DiabSense: early diagnosis of non-insulin-dependent diabetes mellitus using smartphone-based human activity recognition and diabetic retinopathy analysis with Graph Neural Network
Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead to serious complications i.e. blindness. Human Activity Recognition (HAR) offers potential for early NIDDM diagnosis, emerging as a key application f...
Uloženo v:
| Vydáno v: | Journal of big data Ročník 11; číslo 1; s. 103 - 37 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2024
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 2196-1115, 2196-1115 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead to serious complications i.e. blindness. Human Activity Recognition (HAR) offers potential for early NIDDM diagnosis, emerging as a key application for HAR technology. This research introduces DiabSense, a state-of-the-art smartphone-dependent system for early staging of NIDDM. DiabSense incorporates HAR and Diabetic Retinopathy (DR) upon leveraging the power of two different Graph Neural Networks (GNN). HAR uses a comprehensive array of 23 human activities resembling Diabetes symptoms, and DR is a prevalent complication of NIDDM. Graph Attention Network (GAT) in HAR achieved 98.32% accuracy on sensor data, while Graph Convolutional Network (GCN) in the Aptos 2019 dataset scored 84.48%, surpassing other state-of-the-art models. The trained GCN analyzed retinal images of four experimental human subjects for DR report generation, and GAT generated their average duration of daily activities over 30 days. The daily activities in non-diabetic periods of diabetic patients were measured and compared with the daily activities of the experimental subjects, which helped generate risk factors. Fusing risk factors with DR conditions enabled early diagnosis recommendations for the experimental subjects despite the absence of any apparent symptoms. The comparison of DiabSense system outcome with clinical diagnosis reports in the experimental subjects was conducted using the A1C test. The test results confirmed the accurate assessment of early diagnosis requirements for experimental subjects by the system. Overall, DiabSense exhibits significant potential for ensuring early NIDDM treatment, improving millions of lives worldwide. |
|---|---|
| AbstractList | Abstract Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead to serious complications i.e. blindness. Human Activity Recognition (HAR) offers potential for early NIDDM diagnosis, emerging as a key application for HAR technology. This research introduces DiabSense, a state-of-the-art smartphone-dependent system for early staging of NIDDM. DiabSense incorporates HAR and Diabetic Retinopathy (DR) upon leveraging the power of two different Graph Neural Networks (GNN). HAR uses a comprehensive array of 23 human activities resembling Diabetes symptoms, and DR is a prevalent complication of NIDDM. Graph Attention Network (GAT) in HAR achieved 98.32% accuracy on sensor data, while Graph Convolutional Network (GCN) in the Aptos 2019 dataset scored 84.48%, surpassing other state-of-the-art models. The trained GCN analyzed retinal images of four experimental human subjects for DR report generation, and GAT generated their average duration of daily activities over 30 days. The daily activities in non-diabetic periods of diabetic patients were measured and compared with the daily activities of the experimental subjects, which helped generate risk factors. Fusing risk factors with DR conditions enabled early diagnosis recommendations for the experimental subjects despite the absence of any apparent symptoms. The comparison of DiabSense system outcome with clinical diagnosis reports in the experimental subjects was conducted using the A1C test. The test results confirmed the accurate assessment of early diagnosis requirements for experimental subjects by the system. Overall, DiabSense exhibits significant potential for ensuring early NIDDM treatment, improving millions of lives worldwide. Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead to serious complications i.e. blindness. Human Activity Recognition (HAR) offers potential for early NIDDM diagnosis, emerging as a key application for HAR technology. This research introduces DiabSense, a state-of-the-art smartphone-dependent system for early staging of NIDDM. DiabSense incorporates HAR and Diabetic Retinopathy (DR) upon leveraging the power of two different Graph Neural Networks (GNN). HAR uses a comprehensive array of 23 human activities resembling Diabetes symptoms, and DR is a prevalent complication of NIDDM. Graph Attention Network (GAT) in HAR achieved 98.32% accuracy on sensor data, while Graph Convolutional Network (GCN) in the Aptos 2019 dataset scored 84.48%, surpassing other state-of-the-art models. The trained GCN analyzed retinal images of four experimental human subjects for DR report generation, and GAT generated their average duration of daily activities over 30 days. The daily activities in non-diabetic periods of diabetic patients were measured and compared with the daily activities of the experimental subjects, which helped generate risk factors. Fusing risk factors with DR conditions enabled early diagnosis recommendations for the experimental subjects despite the absence of any apparent symptoms. The comparison of DiabSense system outcome with clinical diagnosis reports in the experimental subjects was conducted using the A1C test. The test results confirmed the accurate assessment of early diagnosis requirements for experimental subjects by the system. Overall, DiabSense exhibits significant potential for ensuring early NIDDM treatment, improving millions of lives worldwide. |
| ArticleNumber | 103 |
| Author | Masum, Abdul Kadar Muhammad Vergara, Manuel Masias Hasnine, Ibrahim Alam, Md Nuho Ul Uddin, Jia Samad, Md. Abdus Ashraf, Imran Bahadur, Erfanul Hoque Urbano, Mercedes Briones |
| Author_xml | – sequence: 1 givenname: Md Nuho Ul surname: Alam fullname: Alam, Md Nuho Ul organization: Department of Computer Science and Engineering, International Islamic University Chittagong – sequence: 2 givenname: Ibrahim surname: Hasnine fullname: Hasnine, Ibrahim organization: Department of Computer Science and Engineering, International Islamic University Chittagong – sequence: 3 givenname: Erfanul Hoque surname: Bahadur fullname: Bahadur, Erfanul Hoque organization: Department of Computer Science and Engineering, International Islamic University Chittagong – sequence: 4 givenname: Abdul Kadar Muhammad surname: Masum fullname: Masum, Abdul Kadar Muhammad email: masum.swe@diu.edu.bd organization: Department of Software Engineering, Daffodil International University – sequence: 5 givenname: Mercedes Briones surname: Urbano fullname: Urbano, Mercedes Briones organization: Universidad Europea del Atlantico, Universidad Internacional Iberoamericana, Universidad de La Romana – sequence: 6 givenname: Manuel Masias surname: Vergara fullname: Vergara, Manuel Masias organization: Universidad Europea del Atlantico, Universidad Internacional Iberoamericana Arecibo, Fundacion Universitaria Internacional de Columbia – sequence: 7 givenname: Jia surname: Uddin fullname: Uddin, Jia organization: AI and Big Data Department, Endicott College, Woosong University – sequence: 8 givenname: Imran surname: Ashraf fullname: Ashraf, Imran email: imranashraf@ynu.ac.kr organization: Department of Information and Communication Engineering, Yeungnam University – sequence: 9 givenname: Md. Abdus surname: Samad fullname: Samad, Md. Abdus email: masamad@yu.ac.kr organization: Department of Information and Communication Engineering, Yeungnam University |
| BookMark | eNp9UcFu1TAQjFCRKKU_wMkS54DtJH4JN1RoqVTBgd6tjb1O_Mizg-3wlO_iB_FrKkAcelrLuzOzs_OyOHPeYVG8ZvQtY614F2vaVLuS8rqktGu68visOOesEyVjrDn75_2iuIxxTyllVcaI-rz49dFC_w1dxPcEIUwr0RYG56ONxBuSlUrr4jJZV2qc0Wl06TTSY8JIDjhNNi2RLNG6gcQDhDSPebuyh4iajMsBHAGV7E-bVhJQ-cHZZH3-dPqRx6rcSNb5GdK45gZM60n-aNNIbgLMI_mCS4Apl3T04fur4rmBKeLlY70o7q8_3V99Lu--3txefbgrVVPRVIrWMK4oNxwqgOyedhy5NqbPRxKs7XveCCOMboWu9Y51jOsdx3aHKKCpq4vidqPVHvZyDja7W6UHKx8-fBhktmvVhBKha1QFxjRgaq0RWKUUV32jse_6SmSuNxvXHPyPBWOSe7-E7DTKirY7wbq26fIU36ZU8DEGNH9UGZWnqOUWtcxRy4eo5TGD2v9AyiY43TgFsNPT0GqDxqzjBgx_t3oC9RuWh8ay |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3577064 |
| Cites_doi | 10.2337/dc09-1939 10.1109/ACCESS.2022.3185112 10.1056/NEJM199306103282306 10.1109/JSEN.2022.3206916 10.1007/s00521-023-09001-1 10.2337/dc10-0679 10.1038/s41598-021-95947-y 10.1109/JBHI.2019.2909688 10.1109/ISSPIT47144.2019.9001846 10.1016/j.neucom.2015.07.085 10.3389/fpsyt.2020.574375 10.1609/aaai.v32i1.11604 10.2337/dc16-1728 10.1109/SENSORS43011.2019.8956951 10.7759/cureus.56674 10.1016/j.patrec.2014.04.011 10.1046/j.1365-2125.1999.00092.x 10.1016/j.knosys.2021.106970 10.1038/s41598-020-78418-8 10.1016/S1440-2440(04)80273-1 10.1109/ICCV.2019.00936 10.3390/electronics13122290 10.1109/JSEN.2014.2370945 10.2337/dc09-9033 10.2196/jmir.2208 10.1109/ICoICT49345.2020.9166229 10.1007/s11042-019-08463-7 10.1109/ECACE.2019.8679226 10.1007/s11063-021-10491-0 10.1109/CVPR.2013.365 10.1007/s11760-020-01816-y 10.4239/wjd.v6.i3.489 10.1016/j.eswa.2022.116764 10.1056/NEJM199107183250302 10.1016/j.future.2017.11.029 10.1109/ICCVW.2011.6130379 10.1210/er.2015-1137 10.1145/2733373.2806333 10.1016/j.jbi.2014.07.009 10.3390/electronics9060914 10.1109/SURV.2012.110112.00192 10.1007/s12652-020-02727-z 10.1001/jama.2016.17216 10.1016/j.eswa.2019.04.057 10.3390/s20226670 10.1001/jamaophthalmol.2019.2004 10.1016/j.patrec.2016.01.001 10.1002/9781394242252.ch11 10.3390/electronics10182194 10.1016/0140-6736(91)90664-B 10.1109/CVPR.2018.00745 10.1016/j.asoc.2017.09.027 10.1007/s00138-021-01253-y 10.1145/3442381.3450006 10.1088/0967-3334/30/4/R01 10.3390/bios12060393 10.1007/s11760-021-01904-7 10.1016/j.inffus.2023.01.015 10.1007/978-3-540-24646-6_1 10.1007/978-981-19-5868-7_36 10.1109/ACCESS.2023.3301618 10.1109/ICOSEC58147.2023.10276227 10.1056/NEJMoa1310799 10.1016/j.eswa.2016.04.032 10.1109/ACCESS.2020.2982225 10.1159/000499541 10.1007/s00371-021-02283-3 10.1038/s41746-021-00514-4 10.1007/s00521-021-05913-y 10.1007/978-981-13-8798-2_12 10.1016/j.eswa.2018.07.053 10.1155/2016/2316757 10.1007/s00371-012-0752-6 10.2337/dc13-1507 10.1109/CVPR52688.2022.01166 10.1007/s00521-021-06431-7 10.1109/JSEN.2020.2964278 10.1007/978-3-031-33309-5_10 10.1007/978-981-15-5788-0_64 10.1016/j.eswa.2018.03.056 10.1109/IJCNN.2016.7727224 10.1038/s41598-022-11880-8 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 0-V 3V. 7WY 7WZ 7XB 87Z 88J 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU COVID DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N M2R P5Z P62 PHGZM PHGZT PIMPY PKEHL POGQB PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U DOA |
| DOI | 10.1186/s40537-024-00959-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Social Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Computing Database Social Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China One Social Sciences ProQuest Central Basic DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Sociology & Social Sciences Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Sociology & Social Sciences Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2196-1115 |
| EndPage | 37 |
| ExternalDocumentID | oai_doaj_org_article_ea95c3aff5af4ddea13cc2cb5deb9b36 10_1186_s40537_024_00959_w |
| GrantInformation_xml | – fundername: This research is funded by the European University of Atlantic. |
| GroupedDBID | 0-V 0R~ 3V. 5VS 7WY 8FE 8FG 8FL AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARALO ARAPS ASPBG AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ISR ITC K60 K6V K6~ K7- M0C M0N M2R M~E OK1 P62 PIMPY PQBIZ PQBZA PQQKQ PROAC RSV SOJ AASML AAYXX CITATION PHGZM 7XB 8AL 8FK COVID JQ2 L.- PHGZT PKEHL POGQB PQEST PQGLB PQUKI PRINS PRQQA Q9U |
| ID | FETCH-LOGICAL-c530t-68f12c02f2a3aa115092e2dffb095618bb256f6fd86d4d71912d72e87ee6a543 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001283002600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-1115 |
| IngestDate | Fri Oct 03 12:44:47 EDT 2025 Fri Nov 14 01:21:32 EST 2025 Sat Nov 29 06:20:06 EST 2025 Tue Nov 18 22:12:54 EST 2025 Fri Feb 21 02:38:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Diabetic retinopathy Diabetes Human activity recognition Graph Neural Network NIDDM |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c530t-68f12c02f2a3aa115092e2dffb095618bb256f6fd86d4d71912d72e87ee6a543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/ea95c3aff5af4ddea13cc2cb5deb9b36 |
| PQID | 3087619859 |
| PQPubID | 2046140 |
| PageCount | 37 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ea95c3aff5af4ddea13cc2cb5deb9b36 proquest_journals_3087619859 crossref_primary_10_1186_s40537_024_00959_w crossref_citationtrail_10_1186_s40537_024_00959_w springer_journals_10_1186_s40537_024_00959_w |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of big data |
| PublicationTitleAbbrev | J Big Data |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Simó-ServatOHernándezCSimóRDiabetic retinopathy in the context of patients with diabetesOphthalmic Res201962421121710.1159/000499541 HanCZhangLTangYHuangWMinFHeJHuman activity recognition using wearable sensors by heterogeneous convolutional neural networksExpert Syst Appl202219811676410.1016/j.eswa.2022.116764 KingPPeacockIDonnellyRThe uk prospective diabetes study (ukpds): clinical and therapeutic implications for type 2 diabetesBr J Clin Pharmacol199948564364810.1046/j.1365-2125.1999.00092.x Chakravarthy SS, Bharanidharan N, Kumar VV, Mahesh T, Khan SB, Almusharraf A, Albalawi E. Intelligent recognition of multimodal human activities for personal healthcare. IEEE Access 2024. Ding X, Zhang X, Han J, Ding G. Scaling up your kernels to 31x31: Revisiting large kernel design in cnns. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022;11963–11975. BodapatiJDShaikNSNaralasettiVDeep convolution feature aggregation: an application to diabetic retinopathy severity level predictionSIViP20211592393010.1007/s11760-020-01816-y QuaidMAKJalalAWearable sensors based human behavioral pattern recognition using statistical features and reweighted genetic algorithmMultimedia Tools Appl20207996061608310.1007/s11042-019-08463-7 GreggEWLiYWangJRios BurrowsNAliMKRolkaDWilliamsDEGeissLChanges in diabetes-related complications in the united states, 1990–2010N Engl J Med2014370161514152310.1056/NEJMoa1310799 Shan CY, Han PY, Yin OS. Deep analysis for smartphone-based human activity recognition. In: 2020 8th International Conference on Information and Communication Technology (ICoICT), IEEE 2020;1–5. Oono K, Suzuki T. Graph Neural Networks exponentially lose expressive power for node classification. arXiv preprint arXiv:1905.10947 2019. UmbrichtDChengW-YLipsmeierFBamdadianALindemannMDeep learning-based human activity recognition for continuous activity and gesture monitoring for schizophrenia patients with negative symptomsFront Psych20201157437510.3389/fpsyt.2020.574375 MukhopadhyaySCWearable sensors for human activity monitoring: a reviewIEEE Sens J20141531321133010.1109/JSEN.2014.2370945 LaraODLabradorMAA survey on human activity recognition using wearable sensorsIEEE Commun Surv Tutorials20121531192120910.1109/SURV.2012.110112.00192 ChallaSKKumarASemwalVBA multibranch CNN-BILSTM model for human activity recognition using wearable sensor dataVis Comput202238124095410910.1007/s00371-021-02283-3 Li Q, Han Z, Wu X-M. Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2018;32. Ha S, Choi S. Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors. In: 2016 International Joint Conference on Neural Networks (IJCNN), IEEE 2016;381–388. Barna A, Masum AKM, Hossain ME, Bahadur EH, Alam MS. A study on human activity recognition using gyroscope, accelerometer, temperature and humidity data. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ecce), IEEE, 2019, pp. 1–6. KhanAHammerlaNMellorSPlötzTOptimising sampling rates for accelerometer-based human activity recognitionPattern Recogn Lett201673334010.1016/j.patrec.2016.01.001 Soni V, Yadav H, Semwal VB, Roy B, Choubey DK, Mallick DK. A novel smartphone-based human activity recognition using deep learning in health care. In: Machine Learning, Image Processing, Network Security and Data Sciences: Select Proceedings of 3rd International Conference on MIND 2021, Springer 2023;493–503. AggarwalJKXiaLHuman activity recognition from 3d data: a reviewPattern Recogn Lett201448708010.1016/j.patrec.2014.04.011 LuLZhangCCaoKDengTYangQA multichannel CNN-GRU model for human activity recognitionIEEE Access202210667976681010.1109/ACCESS.2022.3185112 GeJXuGLuJXuXMengXGraphsensor: a graph attention network for time-series sensorElectronics20241312229010.3390/electronics13122290 González PA. American Academy of Ophthalmology: How to Take Retinal Images with a Smartphone. 2020. https://www.aao.org/education/clinical-video/how-to-take-retinal-images-with-smartphone#disqus_thread]. Nematallah H, Rajan S, Cretu A-M. Logistic model tree for human activity recognition using smartphone-based inertial sensors. In: 2019 IEEE SENSORS, IEEE 2019;1–4. Asia Pacific Tele-Ophthalmology Society: Aptos 2019 blindness detection, 2019. https://www.kaggle.com/c/aptos2019-blindness-detection/data. Accessed 1 Jan 2023 International Diabetes Federation: IDF Diabetes Atlas, 10th ed. Brussels, Belgium. 2021. https://www.diabetesatlas.org YadavSKTiwariKPandeyHMAkbarSAA review of multimodal human activity recognition with special emphasis on classification, applications, challenges and future directionsKnowl-Based Syst202122310697010.1016/j.knosys.2021.106970 StraczkiewiczMJamesPOnnelaJ-PA systematic review of smartphone-based human activity recognition methods for health researchNPJ Dig Med20214114810.1038/s41746-021-00514-4 AlexSANayahiJJVShineHGopirekhaVDeep convolutional neural network for diabetes mellitus predictionNeural Comput Appl20223421319132710.1007/s00521-021-06431-7 AsimYAzamMAEhatisham-ul-HaqMNaeemUKhalidAContext-aware human activity recognition (CAHAR) in-the-wild using smartphone accelerometerIEEE Sens J20202084361437110.1109/JSEN.2020.2964278 NentwichMMUlbigMWDiabetic retinopathy-ocular complications of diabetes mellitusWorld J Diabetes20156348910.4239/wjd.v6.i3.489 IgnatovAReal-time human activity recognition from accelerometer data using convolutional neural networksAppl Soft Comput20186291592210.1016/j.asoc.2017.09.027 Sivaraman M, Thyagarajan M, Sumitha J. Predicting early stage disease diagnosis using machine learning algorithms. In: 2023 4th International Conference on Smart Electronics and Communication (ICOSEC), IEEE 2023;1177–1183. WangYCangSYuHA survey on wearable sensor modality centred human activity recognition in health careExpert Syst Appl201913716719010.1016/j.eswa.2019.04.057 LorenzoCWagenknechtLEHanleyAJRewersMJKarterAJHaffnerSMA1c between 5.7 and 6.4% as a marker for identifying pre-diabetes, insulin sensitivity and secretion, and cardiovascular risk factors: the insulin resistance atherosclerosis study (iras)Diabetes Care20103392104210910.2337/dc10-0679 Wang B, Zhao D, Lioma C, Li Q, Zhang P, Simonsen JG. Encoding word order in complex embeddings. 2019. arXiv preprint arXiv:1912.12333. CommitteeTIEInternational expert committee report on the role of the a1c assay in the diagnosis of diabetesDiabetes Care2009327132710.2337/dc09-9033 Kassani SH, Kassani PH, Khazaeinezhad R, Wesolowski MJ, Schneider KA, Deters R. Diabetic retinopathy classification using a modified xception architecture. In: 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), IEEE 2019;1–6. Wong W, Juwono FH, Capriono C. Diabetic retinopathy detection and grading: A transfer learning approach using simultaneous parameter optimization and feature-weighted ecoc ensemble. IEEE Access 2023 YinXLiuZLiuDRenXA novel CNN-based BI-LSTM parallel model with attention mechanism for human activity recognition with noisy dataSci Rep2022121787810.1038/s41598-022-11880-8 VelickovicPCucurullGCasanovaARomeroALioPBengioYGraph attention networks.Stat20171050201048550 Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018;7132–7141. ShaikNSCherukuriTKLesion-aware attention with neural support vector machine for retinopathy diagnosisMach Vis Appl202132612610.1007/s00138-021-01253-y VishwakarmaSAgrawalAA survey on activity recognition and behavior understanding in video surveillanceVis Comput201329983100910.1007/s00371-012-0752-6 PreeceSJGoulermasJYKenneyLPHowardDMeijerKCromptonRActivity identification using body-mounted sensors-a review of classification techniquesPhysiol Meas2009304110.1088/0967-3334/30/4/R01 Google: Case Study: TensorFlow in Medicine—Retinal Imaging, TensorFlow Dev Summit 2017. 2017. https://youtu.be/oOeZ7IgEN4o?t=156 Li G, Muller M, Thabet A, Ghanem B. Deepgcns: Can gcns go as deep as CNNS? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019;9267–9276. GulshanVRajanRPWidnerKWuDWubbelsPRhodesTWhitehouseKCoramMCorradoGRamasamyKPerformance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in IndiaJAMA Ophthalmol.201913799879310.1001/jamaophthalmol.2019.2004 Jiang W, Yin Z. Human activity recognition using wearable sensors by deep convolutional neural networks. In: Proceedings of the 23rd ACM International Conference on Multimedia, 2015;1307–1310. BodapatiJDShaikNSNaralasettiVComposite deep neural network with gated-attention mechanism for diabetic retinopathy severity classificationJ Ambient Intell Humaniz Comput202112109825983910.1007/s12652-020-02727-z MansonJEStampferMColditzGWillettWRosnerBHennekensCSpeizerFRimmEKrolewskiAPhysical activity and incidence of non-insulin-dependent diabetes mellitus in womenLancet1991338877077477810.1016/0140-6736(91)90664-B Ni B, Wang G, Moulin P. Rgbd-hudaact: A color-depth video database for human daily activity recognition. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), IEEE, 2011;1147–1153. Nasir D, Bourkha MEA, Hatim A, Elbeid S, Ez-ziymy S, Zahid K. Predicting blood glucose levels in type 1 diabetes using lstm. In: Modern Artificial Intelligence and Data Science: Tools, Techniques and Systems. Springer, Cham Switzerland 2023;121–135. WuWDasguptaSRamirezEEPetersonCNormanGJClassification accuracies of physical activities using smartphone motion sensorsJ Med Internet Res2012145220810.2196/jmir.2208 GulshanVPengLCoramMStumpeMCWuDNarayanaswamyAVenugopalanSWidnerKMadamsTCuadrosJDevelopment and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographsJAMA2016316222402241010.1001/jama.2016.17216 DinpajhouhMSeyyedsalehiSAAutomated detecting and severity grading of MM Hassan (959_CR28) 2018; 81 959_CR71 JE Manson (959_CR9) 1991; 338 959_CR70 MM Nentwich (959_CR5) 2015; 6 959_CR1 K Han (959_CR53) 2022; 35 959_CR30 G D’Angelo (959_CR58) 2023; 35 959_CR73 959_CR72 J Ge (959_CR69) 2024; 13 JD Bodapati (959_CR84) 2021; 15 M Straczkiewicz (959_CR39) 2021; 4 AE Bauman (959_CR6) 2004; 7 W Wu (959_CR36) 2012; 14 SK Challa (959_CR91) 2022; 38 G Kumar (959_CR64) 2021; 15 SK Yadav (959_CR11) 2021; 223 959_CR79 959_CR34 P Velickovic (959_CR38) 2017; 1050 959_CR78 JD Bodapati (959_CR51) 2021; 12 M Dinpajhouh (959_CR63) 2023; 35 O Simó-Servat (959_CR4) 2019; 62 SP Helmrich (959_CR7) 1991; 325 959_CR37 959_CR60 OD Lara (959_CR24) 2012; 15 959_CR62 959_CR61 A Papadopoulos (959_CR42) 2020; 10 J-L Reyes-Ortiz (959_CR27) 2016; 171 SJ Preece (959_CR43) 2009; 30 EH Bahadur (959_CR15) 2021 JK Aggarwal (959_CR20) 2014; 48 EW Gregg (959_CR2) 2014; 370 V Gulshan (959_CR47) 2019; 137 N Phukan (959_CR59) 2022; 22 K Adem (959_CR52) 2018; 114 A Jalal (959_CR88) 2020; 20 K Xia (959_CR35) 2020; 8 959_CR68 C Lorenzo (959_CR76) 2010; 33 959_CR23 959_CR67 959_CR66 TIE Committee (959_CR75) 2009; 32 959_CR65 959_CR93 SA Alex (959_CR82) 2022; 34 P King (959_CR3) 1999; 48 D Bhattacharya (959_CR57) 2022; 12 S Vishwakarma (959_CR14) 2013; 29 J Huang (959_CR89) 2020; 24 Y Asim (959_CR33) 2020; 20 MM Islam (959_CR41) 2023; 94 D Umbricht (959_CR40) 2020; 11 C-F Chou (959_CR45) 2014; 37 959_CR19 959_CR18 HF Nweke (959_CR22) 2018; 105 MAK Quaid (959_CR86) 2020; 79 A Kautzky-Willer (959_CR74) 2016; 37 959_CR56 959_CR55 959_CR10 SC Mukhopadhyay (959_CR21) 2014; 15 959_CR54 959_CR17 959_CR16 Y Wang (959_CR13) 2019; 137 X Li (959_CR81) 2023; 55 959_CR80 959_CR85 A Khan (959_CR32) 2016; 73 L Lu (959_CR92) 2022; 10 JD Bodapati (959_CR50) 2020; 9 V Gulshan (959_CR46) 2016; 316 X Zhang (959_CR77) 2010; 33 R Guidoux (959_CR29) 2014; 52 NS Shaik (959_CR83) 2021; 32 C Han (959_CR12) 2022; 198 DM Nathan (959_CR44) 1993; 328 MZ Uddin (959_CR25) 2021; 11 SR Colberg (959_CR8) 2016; 39 CA Ronao (959_CR26) 2016; 59 959_CR87 X Yin (959_CR90) 2022; 12 959_CR49 959_CR48 A Ignatov (959_CR31) 2018; 62 |
| References_xml | – reference: BodapatiJDShaikNSNaralasettiVComposite deep neural network with gated-attention mechanism for diabetic retinopathy severity classificationJ Ambient Intell Humaniz Comput202112109825983910.1007/s12652-020-02727-z – reference: Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018;7132–7141. – reference: MukhopadhyaySCWearable sensors for human activity monitoring: a reviewIEEE Sens J20141531321133010.1109/JSEN.2014.2370945 – reference: UmbrichtDChengW-YLipsmeierFBamdadianALindemannMDeep learning-based human activity recognition for continuous activity and gesture monitoring for schizophrenia patients with negative symptomsFront Psych20201157437510.3389/fpsyt.2020.574375 – reference: Google: Case Study: TensorFlow in Medicine—Retinal Imaging, TensorFlow Dev Summit 2017. 2017. https://youtu.be/oOeZ7IgEN4o?t=156 – reference: ColbergSRSigalRJYardleyJERiddellMCDunstanDWDempseyPCHortonESCastorinoKTateDFPhysical activity/exercise and diabetes: a position statement of the American diabetes associationDiabetes Care20163911206510.2337/dc16-1728 – reference: KingPPeacockIDonnellyRThe uk prospective diabetes study (ukpds): clinical and therapeutic implications for type 2 diabetesBr J Clin Pharmacol199948564364810.1046/j.1365-2125.1999.00092.x – reference: Bodor R, Jackson B, Papanikolopoulos N. Vision-based human tracking and activity recognition. In: Proc. of the 11th Mediterranean Conf. on Control and Automation, Citeseer, 2003;1:1–6. – reference: Soni V, Yadav H, Semwal VB, Roy B, Choubey DK, Mallick DK. A novel smartphone-based human activity recognition using deep learning in health care. In: Machine Learning, Image Processing, Network Security and Data Sciences: Select Proceedings of 3rd International Conference on MIND 2021, Springer 2023;493–503. – reference: AggarwalJKXiaLHuman activity recognition from 3d data: a reviewPattern Recogn Lett201448708010.1016/j.patrec.2014.04.011 – reference: YinXLiuZLiuDRenXA novel CNN-based BI-LSTM parallel model with attention mechanism for human activity recognition with noisy dataSci Rep2022121787810.1038/s41598-022-11880-8 – reference: Asia Pacific Tele-Ophthalmology Society: Aptos 2019 blindness detection, 2019. https://www.kaggle.com/c/aptos2019-blindness-detection/data. Accessed 1 Jan 2023 – reference: BodapatiJDNaralasettiVShareefSNHakakSBilalMMaddikuntaPKRJoOBlended multi-modal deep convnet features for diabetic retinopathy severity predictionElectronics20209691410.3390/electronics9060914 – reference: LaraODLabradorMAA survey on human activity recognition using wearable sensorsIEEE Commun Surv Tutorials20121531192120910.1109/SURV.2012.110112.00192 – reference: PreeceSJGoulermasJYKenneyLPHowardDMeijerKCromptonRActivity identification using body-mounted sensors-a review of classification techniquesPhysiol Meas2009304110.1088/0967-3334/30/4/R01 – reference: GulshanVPengLCoramMStumpeMCWuDNarayanaswamyAVenugopalanSWidnerKMadamsTCuadrosJDevelopment and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographsJAMA2016316222402241010.1001/jama.2016.17216 – reference: D’AngeloGPalmieriFEnhancing COVID-19 tracking apps with human activity recognition using a deep convolutional neural network and har-imagesNeural Comput Appl20233519138611387710.1007/s00521-021-05913-y – reference: ChouC-FSherrodCEZhangXBarkerLEBullardKMCrewsJESaaddineJBBarriers to eye care among people aged 40 years and older with diagnosed diabetes, 2006–2010Diabetes Care201437118018810.2337/dc13-1507 – reference: GreggEWLiYWangJRios BurrowsNAliMKRolkaDWilliamsDEGeissLChanges in diabetes-related complications in the united states, 1990–2010N Engl J Med2014370161514152310.1056/NEJMoa1310799 – reference: DinpajhouhMSeyyedsalehiSAAutomated detecting and severity grading of diabetic retinopathy using transfer learning and attention mechanismNeural Comput Appl20233533239592397110.1007/s00521-023-09001-1 – reference: Nasir D, Bourkha MEA, Hatim A, Elbeid S, Ez-ziymy S, Zahid K. Predicting blood glucose levels in type 1 diabetes using lstm. In: Modern Artificial Intelligence and Data Science: Tools, Techniques and Systems. Springer, Cham Switzerland 2023;121–135. – reference: VishwakarmaSAgrawalAA survey on activity recognition and behavior understanding in video surveillanceVis Comput201329983100910.1007/s00371-012-0752-6 – reference: YadavSKTiwariKPandeyHMAkbarSAA review of multimodal human activity recognition with special emphasis on classification, applications, challenges and future directionsKnowl-Based Syst202122310697010.1016/j.knosys.2021.106970 – reference: LiXZhangJSafaraFImproving the accuracy of diabetes diagnosis applications through a hybrid feature selection algorithmNeural Process Lett202355115316910.1007/s11063-021-10491-0 – reference: QuaidMAKJalalAWearable sensors based human behavioral pattern recognition using statistical features and reweighted genetic algorithmMultimedia Tools Appl20207996061608310.1007/s11042-019-08463-7 – reference: Alsheikh MA, Selim A, Niyato D, Doyle L, Lin S, Tan H-P. Deep activity recognition models with triaxial accelerometers. 2015. arXiv preprint arXiv:1511.04664 – reference: BahadurEHMasumAKMBaruaAUddinMZActive sense: Early staging of non-insulin dependent diabetes mellitus (NIDDM) hinges upon recognizing daily activity patternElectronics202110.3390/electronics10182194 – reference: HuangJLinSWangNDaiGXieYZhouJTSE-CNN: a two-stage end-to-end CNN for human activity recognitionIEEE J Biomed Health Inform202024129229910.1109/JBHI.2019.2909688 – reference: GuidouxRDuclosMFleuryGLacommePLamaudièreNManenqP-HParisLRenLRoussetSA smartphone-driven methodology for estimating physical activities and energy expenditure in free living conditionsJ Biomed Inform20145227127810.1016/j.jbi.2014.07.009 – reference: NathanDMLong-term complications of diabetes mellitusN Engl J Med1993328231676168510.1056/NEJM199306103282306 – reference: Reyes-OrtizJ-LOnetoLSamàAParraXAnguitaDTransition-aware human activity recognition using smartphonesNeurocomputing201617175476710.1016/j.neucom.2015.07.085 – reference: BhattacharyaDSharmaDKimWIjazMFSinghPKENSEM-HAR: an ensemble deep learning model for smartphone sensor-based human activity recognition for measurement of elderly health monitoringBiosensors202212639310.3390/bios12060393 – reference: Li G, Muller M, Thabet A, Ghanem B. Deepgcns: Can gcns go as deep as CNNS? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019;9267–9276. – reference: Oono K, Suzuki T. Graph Neural Networks exponentially lose expressive power for node classification. arXiv preprint arXiv:1905.10947 2019. – reference: StraczkiewiczMJamesPOnnelaJ-PA systematic review of smartphone-based human activity recognition methods for health researchNPJ Dig Med20214114810.1038/s41746-021-00514-4 – reference: Ding X, Zhang X, Han J, Ding G. Scaling up your kernels to 31x31: Revisiting large kernel design in cnns. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022;11963–11975. – reference: HelmrichSPRaglandDRLeungRWPaffenbargerRSJrPhysical activity and reduced occurrence of non-insulin-dependent diabetes mellitusN Engl J Med1991325314715210.1056/NEJM199107183250302 – reference: Li Q, Han Z, Wu X-M. Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2018;32. – reference: JalalAQuaidMAKTahirSKimKA study of accelerometer and gyroscope measurements in physical life-log activities detection systemsSensors20202022667010.3390/s20226670 – reference: Xia L, Aggarwal J. Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013;2834–2841. – reference: GeJXuGLuJXuXMengXGraphsensor: a graph attention network for time-series sensorElectronics20241312229010.3390/electronics13122290 – reference: UddinMZSoyluAHuman activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learningSci Rep20211111645510.1038/s41598-021-95947-y – reference: NentwichMMUlbigMWDiabetic retinopathy-ocular complications of diabetes mellitusWorld J Diabetes20156348910.4239/wjd.v6.i3.489 – reference: LorenzoCWagenknechtLEHanleyAJRewersMJKarterAJHaffnerSMA1c between 5.7 and 6.4% as a marker for identifying pre-diabetes, insulin sensitivity and secretion, and cardiovascular risk factors: the insulin resistance atherosclerosis study (iras)Diabetes Care20103392104210910.2337/dc10-0679 – reference: RonaoCAChoS-BHuman activity recognition with smartphone sensors using deep learning neural networksExpert Syst Appl20165923524410.1016/j.eswa.2016.04.032 – reference: IslamMMNooruddinSKarrayFMuhammadGMulti-level feature fusion for multimodal human activity recognition in internet of healthcare thingsInfo Fusion202394173110.1016/j.inffus.2023.01.015 – reference: Li C, Niu D, Jiang B, Zuo X, Yang J. Meta-har: Federated representation learning for human activity recognition. In: Proceedings of the Web Conference 2021, 2021;912–922. – reference: Chakravarthy SS, Bharanidharan N, Kumar VV, Mahesh T, Khan SB, Almusharraf A, Albalawi E. Intelligent recognition of multimodal human activities for personal healthcare. IEEE Access 2024. – reference: WangYCangSYuHA survey on wearable sensor modality centred human activity recognition in health careExpert Syst Appl201913716719010.1016/j.eswa.2019.04.057 – reference: González PA. American Academy of Ophthalmology: How to Take Retinal Images with a Smartphone. 2020. https://www.aao.org/education/clinical-video/how-to-take-retinal-images-with-smartphone#disqus_thread]. – reference: Barna A, Masum AKM, Hossain ME, Bahadur EH, Alam MS. A study on human activity recognition using gyroscope, accelerometer, temperature and humidity data. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ecce), IEEE, 2019, pp. 1–6. – reference: Nematallah H, Rajan S, Cretu A-M. Logistic model tree for human activity recognition using smartphone-based inertial sensors. In: 2019 IEEE SENSORS, IEEE 2019;1–4. – reference: ChallaSKKumarASemwalVBA multibranch CNN-BILSTM model for human activity recognition using wearable sensor dataVis Comput202238124095410910.1007/s00371-021-02283-3 – reference: Wong W, Juwono FH, Capriono C. Diabetic retinopathy detection and grading: A transfer learning approach using simultaneous parameter optimization and feature-weighted ecoc ensemble. IEEE Access 2023 – reference: BodapatiJDShaikNSNaralasettiVDeep convolution feature aggregation: an application to diabetic retinopathy severity level predictionSIViP20211592393010.1007/s11760-020-01816-y – reference: MansonJEStampferMColditzGWillettWRosnerBHennekensCSpeizerFRimmEKrolewskiAPhysical activity and incidence of non-insulin-dependent diabetes mellitus in womenLancet1991338877077477810.1016/0140-6736(91)90664-B – reference: Gangwar AK, Ravi V. Diabetic retinopathy detection using transfer learning and deep learning. In: Evolution in computational intelligence: frontiers in intelligent computing: theory and applications (FICTA 2020), 2021:1;679–689. Springer – reference: HassanMMUddinMZMohamedAAlmogrenAA robust human activity recognition system using smartphone sensors and deep learningFutur Gener Comput Syst20188130731310.1016/j.future.2017.11.029 – reference: AlexSANayahiJJVShineHGopirekhaVDeep convolutional neural network for diabetes mellitus predictionNeural Comput Appl20223421319132710.1007/s00521-021-06431-7 – reference: IgnatovAReal-time human activity recognition from accelerometer data using convolutional neural networksAppl Soft Comput20186291592210.1016/j.asoc.2017.09.027 – reference: Wang B, Zhao D, Lioma C, Li Q, Zhang P, Simonsen JG. Encoding word order in complex embeddings. 2019. arXiv preprint arXiv:1912.12333. – reference: Bao L, Intille SS. Activity recognition from user-annotated acceleration data. In: International Conference on Pervasive Computing, Springer, 2004;1–17. – reference: GulshanVRajanRPWidnerKWuDWubbelsPRhodesTWhitehouseKCoramMCorradoGRamasamyKPerformance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in IndiaJAMA Ophthalmol.201913799879310.1001/jamaophthalmol.2019.2004 – reference: VelickovicPCucurullGCasanovaARomeroALioPBengioYGraph attention networks.Stat20171050201048550 – reference: AdemKExudate detection for diabetic retinopathy with circular hough transformation and convolutional neural networksExpert Syst Appl201811428929510.1016/j.eswa.2018.07.053 – reference: Jiang W, Yin Z. Human activity recognition using wearable sensors by deep convolutional neural networks. In: Proceedings of the 23rd ACM International Conference on Multimedia, 2015;1307–1310. – reference: KumarGChatterjeeSChattopadhyayCDristi: a hybrid deep neural network for diabetic retinopathy diagnosisSIViP20211581679168610.1007/s11760-021-01904-7 – reference: CommitteeTIEInternational expert committee report on the role of the a1c assay in the diagnosis of diabetesDiabetes Care2009327132710.2337/dc09-9033 – reference: Ha S, Choi S. Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors. In: 2016 International Joint Conference on Neural Networks (IJCNN), IEEE 2016;381–388. – reference: Ni B, Wang G, Moulin P. Rgbd-hudaact: A color-depth video database for human daily activity recognition. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), IEEE, 2011;1147–1153. – reference: Islam M, Ferdousi R, Rahman S, Bushra HY. Likelihood prediction of diabetes at early stage using data mining techniques. In: Computer Vision and Machine Intelligence in Medical Image Analysis, Springer, Cham Switzerland 2020;113–125. – reference: KhanAHammerlaNMellorSPlötzTOptimising sampling rates for accelerometer-based human activity recognitionPattern Recogn Lett201673334010.1016/j.patrec.2016.01.001 – reference: PhukanNMohineSMondalAManikandanMSPachoriRBConvolutional neural network-based human activity recognition for edge fitness and context-aware health monitoring devicesIEEE Sens J20222222218162182610.1109/JSEN.2022.3206916 – reference: Sivaraman M, Thyagarajan M, Sumitha J. Predicting early stage disease diagnosis using machine learning algorithms. In: 2023 4th International Conference on Smart Electronics and Communication (ICOSEC), IEEE 2023;1177–1183. – reference: XiaKHuangJWangHLstm-cnn architecture for human activity recognitionIEEE Access20208568555686610.1109/ACCESS.2020.2982225 – reference: Shan CY, Han PY, Yin OS. Deep analysis for smartphone-based human activity recognition. In: 2020 8th International Conference on Information and Communication Technology (ICoICT), IEEE 2020;1–5. – reference: International Diabetes Federation: IDF Diabetes Atlas, 10th ed. Brussels, Belgium. 2021. https://www.diabetesatlas.org – reference: NwekeHFTehYWAl-GaradiMAAloURDeep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challengesExpert Syst Appl201810523326110.1016/j.eswa.2018.03.056 – reference: HanKWangYGuoJTangYWuEVision GNN: an image is worth graph of nodesAdv Neural Inf Process Syst20223582918303 – reference: AsimYAzamMAEhatisham-ul-HaqMNaeemUKhalidAContext-aware human activity recognition (CAHAR) in-the-wild using smartphone accelerometerIEEE Sens J20202084361437110.1109/JSEN.2020.2964278 – reference: ZhangXGreggEWWilliamsonDFBarkerLEThomasWBullardKMImperatoreGWilliamsDEAlbrightALA1c level and future risk of diabetes: a systematic reviewDiabetes Care20103371665167310.2337/dc09-1939 – reference: Kulkarni A, Thool AR, Daigavane S. Understanding the clinical relationship between diabetic retinopathy, nephropathy, and neuropathy: a comprehensive review. Cureus 2024;16(3). – reference: PapadopoulosAIakovakisDKlingelhoeferLBostantjopoulouSChaudhuriKRKyritsisKHadjidimitriouSCharisisVHadjileontiadisLJDelopoulosAUnobtrusive detection of Parkinson’s disease from multi-modal and in-the-wild sensor data using deep learning techniquesSci Rep20201012137010.1038/s41598-020-78418-8 – reference: LuLZhangCCaoKDengTYangQA multichannel CNN-GRU model for human activity recognitionIEEE Access202210667976681010.1109/ACCESS.2022.3185112 – reference: BaumanAEUpdating the evidence that physical activity is good for health: an epidemiological review 2000–2003J Sci Med Sport20047161910.1016/S1440-2440(04)80273-1 – reference: WuWDasguptaSRamirezEEPetersonCNormanGJClassification accuracies of physical activities using smartphone motion sensorsJ Med Internet Res2012145220810.2196/jmir.2208 – reference: Simó-ServatOHernándezCSimóRDiabetic retinopathy in the context of patients with diabetesOphthalmic Res201962421121710.1159/000499541 – reference: Lee J, Kim J et al. Energy-efficient real-time human activity recognition on smart mobile devices. Mobile Information Systems 2016;2016. – reference: Kautzky-WillerAHarreiterJPaciniGSex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitusEndocr Rev201637327831610.1210/er.2015-1137 – reference: Kaur C, Al Ansari MS, Dwivedi VK, Suganthi D. Implementation of a neuro-fuzzy-based classifier for the detection of types 1 and 2 diabetes. Advances in Fuzzy-Based Internet of Medical Things (IoMT), 2024;163–178. – reference: ShaikNSCherukuriTKLesion-aware attention with neural support vector machine for retinopathy diagnosisMach Vis Appl202132612610.1007/s00138-021-01253-y – reference: Kassani SH, Kassani PH, Khazaeinezhad R, Wesolowski MJ, Schneider KA, Deters R. Diabetic retinopathy classification using a modified xception architecture. In: 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), IEEE 2019;1–6. – reference: HanCZhangLTangYHuangWMinFHeJHuman activity recognition using wearable sensors by heterogeneous convolutional neural networksExpert Syst Appl202219811676410.1016/j.eswa.2022.116764 – volume: 33 start-page: 1665 issue: 7 year: 2010 ident: 959_CR77 publication-title: Diabetes Care doi: 10.2337/dc09-1939 – volume: 10 start-page: 66797 year: 2022 ident: 959_CR92 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3185112 – volume: 328 start-page: 1676 issue: 23 year: 1993 ident: 959_CR44 publication-title: N Engl J Med doi: 10.1056/NEJM199306103282306 – ident: 959_CR68 – volume: 22 start-page: 21816 issue: 22 year: 2022 ident: 959_CR59 publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3206916 – volume: 35 start-page: 23959 issue: 33 year: 2023 ident: 959_CR63 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-09001-1 – volume: 33 start-page: 2104 issue: 9 year: 2010 ident: 959_CR76 publication-title: Diabetes Care doi: 10.2337/dc10-0679 – volume: 11 start-page: 16455 issue: 1 year: 2021 ident: 959_CR25 publication-title: Sci Rep doi: 10.1038/s41598-021-95947-y – volume: 24 start-page: 292 issue: 1 year: 2020 ident: 959_CR89 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2909688 – ident: 959_CR49 doi: 10.1109/ISSPIT47144.2019.9001846 – volume: 171 start-page: 754 year: 2016 ident: 959_CR27 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.085 – volume: 11 start-page: 574375 year: 2020 ident: 959_CR40 publication-title: Front Psych doi: 10.3389/fpsyt.2020.574375 – ident: 959_CR67 doi: 10.1609/aaai.v32i1.11604 – volume: 39 start-page: 2065 issue: 11 year: 2016 ident: 959_CR8 publication-title: Diabetes Care doi: 10.2337/dc16-1728 – ident: 959_CR87 doi: 10.1109/SENSORS43011.2019.8956951 – ident: 959_CR93 doi: 10.7759/cureus.56674 – ident: 959_CR1 – volume: 48 start-page: 70 year: 2014 ident: 959_CR20 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2014.04.011 – volume: 48 start-page: 643 issue: 5 year: 1999 ident: 959_CR3 publication-title: Br J Clin Pharmacol doi: 10.1046/j.1365-2125.1999.00092.x – volume: 223 start-page: 106970 year: 2021 ident: 959_CR11 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.106970 – volume: 10 start-page: 21370 issue: 1 year: 2020 ident: 959_CR42 publication-title: Sci Rep doi: 10.1038/s41598-020-78418-8 – volume: 7 start-page: 6 issue: 1 year: 2004 ident: 959_CR6 publication-title: J Sci Med Sport doi: 10.1016/S1440-2440(04)80273-1 – ident: 959_CR66 doi: 10.1109/ICCV.2019.00936 – volume: 13 start-page: 2290 issue: 12 year: 2024 ident: 959_CR69 publication-title: Electronics doi: 10.3390/electronics13122290 – volume: 15 start-page: 1321 issue: 3 year: 2014 ident: 959_CR21 publication-title: IEEE Sens J doi: 10.1109/JSEN.2014.2370945 – volume: 32 start-page: 1327 issue: 7 year: 2009 ident: 959_CR75 publication-title: Diabetes Care doi: 10.2337/dc09-9033 – volume: 14 start-page: 2208 issue: 5 year: 2012 ident: 959_CR36 publication-title: J Med Internet Res doi: 10.2196/jmir.2208 – ident: 959_CR73 – ident: 959_CR85 doi: 10.1109/ICoICT49345.2020.9166229 – volume: 79 start-page: 6061 issue: 9 year: 2020 ident: 959_CR86 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-019-08463-7 – ident: 959_CR16 doi: 10.1109/ECACE.2019.8679226 – ident: 959_CR17 – volume: 55 start-page: 153 issue: 1 year: 2023 ident: 959_CR81 publication-title: Neural Process Lett doi: 10.1007/s11063-021-10491-0 – ident: 959_CR19 doi: 10.1109/CVPR.2013.365 – ident: 959_CR65 – volume: 15 start-page: 923 year: 2021 ident: 959_CR84 publication-title: SIViP doi: 10.1007/s11760-020-01816-y – volume: 1050 start-page: 10 issue: 20 year: 2017 ident: 959_CR38 publication-title: Stat – volume: 6 start-page: 489 issue: 3 year: 2015 ident: 959_CR5 publication-title: World J Diabetes doi: 10.4239/wjd.v6.i3.489 – volume: 198 start-page: 116764 year: 2022 ident: 959_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116764 – volume: 325 start-page: 147 issue: 3 year: 1991 ident: 959_CR7 publication-title: N Engl J Med doi: 10.1056/NEJM199107183250302 – volume: 81 start-page: 307 year: 2018 ident: 959_CR28 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2017.11.029 – ident: 959_CR18 doi: 10.1109/ICCVW.2011.6130379 – volume: 37 start-page: 278 issue: 3 year: 2016 ident: 959_CR74 publication-title: Endocr Rev doi: 10.1210/er.2015-1137 – ident: 959_CR34 – ident: 959_CR23 doi: 10.1145/2733373.2806333 – volume: 52 start-page: 271 year: 2014 ident: 959_CR29 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2014.07.009 – volume: 9 start-page: 914 issue: 6 year: 2020 ident: 959_CR50 publication-title: Electronics doi: 10.3390/electronics9060914 – volume: 15 start-page: 1192 issue: 3 year: 2012 ident: 959_CR24 publication-title: IEEE Commun Surv Tutorials doi: 10.1109/SURV.2012.110112.00192 – volume: 12 start-page: 9825 issue: 10 year: 2021 ident: 959_CR51 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02727-z – volume: 316 start-page: 2402 issue: 22 year: 2016 ident: 959_CR46 publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 137 start-page: 167 year: 2019 ident: 959_CR13 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.04.057 – volume: 20 start-page: 6670 issue: 22 year: 2020 ident: 959_CR88 publication-title: Sensors doi: 10.3390/s20226670 – volume: 137 start-page: 987 issue: 9 year: 2019 ident: 959_CR47 publication-title: JAMA Ophthalmol. doi: 10.1001/jamaophthalmol.2019.2004 – ident: 959_CR72 – volume: 73 start-page: 33 year: 2016 ident: 959_CR32 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2016.01.001 – ident: 959_CR79 doi: 10.1002/9781394242252.ch11 – year: 2021 ident: 959_CR15 publication-title: Electronics doi: 10.3390/electronics10182194 – volume: 338 start-page: 774 issue: 8770 year: 1991 ident: 959_CR9 publication-title: Lancet doi: 10.1016/0140-6736(91)90664-B – ident: 959_CR71 doi: 10.1109/CVPR.2018.00745 – volume: 62 start-page: 915 year: 2018 ident: 959_CR31 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.09.027 – volume: 32 start-page: 126 issue: 6 year: 2021 ident: 959_CR83 publication-title: Mach Vis Appl doi: 10.1007/s00138-021-01253-y – ident: 959_CR55 doi: 10.1145/3442381.3450006 – volume: 30 start-page: 1 issue: 4 year: 2009 ident: 959_CR43 publication-title: Physiol Meas doi: 10.1088/0967-3334/30/4/R01 – volume: 12 start-page: 393 issue: 6 year: 2022 ident: 959_CR57 publication-title: Biosensors doi: 10.3390/bios12060393 – ident: 959_CR10 – volume: 15 start-page: 1679 issue: 8 year: 2021 ident: 959_CR64 publication-title: SIViP doi: 10.1007/s11760-021-01904-7 – volume: 94 start-page: 17 year: 2023 ident: 959_CR41 publication-title: Info Fusion doi: 10.1016/j.inffus.2023.01.015 – ident: 959_CR37 doi: 10.1007/978-3-540-24646-6_1 – ident: 959_CR56 doi: 10.1007/978-981-19-5868-7_36 – ident: 959_CR62 doi: 10.1109/ACCESS.2023.3301618 – ident: 959_CR80 doi: 10.1109/ICOSEC58147.2023.10276227 – volume: 370 start-page: 1514 issue: 16 year: 2014 ident: 959_CR2 publication-title: N Engl J Med doi: 10.1056/NEJMoa1310799 – volume: 59 start-page: 235 year: 2016 ident: 959_CR26 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.04.032 – volume: 35 start-page: 8291 year: 2022 ident: 959_CR53 publication-title: Adv Neural Inf Process Syst – volume: 8 start-page: 56855 year: 2020 ident: 959_CR35 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982225 – volume: 62 start-page: 211 issue: 4 year: 2019 ident: 959_CR4 publication-title: Ophthalmic Res doi: 10.1159/000499541 – volume: 38 start-page: 4095 issue: 12 year: 2022 ident: 959_CR91 publication-title: Vis Comput doi: 10.1007/s00371-021-02283-3 – volume: 4 start-page: 148 issue: 1 year: 2021 ident: 959_CR39 publication-title: NPJ Dig Med doi: 10.1038/s41746-021-00514-4 – volume: 35 start-page: 13861 issue: 19 year: 2023 ident: 959_CR58 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-05913-y – ident: 959_CR78 doi: 10.1007/978-981-13-8798-2_12 – volume: 114 start-page: 289 year: 2018 ident: 959_CR52 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.07.053 – ident: 959_CR54 doi: 10.1155/2016/2316757 – volume: 29 start-page: 983 year: 2013 ident: 959_CR14 publication-title: Vis Comput doi: 10.1007/s00371-012-0752-6 – volume: 37 start-page: 180 issue: 1 year: 2014 ident: 959_CR45 publication-title: Diabetes Care doi: 10.2337/dc13-1507 – ident: 959_CR70 doi: 10.1109/CVPR52688.2022.01166 – volume: 34 start-page: 1319 issue: 2 year: 2022 ident: 959_CR82 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06431-7 – ident: 959_CR60 – volume: 20 start-page: 4361 issue: 8 year: 2020 ident: 959_CR33 publication-title: IEEE Sens J doi: 10.1109/JSEN.2020.2964278 – ident: 959_CR61 doi: 10.1007/978-3-031-33309-5_10 – ident: 959_CR48 doi: 10.1007/978-981-15-5788-0_64 – volume: 105 start-page: 233 year: 2018 ident: 959_CR22 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.03.056 – ident: 959_CR30 doi: 10.1109/IJCNN.2016.7727224 – volume: 12 start-page: 7878 issue: 1 year: 2022 ident: 959_CR90 publication-title: Sci Rep doi: 10.1038/s41598-022-11880-8 |
| SSID | ssj0001340564 |
| Score | 2.3075325 |
| Snippet | Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead to... Abstract Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 103 |
| SubjectTerms | Acknowledgment Activities of daily living Artificial neural networks Big Data Big Data and Artificial Intelligence in Emerging Scientific Fields Blindness Chronic illnesses Communications Engineering Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Database Management Diabetes Diabetes mellitus Diabetic retinopathy Diagnosis Diagnostic tests Graph Neural Network Graph neural networks Human activity recognition Humans Information Storage and Retrieval Insulin Mathematical Applications in Computer Science Medical diagnosis Networks Neural networks NIDDM Patients Recognition Research subjects Retinal images Retinopathy Risk factors Smartphones Symptoms |
| SummonAdditionalLinks | – databaseName: ProQuest ABI/INFORM Collection dbid: 7WY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcOBC-RRbCvKBG1jd2E7i9IIAUTigFRKVKCfLn9VKNCmbtFV_V_9gZxxnV0WiF652EiXKs2c8fn6PkDcuRONVUzHvjGQSQhgz0MaEtUoUvlZ21Jn9Vi8W6uio-Z4Lbn2mVU5zYpqofeewRr6HynWQ7KuyeX_6h6FrFO6uZguNu-QeBOoSHQzqn782NRYB6Uglp7MyqtrrJeqXMAhMLGnysosb8SjJ9t_INf_aHk1R52D7f9_3EXmY8036YQTIY3IntE_I9uTlQPPQfkqukBrzA9a0YZ8GFD2mfiThLXvaRdp2Lcu0dTb55g50KtzSE5T1HM56ijT6Y9qfACCR9B4YRklPkxMgxTMUaFVB16ylDhpbn5-zdBSPVLYduiRfQscol0KxVEy_oLA2RSkR-JrFyF1_Rg4PPh9--sqyoQNzpZgPrFKx4G7OIzfCGMxFGx64j9GiHGKhrIUELFbRq8pLX8NSkvuaB1WHUJlSiudkCz43vCC0gH7HIbWNsKqehwLTDsltY2onUf9yRorpr2qXxc7Rc-O3ToseVekRCRqQoBMS9MWMvF3fczpKfdx69UcEy_pKlOlODd3qWOdRr4NpSidMjKWJEgKJKYRz3NnSB9tYUc3I7gQeneeOXm-QMyPvJvhtuv_9Sju3P-0lecAR-ImLs0u2htVZeEXuu_Nh2a9ep5FzDaAPJo0 priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcOBCeapbCpoDN7DY2E7i9AYVhQNaIdFDb5af1Uo0qTZpK34XfxCPYy8qAiS4-hE5mrFnxv7mG0JeWh-0k11DndWCimjCqI5tlBsjeeVaaWae2U_taiVPT7vPOSlsLGj38iSZTuq0rWXzZhRIPUKjTaGJTpde3yZ3kE4MgVxHOcch3azwOLIRJUPmt1NvWKFE1n_Dw_zlUTTZmuPd_1vlA3I_-5bwdlaGh-SW7x-R3VK3AfI2fky-IwzmS4xf_SF4JDgGNwPu1iMMAfqhpxmiTkuN3AnKJS2cI4XndDkCQubPYDyPyocAd0_RIjpIVf8A8yWwLAVsEUpDbOxd_s7aAqZP9gNWRP4WO2ZqFMBrYfiAJNqAtCHxb1YzTv0JOTl-f3L0kebiDdTWfDnRRoaK2SULTHOt0e_smGcuBIPUh5U0JjpboQlONk64NoaNzLXMy9b7RteCPyU78Xf9HoEq9lsW3dgQI-ilr9DFEMx0urUCuS4XpCqyVDYTm2N9ja8qBTiyUbNQVBSKSkJR1wvyajvnYqb1-Ovod6gi25FIyZ0ahs2Zyjtced3VlusQah1ENBq64tYya2rnTWd4syAHRcFUPidGhXyMMYSVdbcgr4tC_ez-85L2_234M3KPoU4mHM4B2Zk2l_45uWuvpvW4eZH2zw8asxyR priority: 102 providerName: Springer Nature |
| Title | DiabSense: early diagnosis of non-insulin-dependent diabetes mellitus using smartphone-based human activity recognition and diabetic retinopathy analysis with Graph Neural Network |
| URI | https://link.springer.com/article/10.1186/s40537-024-00959-w https://www.proquest.com/docview/3087619859 https://doaj.org/article/ea95c3aff5af4ddea13cc2cb5deb9b36 |
| Volume | 11 |
| WOSCitedRecordID | wos001283002600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOAC5SW2j5UP3MBq4jiJ0xtdbQHBriKoRMvF8rNaie6iJm3FhT_FH2TGSZYWCbhwsRTbiWzPWDPjfP6GkOfWB-1kVTBntWACTBjTUMcyY2SWulKajmf2fTmfy-Pjqr6W6gsxYR09cLdwe15Xuc10CLkOAvaiTjNruTW586YyWSTbTsrqWjAVT1cycEQKMdySkcVeI5C5hIFJYpGNl13dsESRsP-Gl_nbj9Fobw43yf3eUaSvugE-JLf88hF5MCRhoP2efEx-IKblIwSjfp96ZCumrkPPLRq6ChSie9bjzdmQ8Lalw4krPUM-zvaioYh_P6XNGSwIotU9Q_PmaEzhR_HyA-aYoGu40Qoql67_zsJSvAu5XGF642_Q0PGcUDzjpa-REZsiBwjMZt6Bzp-Qo8Pp0eQN6zMxMJtnScsKGVJuEx64zrRGJ7LinrsQDPIYptIY8JxCEZwsnHAlxIDcldzL0vtC5yJ7SjZguv4ZoSm0Ww4-aYBwOPEp-guCm0qXViBx5Yikg1CU7VnKMVnGFxWjFVmoTpAKBKmiINXViLxYv_O14-j4a-8DlPW6J_JrxwrQOtVrnfqX1o3IzqApqt_0jUJyRYhHZV6NyMtBe341_3lIW_9jSNvkHkftjlCbHbLRnl_4XXLXXraL5nxMbpefTsbkzsF0Xn-ApwkX47hloHxXMihnyQRLjq2z71Mo6_wzvFG_ndUnPwHNoyUj |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkulFdFoMAe4ASrxuu1vUZCiFdp1DSKRA_ltFrvo4pE4xKnRP1RnPiDzPiRqEj01gPXXWcV2988dj3zfQAvrA_GqTzlzhrJJYYwbnCMx0Wh4shlqmh4ZkfZeKyOj_PJBvzqemGorLLzibWjdqWlM_JdYq7DZF8l-buzH5xUo-jraieh0cDiwF8scctWvR1-wvf7Uoi9z0cf93mrKsBtEg8WPFUhEnYggjCxMZQQ5cILF0JBnHyRKgrMAkIanEqddBnuZ4TLhFeZ96lJZIzL3oBNiVgf9GBzMjycfFsf6sSY_6Sya85R6W4liTCFYyTkNQkwX14KgLVOwKXk9q_vsXWY29v6zx7QXbjT5tPsfWMA92DDz-7DVqdVwVrX9QB-U-nPV9yz-zfME6kzc02R4bRiZWCzcsbbsnze6QIvWHcwzU6JtnRxXjFqEzhh1SkaHBX1e05ZgGO10iGjHhGS4mCrqqwSB2euXWdqGbWMzkpSgb7AiYYOhtFROPtCxOGMqFLwbsZNbf5DOLqOJ7cNPbxd_whYhPNWYOoeRCYHPqK0SooiN5mVxO_Zh6gDkbYtmTtpinzX9aZOpboBnkbg6Rp4etmHV6vfnDVUJlde_YGwubqSaMjrgXJ-oluvpr3JExubEBITJAZKE8XWClskzhd5Ead92OmwqlvfWOk1UPvwukP7evrff-nx1as9h1v7R4cjPRqOD57AbUE2V9cd7UBvMT_3T-Gm_bmYVvNnrdky0NdsB38AyZuDQg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMSF8hQLBXzgBlY3jpM43KCwgKhWleihN8vPaqU2qTYpFb-LP8iM7SwUARLi6kdka8aZGfubbwh5bn3QTrY1c1YLJsCEMQ1trDRGloVrpEk8s_vNcimPjtqDn7L4I9p9epJMOQ3I0tSNu2cupCMu691BIA0JA_vCIrUuu7hKrkFo0qBe7-V8h3jLUsLIWkzZMr-deskiReL-S97mLw-k0e4stv9_xbfJrexz0tdJSe6QK767S7aneg40H-975BvCYz5DXOtfUY_Ex9QlIN5qoH2gXd-xDF1nU-3ckU6Xt_QUqT3H84EilP6YDqeglAh89wwtpaOxGiDFPAosV0E3yKUeGjuXv7OyFNMqux4rJX-FjkSZQvG6mL5Hcm2KdCKwm2XCr98nh4t3h3sfWC7qwGxVzkdWy1BwO-eB61Jr9Edb7rkLwSAlYiGNAScs1MHJ2gnXQDjJXcO9bLyvdSXKB2QLtusfElpAv-Xg3gaIrOe-QNdDcNPqxgrkwJyRYpKrspnwHOtunKgY-MhaJaEoEIqKQlEXM_JiM-cs0X38dfQbVJfNSKTqjg39-ljlk6-8bitb6hAqHQQYE12U1nJrKudNa8p6RnYmZVP5_zEo5GmE0FZW7Yy8nJTrR_efl_To34Y_IzcO3i7U_sflp8fkJkf1jFCdHbI1rs_9E3LdfhlXw_ppPFbfAcJNKFo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DiabSense%3A+early+diagnosis+of+non-insulin-dependent+diabetes+mellitus+using+smartphone-based+human+activity+recognition+and+diabetic+retinopathy+analysis+with+Graph+Neural+Network&rft.jtitle=Journal+of+big+data&rft.au=Md+Nuho+Ul+Alam&rft.au=Ibrahim+Hasnine&rft.au=Erfanul+Hoque+Bahadur&rft.au=Abdul+Kadar+Muhammad+Masum&rft.date=2024-12-01&rft.pub=SpringerOpen&rft.eissn=2196-1115&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=37&rft_id=info:doi/10.1186%2Fs40537-024-00959-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ea95c3aff5af4ddea13cc2cb5deb9b36 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon |