Fire safety in space – Investigating flame spread interaction over wires
A new rig for microgravity experiments was used for the study flame spread of parallel polyethylene-coated wires in concurrent and opposed airflow. The parabolic flight experiments were conducted at small length- and time scales, i.e. typically over 10cm long samples for up to 20s. For the first tim...
Saved in:
| Published in: | Acta astronautica Vol. 126; pp. 500 - 509 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2016
Elsevier |
| Subjects: | |
| ISSN: | 0094-5765, 1879-2030 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A new rig for microgravity experiments was used for the study flame spread of parallel polyethylene-coated wires in concurrent and opposed airflow. The parabolic flight experiments were conducted at small length- and time scales, i.e. typically over 10cm long samples for up to 20s. For the first time, the influence of neighboring spread on the mass burning rate was assessed in microgravity. The observations are contrasted with the influence characterized in normal gravity. The experimental results are expected to deliver meaningful guidelines for future, planned experiments at a larger scale.
Arising from the current results, the issue of the potential interaction among spreading flames also needs to be carefully investigated as this interaction plays a major role in realistic fire scenarios, and therefore on the design of the strategies that would allow the control of such a fire. Once buoyancy has been removed, the characteristic length and time scales of the different modes of heat and mass transfer are modified. For this reason, interaction among spreading flames may be revealed in microgravity, while it would not at normal gravity, or vice versa. Furthermore, the interaction may lead to an enhanced spread rate when mutual preheating dominates or, conversely, a reduced spread rate when oxidizer flow vitiation is predominant.
In more general terms, the current study supports both the SAFFIRE and the FLARE projects, which are large projects with international scientific teams. First, material samples will be tested in a series of flight experiments (SAFFIRE 1-3) conducted in Cygnus vehicles after they have undocked from the ISS. These experiments will allow the study of ignition and possible flame spread in real spacecraft conditions, i.e. over real length scale samples within real time scales. Second, concomitant research conducted within the FLARE project is dedicated to the assessment of new standard tests for materials that a spacecraft can be composed of. Finally, these tests aim to define the ambient conditions that will mitigate and potentially prohibit the flame spread in microgravity over the material studied. |
|---|---|
| AbstractList | In order to reduce the uncertainty and risk in the design of spacecraft fire safety systems, a new experimental rig that allows the study of concomitant flames spreading over the coating of parallel cylindrical wires in an air flow parallel to the wires in microgravity has been developed. The parabolic flight experiments were conducted at small length-and timescales, i.e. typically over 10 cm long samples for up to 20 seconds. For the first time, the influence of neighboring spread on the mass burning rate was assessed in microgravity. The observations are contrasted with the influence characterized in normal gravity. The experimental results are expected to deliver meaningful guidelines for future, planned experiments at a larger scale. Arising from the current results, the issue of the potential interaction among spreading flames also needs to be carefully investigated as this interaction plays a major role in realistic fire scenarios, and therefore on the design of the strategies that would allow the control of such a fire. Once buoyancy has been removed, the characteristic length and time scales of the different modes of heat and mass transfer are modified. For this reason, interaction among spreading flames may be revealed in microgravity, while it would not at normal gravity, or vice versa. Furthermore, the interaction may lead to an enhanced spread rate when mutual preheating dominates or, conversely, a reduced spread rate when oxidizer flow vitiation is predominant. In more general terms, the current study supports both the SAFFIRE and the FLARE projects, which are large projects with international scientific teams. First, material samples will be tested in a series of flight experiments (SAFFIRE 1-3) conducted in Cygnus vehicles after they have undocked from the ISS. These experiments will allow the study of ignition and possible flame spread in real spacecraft conditions, i.e. over real length scale samples within real time scales. Second, concomitant research conducted within the FLARE project is dedicated to the assessment of new standard tests for materials that a spacecraft can be composed of. Finally, these tests aim to define the ambient conditions that will mitigate and potentially prohibit the flame spread in microgravity over the material studied. A new rig for microgravity experiments was used for the study flame spread of parallel polyethylene-coated wires in concurrent and opposed airflow. The parabolic flight experiments were conducted at small length- and time scales, i.e. typically over 10cm long samples for up to 20s. For the first time, the influence of neighboring spread on the mass burning rate was assessed in microgravity. The observations are contrasted with the influence characterized in normal gravity. The experimental results are expected to deliver meaningful guidelines for future, planned experiments at a larger scale. Arising from the current results, the issue of the potential interaction among spreading flames also needs to be carefully investigated as this interaction plays a major role in realistic fire scenarios, and therefore on the design of the strategies that would allow the control of such a fire. Once buoyancy has been removed, the characteristic length and time scales of the different modes of heat and mass transfer are modified. For this reason, interaction among spreading flames may be revealed in microgravity, while it would not at normal gravity, or vice versa. Furthermore, the interaction may lead to an enhanced spread rate when mutual preheating dominates or, conversely, a reduced spread rate when oxidizer flow vitiation is predominant. In more general terms, the current study supports both the SAFFIRE and the FLARE projects, which are large projects with international scientific teams. First, material samples will be tested in a series of flight experiments (SAFFIRE 1-3) conducted in Cygnus vehicles after they have undocked from the ISS. These experiments will allow the study of ignition and possible flame spread in real spacecraft conditions, i.e. over real length scale samples within real time scales. Second, concomitant research conducted within the FLARE project is dedicated to the assessment of new standard tests for materials that a spacecraft can be composed of. Finally, these tests aim to define the ambient conditions that will mitigate and potentially prohibit the flame spread in microgravity over the material studied. A new rig for microgravity experiments was used for the study flame spread of parallel polyethylene-coated wires in concurrent and opposed airflow. The parabolic flight experiments were conducted at small length- and time scales, i.e. typically over 10cm long samples for up to 20s. For the first time, the influence of neighboring spread on the mass burning rate was assessed in microgravity. The observations are contrasted with the influence characterized in normal gravity. The experimental results are expected to deliver meaningful guidelines for future, planned experiments at a larger scale. Arising from the current results, the issue of the potential interaction among spreading flames also needs to be carefully investigated as this interaction plays a major role in realistic fire scenarios, and therefore on the design of the strategies that would allow the control of such a fire. Once buoyancy has been removed, the characteristic length and time scales of the different modes of heat and mass transfer are modified. For this reason, interaction among spreading flames may be revealed in microgravity, while it would not at normal gravity, or vice versa. Furthermore, the interaction may lead to an enhanced spread rate when mutual preheating dominates or, conversely, a reduced spread rate when oxidizer flow vitiation is predominant. In more general terms, the current study supports both the SAFFIRE and the FLARE projects, which are large projects with international scientific teams. First, material samples will be tested in a series of flight experiments (SAFFIRE 1-3) conducted in Cygnus vehicles after they have undocked from the ISS. These experiments will allow the study of ignition and possible flame spread in real spacecraft conditions, i.e. over real length scale samples within real time scales. Second, concomitant research conducted within the FLARE project is dedicated to the assessment of new standard tests for materials that a spacecraft can be composed of. Finally, these tests aim to define the ambient conditions that will mitigate and potentially prohibit the flame spread in microgravity over the material studied. |
| Author | Fujita, Osamu Dutilleul, Hugo Rouvreau, Sébastien Nagachi, Masashi Torero, Jose L. Legros, Guillaume Citerne, Jean-Marie Kikuchi, Masao Jomaas, Grunde Kizawa, Koki |
| Author_xml | – sequence: 1 givenname: Jean-Marie surname: Citerne fullname: Citerne, Jean-Marie organization: Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7190 Institut Jean le Rond d’Alembert, F-75005 Paris, France – sequence: 2 givenname: Hugo surname: Dutilleul fullname: Dutilleul, Hugo organization: Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7190 Institut Jean le Rond d’Alembert, F-75005 Paris, France – sequence: 3 givenname: Koki surname: Kizawa fullname: Kizawa, Koki organization: Hokkaido University, Sapporo, Japan – sequence: 4 givenname: Masashi surname: Nagachi fullname: Nagachi, Masashi organization: Hokkaido University, Sapporo, Japan – sequence: 5 givenname: Osamu surname: Fujita fullname: Fujita, Osamu organization: Hokkaido University, Sapporo, Japan – sequence: 6 givenname: Masao surname: Kikuchi fullname: Kikuchi, Masao organization: JAXA, Tsukuba, Japan – sequence: 7 givenname: Grunde surname: Jomaas fullname: Jomaas, Grunde organization: Technical University of Denmark, Kgs. Lyngby, Denmark – sequence: 8 givenname: Sébastien surname: Rouvreau fullname: Rouvreau, Sébastien organization: Belisama R&D, Toulouse, France – sequence: 9 givenname: Jose L. surname: Torero fullname: Torero, Jose L. organization: University of Queensland, Brisbane, Australia – sequence: 10 givenname: Guillaume surname: Legros fullname: Legros, Guillaume email: guillaume.legros@upmc.fr organization: Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7190 Institut Jean le Rond d’Alembert, F-75005 Paris, France |
| BackLink | https://hal.sorbonne-universite.fr/hal-01433528$$DView record in HAL |
| BookMark | eNqNkbtuFDEUhi0UJDYhz5ApoZjBx5exp6BYReSCVqKB2nI8x8Gr2fFiO4vS8Q68YZ4EjxYoaEJlyfr-3z7nOyUnc5yRkAugHVDo320764q1uaTYMQqyA9ZRBi_ICrQaWkY5PSErSgfRStXLV-Q05y2lVDE9rMjHq5CwydZjeWzC3OS9ddg8_fjZ3M4HzCXc2xLm-8ZPdle5fUI7Vq5gqq-GODfxgKn5Xkvya_LS2ynj-e_zjHy5-vD58qbdfLq-vVxvWic5LS0HIantR8B--QIDJQHk6O-8Hzynzjuleu25El5LRn3vNKIQegRntbgb-Bl5e-z9aiezT2Fn06OJNpib9cYsdxQE55LpA1T2zZHdp_jtoc5jdiE7nCY7Y3zIBjSXUinN9X-gMAAXgxAVfX9EXYo5J_TGhWKXdZRkw2SAmkWN2Zq_asyixgAzVU3Nq3_yf8Z4Prk-JrEu-BAwmewCzg7HasAVM8bwbMcvCuCv2g |
| CitedBy_id | crossref_primary_10_3390_sci7020075 crossref_primary_10_1016_j_combustflame_2020_09_003 crossref_primary_10_1016_j_crme_2016_10_012 crossref_primary_10_1016_j_proci_2020_05_005 crossref_primary_10_1016_j_proci_2018_06_199 crossref_primary_10_1007_s12217_022_10011_2 crossref_primary_10_1016_j_firesaf_2025_104396 crossref_primary_10_1016_j_combustflame_2021_111538 crossref_primary_10_1016_j_tsep_2023_102001 crossref_primary_10_3390_fire8050204 crossref_primary_10_3390_fire8070258 crossref_primary_10_1016_j_actaastro_2018_08_018 crossref_primary_10_1016_j_actaastro_2020_06_025 crossref_primary_10_1007_s10694_019_00850_8 crossref_primary_10_1016_j_energy_2024_134324 crossref_primary_10_1016_j_proci_2022_07_163 crossref_primary_10_1016_j_actaastro_2019_08_021 crossref_primary_10_1007_s10694_019_00918_5 crossref_primary_10_1016_j_proci_2022_07_002 crossref_primary_10_11728_cjss2023_02_2022_0049 crossref_primary_10_1016_j_actaastro_2020_05_043 crossref_primary_10_1016_j_combustflame_2020_07_044 crossref_primary_10_1016_j_actaastro_2020_09_029 crossref_primary_10_5802_crmeca_182 crossref_primary_10_1016_j_combustflame_2020_08_038 crossref_primary_10_5802_crmeca_149 crossref_primary_10_1016_j_combustflame_2020_08_032 crossref_primary_10_1007_s10694_019_00935_4 crossref_primary_10_1016_j_jobe_2024_109765 crossref_primary_10_1016_j_actaastro_2019_01_044 crossref_primary_10_1016_j_proci_2018_05_007 crossref_primary_10_48130_emst_0024_0008 crossref_primary_10_1016_j_proci_2024_105255 crossref_primary_10_1016_j_actaastro_2022_01_021 crossref_primary_10_1007_s10694_019_00860_6 crossref_primary_10_1007_s10694_019_00866_0 crossref_primary_10_1016_j_proci_2022_08_030 crossref_primary_10_1016_j_actaastro_2016_10_003 crossref_primary_10_1007_s10973_019_08778_5 crossref_primary_10_1016_j_actaastro_2021_08_012 crossref_primary_10_1016_j_combustflame_2018_10_016 crossref_primary_10_1016_j_actaastro_2016_11_005 crossref_primary_10_11728_cjss2023_03_2022_0049 crossref_primary_10_1007_s10694_019_00853_5 crossref_primary_10_1016_j_ijthermalsci_2024_109062 crossref_primary_10_1016_j_proci_2025_105862 crossref_primary_10_3390_fire7060186 crossref_primary_10_1016_j_actaastro_2017_10_019 crossref_primary_10_1016_j_proci_2020_06_036 crossref_primary_10_1016_j_proci_2024_105288 crossref_primary_10_1016_j_actaastro_2017_03_028 crossref_primary_10_1016_j_actaastro_2022_01_037 crossref_primary_10_1016_j_combustflame_2019_09_003 crossref_primary_10_1016_j_combustflame_2021_111846 crossref_primary_10_1080_13647830_2024_2355906 crossref_primary_10_1016_j_combustflame_2017_12_013 crossref_primary_10_1177_0734904118821665 crossref_primary_10_1007_s10694_023_01501_9 crossref_primary_10_1007_s10973_024_13437_5 |
| Cites_doi | 10.1016/S0082-0784(00)80715-8 10.1016/j.proci.2014.05.059 10.1364/OL.30.003311 10.1016/j.proci.2012.09.007 10.1016/j.proci.2004.08.066 10.1080/00102207908946878 10.1002/zamm.19560360105 10.1080/13647830903342527 10.1080/00102200600805850 10.1002/(SICI)1099-1018(199609)20:5<235::AID-FAM580>3.0.CO;2-Y 10.1016/S1540-7489(02)80309-1 10.1016/j.proci.2008.06.179 10.1016/j.proci.2006.08.031 10.1016/S1540-7489(02)80310-8 10.1016/j.actaastro.2014.11.025 10.1016/j.proci.2008.06.146 10.1016/S0082-0784(98)80102-1 10.1016/S0082-0784(96)80347-X 10.1016/S0010-2180(99)00161-3 10.1016/j.proci.2014.08.010 10.1364/OE.20.028742 10.1016/S0082-0784(77)80419-0 10.1016/j.proci.2014.05.038 10.1016/S0082-0784(69)80408-X 10.4271/1999-01-1937 |
| ContentType | Journal Article |
| Copyright | 2016 IAA. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2016 IAA. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION 7TG KL. 7TB 8FD FR3 H8D L7M 1XC VOOES |
| DOI | 10.1016/j.actaastro.2015.12.021 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2030 |
| EndPage | 509 |
| ExternalDocumentID | oai:HAL:hal-01433528v1 10_1016_j_actaastro_2015_12_021 S0094576515301818 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELOY BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H VH1 VOH WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TG KL. 7TB 8FD FR3 H8D L7M 1XC VOOES |
| ID | FETCH-LOGICAL-c530t-31450a6d1e672892175115dfbff9f30cfc7768f374f8520f6c8ee448d1ca84b93 |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382412200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-5765 |
| IngestDate | Tue Nov 25 06:21:07 EST 2025 Sun Sep 28 06:15:39 EDT 2025 Wed Oct 01 14:57:21 EDT 2025 Sat Nov 29 02:58:23 EST 2025 Tue Nov 18 21:03:47 EST 2025 Fri Feb 23 02:22:30 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Parabolic flight experiments Flame propagation Microgravity Fire safety flame propagation microgravity parabolic flight experiments fire safety |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c530t-31450a6d1e672892175115dfbff9f30cfc7768f374f8520f6c8ee448d1ca84b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2947-8548 |
| OpenAccessLink | https://hal.sorbonne-universite.fr/hal-01433528 |
| PQID | 1819134944 |
| PQPubID | 23462 |
| PageCount | 10 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01433528v1 proquest_miscellaneous_1835577838 proquest_miscellaneous_1819134944 crossref_citationtrail_10_1016_j_actaastro_2015_12_021 crossref_primary_10_1016_j_actaastro_2015_12_021 elsevier_sciencedirect_doi_10_1016_j_actaastro_2015_12_021 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-09-01 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Acta astronautica |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Torero (bib11) 2013; 34 Emmons (bib21) 1956; 36 Fujita, Nishizawa, Ito (bib7) 2002; 29 〈 Kosdon, Williams, Buman (bib22) 1968; 12 〉 Legros, Fuentes, Rouvreau, Joulain, Porterie, Torero (bib20) 2009; 32 T׳ien, Shih, Jiang, Ross, Miller, Fernandez-Pello, Torero, Walther (bib25) 2001 Kikuchi, Fujita, Ito, Sato, Sakuraya (bib5) 1998; 27 Friedman (bib4) 1996; 20 Rouvreau, Cordeiro, Torero, Joulain (bib18) 2005; 30 Pagni, Shih (bib23) 1978; 16 Fujita, Kikuchi, Ito, Nishizawa (bib6) 2000; 28 Megaridis, Konsur, Griffin (bib15) 1996; 26 Anamalai, Sibulkin (bib24) 1979; 19 Hu, Zhang, Yoshioka, Izumo, Fujita (bib31) 2015; 35 Kong, Liu (bib16) 2009; 13 R. Friedman, Fire Safety in the Low-gravity Spacecraft Environment, SAE Technical Paper 1999-01-1937. Babrauskas (bib3) 2003 Olson, T’ien (bib17) 2000; 121 Kashif, Bonnety, Guibert, Morin, Legros (bib27) 2012; 20 Greenberg, Sacksteder, Kashiwagi (bib1) 1994 Nakamura, Yoshimura, Ito, Azumaya, Fujita (bib10) 2009; 32 Fujita (bib12) 2015; 35 S.L. Olson, Radiative Exchange during Concurrent Flame Spread over Three Parallel Thin Fuel Sheets in Microgravity, 2014, Spring Technical Meeting of the Central States Section of the Combustion Institute, Tulsa, Oklahoma (USA) Legros, Fuentes, Baillargeat, Joulain, Vantelon, Torero (bib28) 2005; 30 Legros, Torero (bib30) 2015; 35 Umemura, Uchida, Hirata, Sato (bib9) 2002; 29 Onishi, Fujita, Agata, Takeuchi, Nakamura, Ito, Kikuchi (bib8) 2010; 8 Fuentes, Legros, Claverie, Joulain, Vantelon, Torero (bib19) 2007; 31 Jomaas, Torero, Eigenbrod, Niehaus, Olson, Ferkul, Legros, Fernandez-Pello, Cowlard, Rouvreau, Smirnov, Fujita, T׳ien, Ruff, Urban (bib13) 2015; 109 Fuentes, Rouvreau, Joulain, Vantelon, Legros, Torero, Fernandez-Pello (bib29) 2007; 179 Fujita (10.1016/j.actaastro.2015.12.021_bib6) 2000; 28 Megaridis (10.1016/j.actaastro.2015.12.021_bib15) 1996; 26 Legros (10.1016/j.actaastro.2015.12.021_bib20) 2009; 32 Fujita (10.1016/j.actaastro.2015.12.021_bib12) 2015; 35 Rouvreau (10.1016/j.actaastro.2015.12.021_bib18) 2005; 30 Greenberg (10.1016/j.actaastro.2015.12.021_bib1) 1994 Friedman (10.1016/j.actaastro.2015.12.021_bib4) 1996; 20 Olson (10.1016/j.actaastro.2015.12.021_bib17) 2000; 121 Kikuchi (10.1016/j.actaastro.2015.12.021_bib5) 1998; 27 Kashif (10.1016/j.actaastro.2015.12.021_bib27) 2012; 20 Fuentes (10.1016/j.actaastro.2015.12.021_bib29) 2007; 179 10.1016/j.actaastro.2015.12.021_bib26 Emmons (10.1016/j.actaastro.2015.12.021_bib21) 1956; 36 Legros (10.1016/j.actaastro.2015.12.021_bib30) 2015; 35 Legros (10.1016/j.actaastro.2015.12.021_bib28) 2005; 30 Kosdon (10.1016/j.actaastro.2015.12.021_bib22) 1968; 12 Anamalai (10.1016/j.actaastro.2015.12.021_bib24) 1979; 19 Onishi (10.1016/j.actaastro.2015.12.021_bib8) 2010; 8 Fujita (10.1016/j.actaastro.2015.12.021_bib7) 2002; 29 Kong (10.1016/j.actaastro.2015.12.021_bib16) 2009; 13 Nakamura (10.1016/j.actaastro.2015.12.021_bib10) 2009; 32 Umemura (10.1016/j.actaastro.2015.12.021_bib9) 2002; 29 T׳ien (10.1016/j.actaastro.2015.12.021_bib25) 2001 Jomaas (10.1016/j.actaastro.2015.12.021_bib13) 2015; 109 Hu (10.1016/j.actaastro.2015.12.021_bib31) 2015; 35 10.1016/j.actaastro.2015.12.021_bib14 Torero (10.1016/j.actaastro.2015.12.021_bib11) 2013; 34 Fuentes (10.1016/j.actaastro.2015.12.021_bib19) 2007; 31 10.1016/j.actaastro.2015.12.021_bib2 Babrauskas (10.1016/j.actaastro.2015.12.021_bib3) 2003 Pagni (10.1016/j.actaastro.2015.12.021_bib23) 1978; 16 |
| References_xml | – volume: 30 start-page: 3311 year: 2005 end-page: 3313 ident: bib28 article-title: Three-dimensional recomposition of the absorption field inside a non-buoyant sooting diffusion flame publication-title: Opt. Lett. – volume: 29 start-page: 2545 year: 2002 end-page: 2552 ident: bib7 article-title: Effect of low external flow on flame spread over polyethylene-insulated wire in microgravity publication-title: Proc. Combust. Inst. – volume: 16 start-page: 1329 year: 1978 end-page: 1343 ident: bib23 article-title: Excess pyrolyzate publication-title: Proc. Combust. Inst. – volume: 35 start-page: 2487 year: 2015 end-page: 2502 ident: bib12 article-title: Solid combustion research in microgravity as a basis of fire safety in space publication-title: Proc. Combust. Inst. – volume: 28 start-page: 2905 year: 2000 end-page: 2911 ident: bib6 article-title: Effective mechanisms to determine flame spread rate over ethylene-tetrafluoroethylzene wire insulation: Discussion on dilution gas effect based on temperature measurements publication-title: Proc. Combust. Inst. – volume: 36 start-page: 60 year: 1956 ident: bib21 article-title: The film combustion of liquid fuel publication-title: Z. Angew. Math. Mech. – volume: 35 start-page: 2607 year: 2015 end-page: 2614 ident: bib31 article-title: Flame spread over electric wire with high thermal conductivity metal core at different inclinations publication-title: Proc. Combust. Inst. – volume: 26 start-page: 1291 year: 1996 end-page: 1299 ident: bib15 article-title: Soot-field structure in laminar soot-emitting microgravity non-premixed flames publication-title: Proc. Combust. Inst. – volume: 29 start-page: 2535 year: 2002 end-page: 2543 ident: bib9 article-title: Physical model analysis of flame spreading along an electrical wire in microgravity publication-title: Proc. Combust. Inst. – volume: 32 start-page: 2461 year: 2009 end-page: 2470 ident: bib20 article-title: Transport mechanisms controlling soot production inside a non-buoyant laminar diffusion flame publication-title: Proc. Combust. Inst. – reference: 〈 – volume: 32 start-page: 2559 year: 2009 end-page: 2566 ident: bib10 article-title: Flame spread over electric wire in sub-atmospheric pressure publication-title: Proc. Combust. Inst. – volume: 34 start-page: 99 year: 2013 end-page: 124 ident: bib11 article-title: Scaling-up fire publication-title: Proc. Combust. Inst. – year: 2003 ident: bib3 article-title: Ignition Handbook Database – volume: 8 start-page: Ph_19 year: 2010 end-page: Ph_24 ident: bib8 article-title: Observation of flame spreading over electric wire under reduced gravity condition given by parabolic flight and drop tower experiments publication-title: JSASS Aerosp. Technol. Jpn. – volume: 179 start-page: 3 year: 2007 end-page: 19 ident: bib29 article-title: Sooting behavior dynamics of a non-buoyant laminar diffusion flame publication-title: Combust. Sci. Technol. – volume: 35 start-page: 2545 year: 2015 end-page: 2553 ident: bib30 article-title: Phenomenological model of soot production inside a non-buoyant laminar diffusion flame publication-title: Proc. Combust. Inst. – volume: 30 start-page: 519 year: 2005 end-page: 526 ident: bib18 article-title: Influence of the G-Jitter on a laminar boundary layer type diffusion flame publication-title: Proc. Combust. Inst. – reference: R. Friedman, Fire Safety in the Low-gravity Spacecraft Environment, SAE Technical Paper 1999-01-1937. – volume: 121 start-page: 439 year: 2000 end-page: 452 ident: bib17 article-title: Buoyant low-stretch diffusion flames beneath cylindrical PMMA samples publication-title: Combust. Flame – reference: S.L. Olson, Radiative Exchange during Concurrent Flame Spread over Three Parallel Thin Fuel Sheets in Microgravity, 2014, Spring Technical Meeting of the Central States Section of the Combustion Institute, Tulsa, Oklahoma (USA) – reference: 〉 – volume: 31 start-page: 2685 year: 2007 end-page: 2692 ident: bib19 article-title: Interactions between soot and CH* in a laminar boundary layer type diffusion flame in microgravity publication-title: Proc. Combust. Inst. – volume: 27 start-page: 2507 year: 1998 end-page: 2514 ident: bib5 article-title: Experimental study on flame spread over wire insulation in microgravity publication-title: Proc. Combust. Inst. – volume: 109 start-page: 208 year: 2015 end-page: 216 ident: bib13 article-title: Fire safety in space – beyond flammability testing of small samples publication-title: Acta Astronaut. – start-page: 299 year: 2001 end-page: 417 ident: bib25 article-title: Mechanisms of flame spread and smolder wave propagation publication-title: Microgravity Combustion: Fire in Free Fall – volume: 12 start-page: 253 year: 1968 end-page: 264 ident: bib22 article-title: Combustion of vertical cellulosic cylinders in air publication-title: Proc. Combust. Inst. – volume: 20 start-page: 235 year: 1996 end-page: 243 ident: bib4 article-title: Fire Safety in Spacecraft publication-title: Fire Mater. – volume: 19 start-page: 167 year: 1979 end-page: 183 ident: bib24 article-title: Flame spread over combustible surfaces for laminar flow systems publication-title: Combust. Sci. Technol. – start-page: 25 year: 1994 end-page: 30 ident: bib1 article-title: The USML-1 Wire Insulation Flammability Glovebox Experiment, Third International Microgravity Combustion Workshop 2 – volume: 13 start-page: 993 year: 2009 end-page: 1023 ident: bib16 article-title: Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames unde different air stream velocities publication-title: Combust. Theory Model. – volume: 20 start-page: 28742 year: 2012 end-page: 28751 ident: bib27 article-title: Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique publication-title: Opt. Express – volume: 28 start-page: 2905 year: 2000 ident: 10.1016/j.actaastro.2015.12.021_bib6 article-title: Effective mechanisms to determine flame spread rate over ethylene-tetrafluoroethylzene wire insulation: Discussion on dilution gas effect based on temperature measurements publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(00)80715-8 – volume: 35 start-page: 2607 year: 2015 ident: 10.1016/j.actaastro.2015.12.021_bib31 article-title: Flame spread over electric wire with high thermal conductivity metal core at different inclinations publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2014.05.059 – ident: 10.1016/j.actaastro.2015.12.021_bib14 – start-page: 299 year: 2001 ident: 10.1016/j.actaastro.2015.12.021_bib25 article-title: Mechanisms of flame spread and smolder wave propagation – ident: 10.1016/j.actaastro.2015.12.021_bib26 – volume: 30 start-page: 3311 year: 2005 ident: 10.1016/j.actaastro.2015.12.021_bib28 article-title: Three-dimensional recomposition of the absorption field inside a non-buoyant sooting diffusion flame publication-title: Opt. Lett. doi: 10.1364/OL.30.003311 – volume: 34 start-page: 99 year: 2013 ident: 10.1016/j.actaastro.2015.12.021_bib11 article-title: Scaling-up fire publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2012.09.007 – volume: 30 start-page: 519 year: 2005 ident: 10.1016/j.actaastro.2015.12.021_bib18 article-title: Influence of the G-Jitter on a laminar boundary layer type diffusion flame publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2004.08.066 – volume: 19 start-page: 167 year: 1979 ident: 10.1016/j.actaastro.2015.12.021_bib24 article-title: Flame spread over combustible surfaces for laminar flow systems publication-title: Combust. Sci. Technol. doi: 10.1080/00102207908946878 – volume: 36 start-page: 60 year: 1956 ident: 10.1016/j.actaastro.2015.12.021_bib21 article-title: The film combustion of liquid fuel publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.19560360105 – volume: 13 start-page: 993 year: 2009 ident: 10.1016/j.actaastro.2015.12.021_bib16 article-title: Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames unde different air stream velocities publication-title: Combust. Theory Model. doi: 10.1080/13647830903342527 – volume: 179 start-page: 3 year: 2007 ident: 10.1016/j.actaastro.2015.12.021_bib29 article-title: Sooting behavior dynamics of a non-buoyant laminar diffusion flame publication-title: Combust. Sci. Technol. doi: 10.1080/00102200600805850 – volume: 20 start-page: 235 year: 1996 ident: 10.1016/j.actaastro.2015.12.021_bib4 article-title: Fire Safety in Spacecraft publication-title: Fire Mater. doi: 10.1002/(SICI)1099-1018(199609)20:5<235::AID-FAM580>3.0.CO;2-Y – volume: 29 start-page: 2535 year: 2002 ident: 10.1016/j.actaastro.2015.12.021_bib9 article-title: Physical model analysis of flame spreading along an electrical wire in microgravity publication-title: Proc. Combust. Inst. doi: 10.1016/S1540-7489(02)80309-1 – year: 2003 ident: 10.1016/j.actaastro.2015.12.021_bib3 – volume: 32 start-page: 2461 year: 2009 ident: 10.1016/j.actaastro.2015.12.021_bib20 article-title: Transport mechanisms controlling soot production inside a non-buoyant laminar diffusion flame publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2008.06.179 – volume: 8 start-page: Ph_19 issue: ists27 year: 2010 ident: 10.1016/j.actaastro.2015.12.021_bib8 article-title: Observation of flame spreading over electric wire under reduced gravity condition given by parabolic flight and drop tower experiments publication-title: JSASS Aerosp. Technol. Jpn. – volume: 31 start-page: 2685 year: 2007 ident: 10.1016/j.actaastro.2015.12.021_bib19 article-title: Interactions between soot and CH* in a laminar boundary layer type diffusion flame in microgravity publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2006.08.031 – volume: 29 start-page: 2545 year: 2002 ident: 10.1016/j.actaastro.2015.12.021_bib7 article-title: Effect of low external flow on flame spread over polyethylene-insulated wire in microgravity publication-title: Proc. Combust. Inst. doi: 10.1016/S1540-7489(02)80310-8 – volume: 109 start-page: 208 year: 2015 ident: 10.1016/j.actaastro.2015.12.021_bib13 article-title: Fire safety in space – beyond flammability testing of small samples publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2014.11.025 – start-page: 25 year: 1994 ident: 10.1016/j.actaastro.2015.12.021_bib1 – volume: 32 start-page: 2559 year: 2009 ident: 10.1016/j.actaastro.2015.12.021_bib10 article-title: Flame spread over electric wire in sub-atmospheric pressure publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2008.06.146 – volume: 27 start-page: 2507 year: 1998 ident: 10.1016/j.actaastro.2015.12.021_bib5 article-title: Experimental study on flame spread over wire insulation in microgravity publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(98)80102-1 – volume: 26 start-page: 1291 year: 1996 ident: 10.1016/j.actaastro.2015.12.021_bib15 article-title: Soot-field structure in laminar soot-emitting microgravity non-premixed flames publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(96)80347-X – volume: 121 start-page: 439 year: 2000 ident: 10.1016/j.actaastro.2015.12.021_bib17 article-title: Buoyant low-stretch diffusion flames beneath cylindrical PMMA samples publication-title: Combust. Flame doi: 10.1016/S0010-2180(99)00161-3 – volume: 35 start-page: 2487 year: 2015 ident: 10.1016/j.actaastro.2015.12.021_bib12 article-title: Solid combustion research in microgravity as a basis of fire safety in space publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2014.08.010 – volume: 20 start-page: 28742 year: 2012 ident: 10.1016/j.actaastro.2015.12.021_bib27 article-title: Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique publication-title: Opt. Express doi: 10.1364/OE.20.028742 – volume: 16 start-page: 1329 year: 1978 ident: 10.1016/j.actaastro.2015.12.021_bib23 article-title: Excess pyrolyzate publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(77)80419-0 – volume: 35 start-page: 2545 year: 2015 ident: 10.1016/j.actaastro.2015.12.021_bib30 article-title: Phenomenological model of soot production inside a non-buoyant laminar diffusion flame publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2014.05.038 – volume: 12 start-page: 253 year: 1968 ident: 10.1016/j.actaastro.2015.12.021_bib22 article-title: Combustion of vertical cellulosic cylinders in air publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(69)80408-X – ident: 10.1016/j.actaastro.2015.12.021_bib2 doi: 10.4271/1999-01-1937 |
| SSID | ssj0007289 |
| Score | 2.3686943 |
| Snippet | A new rig for microgravity experiments was used for the study flame spread of parallel polyethylene-coated wires in concurrent and opposed airflow. The... In order to reduce the uncertainty and risk in the design of spacecraft fire safety systems, a new experimental rig that allows the study of concomitant flames... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 500 |
| SubjectTerms | Engineering Sciences Fire safety Fires Flame propagation Flares Gravitation Microgravity Parabolic flight experiments Reactive fluid environment Spacecraft Spreading Time Wire |
| Title | Fire safety in space – Investigating flame spread interaction over wires |
| URI | https://dx.doi.org/10.1016/j.actaastro.2015.12.021 https://www.proquest.com/docview/1819134944 https://www.proquest.com/docview/1835577838 https://hal.sorbonne-universite.fr/hal-01433528 |
| Volume | 126 |
| WOSCitedRecordID | wos000382412200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2030 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007289 issn: 0094-5765 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUsEE9RXjKIXRUpDydx2FUwVaeUaqQZ0Ows17VnOlRp1aRlxIp_4DP4K76Ee-MkTXnNsGATVW7TJL4n9-V7jwl5qSMZqCDwnNhMmMN4MnHAjk8dJn0vMjA4KbreP4zi8ZifnCSHrda3qhdmM4_TlF9cJMv_KmoYA2Fj6-w_iLv-UxiAzyB0OILY4XglwfdBiXWPpMFazBm8vBAUgx9Z1jQETWINrKEEQOhutgTXcVpQR6zKvcOxsrOLPMZZ033tqVx2ZYbpc1lkweslDOxktsnRoZap8w5D8K2TnGPH4dryZq9PF9uF_8_yk-1JW3yc1XlpeYoVnraTKMPNnpqpCS-qa6_KfFlp3Jv6N2EORDh2HVtblcvjBARYrs5UOtlvatXQdRsGOiz4FH7V_TYNcQ44zGUxE1i4FxbJXtuEvcu2PegdicM3fTE6GL_d_bZRojjojeB4JucO8iAiE84GQu09Pw4T3iZ7vYP9k2Ft-GOf22irfMidcsLf3tWfnKFrZ1iV-5NzUHg8x7fJrTJUoT0LsTukpdO75GaDwPIeGSLYqAUbnaW0ABv9_uUr3YEZLWBGLcxoA2YUYUYLmN0n7_v7x68HTrk7h6PCwM3BeLPQldHU0xE-OIS24LuHUzMxJjGBq4yKIZQ1QcwMD33XRIprzRifekpyNkmCB6SdLlL9kFBulEl8xTC1xjywe2GIjrEbR0qCIXc7JKqmSaiSuh53UJmLqkbxXNTzK3B-hecLmN8OcesTl5a95fJTXlVyEKUTap1LATi7_OQXILn6UkjdDggSOLbFT4c8rwQrQJfjAp1M9WKdCQ-zJ8gXxf72G4gQ4pgH_NFVLvaY3Ni-mU9IO1-t9VNyXW3yWbZ6ViL4B5Qkyh8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fire+Safety+in+Space+%E2%80%93+Investigating+flame+spread+interaction+over+wires&rft.jtitle=Acta+astronautica&rft.au=Citerne%2C+Jean-Marie&rft.au=Dutilleul%2C+Hugo&rft.au=Kizawa%2C+Koki&rft.au=Nagachi%2C+Masashi&rft.date=2016-09-01&rft.pub=Elsevier&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=126&rft.spage=500&rft.epage=509&rft_id=info:doi/10.1016%2Fj.actaastro.2015.12.021&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01433528v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon |