Fire safety in space – Investigating flame spread interaction over wires

A new rig for microgravity experiments was used for the study flame spread of parallel polyethylene-coated wires in concurrent and opposed airflow. The parabolic flight experiments were conducted at small length- and time scales, i.e. typically over 10cm long samples for up to 20s. For the first tim...

Full description

Saved in:
Bibliographic Details
Published in:Acta astronautica Vol. 126; pp. 500 - 509
Main Authors: Citerne, Jean-Marie, Dutilleul, Hugo, Kizawa, Koki, Nagachi, Masashi, Fujita, Osamu, Kikuchi, Masao, Jomaas, Grunde, Rouvreau, Sébastien, Torero, Jose L., Legros, Guillaume
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2016
Elsevier
Subjects:
ISSN:0094-5765, 1879-2030
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A new rig for microgravity experiments was used for the study flame spread of parallel polyethylene-coated wires in concurrent and opposed airflow. The parabolic flight experiments were conducted at small length- and time scales, i.e. typically over 10cm long samples for up to 20s. For the first time, the influence of neighboring spread on the mass burning rate was assessed in microgravity. The observations are contrasted with the influence characterized in normal gravity. The experimental results are expected to deliver meaningful guidelines for future, planned experiments at a larger scale. Arising from the current results, the issue of the potential interaction among spreading flames also needs to be carefully investigated as this interaction plays a major role in realistic fire scenarios, and therefore on the design of the strategies that would allow the control of such a fire. Once buoyancy has been removed, the characteristic length and time scales of the different modes of heat and mass transfer are modified. For this reason, interaction among spreading flames may be revealed in microgravity, while it would not at normal gravity, or vice versa. Furthermore, the interaction may lead to an enhanced spread rate when mutual preheating dominates or, conversely, a reduced spread rate when oxidizer flow vitiation is predominant. In more general terms, the current study supports both the SAFFIRE and the FLARE projects, which are large projects with international scientific teams. First, material samples will be tested in a series of flight experiments (SAFFIRE 1-3) conducted in Cygnus vehicles after they have undocked from the ISS. These experiments will allow the study of ignition and possible flame spread in real spacecraft conditions, i.e. over real length scale samples within real time scales. Second, concomitant research conducted within the FLARE project is dedicated to the assessment of new standard tests for materials that a spacecraft can be composed of. Finally, these tests aim to define the ambient conditions that will mitigate and potentially prohibit the flame spread in microgravity over the material studied.
AbstractList In order to reduce the uncertainty and risk in the design of spacecraft fire safety systems, a new experimental rig that allows the study of concomitant flames spreading over the coating of parallel cylindrical wires in an air flow parallel to the wires in microgravity has been developed. The parabolic flight experiments were conducted at small length-and timescales, i.e. typically over 10 cm long samples for up to 20 seconds. For the first time, the influence of neighboring spread on the mass burning rate was assessed in microgravity. The observations are contrasted with the influence characterized in normal gravity. The experimental results are expected to deliver meaningful guidelines for future, planned experiments at a larger scale. Arising from the current results, the issue of the potential interaction among spreading flames also needs to be carefully investigated as this interaction plays a major role in realistic fire scenarios, and therefore on the design of the strategies that would allow the control of such a fire. Once buoyancy has been removed, the characteristic length and time scales of the different modes of heat and mass transfer are modified. For this reason, interaction among spreading flames may be revealed in microgravity, while it would not at normal gravity, or vice versa. Furthermore, the interaction may lead to an enhanced spread rate when mutual preheating dominates or, conversely, a reduced spread rate when oxidizer flow vitiation is predominant. In more general terms, the current study supports both the SAFFIRE and the FLARE projects, which are large projects with international scientific teams. First, material samples will be tested in a series of flight experiments (SAFFIRE 1-3) conducted in Cygnus vehicles after they have undocked from the ISS. These experiments will allow the study of ignition and possible flame spread in real spacecraft conditions, i.e. over real length scale samples within real time scales. Second, concomitant research conducted within the FLARE project is dedicated to the assessment of new standard tests for materials that a spacecraft can be composed of. Finally, these tests aim to define the ambient conditions that will mitigate and potentially prohibit the flame spread in microgravity over the material studied.
A new rig for microgravity experiments was used for the study flame spread of parallel polyethylene-coated wires in concurrent and opposed airflow. The parabolic flight experiments were conducted at small length- and time scales, i.e. typically over 10cm long samples for up to 20s. For the first time, the influence of neighboring spread on the mass burning rate was assessed in microgravity. The observations are contrasted with the influence characterized in normal gravity. The experimental results are expected to deliver meaningful guidelines for future, planned experiments at a larger scale. Arising from the current results, the issue of the potential interaction among spreading flames also needs to be carefully investigated as this interaction plays a major role in realistic fire scenarios, and therefore on the design of the strategies that would allow the control of such a fire. Once buoyancy has been removed, the characteristic length and time scales of the different modes of heat and mass transfer are modified. For this reason, interaction among spreading flames may be revealed in microgravity, while it would not at normal gravity, or vice versa. Furthermore, the interaction may lead to an enhanced spread rate when mutual preheating dominates or, conversely, a reduced spread rate when oxidizer flow vitiation is predominant. In more general terms, the current study supports both the SAFFIRE and the FLARE projects, which are large projects with international scientific teams. First, material samples will be tested in a series of flight experiments (SAFFIRE 1-3) conducted in Cygnus vehicles after they have undocked from the ISS. These experiments will allow the study of ignition and possible flame spread in real spacecraft conditions, i.e. over real length scale samples within real time scales. Second, concomitant research conducted within the FLARE project is dedicated to the assessment of new standard tests for materials that a spacecraft can be composed of. Finally, these tests aim to define the ambient conditions that will mitigate and potentially prohibit the flame spread in microgravity over the material studied.
A new rig for microgravity experiments was used for the study flame spread of parallel polyethylene-coated wires in concurrent and opposed airflow. The parabolic flight experiments were conducted at small length- and time scales, i.e. typically over 10cm long samples for up to 20s. For the first time, the influence of neighboring spread on the mass burning rate was assessed in microgravity. The observations are contrasted with the influence characterized in normal gravity. The experimental results are expected to deliver meaningful guidelines for future, planned experiments at a larger scale. Arising from the current results, the issue of the potential interaction among spreading flames also needs to be carefully investigated as this interaction plays a major role in realistic fire scenarios, and therefore on the design of the strategies that would allow the control of such a fire. Once buoyancy has been removed, the characteristic length and time scales of the different modes of heat and mass transfer are modified. For this reason, interaction among spreading flames may be revealed in microgravity, while it would not at normal gravity, or vice versa. Furthermore, the interaction may lead to an enhanced spread rate when mutual preheating dominates or, conversely, a reduced spread rate when oxidizer flow vitiation is predominant. In more general terms, the current study supports both the SAFFIRE and the FLARE projects, which are large projects with international scientific teams. First, material samples will be tested in a series of flight experiments (SAFFIRE 1-3) conducted in Cygnus vehicles after they have undocked from the ISS. These experiments will allow the study of ignition and possible flame spread in real spacecraft conditions, i.e. over real length scale samples within real time scales. Second, concomitant research conducted within the FLARE project is dedicated to the assessment of new standard tests for materials that a spacecraft can be composed of. Finally, these tests aim to define the ambient conditions that will mitigate and potentially prohibit the flame spread in microgravity over the material studied.
Author Fujita, Osamu
Dutilleul, Hugo
Rouvreau, Sébastien
Nagachi, Masashi
Torero, Jose L.
Legros, Guillaume
Citerne, Jean-Marie
Kikuchi, Masao
Jomaas, Grunde
Kizawa, Koki
Author_xml – sequence: 1
  givenname: Jean-Marie
  surname: Citerne
  fullname: Citerne, Jean-Marie
  organization: Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7190 Institut Jean le Rond d’Alembert, F-75005 Paris, France
– sequence: 2
  givenname: Hugo
  surname: Dutilleul
  fullname: Dutilleul, Hugo
  organization: Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7190 Institut Jean le Rond d’Alembert, F-75005 Paris, France
– sequence: 3
  givenname: Koki
  surname: Kizawa
  fullname: Kizawa, Koki
  organization: Hokkaido University, Sapporo, Japan
– sequence: 4
  givenname: Masashi
  surname: Nagachi
  fullname: Nagachi, Masashi
  organization: Hokkaido University, Sapporo, Japan
– sequence: 5
  givenname: Osamu
  surname: Fujita
  fullname: Fujita, Osamu
  organization: Hokkaido University, Sapporo, Japan
– sequence: 6
  givenname: Masao
  surname: Kikuchi
  fullname: Kikuchi, Masao
  organization: JAXA, Tsukuba, Japan
– sequence: 7
  givenname: Grunde
  surname: Jomaas
  fullname: Jomaas, Grunde
  organization: Technical University of Denmark, Kgs. Lyngby, Denmark
– sequence: 8
  givenname: Sébastien
  surname: Rouvreau
  fullname: Rouvreau, Sébastien
  organization: Belisama R&D, Toulouse, France
– sequence: 9
  givenname: Jose L.
  surname: Torero
  fullname: Torero, Jose L.
  organization: University of Queensland, Brisbane, Australia
– sequence: 10
  givenname: Guillaume
  surname: Legros
  fullname: Legros, Guillaume
  email: guillaume.legros@upmc.fr
  organization: Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7190 Institut Jean le Rond d’Alembert, F-75005 Paris, France
BackLink https://hal.sorbonne-universite.fr/hal-01433528$$DView record in HAL
BookMark eNqNkbtuFDEUhi0UJDYhz5ApoZjBx5exp6BYReSCVqKB2nI8x8Gr2fFiO4vS8Q68YZ4EjxYoaEJlyfr-3z7nOyUnc5yRkAugHVDo320764q1uaTYMQqyA9ZRBi_ICrQaWkY5PSErSgfRStXLV-Q05y2lVDE9rMjHq5CwydZjeWzC3OS9ddg8_fjZ3M4HzCXc2xLm-8ZPdle5fUI7Vq5gqq-GODfxgKn5Xkvya_LS2ynj-e_zjHy5-vD58qbdfLq-vVxvWic5LS0HIantR8B--QIDJQHk6O-8Hzynzjuleu25El5LRn3vNKIQegRntbgb-Bl5e-z9aiezT2Fn06OJNpib9cYsdxQE55LpA1T2zZHdp_jtoc5jdiE7nCY7Y3zIBjSXUinN9X-gMAAXgxAVfX9EXYo5J_TGhWKXdZRkw2SAmkWN2Zq_asyixgAzVU3Nq3_yf8Z4Prk-JrEu-BAwmewCzg7HasAVM8bwbMcvCuCv2g
CitedBy_id crossref_primary_10_3390_sci7020075
crossref_primary_10_1016_j_combustflame_2020_09_003
crossref_primary_10_1016_j_crme_2016_10_012
crossref_primary_10_1016_j_proci_2020_05_005
crossref_primary_10_1016_j_proci_2018_06_199
crossref_primary_10_1007_s12217_022_10011_2
crossref_primary_10_1016_j_firesaf_2025_104396
crossref_primary_10_1016_j_combustflame_2021_111538
crossref_primary_10_1016_j_tsep_2023_102001
crossref_primary_10_3390_fire8050204
crossref_primary_10_3390_fire8070258
crossref_primary_10_1016_j_actaastro_2018_08_018
crossref_primary_10_1016_j_actaastro_2020_06_025
crossref_primary_10_1007_s10694_019_00850_8
crossref_primary_10_1016_j_energy_2024_134324
crossref_primary_10_1016_j_proci_2022_07_163
crossref_primary_10_1016_j_actaastro_2019_08_021
crossref_primary_10_1007_s10694_019_00918_5
crossref_primary_10_1016_j_proci_2022_07_002
crossref_primary_10_11728_cjss2023_02_2022_0049
crossref_primary_10_1016_j_actaastro_2020_05_043
crossref_primary_10_1016_j_combustflame_2020_07_044
crossref_primary_10_1016_j_actaastro_2020_09_029
crossref_primary_10_5802_crmeca_182
crossref_primary_10_1016_j_combustflame_2020_08_038
crossref_primary_10_5802_crmeca_149
crossref_primary_10_1016_j_combustflame_2020_08_032
crossref_primary_10_1007_s10694_019_00935_4
crossref_primary_10_1016_j_jobe_2024_109765
crossref_primary_10_1016_j_actaastro_2019_01_044
crossref_primary_10_1016_j_proci_2018_05_007
crossref_primary_10_48130_emst_0024_0008
crossref_primary_10_1016_j_proci_2024_105255
crossref_primary_10_1016_j_actaastro_2022_01_021
crossref_primary_10_1007_s10694_019_00860_6
crossref_primary_10_1007_s10694_019_00866_0
crossref_primary_10_1016_j_proci_2022_08_030
crossref_primary_10_1016_j_actaastro_2016_10_003
crossref_primary_10_1007_s10973_019_08778_5
crossref_primary_10_1016_j_actaastro_2021_08_012
crossref_primary_10_1016_j_combustflame_2018_10_016
crossref_primary_10_1016_j_actaastro_2016_11_005
crossref_primary_10_11728_cjss2023_03_2022_0049
crossref_primary_10_1007_s10694_019_00853_5
crossref_primary_10_1016_j_ijthermalsci_2024_109062
crossref_primary_10_1016_j_proci_2025_105862
crossref_primary_10_3390_fire7060186
crossref_primary_10_1016_j_actaastro_2017_10_019
crossref_primary_10_1016_j_proci_2020_06_036
crossref_primary_10_1016_j_proci_2024_105288
crossref_primary_10_1016_j_actaastro_2017_03_028
crossref_primary_10_1016_j_actaastro_2022_01_037
crossref_primary_10_1016_j_combustflame_2019_09_003
crossref_primary_10_1016_j_combustflame_2021_111846
crossref_primary_10_1080_13647830_2024_2355906
crossref_primary_10_1016_j_combustflame_2017_12_013
crossref_primary_10_1177_0734904118821665
crossref_primary_10_1007_s10694_023_01501_9
crossref_primary_10_1007_s10973_024_13437_5
Cites_doi 10.1016/S0082-0784(00)80715-8
10.1016/j.proci.2014.05.059
10.1364/OL.30.003311
10.1016/j.proci.2012.09.007
10.1016/j.proci.2004.08.066
10.1080/00102207908946878
10.1002/zamm.19560360105
10.1080/13647830903342527
10.1080/00102200600805850
10.1002/(SICI)1099-1018(199609)20:5<235::AID-FAM580>3.0.CO;2-Y
10.1016/S1540-7489(02)80309-1
10.1016/j.proci.2008.06.179
10.1016/j.proci.2006.08.031
10.1016/S1540-7489(02)80310-8
10.1016/j.actaastro.2014.11.025
10.1016/j.proci.2008.06.146
10.1016/S0082-0784(98)80102-1
10.1016/S0082-0784(96)80347-X
10.1016/S0010-2180(99)00161-3
10.1016/j.proci.2014.08.010
10.1364/OE.20.028742
10.1016/S0082-0784(77)80419-0
10.1016/j.proci.2014.05.038
10.1016/S0082-0784(69)80408-X
10.4271/1999-01-1937
ContentType Journal Article
Copyright 2016 IAA.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2016 IAA.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
7TG
KL.
7TB
8FD
FR3
H8D
L7M
1XC
VOOES
DOI 10.1016/j.actaastro.2015.12.021
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database

Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2030
EndPage 509
ExternalDocumentID oai:HAL:hal-01433528v1
10_1016_j_actaastro_2015_12_021
S0094576515301818
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TG
KL.
7TB
8FD
FR3
H8D
L7M
1XC
VOOES
ID FETCH-LOGICAL-c530t-31450a6d1e672892175115dfbff9f30cfc7768f374f8520f6c8ee448d1ca84b93
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382412200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-5765
IngestDate Tue Nov 25 06:21:07 EST 2025
Sun Sep 28 06:15:39 EDT 2025
Wed Oct 01 14:57:21 EDT 2025
Sat Nov 29 02:58:23 EST 2025
Tue Nov 18 21:03:47 EST 2025
Fri Feb 23 02:22:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Parabolic flight experiments
Flame propagation
Microgravity
Fire safety
flame propagation
microgravity
parabolic flight experiments
fire safety
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c530t-31450a6d1e672892175115dfbff9f30cfc7768f374f8520f6c8ee448d1ca84b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2947-8548
OpenAccessLink https://hal.sorbonne-universite.fr/hal-01433528
PQID 1819134944
PQPubID 23462
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_01433528v1
proquest_miscellaneous_1835577838
proquest_miscellaneous_1819134944
crossref_citationtrail_10_1016_j_actaastro_2015_12_021
crossref_primary_10_1016_j_actaastro_2015_12_021
elsevier_sciencedirect_doi_10_1016_j_actaastro_2015_12_021
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Acta astronautica
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Torero (bib11) 2013; 34
Emmons (bib21) 1956; 36
Fujita, Nishizawa, Ito (bib7) 2002; 29

Kosdon, Williams, Buman (bib22) 1968; 12

Legros, Fuentes, Rouvreau, Joulain, Porterie, Torero (bib20) 2009; 32
T׳ien, Shih, Jiang, Ross, Miller, Fernandez-Pello, Torero, Walther (bib25) 2001
Kikuchi, Fujita, Ito, Sato, Sakuraya (bib5) 1998; 27
Friedman (bib4) 1996; 20
Rouvreau, Cordeiro, Torero, Joulain (bib18) 2005; 30
Pagni, Shih (bib23) 1978; 16
Fujita, Kikuchi, Ito, Nishizawa (bib6) 2000; 28
Megaridis, Konsur, Griffin (bib15) 1996; 26
Anamalai, Sibulkin (bib24) 1979; 19
Hu, Zhang, Yoshioka, Izumo, Fujita (bib31) 2015; 35
Kong, Liu (bib16) 2009; 13
R. Friedman, Fire Safety in the Low-gravity Spacecraft Environment, SAE Technical Paper 1999-01-1937.
Babrauskas (bib3) 2003
Olson, T’ien (bib17) 2000; 121
Kashif, Bonnety, Guibert, Morin, Legros (bib27) 2012; 20
Greenberg, Sacksteder, Kashiwagi (bib1) 1994
Nakamura, Yoshimura, Ito, Azumaya, Fujita (bib10) 2009; 32
Fujita (bib12) 2015; 35
S.L. Olson, Radiative Exchange during Concurrent Flame Spread over Three Parallel Thin Fuel Sheets in Microgravity, 2014, Spring Technical Meeting of the Central States Section of the Combustion Institute, Tulsa, Oklahoma (USA)
Legros, Fuentes, Baillargeat, Joulain, Vantelon, Torero (bib28) 2005; 30
Legros, Torero (bib30) 2015; 35
Umemura, Uchida, Hirata, Sato (bib9) 2002; 29
Onishi, Fujita, Agata, Takeuchi, Nakamura, Ito, Kikuchi (bib8) 2010; 8
Fuentes, Legros, Claverie, Joulain, Vantelon, Torero (bib19) 2007; 31
Jomaas, Torero, Eigenbrod, Niehaus, Olson, Ferkul, Legros, Fernandez-Pello, Cowlard, Rouvreau, Smirnov, Fujita, T׳ien, Ruff, Urban (bib13) 2015; 109
Fuentes, Rouvreau, Joulain, Vantelon, Legros, Torero, Fernandez-Pello (bib29) 2007; 179
Fujita (10.1016/j.actaastro.2015.12.021_bib6) 2000; 28
Megaridis (10.1016/j.actaastro.2015.12.021_bib15) 1996; 26
Legros (10.1016/j.actaastro.2015.12.021_bib20) 2009; 32
Fujita (10.1016/j.actaastro.2015.12.021_bib12) 2015; 35
Rouvreau (10.1016/j.actaastro.2015.12.021_bib18) 2005; 30
Greenberg (10.1016/j.actaastro.2015.12.021_bib1) 1994
Friedman (10.1016/j.actaastro.2015.12.021_bib4) 1996; 20
Olson (10.1016/j.actaastro.2015.12.021_bib17) 2000; 121
Kikuchi (10.1016/j.actaastro.2015.12.021_bib5) 1998; 27
Kashif (10.1016/j.actaastro.2015.12.021_bib27) 2012; 20
Fuentes (10.1016/j.actaastro.2015.12.021_bib29) 2007; 179
10.1016/j.actaastro.2015.12.021_bib26
Emmons (10.1016/j.actaastro.2015.12.021_bib21) 1956; 36
Legros (10.1016/j.actaastro.2015.12.021_bib30) 2015; 35
Legros (10.1016/j.actaastro.2015.12.021_bib28) 2005; 30
Kosdon (10.1016/j.actaastro.2015.12.021_bib22) 1968; 12
Anamalai (10.1016/j.actaastro.2015.12.021_bib24) 1979; 19
Onishi (10.1016/j.actaastro.2015.12.021_bib8) 2010; 8
Fujita (10.1016/j.actaastro.2015.12.021_bib7) 2002; 29
Kong (10.1016/j.actaastro.2015.12.021_bib16) 2009; 13
Nakamura (10.1016/j.actaastro.2015.12.021_bib10) 2009; 32
Umemura (10.1016/j.actaastro.2015.12.021_bib9) 2002; 29
T׳ien (10.1016/j.actaastro.2015.12.021_bib25) 2001
Jomaas (10.1016/j.actaastro.2015.12.021_bib13) 2015; 109
Hu (10.1016/j.actaastro.2015.12.021_bib31) 2015; 35
10.1016/j.actaastro.2015.12.021_bib14
Torero (10.1016/j.actaastro.2015.12.021_bib11) 2013; 34
Fuentes (10.1016/j.actaastro.2015.12.021_bib19) 2007; 31
10.1016/j.actaastro.2015.12.021_bib2
Babrauskas (10.1016/j.actaastro.2015.12.021_bib3) 2003
Pagni (10.1016/j.actaastro.2015.12.021_bib23) 1978; 16
References_xml – volume: 30
  start-page: 3311
  year: 2005
  end-page: 3313
  ident: bib28
  article-title: Three-dimensional recomposition of the absorption field inside a non-buoyant sooting diffusion flame
  publication-title: Opt. Lett.
– volume: 29
  start-page: 2545
  year: 2002
  end-page: 2552
  ident: bib7
  article-title: Effect of low external flow on flame spread over polyethylene-insulated wire in microgravity
  publication-title: Proc. Combust. Inst.
– volume: 16
  start-page: 1329
  year: 1978
  end-page: 1343
  ident: bib23
  article-title: Excess pyrolyzate
  publication-title: Proc. Combust. Inst.
– volume: 35
  start-page: 2487
  year: 2015
  end-page: 2502
  ident: bib12
  article-title: Solid combustion research in microgravity as a basis of fire safety in space
  publication-title: Proc. Combust. Inst.
– volume: 28
  start-page: 2905
  year: 2000
  end-page: 2911
  ident: bib6
  article-title: Effective mechanisms to determine flame spread rate over ethylene-tetrafluoroethylzene wire insulation: Discussion on dilution gas effect based on temperature measurements
  publication-title: Proc. Combust. Inst.
– volume: 36
  start-page: 60
  year: 1956
  ident: bib21
  article-title: The film combustion of liquid fuel
  publication-title: Z. Angew. Math. Mech.
– volume: 35
  start-page: 2607
  year: 2015
  end-page: 2614
  ident: bib31
  article-title: Flame spread over electric wire with high thermal conductivity metal core at different inclinations
  publication-title: Proc. Combust. Inst.
– volume: 26
  start-page: 1291
  year: 1996
  end-page: 1299
  ident: bib15
  article-title: Soot-field structure in laminar soot-emitting microgravity non-premixed flames
  publication-title: Proc. Combust. Inst.
– volume: 29
  start-page: 2535
  year: 2002
  end-page: 2543
  ident: bib9
  article-title: Physical model analysis of flame spreading along an electrical wire in microgravity
  publication-title: Proc. Combust. Inst.
– volume: 32
  start-page: 2461
  year: 2009
  end-page: 2470
  ident: bib20
  article-title: Transport mechanisms controlling soot production inside a non-buoyant laminar diffusion flame
  publication-title: Proc. Combust. Inst.
– reference:
– volume: 32
  start-page: 2559
  year: 2009
  end-page: 2566
  ident: bib10
  article-title: Flame spread over electric wire in sub-atmospheric pressure
  publication-title: Proc. Combust. Inst.
– volume: 34
  start-page: 99
  year: 2013
  end-page: 124
  ident: bib11
  article-title: Scaling-up fire
  publication-title: Proc. Combust. Inst.
– year: 2003
  ident: bib3
  article-title: Ignition Handbook Database
– volume: 8
  start-page: Ph_19
  year: 2010
  end-page: Ph_24
  ident: bib8
  article-title: Observation of flame spreading over electric wire under reduced gravity condition given by parabolic flight and drop tower experiments
  publication-title: JSASS Aerosp. Technol. Jpn.
– volume: 179
  start-page: 3
  year: 2007
  end-page: 19
  ident: bib29
  article-title: Sooting behavior dynamics of a non-buoyant laminar diffusion flame
  publication-title: Combust. Sci. Technol.
– volume: 35
  start-page: 2545
  year: 2015
  end-page: 2553
  ident: bib30
  article-title: Phenomenological model of soot production inside a non-buoyant laminar diffusion flame
  publication-title: Proc. Combust. Inst.
– volume: 30
  start-page: 519
  year: 2005
  end-page: 526
  ident: bib18
  article-title: Influence of the G-Jitter on a laminar boundary layer type diffusion flame
  publication-title: Proc. Combust. Inst.
– reference: R. Friedman, Fire Safety in the Low-gravity Spacecraft Environment, SAE Technical Paper 1999-01-1937.
– volume: 121
  start-page: 439
  year: 2000
  end-page: 452
  ident: bib17
  article-title: Buoyant low-stretch diffusion flames beneath cylindrical PMMA samples
  publication-title: Combust. Flame
– reference: S.L. Olson, Radiative Exchange during Concurrent Flame Spread over Three Parallel Thin Fuel Sheets in Microgravity, 2014, Spring Technical Meeting of the Central States Section of the Combustion Institute, Tulsa, Oklahoma (USA)
– reference:
– volume: 31
  start-page: 2685
  year: 2007
  end-page: 2692
  ident: bib19
  article-title: Interactions between soot and CH* in a laminar boundary layer type diffusion flame in microgravity
  publication-title: Proc. Combust. Inst.
– volume: 27
  start-page: 2507
  year: 1998
  end-page: 2514
  ident: bib5
  article-title: Experimental study on flame spread over wire insulation in microgravity
  publication-title: Proc. Combust. Inst.
– volume: 109
  start-page: 208
  year: 2015
  end-page: 216
  ident: bib13
  article-title: Fire safety in space – beyond flammability testing of small samples
  publication-title: Acta Astronaut.
– start-page: 299
  year: 2001
  end-page: 417
  ident: bib25
  article-title: Mechanisms of flame spread and smolder wave propagation
  publication-title: Microgravity Combustion: Fire in Free Fall
– volume: 12
  start-page: 253
  year: 1968
  end-page: 264
  ident: bib22
  article-title: Combustion of vertical cellulosic cylinders in air
  publication-title: Proc. Combust. Inst.
– volume: 20
  start-page: 235
  year: 1996
  end-page: 243
  ident: bib4
  article-title: Fire Safety in Spacecraft
  publication-title: Fire Mater.
– volume: 19
  start-page: 167
  year: 1979
  end-page: 183
  ident: bib24
  article-title: Flame spread over combustible surfaces for laminar flow systems
  publication-title: Combust. Sci. Technol.
– start-page: 25
  year: 1994
  end-page: 30
  ident: bib1
  article-title: The USML-1 Wire Insulation Flammability Glovebox Experiment, Third International Microgravity Combustion Workshop 2
– volume: 13
  start-page: 993
  year: 2009
  end-page: 1023
  ident: bib16
  article-title: Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames unde different air stream velocities
  publication-title: Combust. Theory Model.
– volume: 20
  start-page: 28742
  year: 2012
  end-page: 28751
  ident: bib27
  article-title: Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique
  publication-title: Opt. Express
– volume: 28
  start-page: 2905
  year: 2000
  ident: 10.1016/j.actaastro.2015.12.021_bib6
  article-title: Effective mechanisms to determine flame spread rate over ethylene-tetrafluoroethylzene wire insulation: Discussion on dilution gas effect based on temperature measurements
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S0082-0784(00)80715-8
– volume: 35
  start-page: 2607
  year: 2015
  ident: 10.1016/j.actaastro.2015.12.021_bib31
  article-title: Flame spread over electric wire with high thermal conductivity metal core at different inclinations
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2014.05.059
– ident: 10.1016/j.actaastro.2015.12.021_bib14
– start-page: 299
  year: 2001
  ident: 10.1016/j.actaastro.2015.12.021_bib25
  article-title: Mechanisms of flame spread and smolder wave propagation
– ident: 10.1016/j.actaastro.2015.12.021_bib26
– volume: 30
  start-page: 3311
  year: 2005
  ident: 10.1016/j.actaastro.2015.12.021_bib28
  article-title: Three-dimensional recomposition of the absorption field inside a non-buoyant sooting diffusion flame
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.003311
– volume: 34
  start-page: 99
  year: 2013
  ident: 10.1016/j.actaastro.2015.12.021_bib11
  article-title: Scaling-up fire
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2012.09.007
– volume: 30
  start-page: 519
  year: 2005
  ident: 10.1016/j.actaastro.2015.12.021_bib18
  article-title: Influence of the G-Jitter on a laminar boundary layer type diffusion flame
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2004.08.066
– volume: 19
  start-page: 167
  year: 1979
  ident: 10.1016/j.actaastro.2015.12.021_bib24
  article-title: Flame spread over combustible surfaces for laminar flow systems
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102207908946878
– volume: 36
  start-page: 60
  year: 1956
  ident: 10.1016/j.actaastro.2015.12.021_bib21
  article-title: The film combustion of liquid fuel
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19560360105
– volume: 13
  start-page: 993
  year: 2009
  ident: 10.1016/j.actaastro.2015.12.021_bib16
  article-title: Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames unde different air stream velocities
  publication-title: Combust. Theory Model.
  doi: 10.1080/13647830903342527
– volume: 179
  start-page: 3
  year: 2007
  ident: 10.1016/j.actaastro.2015.12.021_bib29
  article-title: Sooting behavior dynamics of a non-buoyant laminar diffusion flame
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102200600805850
– volume: 20
  start-page: 235
  year: 1996
  ident: 10.1016/j.actaastro.2015.12.021_bib4
  article-title: Fire Safety in Spacecraft
  publication-title: Fire Mater.
  doi: 10.1002/(SICI)1099-1018(199609)20:5<235::AID-FAM580>3.0.CO;2-Y
– volume: 29
  start-page: 2535
  year: 2002
  ident: 10.1016/j.actaastro.2015.12.021_bib9
  article-title: Physical model analysis of flame spreading along an electrical wire in microgravity
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S1540-7489(02)80309-1
– year: 2003
  ident: 10.1016/j.actaastro.2015.12.021_bib3
– volume: 32
  start-page: 2461
  year: 2009
  ident: 10.1016/j.actaastro.2015.12.021_bib20
  article-title: Transport mechanisms controlling soot production inside a non-buoyant laminar diffusion flame
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2008.06.179
– volume: 8
  start-page: Ph_19
  issue: ists27
  year: 2010
  ident: 10.1016/j.actaastro.2015.12.021_bib8
  article-title: Observation of flame spreading over electric wire under reduced gravity condition given by parabolic flight and drop tower experiments
  publication-title: JSASS Aerosp. Technol. Jpn.
– volume: 31
  start-page: 2685
  year: 2007
  ident: 10.1016/j.actaastro.2015.12.021_bib19
  article-title: Interactions between soot and CH* in a laminar boundary layer type diffusion flame in microgravity
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2006.08.031
– volume: 29
  start-page: 2545
  year: 2002
  ident: 10.1016/j.actaastro.2015.12.021_bib7
  article-title: Effect of low external flow on flame spread over polyethylene-insulated wire in microgravity
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S1540-7489(02)80310-8
– volume: 109
  start-page: 208
  year: 2015
  ident: 10.1016/j.actaastro.2015.12.021_bib13
  article-title: Fire safety in space – beyond flammability testing of small samples
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2014.11.025
– start-page: 25
  year: 1994
  ident: 10.1016/j.actaastro.2015.12.021_bib1
– volume: 32
  start-page: 2559
  year: 2009
  ident: 10.1016/j.actaastro.2015.12.021_bib10
  article-title: Flame spread over electric wire in sub-atmospheric pressure
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2008.06.146
– volume: 27
  start-page: 2507
  year: 1998
  ident: 10.1016/j.actaastro.2015.12.021_bib5
  article-title: Experimental study on flame spread over wire insulation in microgravity
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S0082-0784(98)80102-1
– volume: 26
  start-page: 1291
  year: 1996
  ident: 10.1016/j.actaastro.2015.12.021_bib15
  article-title: Soot-field structure in laminar soot-emitting microgravity non-premixed flames
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S0082-0784(96)80347-X
– volume: 121
  start-page: 439
  year: 2000
  ident: 10.1016/j.actaastro.2015.12.021_bib17
  article-title: Buoyant low-stretch diffusion flames beneath cylindrical PMMA samples
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(99)00161-3
– volume: 35
  start-page: 2487
  year: 2015
  ident: 10.1016/j.actaastro.2015.12.021_bib12
  article-title: Solid combustion research in microgravity as a basis of fire safety in space
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2014.08.010
– volume: 20
  start-page: 28742
  year: 2012
  ident: 10.1016/j.actaastro.2015.12.021_bib27
  article-title: Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique
  publication-title: Opt. Express
  doi: 10.1364/OE.20.028742
– volume: 16
  start-page: 1329
  year: 1978
  ident: 10.1016/j.actaastro.2015.12.021_bib23
  article-title: Excess pyrolyzate
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S0082-0784(77)80419-0
– volume: 35
  start-page: 2545
  year: 2015
  ident: 10.1016/j.actaastro.2015.12.021_bib30
  article-title: Phenomenological model of soot production inside a non-buoyant laminar diffusion flame
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2014.05.038
– volume: 12
  start-page: 253
  year: 1968
  ident: 10.1016/j.actaastro.2015.12.021_bib22
  article-title: Combustion of vertical cellulosic cylinders in air
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S0082-0784(69)80408-X
– ident: 10.1016/j.actaastro.2015.12.021_bib2
  doi: 10.4271/1999-01-1937
SSID ssj0007289
Score 2.3686943
Snippet A new rig for microgravity experiments was used for the study flame spread of parallel polyethylene-coated wires in concurrent and opposed airflow. The...
In order to reduce the uncertainty and risk in the design of spacecraft fire safety systems, a new experimental rig that allows the study of concomitant flames...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 500
SubjectTerms Engineering Sciences
Fire safety
Fires
Flame propagation
Flares
Gravitation
Microgravity
Parabolic flight experiments
Reactive fluid environment
Spacecraft
Spreading
Time
Wire
Title Fire safety in space – Investigating flame spread interaction over wires
URI https://dx.doi.org/10.1016/j.actaastro.2015.12.021
https://www.proquest.com/docview/1819134944
https://www.proquest.com/docview/1835577838
https://hal.sorbonne-universite.fr/hal-01433528
Volume 126
WOSCitedRecordID wos000382412200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2030
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007289
  issn: 0094-5765
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUsEE9RXjKIXRUpDydx2FUwVaeUaqQZ0Ows17VnOlRp1aRlxIp_4DP4K76Ee-MkTXnNsGATVW7TJL4n9-V7jwl5qSMZqCDwnNhMmMN4MnHAjk8dJn0vMjA4KbreP4zi8ZifnCSHrda3qhdmM4_TlF9cJMv_KmoYA2Fj6-w_iLv-UxiAzyB0OILY4XglwfdBiXWPpMFazBm8vBAUgx9Z1jQETWINrKEEQOhutgTXcVpQR6zKvcOxsrOLPMZZ033tqVx2ZYbpc1lkweslDOxktsnRoZap8w5D8K2TnGPH4dryZq9PF9uF_8_yk-1JW3yc1XlpeYoVnraTKMPNnpqpCS-qa6_KfFlp3Jv6N2EORDh2HVtblcvjBARYrs5UOtlvatXQdRsGOiz4FH7V_TYNcQ44zGUxE1i4FxbJXtuEvcu2PegdicM3fTE6GL_d_bZRojjojeB4JucO8iAiE84GQu09Pw4T3iZ7vYP9k2Ft-GOf22irfMidcsLf3tWfnKFrZ1iV-5NzUHg8x7fJrTJUoT0LsTukpdO75GaDwPIeGSLYqAUbnaW0ABv9_uUr3YEZLWBGLcxoA2YUYUYLmN0n7_v7x68HTrk7h6PCwM3BeLPQldHU0xE-OIS24LuHUzMxJjGBq4yKIZQ1QcwMD33XRIprzRifekpyNkmCB6SdLlL9kFBulEl8xTC1xjywe2GIjrEbR0qCIXc7JKqmSaiSuh53UJmLqkbxXNTzK3B-hecLmN8OcesTl5a95fJTXlVyEKUTap1LATi7_OQXILn6UkjdDggSOLbFT4c8rwQrQJfjAp1M9WKdCQ-zJ8gXxf72G4gQ4pgH_NFVLvaY3Ni-mU9IO1-t9VNyXW3yWbZ6ViL4B5Qkyh8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fire+Safety+in+Space+%E2%80%93+Investigating+flame+spread+interaction+over+wires&rft.jtitle=Acta+astronautica&rft.au=Citerne%2C+Jean-Marie&rft.au=Dutilleul%2C+Hugo&rft.au=Kizawa%2C+Koki&rft.au=Nagachi%2C+Masashi&rft.date=2016-09-01&rft.pub=Elsevier&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=126&rft.spage=500&rft.epage=509&rft_id=info:doi/10.1016%2Fj.actaastro.2015.12.021&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01433528v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon