Mapping VHR Water Depth, Seabed and Land Cover Using Google Earth Data
Google Earth (GE) provides very high resolution (VHR) natural-colored (red-green-blue, RGB) images based on commercial spaceborne sensors over worldwide coastal areas. GE is rarely used as a direct data source to address coastal issues despite the tremendous potential of data transferability. This p...
Uložené v:
| Vydané v: | ISPRS international journal of geo-information Ročník 3; číslo 4; s. 1157 - 1179 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.12.2014
MDPI |
| Predmet: | |
| ISSN: | 2220-9964, 2220-9964 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Google Earth (GE) provides very high resolution (VHR) natural-colored (red-green-blue, RGB) images based on commercial spaceborne sensors over worldwide coastal areas. GE is rarely used as a direct data source to address coastal issues despite the tremendous potential of data transferability. This paper describes an inexpensive and easy-to-implement methodology to construct a GE natural-colored dataset with a submeter pixel size over 44 km2 to accurately map the water depth, seabed and land cover along a seamless coastal area in subtropical Japan (Shiraho, Ishigaki Island). The valuation of the GE images for the three mapping types was quantified by comparison with directly-purchased images. We found that both RGB GE-derived mosaic and pansharpened QuickBird (QB) imagery yielded satisfactory results for mapping water depth (R2GE = 0.71 and R2QB = 0.69), seabed cover (OAGE = 89.70% and OAQB = 80.40%, n = 15 classes) and land cover (OAGE = 95.32% and OAQB = 88.71%, n = 11 classes); however, the GE dataset significantly outperformed the QB dataset for all three mappings (ZWater depth = 6.29, ZSeabed = 4.10, ZLand = 3.28, αtwo-tailed < 0.002). The integration of freely available elevation data into both RGB datasets significantly improved the land cover classification accuracy (OAGE = 99.17% and OAQB = 97.80%). Implications and limitations of our findings provide insights for the use of GE VHR data by stakeholders tasked with integrated coastal zone management. |
|---|---|
| AbstractList | Google Earth (GE) provides very high resolution (VHR) natural-colored (red-green-blue, RGB) images based on commercial spaceborne sensors over worldwide coastal areas. GE is rarely used as a direct data source to address coastal issues despite the tremendous potential of data transferability. This paper describes an inexpensive and easy-to-implement methodology to construct a GE natural-colored dataset with a submeter pixel size over 44 km2 to accurately map the water depth, seabed and land cover along a seamless coastal area in subtropical Japan (Shiraho, Ishigaki Island). The valuation of the GE images for the three mapping types was quantified by comparison with directly-purchased images. We found that both RGB GE-derived mosaic and pansharpened QuickBird (QB) imagery yielded satisfactory results for mapping water depth (R2GE = 0.71 and R2QB = 0.69), seabed cover (OAGE = 89.70% and OAQB = 80.40%, n = 15 classes) and land cover (OAGE = 95.32% and OAQB = 88.71%, n = 11 classes); however, the GE dataset significantly outperformed the QB dataset for all three mappings (ZWater depth = 6.29, ZSeabed = 4.10, ZLand = 3.28, αtwo-tailed < 0.002). The integration of freely available elevation data into both RGB datasets significantly improved the land cover classification accuracy (OAGE = 99.17% and OAQB = 97.80%). Implications and limitations of our findings provide insights for the use of GE VHR data by stakeholders tasked with integrated coastal zone management. Google Earth (GE) provides very high resolution (VHR) natural-colored (red-green-blue, RGB) images based on commercial spaceborne sensors over worldwide coastal areas. GE is rarely used as a direct data source to address coastal issues despite the tremendous potential of data transferability. This paper describes an inexpensive and easy-to-implement methodology to construct a GE natural-colored dataset with a submeter pixel size over 44 km2 to accurately map the water depth, seabed and land cover along a seamless coastal area in subtropical Japan (Shiraho, Ishigaki Island). The valuation of the GE images for the three mapping types was quantified by comparison with directly-purchased images. We found that both RGB GE-derived mosaic and pansharpened QuickBird (QB) imagery yielded satisfactory results for mapping water depth (R2GE = 0.71 and R2QB = 0.69), seabed cover (OAGE = 89.70% and OAQB = 80.40%, n = 15 classes) and land cover (OAGE = 95.32% and OAQB = 88.71%, n = 11 classes); however, the GE dataset significantly outperformed the QB dataset for all three mappings (ZWₐₜₑᵣ dₑₚₜₕ = 6.29, ZSₑₐbₑd = 4.10, ZLₐₙd = 3.28, αₜwₒ₋ₜₐᵢₗₑd < 0.002). The integration of freely available elevation data into both RGB datasets significantly improved the land cover classification accuracy (OAGE = 99.17% and OAQB = 97.80%). Implications and limitations of our findings provide insights for the use of GE VHR data by stakeholders tasked with integrated coastal zone management. Google Earth (GE) provides very high resolution (VHR) natural-colored (red-green-blue, RGB) images based on commercial spaceborne sensors over worldwide coastal areas. GE is rarely used as a direct data source to address coastal issues despite the tremendous potential of data transferability. This paper describes an inexpensive and easy-to-implement methodology to construct a GE natural-colored dataset with a submeter pixel size over 44 km2 to accurately map the water depth, seabed and land cover along a seamless coastal area in subtropical Japan (Shiraho, Ishigaki Island). The valuation of the GE images for the three mapping types was quantified by comparison with directly-purchased images. We found that both RGB GE-derived mosaic and pansharpened QuickBird (QB) imagery yielded satisfactory results for mapping water depth (R2GE = 0.71 and R2QB = 0.69), seabed cover (OAGE = 89.70% and OAQB = 80.40%, n = 15 classes) and land cover (OAGE = 95.32% and OAQB = 88.71%, n = 11 classes); however, the GE dataset significantly outperformed the QB dataset for all three mappings (ZWater depth = 6.29, ZSeabed = 4.10, ZLand = 3.28, alpha two-tailed < 0.002). The integration of freely available elevation data into both RGB datasets significantly improved the land cover classification accuracy (OAGE = 99.17% and OAQB = 97.80%). Implications and limitations of our findings provide insights for the use of GE VHR data by stakeholders tasked with integrated coastal zone management. |
| Author | Nadaoka, Kazuo Collin, Antoine Nakamura, Takashi |
| Author_xml | – sequence: 1 givenname: Antoine surname: Collin fullname: Collin, Antoine – sequence: 2 givenname: Kazuo surname: Nadaoka fullname: Nadaoka, Kazuo – sequence: 3 givenname: Takashi surname: Nakamura fullname: Nakamura, Takashi |
| BackLink | https://hal.science/hal-01429027$$DView record in HAL |
| BookMark | eNqFkd1rFDEQwINUsNY--Q8s-KLoaT43m8dy_bjCiaBWH8NsdvYux3azTXIF_3uznkgtgnlIwswvPyYzz8nRGEYk5CWj74Uw9IPfbbygkjGln5BjzjldGFPLowf3Z-Q0pR0tyzDRSHpMLj_CNPlxU31bfa6-Q8ZYneOUt--qLwgtdhWMXbWet2W4L8mbNMNXIWwGrC4g5m11DhlekKc9DAlPf58n5Oby4utytVh_urpenq0XTgmaF5xR7bgwmtXSNR2njW5rJfuaco5MtQZV3zGNhkNfgzFYq1pKVyvdMi4RxAm5Pni7ADs7RX8L8YcN4O2vQIgbW2rybkBbXB0KcKppnWSNAq4cZ6aBRned0bK43hxcWxj-Uq3O1naOUSa5oVzfs8K-PrBTDHd7TNne-uRwGGDEsE-WC6rKn6ig_0WZ1g1lDVUz-uoRugv7OJYG2iKbhVLpQr09UC6GlCL2f4pl1M6Ttw8mX2j2iHY-Q_ZhzBH88M83PwFh2azH |
| CitedBy_id | crossref_primary_10_1007_s10113_022_01977_1 crossref_primary_10_1016_j_aquabot_2021_103362 crossref_primary_10_1016_j_jasrep_2021_103030 crossref_primary_10_3390_oceans2020018 crossref_primary_10_1007_s41064_024_00298_8 crossref_primary_10_1016_j_neucom_2016_04_020 crossref_primary_10_1016_j_ecoleng_2016_02_003 crossref_primary_10_1109_TGRS_2023_3315316 crossref_primary_10_1007_s12517_016_2803_1 crossref_primary_10_1088_1755_1315_266_1_012010 crossref_primary_10_30631_sdgs_v5i1_3157 crossref_primary_10_3390_ijgi5030026 crossref_primary_10_1111_rec_12329 crossref_primary_10_3390_rs10050773 crossref_primary_10_3390_rs13224692 crossref_primary_10_1016_j_marpolbul_2017_04_028 crossref_primary_10_1109_TGRS_2022_3214209 crossref_primary_10_3390_rs12234002 crossref_primary_10_3390_geosciences6040047 crossref_primary_10_3390_ijgi4020900 crossref_primary_10_30631_2x79h950 crossref_primary_10_1371_journal_pone_0209313 crossref_primary_10_3390_land12020353 crossref_primary_10_1016_j_rse_2018_02_015 |
| Cites_doi | 10.1364/AO.20.000177 10.14358/PERS.70.5.605 10.1016/j.dsr2.2003.11.001 10.1672/08-34.1 10.3390/rs4051425 10.1080/01490410701295996 10.3354/meps239093 10.1016/j.rse.2004.04.005 10.3390/s8127973 10.1126/science.1244693 10.1109/IGARSS.2011.6050017 10.3390/rs4103244 10.1080/01431160903475316 10.3390/rs5073583 10.1016/j.ecolecon.2006.10.022 10.1126/science.1112122 10.1080/01490410490904780 10.1007/s11430-010-4002-3 10.1201/9781420055139 10.1016/S0921-8009(98)00020-2 10.4319/lo.2003.48.1_part_2.0547 10.3390/rs4071887 10.1007/s10980-011-9623-1 10.3390/rs5116026 10.1109/83.918569 10.1111/j.1466-8238.2010.00584.x |
| ContentType | Journal Article |
| Copyright | Copyright MDPI AG 2014 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright MDPI AG 2014 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SC 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M7S P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 1XC BXJBU DOA |
| DOI | 10.3390/ijgi3041157 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Visual Arts Statistics Computer Science Environmental Sciences |
| EISSN | 2220-9964 |
| EndPage | 1179 |
| ExternalDocumentID | oai_doaj_org_article_9e5de3ac58bc4185a25c2198a87dd974 oai:HAL:hal-01429027v1 3556846181 10_3390_ijgi3041157 |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RIG ZBA 7SC 7UA 8FD ABUWG AZQEC C1K DWQXO F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO 1XC BXJBU IAO ITC |
| ID | FETCH-LOGICAL-c530t-2107c2397164c8d2087b654f6022e15b9e5fd17e92af6a99e65644c657b124ea3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358934300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2220-9964 |
| IngestDate | Mon Nov 10 04:28:23 EST 2025 Tue Oct 14 20:44:45 EDT 2025 Fri Sep 05 13:50:13 EDT 2025 Sun Nov 09 11:48:33 EST 2025 Fri Jul 25 11:56:33 EDT 2025 Tue Nov 18 19:44:45 EST 2025 Sat Nov 29 07:15:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | bathymetry very high resolution visible coastal mapping Google Earth QuickBird |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c530t-2107c2397164c8d2087b654f6022e15b9e5fd17e92af6a99e65644c657b124ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9559-7572 |
| OpenAccessLink | https://www.proquest.com/docview/1645164457?pq-origsite=%requestingapplication% |
| PQID | 1645164457 |
| PQPubID | 2032387 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9e5de3ac58bc4185a25c2198a87dd974 hal_primary_oai_HAL_hal_01429027v1 proquest_miscellaneous_2305164030 proquest_miscellaneous_1778018050 proquest_journals_1645164457 crossref_primary_10_3390_ijgi3041157 crossref_citationtrail_10_3390_ijgi3041157 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-01 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | ISPRS international journal of geo-information |
| PublicationYear | 2014 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Potere (ref_21) 2008; 8 Lin (ref_26) 2001; 10 Kayanne (ref_25) 2002; 239 Hu (ref_22) 2013; 5 Adger (ref_6) 2005; 309 ref_35 Wang (ref_15) 2004; 91 ref_10 ref_31 Liu (ref_11) 2004; 70 McClain (ref_12) 2004; 51 Collin (ref_30) 2012; 4 Collin (ref_14) 2013; 5 Cumming (ref_7) 2011; 26 Guo (ref_20) 2010; 31 Smith (ref_33) 1981; 20 Intralawan (ref_4) 2007; 63 Hansen (ref_34) 2013; 342 ref_24 ref_23 Costanza (ref_1) 1998; 25 ref_3 ref_2 Heyman (ref_28) 2007; 30 MacMillan (ref_13) 2004; 27 Collin (ref_32) 2012; 4 ref_27 Giri (ref_18) 2011; 20 Stumpf (ref_29) 2003; 48 ref_9 ref_8 Dribault (ref_17) 2012; 4 ref_5 Johnston (ref_16) 2008; 28 Gong (ref_19) 2010; 53 |
| References_xml | – ident: ref_9 – volume: 20 start-page: 177 year: 1981 ident: ref_33 article-title: Optical properties of the clearest natural waters (200–800 nm) publication-title: Appl. Opt. doi: 10.1364/AO.20.000177 – ident: ref_5 – ident: ref_3 – ident: ref_24 – volume: 70 start-page: 605 year: 2004 ident: ref_11 article-title: A complete high-resolution coastline of Antarctica extracted from orthorectified Radarsat SAR imagery publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.70.5.605 – volume: 51 start-page: 5 year: 2004 ident: ref_12 article-title: An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series publication-title: Deep Sea Res. II doi: 10.1016/j.dsr2.2003.11.001 – volume: 28 start-page: 1028 year: 2008 ident: ref_16 article-title: Assessing the use of multiseason Quickbird imagery for mapping invasive species in a Lake Erie coastal marsh publication-title: Wetlands doi: 10.1672/08-34.1 – volume: 4 start-page: 1425 year: 2012 ident: ref_30 article-title: Towards deeper measurements of tropical reefscape structure using the WorldView-2 spaceborne sensor publication-title: Remote Sens. doi: 10.3390/rs4051425 – volume: 30 start-page: 37 year: 2007 ident: ref_28 article-title: Low-cost bathymetric mapping for tropical marine conservation—A focus on reef fish spawning aggregation sites publication-title: Mar. Geod. doi: 10.1080/01490410701295996 – volume: 239 start-page: 93 year: 2002 ident: ref_25 article-title: Recovery of coral populations after the 1998 bleaching on Shiraho Reef, in the southern Ryukyus, NW Pacific publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps239093 – volume: 91 start-page: 432 year: 2004 ident: ref_15 article-title: Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.04.005 – volume: 8 start-page: 7973 year: 2008 ident: ref_21 article-title: Horizontal positional accuracy of Google Earth’s high-resolution imagery Archive publication-title: Sensors doi: 10.3390/s8127973 – ident: ref_23 – volume: 342 start-page: 850 year: 2013 ident: ref_34 article-title: High-resolution global maps of 21st-century forest cover change publication-title: Science doi: 10.1126/science.1244693 – ident: ref_35 doi: 10.1109/IGARSS.2011.6050017 – volume: 4 start-page: 3244 year: 2012 ident: ref_32 article-title: Enhancing coral health detection using spectral diversity indices from WorldView-2 imagery and machine learners publication-title: Remote Sens. doi: 10.3390/rs4103244 – ident: ref_8 – volume: 31 start-page: 1379 year: 2010 ident: ref_20 article-title: Removing shadows from Google Earth images publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903475316 – volume: 5 start-page: 3583 year: 2013 ident: ref_14 article-title: Bridging ridge-to-reef patches: Seamless classification of the coast using very high resolution satellite publication-title: Remote Sens. doi: 10.3390/rs5073583 – ident: ref_27 – ident: ref_2 – volume: 63 start-page: 254 year: 2007 ident: ref_4 article-title: The coasts of our world: Ecological, economic and social importance publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2006.10.022 – volume: 309 start-page: 1036 year: 2005 ident: ref_6 article-title: Social-ecological resilience to coastal disasters publication-title: Science doi: 10.1126/science.1112122 – ident: ref_10 – volume: 27 start-page: 703 year: 2004 ident: ref_13 article-title: Monitoring the TOPEX and Jason-1 microwave radiometers with GPS and VLBI wet zenith path delays publication-title: Mar. Geod. doi: 10.1080/01490410490904780 – volume: 53 start-page: 1036 year: 2010 ident: ref_19 article-title: China’s wetland change (1990–2000) determined by remote sensing publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-010-4002-3 – ident: ref_31 doi: 10.1201/9781420055139 – volume: 25 start-page: 3 year: 1998 ident: ref_1 article-title: The value of the world’s ecosystem services and natural capital publication-title: Ecol. Econ. doi: 10.1016/S0921-8009(98)00020-2 – volume: 48 start-page: 547 year: 2003 ident: ref_29 article-title: Determination of water depth with high-resolution satellite imagery over variable bottom types publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2003.48.1_part_2.0547 – volume: 4 start-page: 1887 year: 2012 ident: ref_17 article-title: Monitoring seasonal hydrological dynamics of minerotrophic peatlands using multi-date GeoEye-1 very high resolution imagery and object-based classification publication-title: Remote Sens. doi: 10.3390/rs4071887 – volume: 26 start-page: 899 year: 2011 ident: ref_7 article-title: Spatial resilience: Integrating landscape ecology, resilience, and sustainability publication-title: Landsc. Ecol. doi: 10.1007/s10980-011-9623-1 – volume: 5 start-page: 6026 year: 2013 ident: ref_22 article-title: Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping publication-title: Remote Sens. doi: 10.3390/rs5116026 – volume: 10 start-page: 767 year: 2001 ident: ref_26 article-title: Rotation, scale, and translation resilient watermarking for images publication-title: IEEE Trans. Imag. Process. doi: 10.1109/83.918569 – volume: 20 start-page: 154 year: 2011 ident: ref_18 article-title: Status and distribution of mangrove forests of the world using earth observation satellite data publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-8238.2010.00584.x |
| SSID | ssj0000913840 |
| Score | 2.1213582 |
| Snippet | Google Earth (GE) provides very high resolution (VHR) natural-colored (red-green-blue, RGB) images based on commercial spaceborne sensors over worldwide... |
| SourceID | doaj hal proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1157 |
| SubjectTerms | Acoustics bathymetry Biodiversity and Ecology Bioinformatics Coastal Coastal areas coastal mapping Coastal zone Coastal zone management coasts Computer Science data collection Earth Ecology, environment Ecosystems Electromagnetism Engineering Sciences Environment and Society Environmental Engineering Environmental Sciences Geography Global Changes Google Earth Humanities and Social Sciences Image Processing Internet Japan Land cover Life Sciences Machine Learning Mapping Methodology Modeling and Simulation Neural and Evolutionary Computing Ocean floor Optics Photonic QuickBird Sea beds Signal and Image processing stakeholders Statistics very high resolution visible Water depth |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQhQQcUFtALJTKoJ4QUZPYju1j6d8eSoX4Kb1Fjj3eXVRlq91spb4Nz8KTMZOkqy1qxYVDcohHlj0Tz8ynTL5hbAejNg5RKY5HuCqLkCYmCp9Q7zihRYZ-ObbNJvTpqTk_t59XWn1RTVhHD9wpbteCCiCcV6byRLTicuXxlBlndAiYDJP3xaxnBUy1PthmAqFL90OeQFy_O_k5miB0J26ZWyGoZerHwDKmOsi_3HEbY47W2dM-OeR73aI22AOoN9mjvk_5-HqTPTmbzBedxPwZO_7kiF1hxM-GX_gPTBpn_AAum_EH_hVcBYG7OvATuu1ToSZvywN-_zqeTkcXwA9x72N-4Br3nH0_Ovy2P0z6xgiJVyJtEoRp2ueC2J-kNwH3r6tCyVhgQIZMVaizGDINNnexcNYCJm1S-kLpCsM5OPGCrdXTGl4yHnMoLEAao8ulylxlIFRGRVPlqZc2HbD3N7oqfc8aTs0rLkpED6TYckWxA7azFL7syDLuFvtISl-KEMN1-wDtXvZ2L_9l9wF7hya7Ncdw76SkZ4j6cotw-yobsK0bi5b92ZyXqDSFl6SFvF0O46miTyWuhukCZbQ2RG2m0vtlELzRPOglX_2PDb1mjzEZk12pzBZba2YLeMMe-qtmMp9tt6_3H9km_A4 priority: 102 providerName: Directory of Open Access Journals |
| Title | Mapping VHR Water Depth, Seabed and Land Cover Using Google Earth Data |
| URI | https://www.proquest.com/docview/1645164457 https://www.proquest.com/docview/1778018050 https://www.proquest.com/docview/2305164030 https://hal.science/hal-01429027 https://doaj.org/article/9e5de3ac58bc4185a25c2198a87dd974 |
| Volume | 3 |
| WOSCitedRecordID | wos000358934300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: PCBAR dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: M7S dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BiwQceBQQgbIyqCdE1GwSx84J9bHLIrWrqIXScokc29ldVCXLJluJC7-dmSS7UARcOMSHeOQ8xp6Zz5l8A7CDXhu7KBVHI1wNI-O5Mg-0S7XjAhH00S7nTbEJMR7L8_M46Tbcqi6tcmUTG0NtSk175LsY1nM8Qi7ezr-6VDWKvq52JTRuwiaxJPhN6t7peo-FOC8RwLS_5QWI7ndnXyYzBPDEMHPNETV8_eheppQN-ZtRbjzN8P7_3uMDuNfFmGyvnRQP4YYttuB2V-58-m0L7p7NqmUrUT2C4bEikoYJOxudsE8Yey7YoZ3X0zfs1KrMGqYKw46oOaB8T9ZkGbB3ZTm5tGyAU2_KDlWtHsPH4eDDwcjtyiu4mgde7SLYE9oPiEMq1NL4nhRZxMM8Qrdu-zyLLc9NX9jYV3mk4thi6BeGOuIiw6DAquAJbBRlYZ8Cy30bxdZ6ea58fAUqk9Zkkucy8z0dxp4Dr1fvOtUd9ziVwLhMEYOQYtJfFOPAzlp43lJu_Flsn5S2FiGe7OZEuZik3bJL8RmMDZTmMtNE06N8rtFGSyWFMQilHHiFKr82xmjvKKVziB39GEH7Vd-B7ZW6026FV-lPXTvwct2Na5M-uKjClkuUEUISQRr3_i6DEJDGQVv77N-XeQ53MFgL21SabdioF0v7Am7pq3pWLXqwuT8YJye9Zk-h1ywDar8PsE34Z-xP3h8nFz8AUREPNQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VglQ48FFAGAosqFwQVp2117s-IFSahlRNI0RL6c2s1-skqLJD7BT1T_EbmbGdQBFw64GDffCO1rL9PG_Gnn0DsImsjUNUimMwXQ3C1HNV5huXesf50u-gX87qZhNyOFQnJ9H7Ffi-WAtDZZULn1g76rQw9I18C8N6gVsg5JvpV5e6RtHf1UULjQYW-_b8G6Zs5eu9Lj7fF5z3do92-m7bVcA1wvcqF3McabhP0kmBUSn3lExCEWQhspntiCSyIks70kZcZ6GOIosRTxCYUMgEudBqH-e9AlcD8v51qeDh8psOaWxiwtQsA_T9yNuafBlNfC8gRZsLxFf3B0A6G1P15W8kUDNb79b_dk9uw802hmbbDejvwIrN12Gtbec-Pl-HG8eTct5YlHehd6BJhGLEjvsf2CeMrWesa6fV-BU7tDqxKdN5yga026F6VlZXUbB3RTE6tWwXX60x6-pK34OPl3JR92E1L3L7AFjGbRhZ62WZ5njLdaJsmiiRqYR7Jog8B14unm1sWm11avFxGmOORUCIfwGCA5tL42kjKfJns7cEkqUJ6YDXB4rZKG7dSozXkFpfG6ESQzJEmguDHKS0kmmKqaIDzxFiF-bobw9iOoa5MY88Ls86Dmws4BW3HqyMf2LLgWfLYfQ99ENJ57aYo42UigTghPd3G0xxaR7kkof_Ps1TWOsfHQziwd5w_xFcx8A0aMqGNmC1ms3tY7hmzqpJOXtSv3QMPl82on8AWFtiqA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgngceJQiDAUWVC4Iq87a610fECpNQ6qGKIJSKi7uer1Ogqo4JE5R_xq_jhk_AkXArQcO9sEerWX72_nmW49nADaRtfEUpeIYlKtBmHquynzjUu84X_ot9MtZ2WxC9vvq6CgarMD35l8YSqtsfGLpqNPc0Br5Fob1ArcABXxWp0UM2p3X068udZCiL61NO40KIvv27BvKt_mrvTa-6-ecd3YPdrpu3WHANcL3Chf1jjTcpzJKgVEp95RMQhFkITKbbYkksiJLW9JGXGehjiKL0U8QmFDIBHnRah_HvQSXJWpMEn4D8Xm5vkP1NlE8Vb8E-n7kbY2_DMe-F1B1m3MkWPYKQGobUSbmb4RQslzn1v_8fG7DzTq2ZtvVZLgDK3ayBtfqNu-jszW4cTieLyqL-V3ovNNUnGLIDrvv2SeMuWesbafF6CX7YHViU6YnKevRbofyXFmZXcHe5vnwxLJdnHIj1taFXoePF3JT92B1kk_sfWAZt2FkrZdlmuPj14myaaJEphLumSDyHHjRvOfY1DXXqfXHSYzai0AR_wIKBzaXxtOq1Mifzd4QYJYmVB-8PJDPhnHtbmK8h9T62giVGCpPpLkwyE1KK5mmKCEdeIZwOzdGd7sX0zHUzDzyuDxtObDRQC2uPds8_okzB54uT6NPog9NemLzBdpIqagwnPD-boPSl8ZBjnnw78s8gasI5Li3199_CNcxXg2qbKINWC1mC_sIrpjTYjyfPS7nH4Pjiwb0DxzFa4s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+VHR+Water+Depth%2C+Seabed+and+Land+Cover+Using+Google+Earth+Data&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Collin%2C+Antoine&rft.au=Nadaoka%2C+Kazuo&rft.au=Nakamura%2C+Takashi&rft.date=2014-12-01&rft.eissn=2220-9964&rft.volume=3&rft.issue=4&rft.spage=1157&rft.epage=1179&rft_id=info:doi/10.3390%2Fijgi3041157&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon |