Potemski
  fullname: Potemski, Marek
  organization: Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA 38042 Grenoble, France
– sequence: 7
  givenname: Claire
  surname: Berger
  fullname: Berger, Claire
  organization: Georgia Institute of Technology, CNRS — Institut Néel
– sequence: 8
  givenname: Walter A.
  surname: de Heer
  fullname: de Heer, Walter A.
  organization: Georgia Institute of Technology, Department of Physics, King Abdulaziz University
– sequence: 9
  givenname: Harald
  surname: Schneider
  fullname: Schneider, Harald
  organization: Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510119 01314 Dresden, Germany
– sequence: 10
  givenname: Manfred
  surname: Helm
  fullname: Helm, Manfred
  organization: Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510119 01314 Dresden, Germany, Technische Universität Dresden
– sequence: 11
  givenname: Stephan
  surname: Winnerl
  fullname: Winnerl, Stephan
  email: s.winnerl@hzdr.de
  organization: Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510119 01314 Dresden, Germany
BackLink https://hal.science/hal-01784086$$DView record in HAL
BookMark eNptkVFLwzAQx4MouE0f_AYFX1SoJqZp0scx1AkDX_S53NLrltGlXZIK89ObMZmikocLx-9_97-7ITm2rUVCLhi9ZZSrO9stt56zPDsiAyYzkd5nih0f_pKfkqH3K0qz-5zxAXmZgHMGXVJtLayN9omxyQxsBX266cEG84FVsnDQLdFiUiOE3hm7SHxwbQzjfhHFXkMIuMufkZMaGo_nX3FE3h4fXifTdPby9DwZz1ItOA2plEqjqmpeIwolVXRWKAlCANOVzOKrBeNUK8jmomYS5lyKeVZRwQpeYc1H5HpfdwlN2TmzBrctWzDldDwrdznKpMqoyt9ZZK_2bOfaTY8-lGvjNTYNWGx7X7I8L1SRF3GBI3L5C121vbNxkkiJ6FLyQn4316713mF9cMBouTtDeThDZO9-sdoECKa1wYFp_lXc7BW-220U3Q8Pf-BP-ZabJA
CitedBy_id crossref_primary_10_1016_j_carbon_2018_09_033
crossref_primary_10_1016_j_jlumin_2021_118487
crossref_primary_10_1088_1367_2630_aa739d
crossref_primary_10_1002_advs_202204058
crossref_primary_10_1038_nphys3559
crossref_primary_10_1038_s41598_017_18176_2
crossref_primary_10_1038_s41598_017_02740_x
crossref_primary_10_1039_C9NR01714C
crossref_primary_10_1038_srep16841
crossref_primary_10_1063_1_5119932
crossref_primary_10_1088_2053_1583_ab1dea
crossref_primary_10_1038_s41566_021_00879_8
crossref_primary_10_1063_5_0215129
crossref_primary_10_1038_s41566_019_0496_1
crossref_primary_10_1038_srep12646
crossref_primary_10_1088_2053_1583_3_1_010401
crossref_primary_10_1103_PhysRevB_103_L241301
crossref_primary_10_1007_s10762_020_00690_6
crossref_primary_10_1002_advs_202206191
crossref_primary_10_1140_epjp_s13360_023_03720_z
crossref_primary_10_1088_1367_2630_16_12_123021
crossref_primary_10_1016_j_physrep_2022_09_005
crossref_primary_10_1088_2053_1583_3_1_015010
crossref_primary_10_1515_nanoph_2015_0018
crossref_primary_10_1063_5_0249987
crossref_primary_10_1038_nphys3206
crossref_primary_10_1002_pssb_201552425
crossref_primary_10_1134_S1068337224700397
crossref_primary_10_1063_1_4921864
crossref_primary_10_1063_5_0233487
crossref_primary_10_1002_adom_201900771
crossref_primary_10_1002_adom_202001500
crossref_primary_10_1038_s41467_021_25304_0
crossref_primary_10_1088_2053_1583_aa7408
crossref_primary_10_1002_adsr_202400091
crossref_primary_10_1134_S1068337225700288
crossref_primary_10_1038_ncomms13948
crossref_primary_10_1038_s41566_022_01129_1
crossref_primary_10_1109_JPHOT_2017_2691261
crossref_primary_10_1002_pssb_201600416
crossref_primary_10_1002_andp_201700038
crossref_primary_10_1134_S106378262004020X
crossref_primary_10_1038_s41467_020_16746_z
crossref_primary_10_1038_s41467_025_62746_2
crossref_primary_10_1109_TPS_2017_2759269
crossref_primary_10_1038_s41467_023_38344_5
crossref_primary_10_1103_PhysRevAccelBeams_21_080702
Cites_doi 10.1063/1.2837539
10.1103/PhysRevB.83.153410
10.1103/PhysRevB.84.205406
10.1103/PhysRevLett.97.266405
10.1088/0268-1242/25/3/034005
10.1103/PhysRevLett.111.027403
10.1103/PhysRevB.79.085415
10.1038/nmat3757
10.1126/science.1237240
10.1103/PhysRevLett.104.136802
10.1038/nature12187
10.1038/nphys1816
10.1103/PhysRevLett.103.226803
10.1021/nl1024485
10.1038/nnano.2012.231
10.1103/PhysRevLett.97.187401
10.1038/ncomms2987
10.1142/7184
10.1103/PhysRevB.85.241404
10.1126/science.1125925
10.1063/1.4852635
10.1038/nature12186
10.1103/PhysRevLett.101.267601
10.1038/nphys2494
10.1103/PhysRevLett.100.087401
10.1103/PhysRevLett.103.136403
10.7566/JPSJ.82.094606
10.1038/nphys2564
10.1143/JPSJ.36.959
10.1038/nature08522
10.1038/nature04235
10.1038/nature08582
10.1002/9783527658749
10.1088/1367-2630/14/9/095008
10.1088/0022-3727/45/30/303001
10.1103/PhysRevB.82.165305
10.1038/nphys2493
10.1103/PhysRevB.76.155431
10.1103/PhysRevLett.101.157402
10.1103/PhysRevB.80.245415
10.1088/0957-4484/24/21/214004
10.1103/PhysRevLett.107.237401
10.1103/RevModPhys.83.1193
10.1038/nature04233
10.1088/0953-8984/25/5/054202
ContentType Journal Article
Copyright Springer Nature Limited 2014
Copyright Nature Publishing Group Jan 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Nature Limited 2014
– notice: Copyright Nature Publishing Group Jan 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
1XC
VOOES
DOI 10.1038/nphys3164
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student
Technology Research Database


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 81
ExternalDocumentID oai:HAL:hal-01784086v1
3584257601
10_1038_nphys3164
Genre Feature
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ACSTC
AFANA
AFFHD
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQUKI
Q9U
PUEGO
1XC
ABFSG
AEZWR
AFHIU
AGSTI
AHWEU
AIXLP
NFIDA
VOOES
ID FETCH-LOGICAL-c530t-778ce8df3fee5878247987a55a1cd74747f5130c8a4b5f17ab375b4d05193def3
IEDL.DBID BENPR
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346831100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1745-2473
IngestDate Sat Oct 25 06:40:26 EDT 2025
Thu Oct 02 21:03:07 EDT 2025
Sat Aug 23 12:41:07 EDT 2025
Sat Nov 29 01:38:07 EST 2025
Tue Nov 18 22:15:22 EST 2025
Fri Feb 21 02:38:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-778ce8df3fee5878247987a55a1cd74747f5130c8a4b5f17ab375b4d05193def3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9633-507X
0000-0001-8881-6618
0000-0001-9935-4885
OpenAccessLink https://hal.science/hal-01784086
PQID 1652477397
PQPubID 27545
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_01784086v1
proquest_miscellaneous_1669896910
proquest_journals_1652477397
crossref_primary_10_1038_nphys3164
crossref_citationtrail_10_1038_nphys3164
springer_journals_10_1038_nphys3164
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Publishing Group [2005-....]
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Publishing Group [2005-....]
References Sadowski, Martinez, Potemski, Berger, deHeer (CR9) 2006; 97
Johannsen (CR28) 2013; 111
Goerbig (CR37) 2011; 83
Drexler (CR1) 2013; 8
Roldán, Goerbig, Fuchs (CR43) 2010; 25
Zhang, Tan, Stormer, Kim (CR8) 2005; 438
Du, Skachko, Duerr, Luican, Andrei (CR6) 2009; 462
Berger (CR29) 2006; 312
Gierz (CR27) 2013; 12
Betz (CR42) 2013; 9
Plochocka (CR21) 2009; 80
Breusing (CR17) 2011; 83
Foster, Aleiner (CR22) 2010; 79
Crassee (CR13) 2011; 7
Winzer, Knorr, Malic (CR25) 2010; 10
Malic, Winzer, Bobkin, Knorr (CR40) 2011; 84
Sprinkle (CR45) 2009; 103
Rana (CR24) 2007; 76
Novoselov (CR7) 2005; 438
Hunt (CR4) 2013; 340
Ferrari (CR30) 2006; 97
Malic, Knorr (CR39) 2013
Graham, Shi, Ralph, Park, McEuen (CR41) 2013; 9
Haug, Koch (CR38) 2009
Winnerl (CR32) 2013; 25
Kawano (CR14) 2013; 24
Otsuji (CR23) 2012; 45
Wang (CR35) 2013; 82
Ando, Uemura (CR44) 1974; 36
Winzer, Malic (CR26) 2012; 85
Dawlaty, Shivaraman, Chandrashekhar, Rana, Spencer (CR15) 2008; 92
Orlita (CR34) 2012; 14
Orlita (CR11) 2008; 101
Witowski (CR33) 2010; 82
Wendler, Knorr, Malic (CR36) 2013; 103
Sun (CR16) 2008; 101
Winnerl (CR18) 2011; 107
Tielrooij (CR20) 2013; 9
Sun (CR31) 2010; 104
Brida (CR19) 2013; 4
Dean (CR3) 2013; 497
Plochocka (CR10) 2008; 100
Ponomarenko (CR2) 2013; 497
Bolotin, Ghahari, Shulman, Stormer, Kim (CR5) 2009; 462
Neugebauer, Orlita, Faugeras, Barra, Potemski (CR12) 2009; 103
Y Kawano (BFnphys3164_CR14) 2013; 24
E Malic (BFnphys3164_CR39) 2013
KS Novoselov (BFnphys3164_CR7) 2005; 438
M Orlita (BFnphys3164_CR11) 2008; 101
M Orlita (BFnphys3164_CR34) 2012; 14
T Otsuji (BFnphys3164_CR23) 2012; 45
MO Goerbig (BFnphys3164_CR37) 2011; 83
X Du (BFnphys3164_CR6) 2009; 462
S Winnerl (BFnphys3164_CR18) 2011; 107
T Winzer (BFnphys3164_CR25) 2010; 10
Z-W Wang (BFnphys3164_CR35) 2013; 82
KJ Tielrooij (BFnphys3164_CR20) 2013; 9
AC Betz (BFnphys3164_CR42) 2013; 9
AC Ferrari (BFnphys3164_CR30) 2006; 97
C Drexler (BFnphys3164_CR1) 2013; 8
CR Dean (BFnphys3164_CR3) 2013; 497
S Winnerl (BFnphys3164_CR32) 2013; 25
I Crassee (BFnphys3164_CR13) 2011; 7
F Wendler (BFnphys3164_CR36) 2013; 103
LA Ponomarenko (BFnphys3164_CR2) 2013; 497
Y Zhang (BFnphys3164_CR8) 2005; 438
C Berger (BFnphys3164_CR29) 2006; 312
ML Sadowski (BFnphys3164_CR9) 2006; 97
MS Foster (BFnphys3164_CR22) 2010; 79
JC Johannsen (BFnphys3164_CR28) 2013; 111
H Haug (BFnphys3164_CR38) 2009
KI Bolotin (BFnphys3164_CR5) 2009; 462
JM Dawlaty (BFnphys3164_CR15) 2008; 92
T Winzer (BFnphys3164_CR26) 2012; 85
B Hunt (BFnphys3164_CR4) 2013; 340
P Plochocka (BFnphys3164_CR10) 2008; 100
D Sun (BFnphys3164_CR16) 2008; 101
D Sun (BFnphys3164_CR31) 2010; 104
R Roldán (BFnphys3164_CR43) 2010; 25
T Ando (BFnphys3164_CR44) 1974; 36
F Rana (BFnphys3164_CR24) 2007; 76
MW Graham (BFnphys3164_CR41) 2013; 9
I Gierz (BFnphys3164_CR27) 2013; 12
AM Witowski (BFnphys3164_CR33) 2010; 82
E Malic (BFnphys3164_CR40) 2011; 84
P Plochocka (BFnphys3164_CR21) 2009; 80
P Neugebauer (BFnphys3164_CR12) 2009; 103
D Brida (BFnphys3164_CR19) 2013; 4
M Breusing (BFnphys3164_CR17) 2011; 83
M Sprinkle (BFnphys3164_CR45) 2009; 103
References_xml – volume: 92
  start-page: 042116
  year: 2008
  ident: CR15
  article-title: Measurement of ultrafast carrier dynamics in epitaxial graphene
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2837539
– volume: 83
  start-page: 153410
  year: 2011
  ident: CR17
  article-title: Ultrafast nonequilibrium carrier dynamics in a single graphene layer
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.153410
– volume: 84
  start-page: 205406
  year: 2011
  ident: CR40
  article-title: Microscopic theory of absorption and ultrafast many-particle kinetics in graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.205406
– volume: 97
  start-page: 266405
  year: 2006
  ident: CR9
  article-title: Landau level spectroscopy of ultrathin graphene layers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.266405
– volume: 25
  start-page: 034005
  year: 2010
  ident: CR43
  article-title: The magnetic field particle-hole excitation spectrum in doped graphene and in a standard two-dimensional electron gas
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/25/3/034005
– volume: 111
  start-page: 027403
  year: 2013
  ident: CR28
  article-title: Direct view of hot carrier dynamics in graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.027403
– volume: 79
  start-page: 085415
  year: 2010
  ident: CR22
  article-title: Slow imbalance relaxation and thermoelectric transport in graphene. Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.085415
– volume: 12
  start-page: 1119
  year: 2013
  end-page: 1124
  ident: CR27
  article-title: Snapshots of non-equilibrium Dirac carrier distributions in graphene
  publication-title: Nature Mater.
  doi: 10.1038/nmat3757
– volume: 340
  start-page: 1427
  year: 2013
  end-page: 1430
  ident: CR4
  article-title: Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure
  publication-title: Science
  doi: 10.1126/science.1237240
– volume: 104
  start-page: 136802
  year: 2010
  ident: CR31
  article-title: Spectroscopic measurement of interlayer screening in multilayer epitaxial graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.136802
– volume: 497
  start-page: 594
  year: 2013
  end-page: 597
  ident: CR2
  article-title: Cloning of Dirac fermions in graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature12187
– volume: 7
  start-page: 48
  year: 2011
  end-page: 51
  ident: CR13
  article-title: Giant Faraday rotation in single- and multilayer graphene
  publication-title: Nature Phys.
  doi: 10.1038/nphys1816
– volume: 103
  start-page: 226803
  year: 2009
  ident: CR45
  article-title: First direct observation of a nearly ideal graphene band structure
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.226803
– volume: 10
  start-page: 4839
  year: 2010
  end-page: 4843
  ident: CR25
  article-title: Carrier multiplication in graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl1024485
– volume: 8
  start-page: 104
  year: 2013
  end-page: 107
  ident: CR1
  article-title: Magnetic quantum ratchet effect in graphene
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2012.231
– volume: 97
  start-page: 187401
  year: 2006
  ident: CR30
  article-title: Raman spectrum of graphene and graphene layers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 4
  start-page: 1987
  year: 2013
  ident: CR19
  article-title: Ultrafast collinear scattering and carrier multiplication in graphene
  publication-title: Nature Commun.
  doi: 10.1038/ncomms2987
– year: 2009
  ident: CR38
  publication-title: Quantum Theory of the Optical and Electronic Properties of Semiconductors
  doi: 10.1142/7184
– volume: 85
  start-page: 241404
  year: 2012
  ident: CR26
  article-title: Impact of Auger processes on carrier dynamics in graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.241404
– volume: 312
  start-page: 1191
  year: 2006
  end-page: 1196
  ident: CR29
  article-title: Electronic confinement and coherence in patterned epitaxial graphene
  publication-title: Science
  doi: 10.1126/science.1125925
– volume: 103
  start-page: 253117
  year: 2013
  ident: CR36
  article-title: Resonant carrier-phonon scattering in graphene under Landau quantization
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4852635
– volume: 497
  start-page: 598
  year: 2013
  end-page: 602
  ident: CR3
  article-title: Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices
  publication-title: Nature
  doi: 10.1038/nature12186
– volume: 101
  start-page: 267601
  year: 2008
  ident: CR11
  article-title: Approaching the Dirac point in high-mobility multilayer epitaxial graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.267601
– volume: 9
  start-page: 109
  year: 2013
  end-page: 112
  ident: CR42
  article-title: Supercollision cooling in undoped graphene
  publication-title: Nature Phys.
  doi: 10.1038/nphys2494
– volume: 100
  start-page: 087401
  year: 2008
  ident: CR10
  article-title: High energy limit of massless Dirac fermions in multilayer graphene using magneto-optical transmission spectroscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.087401
– volume: 103
  start-page: 136403
  year: 2009
  ident: CR12
  article-title: How perfect can graphene be?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.136403
– volume: 82
  start-page: 094606
  year: 2013
  ident: CR35
  article-title: The temperature dependence of optical phonon scattering in graphene under strong magnetic field
  publication-title: J. Phys. Soc. Jpn
  doi: 10.7566/JPSJ.82.094606
– volume: 9
  start-page: 248
  year: 2013
  end-page: 252
  ident: CR20
  article-title: Photoexcitation cascade and multiple hot-carrier generation in graphene
  publication-title: Nature Phys.
  doi: 10.1038/nphys2564
– volume: 36
  start-page: 959
  year: 1974
  end-page: 967
  ident: CR44
  article-title: Theory of quantum transport in a two-dimensional electron system under magnetic fields. I. Characteristics of level broadening and transport under strong fields
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.36.959
– volume: 462
  start-page: 192
  year: 2009
  end-page: 195
  ident: CR6
  article-title: Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene
  publication-title: Nature
  doi: 10.1038/nature08522
– volume: 438
  start-page: 201
  year: 2005
  end-page: 204
  ident: CR8
  article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 462
  start-page: 196
  year: 2009
  end-page: 199
  ident: CR5
  article-title: Observation of the fractional quantum Hall effect in graphene
  publication-title: Nature
  doi: 10.1038/nature08582
– year: 2013
  ident: CR39
  publication-title: Graphene and Carbon Nanotubes – Ultrafast Relaxation Dynamics and Optics
  doi: 10.1002/9783527658749
– volume: 14
  start-page: 095008
  year: 2012
  ident: CR34
  article-title: Classical to quantum crossover of the cyclotron resonance in graphene: A study of the strength of intraband absorption
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/9/095008
– volume: 45
  start-page: 303001
  year: 2012
  ident: CR23
  article-title: Graphene-based devices in terahertz science and technology
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/45/30/303001
– volume: 82
  start-page: 165305
  year: 2010
  ident: CR33
  article-title: Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.165305
– volume: 9
  start-page: 103
  year: 2013
  end-page: 108
  ident: CR41
  article-title: Photocurrent measurements of supercollision cooling in graphene
  publication-title: Nature Phys.
  doi: 10.1038/nphys2493
– volume: 76
  start-page: 155431
  year: 2007
  ident: CR24
  article-title: Electron–hole generation and recombination rates for Coulomb scattering in graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.155431
– volume: 101
  start-page: 157402
  year: 2008
  ident: CR16
  article-title: Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.157402
– volume: 80
  start-page: 245415
  year: 2009
  ident: CR21
  article-title: Slowing hot-carrier relaxation in graphene using a magnetic field
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.245415
– volume: 24
  start-page: 21404
  year: 2013
  ident: CR14
  article-title: Wide-band frequency tunable terahertz and infrared detection with graphene
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/21/214004
– volume: 107
  start-page: 237401
  year: 2011
  ident: CR18
  article-title: Carrier relaxation in epitaxial graphene photoexcited near the Dirac point
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.237401
– volume: 83
  start-page: 1193
  year: 2011
  end-page: 1243
  ident: CR37
  article-title: Electronic properties of graphene in a strong magnetic field
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.1193
– volume: 438
  start-page: 197
  year: 2005
  end-page: 200
  ident: CR7
  article-title: Two-dimensional gas of massless Dirac fermions in graphene
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 25
  start-page: 054202
  year: 2013
  ident: CR32
  article-title: Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: Relaxation dynamics and saturation behaviour
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/25/5/054202
– volume: 45
  start-page: 303001
  year: 2012
  ident: BFnphys3164_CR23
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/45/30/303001
– volume: 85
  start-page: 241404
  year: 2012
  ident: BFnphys3164_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.241404
– volume: 111
  start-page: 027403
  year: 2013
  ident: BFnphys3164_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.027403
– volume: 101
  start-page: 267601
  year: 2008
  ident: BFnphys3164_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.267601
– volume: 9
  start-page: 248
  year: 2013
  ident: BFnphys3164_CR20
  publication-title: Nature Phys.
  doi: 10.1038/nphys2564
– volume: 76
  start-page: 155431
  year: 2007
  ident: BFnphys3164_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.155431
– volume: 497
  start-page: 598
  year: 2013
  ident: BFnphys3164_CR3
  publication-title: Nature
  doi: 10.1038/nature12186
– volume: 107
  start-page: 237401
  year: 2011
  ident: BFnphys3164_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.237401
– volume: 103
  start-page: 253117
  year: 2013
  ident: BFnphys3164_CR36
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4852635
– volume: 340
  start-page: 1427
  year: 2013
  ident: BFnphys3164_CR4
  publication-title: Science
  doi: 10.1126/science.1237240
– volume: 8
  start-page: 104
  year: 2013
  ident: BFnphys3164_CR1
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2012.231
– volume: 14
  start-page: 095008
  year: 2012
  ident: BFnphys3164_CR34
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/9/095008
– volume: 97
  start-page: 266405
  year: 2006
  ident: BFnphys3164_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.266405
– volume: 7
  start-page: 48
  year: 2011
  ident: BFnphys3164_CR13
  publication-title: Nature Phys.
  doi: 10.1038/nphys1816
– volume: 79
  start-page: 085415
  year: 2010
  ident: BFnphys3164_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.085415
– volume: 82
  start-page: 094606
  year: 2013
  ident: BFnphys3164_CR35
  publication-title: J. Phys. Soc. Jpn
  doi: 10.7566/JPSJ.82.094606
– volume: 104
  start-page: 136802
  year: 2010
  ident: BFnphys3164_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.136802
– volume: 103
  start-page: 136403
  year: 2009
  ident: BFnphys3164_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.136403
– volume: 97
  start-page: 187401
  year: 2006
  ident: BFnphys3164_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 462
  start-page: 196
  year: 2009
  ident: BFnphys3164_CR5
  publication-title: Nature
  doi: 10.1038/nature08582
– volume: 24
  start-page: 21404
  year: 2013
  ident: BFnphys3164_CR14
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/21/214004
– volume: 92
  start-page: 042116
  year: 2008
  ident: BFnphys3164_CR15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2837539
– volume-title: Graphene and Carbon Nanotubes – Ultrafast Relaxation Dynamics and Optics
  year: 2013
  ident: BFnphys3164_CR39
  doi: 10.1002/9783527658749
– volume: 462
  start-page: 192
  year: 2009
  ident: BFnphys3164_CR6
  publication-title: Nature
  doi: 10.1038/nature08522
– volume: 9
  start-page: 109
  year: 2013
  ident: BFnphys3164_CR42
  publication-title: Nature Phys.
  doi: 10.1038/nphys2494
– volume: 438
  start-page: 197
  year: 2005
  ident: BFnphys3164_CR7
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 25
  start-page: 054202
  year: 2013
  ident: BFnphys3164_CR32
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/25/5/054202
– volume: 4
  start-page: 1987
  year: 2013
  ident: BFnphys3164_CR19
  publication-title: Nature Commun.
  doi: 10.1038/ncomms2987
– volume: 312
  start-page: 1191
  year: 2006
  ident: BFnphys3164_CR29
  publication-title: Science
  doi: 10.1126/science.1125925
– volume: 83
  start-page: 153410
  year: 2011
  ident: BFnphys3164_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.153410
– volume-title: Quantum Theory of the Optical and Electronic Properties of Semiconductors
  year: 2009
  ident: BFnphys3164_CR38
  doi: 10.1142/7184
– volume: 80
  start-page: 245415
  year: 2009
  ident: BFnphys3164_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.245415
– volume: 100
  start-page: 087401
  year: 2008
  ident: BFnphys3164_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.087401
– volume: 12
  start-page: 1119
  year: 2013
  ident: BFnphys3164_CR27
  publication-title: Nature Mater.
  doi: 10.1038/nmat3757
– volume: 82
  start-page: 165305
  year: 2010
  ident: BFnphys3164_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.165305
– volume: 497
  start-page: 594
  year: 2013
  ident: BFnphys3164_CR2
  publication-title: Nature
  doi: 10.1038/nature12187
– volume: 9
  start-page: 103
  year: 2013
  ident: BFnphys3164_CR41
  publication-title: Nature Phys.
  doi: 10.1038/nphys2493
– volume: 25
  start-page: 034005
  year: 2010
  ident: BFnphys3164_CR43
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/25/3/034005
– volume: 101
  start-page: 157402
  year: 2008
  ident: BFnphys3164_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.157402
– volume: 83
  start-page: 1193
  year: 2011
  ident: BFnphys3164_CR37
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.1193
– volume: 438
  start-page: 201
  year: 2005
  ident: BFnphys3164_CR8
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 103
  start-page: 226803
  year: 2009
  ident: BFnphys3164_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.226803
– volume: 84
  start-page: 205406
  year: 2011
  ident: BFnphys3164_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.205406
– volume: 36
  start-page: 959
  year: 1974
  ident: BFnphys3164_CR44
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.36.959
– volume: 10
  start-page: 4839
  year: 2010
  ident: BFnphys3164_CR25
  publication-title: Nano Lett.
  doi: 10.1021/nl1024485
SSID ssj0042613
Score 2.4826813
Snippet The energy spectrum of common two-dimensional electron gases consists of a harmonic (that is, equidistant) ladder of Landau levels, thus preventing the...
The energy spectrum of common two-dimensional electron gases consists of a harmonic, i.e. equidistant ladder of Landau levels, thus preventing the possibility...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms 140/125
639/624/399/918
639/766/119/995
639/766/119/997
Atomic
Augers
Carriers
Classical and Continuum Physics
Complex Systems
Condensed Matter
Condensed Matter Physics
Depletion
Dynamics
Graphene
Ladders
Magnetic fields
Materials science
Mathematical and Computational Physics
Mesoscopic Systems and Quantum Hall Effect
Molecular
Optical and Plasma Physics
Optical pumping
Physics
Quantum physics
Scattering
Theoretical
Two dimensional
Title Carrier dynamics in Landau-quantized graphene featuring strong Auger scattering
URI https://link.springer.com/article/10.1038/nphys3164
https://www.proquest.com/docview/1652477397
https://www.proquest.com/docview/1669896910
https://hal.science/hal-01784086
Volume 11
WOSCitedRecordID wos000346831100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: P5Z
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: PCBAR
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: BENPR
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: M2P
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6xSyv1UmgpalpA7uPAJWKztmPvCS0IxIFuV4hKqJfIr8BKVRY2Gw799Z3JYwsI9dJLDo6TjDz2zDdj5xuArzxwqZ0wiNw8j4X1eTxKg4nDMEmtD0T61hSbUJOJvroaTduEW9keq-xsYm2o_dxRjvwgSeVQKIXu8_D2LqaqUbS72pbQ6ME6MZWJPqwfnUymF50tpviAN79Eyhgf5x23ENcHBaUOeJKKRx6pd0PnIR-AzSf7o7XbOd34X4E34XULONm4mSFvYC0Ub-FlffDTlVvw_dgsqGgd801p-pLNCnZO6YUqvqtw2Ge_g2c1rTVaRZYHIgJFSVlJOfRrNq5QaFa6mqYT29_Bj9OTy-OzuC2yEDvJB0vUkXZB-5znIUiNeEGokVZGSpM4j7GGULlEP-e0EVbmiTKWK2mFr6GfDznfhn4xL8J7YEFLZa1BhCdHGGVai-hGcZNwbQbccBHBfjfQmWsZyKkQxq-s3gnnOlvpJILPq663De3Gs51QW6v7RJR9Nj7PqA3tDEauOr1PItjp1JO1y7PM_uomgk-r27iwaLfEFGFeUR-qrZkinIrgSzcJHrziqTQf_v2hj_AKsZZssjc70F8uqrALL9z9clYu9tp5uwe9b8MpXqfy5x888vnt
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BUQv5a0GCpiXxCVqE9ux94DQqlBt1e3SQ5F6S_0KrATZdrMpKj-qv5GZZLOUCnHrgattOY79efzNjD0D8JoHLrUTBpmb57Gwvoh7WTBxSJPM-kBB39pkE2o00kdHvYMluOjewtC1yk4mNoLaTxzZyDeTTKZCKTw-35-cxpQ1iryrXQqNFhZ74fwHqmzVu90PuL5v0nTn4-H2IJ5nFYid5FszHJR2QfuCFyFIjQekUKh3GylN4jySa6EKiYLdaSOsLBJlLFfSCt9wHR8Kjv0uww2BmhDtq_30oJP8pI3w9gGmjLFb3kUy4nqzJEMFTzLxx_m3_JVuX16itle8sc0ht3Pnf5ueu7A2p9Os3-L_HiyF8j7caq61uuoBfNo2U0rJx_x5ab5jERuXbEjGkzo-rRFU45_BsyZoN8p8VgQKc4ozwyryEHxh_RoniVWuCUKK5Q_h87X8zSNYKSdlWAcWtFTWGuSvsoc6tLXI3RQ3CddmixsuInjbLWzu5vHVKc3Ht7zx83OdLzAQwctF05M2qMhfGyE6FvUUBnzQH-ZUhlIU9XKdnSURbHRwyOfCp8p_YyGCF4tqFBvkCzJlmNTUhjKHZkgWI3jVge5SF1dH8_jfH3oOtweH-8N8uDvaewKryCpla6fagJXZtA5P4aY7m42r6bNmxzA4vm4M_gIFF1MZ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB615SEuvBELBcxL4rJKN7bXzgGhqCVq1SjkAFLFZfFraaSyabPZovLT-HXM7COUCnHrgatteb3255lvPPYMwCseuNROGGRunsfC-jwepMHEoZ-k1gcK-tYkm1CTiT44GEzX4Gf3FoauVXYysRbUfu7ojLyXpLIvlEL12cvbaxHTndG745OYMkiRp7VLp9FAZD-cfUfzrXy7t4Nr_brfH73_uL0btxkGYif51hIHqF3QPud5CFKjshQKbXAjpUmcR6ItVC5RyDtthJV5oozlSlrha97jQ86x33W4otDGpN01lZ87LUCWCW8eY8oYu-VdVCOuewUdWvAkFX_owvVDuol5juZe8MzWCm9063-eqttws6XZbNjsizuwFoq7cK2-7urKe_Bh2ywoVR_zZ4X5hkVsVrAxHapU8UmFYJv9CJ7VwbxRF7A8UPhTnCVWkufgKxtWOGGsdHVwUiy_D58u5W8ewEYxL8JDYEFLZa1BXisHaFtbi5xOcZNwbba44SKCN90iZ66Nu07pP46y2v_PdbbCQwQvVk2Pm2Ajf22ESFnVU3jw3eE4ozKUrmiv6_Q0iWCzg0bWCqUy-42LCJ6vqlGckI_IFGFeURvKKJoiiYzgZQfAc11cHM2jf3_oGVxH6GXjvcn-Y7iBZFM2x1ebsLFcVOEJXHWny1m5eFpvHgZfLhuCvwB7aVwF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carrier+dynamics+in+Landau-quantized+graphene+featuring+strong+Auger+scattering&rft.jtitle=Nature+physics&rft.au=Mittendorff%2C+Martin&rft.au=Wendler%2C+Florian&rft.au=Malic%2C+Ermin&rft.au=Knorr%2C+Andreas&rft.date=2015-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=11&rft.issue=1&rft.spage=75&rft_id=info:doi/10.1038%2Fnphys3164&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3584257601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon