Tumor growth prediction with reaction-diffusion and hyperelastic biomechanical model by physiological data fusion

•Tumor growth prediction with physiological data fusion.•A tumor growth model with reaction-diffusion and hyperelastic biomechanical model.•A derivative-free global optimization algorithm for model parameter estimation.•Physiological data fusion of contrast-enhanced CT and FDG-PET images.•Average pr...

Full description

Saved in:
Bibliographic Details
Published in:Medical image analysis Vol. 25; no. 1; pp. 72 - 85
Main Authors: Wong, Ken C.L., Summers, Ronald M., Kebebew, Electron, Yao, Jianhua
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.10.2015
Subjects:
ISSN:1361-8415, 1361-8423
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Tumor growth prediction with physiological data fusion.•A tumor growth model with reaction-diffusion and hyperelastic biomechanical model.•A derivative-free global optimization algorithm for model parameter estimation.•Physiological data fusion of contrast-enhanced CT and FDG-PET images.•Average prediction performance: Dice = 84.6%, relative volume difference = 14.2%. [Display omitted] The goal of tumor growth prediction is to model the tumor growth process, which can be achieved by physiological modeling and model personalization from clinical measurements. Although image-driven frameworks have been proposed with promising results, several issues such as infinitesimal strain assumptions, complicated personalization procedures, and the lack of functional information, may limit their prediction accuracy. In view of these issues, we propose a framework for pancreatic neuroendocrine tumor growth prediction, which comprises a FEM-based tumor growth model with coupled reaction-diffusion equation and nonlinear biomechanics. Physiological data fusion of structural and functional images is used to improve the subject-specificity of model personalization, and a derivative-free global optimization algorithm is adopted to facilitate the complicated model and accommodate flexible choices of objective functions. With this flexibility, we propose an objective function accounting for both the tumor volume difference and the root-mean-squared error of intracellular volume fractions. Experiments were performed on synthetic and clinical data to verify the parameter estimation capability and the prediction performance. Comparisons of using different biomechanical models and objective functions were also performed. From the experimental results of eight patient data sets, the average recall, precision, Dice coefficient, and relative volume difference between predicted and measured tumor volumes were 84.5 ± 6.9%, 85.8 ± 8.2%, 84.6 ± 1.7%, and 14.2 ± 8.4%, respectively.
AbstractList The goal of tumor growth prediction is to model the tumor growth process, which can be achieved by physiological modeling and model personalization from clinical measurements. Although image-driven frameworks have been proposed with promising results, several issues such as infinitesimal strain assumptions, complicated personalization procedures, and the lack of functional information, may limit their prediction accuracy. In view of these issues, we propose a framework for pancreatic neuroendocrine tumor growth prediction, which comprises a FEM-based tumor growth model with coupled reaction-diffusion equation and nonlinear biomechanics. Physiological data fusion of structural and functional images is used to improve the subject-specificity of model personalization, and a derivative-free global optimization algorithm is adopted to facilitate the complicated model and accommodate flexible choices of objective functions. With this flexibility, we propose an objective function accounting for both the tumor volume difference and the root-mean-squared error of intracellular volume fractions. Experiments were performed on synthetic and clinical data to verify the parameter estimation capability and the prediction performance. Comparisons of using different biomechanical models and objective functions were also performed. From the experimental results of eight patient data sets, the average recall, precision, Dice coefficient, and relative volume difference between predicted and measured tumor volumes were 84.5 ± 6.9%, 85.8 ± 8.2%, 84.6 ± 1.7%, and 14.2 ± 8.4%, respectively.
•Tumor growth prediction with physiological data fusion.•A tumor growth model with reaction-diffusion and hyperelastic biomechanical model.•A derivative-free global optimization algorithm for model parameter estimation.•Physiological data fusion of contrast-enhanced CT and FDG-PET images.•Average prediction performance: Dice = 84.6%, relative volume difference = 14.2%. [Display omitted] The goal of tumor growth prediction is to model the tumor growth process, which can be achieved by physiological modeling and model personalization from clinical measurements. Although image-driven frameworks have been proposed with promising results, several issues such as infinitesimal strain assumptions, complicated personalization procedures, and the lack of functional information, may limit their prediction accuracy. In view of these issues, we propose a framework for pancreatic neuroendocrine tumor growth prediction, which comprises a FEM-based tumor growth model with coupled reaction-diffusion equation and nonlinear biomechanics. Physiological data fusion of structural and functional images is used to improve the subject-specificity of model personalization, and a derivative-free global optimization algorithm is adopted to facilitate the complicated model and accommodate flexible choices of objective functions. With this flexibility, we propose an objective function accounting for both the tumor volume difference and the root-mean-squared error of intracellular volume fractions. Experiments were performed on synthetic and clinical data to verify the parameter estimation capability and the prediction performance. Comparisons of using different biomechanical models and objective functions were also performed. From the experimental results of eight patient data sets, the average recall, precision, Dice coefficient, and relative volume difference between predicted and measured tumor volumes were 84.5 ± 6.9%, 85.8 ± 8.2%, 84.6 ± 1.7%, and 14.2 ± 8.4%, respectively.
The goal of tumor growth prediction is to model the tumor growth process, which can be achieved by physiological modeling and model personalization from clinical measurements. Although image-driven frameworks have been proposed with promising results, several issues such as infinitesimal strain assumptions, complicated personalization procedures, and the lack of functional information, may limit their prediction accuracy. In view of these issues, we propose a framework for pancreatic neuroendocrine tumor growth prediction, which comprises a FEM-based tumor growth model with coupled reaction-diffusion equation and nonlinear biomechanics. Physiological data fusion of structural and functional images is used to improve the subject-specificity of model personalization, and a derivative-free global optimization algorithm is adopted to facilitate the complicated model and accommodate flexible choices of objective functions. With this flexibility, we propose an objective function accounting for both the tumor volume difference and the root-mean-squared error of intracellular volume fractions. Experiments were performed on synthetic and clinical data to verify the parameter estimation capability and the prediction performance. Comparisons of using different biomechanical models and objective functions were also performed. From the experimental results of eight patient data sets, the average recall, precision, Dice coefficient, and relative volume difference between predicted and measured tumor volumes were 84.5±6.9%, 85.8±8.2%, 84.6±1.7%, and 14.2±8.4%, respectively.
Author Yao, Jianhua
Summers, Ronald M.
Wong, Ken C.L.
Kebebew, Electron
AuthorAffiliation b Endocrine Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
a Clinical Image Processing Service, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
AuthorAffiliation_xml – name: b Endocrine Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
– name: a Clinical Image Processing Service, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
Author_xml – sequence: 1
  givenname: Ken C.L.
  surname: Wong
  fullname: Wong, Ken C.L.
  email: ken.wong@nih.gov
  organization: Clinical Image Processing Service, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
– sequence: 2
  givenname: Ronald M.
  surname: Summers
  fullname: Summers, Ronald M.
  email: rsummers@cc.nih.gov
  organization: Clinical Image Processing Service, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
– sequence: 3
  givenname: Electron
  surname: Kebebew
  fullname: Kebebew, Electron
  email: kebebewe@mail.nih.gov
  organization: Endocrine Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
– sequence: 4
  givenname: Jianhua
  surname: Yao
  fullname: Yao, Jianhua
  email: jyao@cc.nih.gov
  organization: Clinical Image Processing Service, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25962846$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctq3DAUFSWlebRfUChedmPnSrJsz6KFEvoIBLpJ10KP67EG23IkO2H-PvJMEtouspLuvecB55yTk9GPSMhHCgUFWl3uigGtUwUDKgooCwD2hpxRXtG8KRk_eflTcUrOY9wBQF2W8I6cMrGpWFNWZ-Tudhl8yLbBP8xdNoWkaGbnx-zBpTmgOky5dW27xHWvRpt1-wkD9irOzmTa-QFNp0ZnVJ8N3mKf6X02dfuE7_32sLZqVtlR4T1526o-4oen94L8-fH99upXfvP75_XVt5vcCLaZ87atwVisoeG12dRGMdUwBE51JURla624aQRyW2JrDQeutaCK6VagblfgBfl61J0WnYIyOM5B9XIKblBhL71y8t_L6Dq59feyFCVUNU8Cn58Egr9bMM5ycNFg36sR_RIlrUFAyv4A_fS314vJc84JsDkCTPAxBmylcbNao03WrpcU5Nqp3MlDp3LtVEIpU6eJy__jPsu_zvpyZGHK-N5hkNE4HE0CBjSztN69yn8EghvAjg
CitedBy_id crossref_primary_10_1016_j_camwa_2019_03_047
crossref_primary_10_1109_TMI_2017_2774044
crossref_primary_10_1109_TMI_2025_3533038
crossref_primary_10_1016_j_mechrescom_2020_103539
crossref_primary_10_3390_diagnostics12112639
crossref_primary_10_1016_j_biosystems_2021_104377
crossref_primary_10_1016_j_compbiomed_2022_105922
crossref_primary_10_1109_ACCESS_2018_2839681
crossref_primary_10_1146_annurev_bioeng_062117_121105
crossref_primary_10_1016_j_cma_2018_12_008
crossref_primary_10_1371_journal_pone_0260108
crossref_primary_10_1007_s00466_019_01744_w
crossref_primary_10_1016_j_asoc_2019_04_034
crossref_primary_10_1016_j_media_2024_103240
crossref_primary_10_1016_j_neo_2020_10_011
crossref_primary_10_1038_s41598_020_77397_0
crossref_primary_10_1109_TMI_2016_2597313
crossref_primary_10_1088_0031_9155_61_21_R344
crossref_primary_10_1109_TBME_2021_3085523
crossref_primary_10_1038_s41596_021_00617_y
crossref_primary_10_1016_j_cma_2016_07_010
Cites_doi 10.1016/j.neuroimage.2006.01.015
10.1109/TMI.2003.815867
10.1109/10.310090
10.1007/s00330-008-0924-y
10.1016/S0720-048X(99)00012-1
10.1148/radiol.10090908
10.1093/comjnl/7.4.308
10.1007/s002590050256
10.1007/s00285-007-0139-x
10.1001/archsurg.141.8.765
10.1038/nature04648
10.1038/35098076
10.1016/S0022-5193(03)00244-3
10.1007/s00259-004-1687-6
10.1109/TMI.2009.2026413
10.1038/ncb2548
10.1109/TBME.2012.2222027
10.1634/theoncologist.2008-0259
10.1158/1078-0432.CCR-04-2626
10.1016/j.surg.2007.09.012
10.1016/j.mechrescom.2012.02.007
10.1109/TMI.2005.857217
10.1002/jcp.22766
10.1148/121.2.379
10.1016/j.media.2014.02.005
10.1016/j.jtbi.2008.04.011
10.1016/S0020-7225(02)00014-9
10.1109/42.790458
10.1529/biophysj.105.060640
10.1148/radiol.12112458
10.1038/nrd3181
10.1073/pnas.1213353109
10.1109/TMI.2011.2181857
10.1023/A:1017930332101
10.1038/nrc2808
ContentType Journal Article
Copyright 2015
Published by Elsevier B.V.
Copyright_xml – notice: 2015
– notice: Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.media.2015.04.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 85
ExternalDocumentID PMC4540673
25962846
10_1016_j_media_2015_04_002
S1361841515000523
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 CL999999
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-ff70cde70837c97ca2a82e031b6556d7ba3c85e3d4efdc303bb51a2bf5ebf2e03
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360864700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
IngestDate Tue Sep 30 16:39:10 EDT 2025
Thu Sep 25 08:36:47 EDT 2025
Mon Jul 21 05:57:27 EDT 2025
Sat Nov 29 04:06:01 EST 2025
Tue Nov 18 21:49:40 EST 2025
Fri Feb 23 02:28:19 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nonlinear solid mechanics
Model personalization
Tumor growth prediction
Physiological data fusion
Derivative-free optimization
Language English
License Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c529t-ff70cde70837c97ca2a82e031b6556d7ba3c85e3d4efdc303bb51a2bf5ebf2e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1016/j.media.2015.04.002
PMID 25962846
PQID 1705001573
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4540673
proquest_miscellaneous_1705001573
pubmed_primary_25962846
crossref_citationtrail_10_1016_j_media_2015_04_002
crossref_primary_10_1016_j_media_2015_04_002
elsevier_sciencedirect_doi_10_1016_j_media_2015_04_002
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gatenby, Gawlinski (bib0017) 1996; 56
Massoptier, Casciaro (bib0033) 2008; 18
Han, Bayouth, Song, Taurani, Sonka, Buatti, Wu (bib0021) 2011
Fung (bib0015) 1993
Kam, Rejniak, Anderson (bib0025) 2012; 227
Hogea, Davatzikos, Biros (bib0022) 2008; 56
Menzel, Kuhl (bib0035) 2012; 42
Menze, Van Leemput, Honkela, Konukoglu, Weber, Ayache (bib0034) 2011
Alarcón, Byrne, Maini (bib0001) 2003; 225
Kazanjian, Reber, Hines (bib0026) 2006; 141
Konukoglu, Clatz, Menze, Stieltjes, Weber, Mandonnet (bib0028) 2010; 29
Marino, Hogue, Ray, Kirschner (bib0032) 2008; 254
Kormano, Dean (bib0029) 1976; 121
Pluim, Maintz, Viergever (bib0039) 2003; 22
Fang, Boas (bib0013) 2009
Sadato, Tsuchida, Nakaumra, Waki, Uematsu, Takahashi (bib0045) 1998; 25
Hamamci, Kucuk, Karaman, Engin, Unal (bib0020) 2012; 31
West, Brown, Enquist (bib0049) 2001; 413
Clatz, Sermesant, Bondiau, Delingette, Warfield, Malandain, Ayache (bib0009) 2005; 24
Nelder, Mead (bib0038) 1965; 7
Been, Suurmeijer, Cobben, Jager, Hoekstra, Elsinga (bib0005) 2004; 31
Nacif, Kawel, Lee, Chen, Yao, Zavodni (bib0037) 2012; 264
Kelloff, Hoffman, Johnson, Scher, Siegel, Cheng (bib0027) 2005; 11
Clayton, Lindon, Cloarec, Antti, Charuel, Hanton (bib0010) 2006; 440
(bib0042) 2007
Friedl, Locker, Sahai, Segall (bib0014) 2012; 14
Conn, Scheinberg, Vicente (bib0011) 2009; Vol. 8
Yushkevich, Piven, Hazlett, Smith, Ho, Gee (bib0050) 2006; 31
Ambrosi, Mollica (bib0002) 2002; 40
Liu, Sadowski, Weisbrod, Kebebew, Summers, Yao (bib0031) 2014; 18
Graziano, Preziosi (bib0019) 2007
Blansfield, Choyke, Morita, Choyke, Pingpank, Alexander (bib0006) 2007; 142
Miles (bib0036) 1999; 30
Bae (bib0003) 2010; 256
Rogers, McCulloch (bib0043) 1994; 41
Byrne (bib0007) 2010; 10
Stylianopoulos, Martin, Chauhan, Jain, Diop-Frimpong, Bardeesy (bib0047) 2012; 109
Thie (bib0048) 2004; 45
Bathe (bib0004) 1996
Chen, Summers, Yao (bib0008) 2013; 60
Rowan (bib0044) 1990
Powell (bib0040) 2009
Kyriacou, Davatzikos, Zinreich, Bryan (bib0030) 1999; 18
Gablonsky, Kelley (bib0016) 2001; 21
Germann, Stanfield (bib0018) 2005
Ehehalt, Saeger, Schmidt, Grützmann (bib0012) 2009; 14
Holzapfel (bib0023) 2000
Schilsky (bib0046) 2010; 9
Rao (bib0041) 2009
Jiang, Pjesivac-Grbovic, Cantrell, Freyer (bib0024) 2005; 89
Graziano (10.1016/j.media.2015.04.002_bib0019) 2007
Nacif (10.1016/j.media.2015.04.002_bib0037) 2012; 264
Stylianopoulos (10.1016/j.media.2015.04.002_bib0047) 2012; 109
Marino (10.1016/j.media.2015.04.002_bib0032) 2008; 254
Conn (10.1016/j.media.2015.04.002_bib0011) 2009; Vol. 8
Holzapfel (10.1016/j.media.2015.04.002_bib0023) 2000
Fang (10.1016/j.media.2015.04.002_bib0013) 2009
Kam (10.1016/j.media.2015.04.002_bib0025) 2012; 227
Miles (10.1016/j.media.2015.04.002_bib0036) 1999; 30
Nelder (10.1016/j.media.2015.04.002_bib0038) 1965; 7
(10.1016/j.media.2015.04.002_bib0042) 2007
Schilsky (10.1016/j.media.2015.04.002_bib0046) 2010; 9
Bae (10.1016/j.media.2015.04.002_bib0003) 2010; 256
Been (10.1016/j.media.2015.04.002_bib0005) 2004; 31
Kazanjian (10.1016/j.media.2015.04.002_bib0026) 2006; 141
Germann (10.1016/j.media.2015.04.002_bib0018) 2005
Clayton (10.1016/j.media.2015.04.002_bib0010) 2006; 440
Ambrosi (10.1016/j.media.2015.04.002_bib0002) 2002; 40
Gatenby (10.1016/j.media.2015.04.002_bib0017) 1996; 56
Kelloff (10.1016/j.media.2015.04.002_bib0027) 2005; 11
Bathe (10.1016/j.media.2015.04.002_bib0004) 1996
Alarcón (10.1016/j.media.2015.04.002_bib0001) 2003; 225
Jiang (10.1016/j.media.2015.04.002_bib0024) 2005; 89
Hamamci (10.1016/j.media.2015.04.002_bib0020) 2012; 31
Byrne (10.1016/j.media.2015.04.002_bib0007) 2010; 10
Fung (10.1016/j.media.2015.04.002_bib0015) 1993
Rao (10.1016/j.media.2015.04.002_bib0041) 2009
Rowan (10.1016/j.media.2015.04.002_bib0044) 1990
Clatz (10.1016/j.media.2015.04.002_bib0009) 2005; 24
Sadato (10.1016/j.media.2015.04.002_bib0045) 1998; 25
Kyriacou (10.1016/j.media.2015.04.002_bib0030) 1999; 18
Menze (10.1016/j.media.2015.04.002_bib0034) 2011
Yushkevich (10.1016/j.media.2015.04.002_bib0050) 2006; 31
Kormano (10.1016/j.media.2015.04.002_bib0029) 1976; 121
Pluim (10.1016/j.media.2015.04.002_bib0039) 2003; 22
Powell (10.1016/j.media.2015.04.002_bib0040) 2009
Blansfield (10.1016/j.media.2015.04.002_bib0006) 2007; 142
Massoptier (10.1016/j.media.2015.04.002_bib0033) 2008; 18
Han (10.1016/j.media.2015.04.002_bib0021) 2011
Liu (10.1016/j.media.2015.04.002_bib0031) 2014; 18
Ehehalt (10.1016/j.media.2015.04.002_bib0012) 2009; 14
Menzel (10.1016/j.media.2015.04.002_bib0035) 2012; 42
Konukoglu (10.1016/j.media.2015.04.002_bib0028) 2010; 29
Rogers (10.1016/j.media.2015.04.002_bib0043) 1994; 41
Thie (10.1016/j.media.2015.04.002_bib0048) 2004; 45
Hogea (10.1016/j.media.2015.04.002_bib0022) 2008; 56
West (10.1016/j.media.2015.04.002_bib0049) 2001; 413
Chen (10.1016/j.media.2015.04.002_bib0008) 2013; 60
Friedl (10.1016/j.media.2015.04.002_bib0014) 2012; 14
Gablonsky (10.1016/j.media.2015.04.002_bib0016) 2001; 21
References_xml – start-page: 1142
  year: 2009
  end-page: 1145
  ident: bib0013
  article-title: Tetrahedral mesh generation from volumetric binary and grayscale images
  publication-title: IEEE International Symposium on Biomedical Imaging 2009
– volume: 254
  start-page: 178
  year: 2008
  end-page: 196
  ident: bib0032
  article-title: A methodology for performing global uncertainty and sensitivity analysis in systems biology
  publication-title: J. Theor. Biol.
– year: 2005
  ident: bib0018
  publication-title: Principles of Human Physiology
– year: 1990
  ident: bib0044
  publication-title: Functional Stability Analysis of Numerical Algorithms Ph.D. thesis
– volume: 60
  start-page: 169
  year: 2013
  end-page: 173
  ident: bib0008
  article-title: Kidney tumor growth prediction by coupling reaction-diffusion and biomechanical model
  publication-title: IEEE Trans. Biomed. Eng.
– year: 1993
  ident: bib0015
  publication-title: Biomechanics: Mechanical Properties of Living Tissues
– volume: 121
  start-page: 379
  year: 1976
  end-page: 382
  ident: bib0029
  article-title: Extravascular contrast material: the major component of contrast enhancement
  publication-title: Radiology
– volume: 225
  start-page: 257
  year: 2003
  end-page: 274
  ident: bib0001
  article-title: A cellular automaton model for tumour growth in inhomogeneous environment
  publication-title: J. Theor. Biol.
– volume: 56
  start-page: 793
  year: 2008
  end-page: 825
  ident: bib0022
  article-title: An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects
  publication-title: J. Math. Biol.
– volume: 142
  start-page: 814
  year: 2007
  end-page: 818.e2
  ident: bib0006
  article-title: Clinical, genetic and radiographic analysis of 108 patients with von Hippel-Lindau disease (VHL) manifested by pancreatic neuroendocrine tumors (PNETs)
  publication-title: Surgery
– volume: 31
  start-page: 1659
  year: 2004
  end-page: 1672
  ident: bib0005
  article-title: [18F] FLT-PET in oncology: Current status and opportunities
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: bib0038
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– volume: Vol. 8
  year: 2009
  ident: bib0011
  publication-title: Introduction to Derivative-Free Optimization
– volume: 109
  start-page: 15101
  year: 2012
  end-page: 15108
  ident: bib0047
  article-title: Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 413
  start-page: 628
  year: 2001
  end-page: 631
  ident: bib0049
  article-title: A general model for ontogenetic growth
  publication-title: Nature
– volume: 56
  start-page: 5745
  year: 1996
  end-page: 5753
  ident: bib0017
  article-title: A reaction-diffusion model of cancer invasion
  publication-title: Cancer Res.
– volume: 29
  start-page: 77
  year: 2010
  end-page: 95
  ident: bib0028
  article-title: Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations
  publication-title: IEEE Trans. Med. Imag.
– volume: 18
  start-page: 580
  year: 1999
  end-page: 592
  ident: bib0030
  article-title: Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model
  publication-title: IEEE Trans. Med. Imag.
– volume: 10
  start-page: 221
  year: 2010
  end-page: 230
  ident: bib0007
  article-title: Dissecting cancer through mathematics: from the cell to the animal model
  publication-title: Nat. Rev. Cancer
– volume: 141
  start-page: 765
  year: 2006
  end-page: 770
  ident: bib0026
  article-title: Resection of pancreatic neuroendocrine tumors: results of 70 cases
  publication-title: Arch. Surg.
– volume: 9
  start-page: 363
  year: 2010
  end-page: 366
  ident: bib0046
  article-title: Personalized medicine in oncology: The future is now
  publication-title: Nat. Rev. Drug Discov.
– volume: 24
  start-page: 1334
  year: 2005
  end-page: 1346
  ident: bib0009
  article-title: Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with biomechanical deformation
  publication-title: IEEE Trans. Med. Imag.
– year: 2009
  ident: bib0040
  publication-title: The BOBYQA algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06
– volume: 18
  start-page: 1658
  year: 2008
  end-page: 1665
  ident: bib0033
  article-title: A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans
  publication-title: European Radiology
– volume: 14
  start-page: 777
  year: 2012
  end-page: 783
  ident: bib0014
  article-title: Classifying collective cancer cell invasion
  publication-title: Nat. Cell Biol.
– year: 2000
  ident: bib0023
  publication-title: Nonlinear Solid Mechanics: A Continuum Approach for Engineering
– volume: 18
  start-page: 555
  year: 2014
  end-page: 566
  ident: bib0031
  article-title: Patient specific tumor growth prediction using multimodal images
  publication-title: Med. Image Anal.
– volume: 264
  start-page: 876
  year: 2012
  end-page: 883
  ident: bib0037
  article-title: Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT
  publication-title: Radiology
– volume: 440
  start-page: 1073
  year: 2006
  end-page: 1077
  ident: bib0010
  article-title: Pharmaco-metabonomic phenotyping and personalized drug treatment
  publication-title: Nature
– year: 2007
  ident: bib0042
  publication-title: SEER Survival Monograph: Cancer Survival Among Adults: U.S. SEER Program, 1988–2001, Patient and Tumor Characteristics
– volume: 30
  start-page: 198
  year: 1999
  end-page: 205
  ident: bib0036
  article-title: Tumour angiogenesis and its relation to contrast enhancement on computed tomography: A review
  publication-title: Eur. J. Radiol.
– volume: 31
  start-page: 790
  year: 2012
  end-page: 804
  ident: bib0020
  article-title: Tumor-cut: Segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications
  publication-title: IEEE Trans. Med. Imag.
– start-page: 263
  year: 2007
  end-page: 321
  ident: bib0019
  article-title: Mechanics in tumor growth
  publication-title: Modeling of Biological Materials
– volume: 22
  start-page: 986
  year: 2003
  end-page: 1004
  ident: bib0039
  article-title: Mutual-information-based registration of medical images: A survey
  publication-title: IEEE Trans. Med. Imag.
– volume: 89
  start-page: 3884
  year: 2005
  end-page: 3894
  ident: bib0024
  article-title: A multiscale model for avascular tumor growth
  publication-title: Biophys. J.
– volume: 41
  start-page: 743
  year: 1994
  end-page: 757
  ident: bib0043
  article-title: A collocation-Galerkin finite element model of cardiac action potential propagation
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 14
  start-page: 456
  year: 2009
  end-page: 467
  ident: bib0012
  article-title: Neuroendocrine tumors of the pancreas
  publication-title: Oncologist
– start-page: 735
  year: 2011
  end-page: 747
  ident: bib0034
  article-title: A generative approach for image-based modeling of tumor growth
  publication-title: Information Processing in Medical Imaging
– volume: 45
  start-page: 1431
  year: 2004
  end-page: 1434
  ident: bib0048
  article-title: Understanding the standardized uptake value, its methods, and implications for usage
  publication-title: J. Nucl. Med.
– volume: 256
  start-page: 32
  year: 2010
  end-page: 61
  ident: bib0003
  article-title: Intravenous contrast medium administration and scan timing at CT: Considerations and approaches
  publication-title: Radiology
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: bib0050
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: NeuroImage
– year: 1996
  ident: bib0004
  publication-title: Finite Element Procedures
– volume: 227
  start-page: 431
  year: 2012
  end-page: 438
  ident: bib0025
  article-title: Cellular modeling of cancer invasion: integration of
  publication-title: J. Cell Physiol.
– start-page: 245
  year: 2011
  end-page: 256
  ident: bib0021
  article-title: Globally optimal tumor segmentation in PET-CT images: A graph-based co-segmentation method
  publication-title: Information Processing in Medical Imaging
– volume: 25
  start-page: 559
  year: 1998
  end-page: 564
  ident: bib0045
  article-title: Non-invasive estimation of the net influx constant using the standardized uptake value for quantification of FDG uptake of tumours
  publication-title: Eur. J. Nucl. Med.
– volume: 40
  start-page: 1297
  year: 2002
  end-page: 1316
  ident: bib0002
  article-title: On the mechanics of a growing tumor
  publication-title: Int. J. Eng. Sci.
– year: 2009
  ident: bib0041
  publication-title: Engineering Optimization: Theory and Practice
– volume: 21
  start-page: 27
  year: 2001
  end-page: 37
  ident: bib0016
  article-title: A locally-biased form of the DIRECT algorithm
  publication-title: J. Global Optim.
– volume: 11
  start-page: 2785
  year: 2005
  end-page: 2808
  ident: bib0027
  article-title: Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development
  publication-title: Clin. Cancer Res.
– volume: 42
  start-page: 1
  year: 2012
  end-page: 14
  ident: bib0035
  article-title: Frontiers in growth and remodeling
  publication-title: Mech. Res. Commun.
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  ident: 10.1016/j.media.2015.04.002_bib0050
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 22
  start-page: 986
  issue: 8
  year: 2003
  ident: 10.1016/j.media.2015.04.002_bib0039
  article-title: Mutual-information-based registration of medical images: A survey
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2003.815867
– year: 1990
  ident: 10.1016/j.media.2015.04.002_bib0044
– volume: 41
  start-page: 743
  issue: 8
  year: 1994
  ident: 10.1016/j.media.2015.04.002_bib0043
  article-title: A collocation-Galerkin finite element model of cardiac action potential propagation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.310090
– volume: 18
  start-page: 1658
  issue: 8
  year: 2008
  ident: 10.1016/j.media.2015.04.002_bib0033
  article-title: A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans
  publication-title: European Radiology
  doi: 10.1007/s00330-008-0924-y
– volume: 30
  start-page: 198
  issue: 3
  year: 1999
  ident: 10.1016/j.media.2015.04.002_bib0036
  article-title: Tumour angiogenesis and its relation to contrast enhancement on computed tomography: A review
  publication-title: Eur. J. Radiol.
  doi: 10.1016/S0720-048X(99)00012-1
– volume: 256
  start-page: 32
  issue: 1
  year: 2010
  ident: 10.1016/j.media.2015.04.002_bib0003
  article-title: Intravenous contrast medium administration and scan timing at CT: Considerations and approaches
  publication-title: Radiology
  doi: 10.1148/radiol.10090908
– year: 1996
  ident: 10.1016/j.media.2015.04.002_bib0004
– start-page: 245
  year: 2011
  ident: 10.1016/j.media.2015.04.002_bib0021
  article-title: Globally optimal tumor segmentation in PET-CT images: A graph-based co-segmentation method
– volume: 7
  start-page: 308
  issue: 4
  year: 1965
  ident: 10.1016/j.media.2015.04.002_bib0038
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 25
  start-page: 559
  issue: 6
  year: 1998
  ident: 10.1016/j.media.2015.04.002_bib0045
  article-title: Non-invasive estimation of the net influx constant using the standardized uptake value for quantification of FDG uptake of tumours
  publication-title: Eur. J. Nucl. Med.
  doi: 10.1007/s002590050256
– start-page: 1142
  year: 2009
  ident: 10.1016/j.media.2015.04.002_bib0013
  article-title: Tetrahedral mesh generation from volumetric binary and grayscale images
– volume: 56
  start-page: 793
  issue: 6
  year: 2008
  ident: 10.1016/j.media.2015.04.002_bib0022
  article-title: An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-007-0139-x
– volume: 141
  start-page: 765
  issue: 8
  year: 2006
  ident: 10.1016/j.media.2015.04.002_bib0026
  article-title: Resection of pancreatic neuroendocrine tumors: results of 70 cases
  publication-title: Arch. Surg.
  doi: 10.1001/archsurg.141.8.765
– volume: 440
  start-page: 1073
  issue: 7087
  year: 2006
  ident: 10.1016/j.media.2015.04.002_bib0010
  article-title: Pharmaco-metabonomic phenotyping and personalized drug treatment
  publication-title: Nature
  doi: 10.1038/nature04648
– volume: 413
  start-page: 628
  issue: 6856
  year: 2001
  ident: 10.1016/j.media.2015.04.002_bib0049
  article-title: A general model for ontogenetic growth
  publication-title: Nature
  doi: 10.1038/35098076
– volume: 225
  start-page: 257
  issue: 2
  year: 2003
  ident: 10.1016/j.media.2015.04.002_bib0001
  article-title: A cellular automaton model for tumour growth in inhomogeneous environment
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(03)00244-3
– volume: 31
  start-page: 1659
  issue: 12
  year: 2004
  ident: 10.1016/j.media.2015.04.002_bib0005
  article-title: [18F] FLT-PET in oncology: Current status and opportunities
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-004-1687-6
– volume: 29
  start-page: 77
  issue: 1
  year: 2010
  ident: 10.1016/j.media.2015.04.002_bib0028
  article-title: Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2009.2026413
– volume: 14
  start-page: 777
  issue: 8
  year: 2012
  ident: 10.1016/j.media.2015.04.002_bib0014
  article-title: Classifying collective cancer cell invasion
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2548
– start-page: 263
  year: 2007
  ident: 10.1016/j.media.2015.04.002_bib0019
  article-title: Mechanics in tumor growth
– volume: 60
  start-page: 169
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2015.04.002_bib0008
  article-title: Kidney tumor growth prediction by coupling reaction-diffusion and biomechanical model
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2222027
– volume: 45
  start-page: 1431
  issue: 9
  year: 2004
  ident: 10.1016/j.media.2015.04.002_bib0048
  article-title: Understanding the standardized uptake value, its methods, and implications for usage
  publication-title: J. Nucl. Med.
– volume: 14
  start-page: 456
  issue: 5
  year: 2009
  ident: 10.1016/j.media.2015.04.002_bib0012
  article-title: Neuroendocrine tumors of the pancreas
  publication-title: Oncologist
  doi: 10.1634/theoncologist.2008-0259
– volume: 11
  start-page: 2785
  issue: 8
  year: 2005
  ident: 10.1016/j.media.2015.04.002_bib0027
  article-title: Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-04-2626
– volume: 142
  start-page: 814
  issue: 6
  year: 2007
  ident: 10.1016/j.media.2015.04.002_bib0006
  article-title: Clinical, genetic and radiographic analysis of 108 patients with von Hippel-Lindau disease (VHL) manifested by pancreatic neuroendocrine tumors (PNETs)
  publication-title: Surgery
  doi: 10.1016/j.surg.2007.09.012
– volume: 42
  start-page: 1
  year: 2012
  ident: 10.1016/j.media.2015.04.002_bib0035
  article-title: Frontiers in growth and remodeling
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2012.02.007
– start-page: 735
  year: 2011
  ident: 10.1016/j.media.2015.04.002_bib0034
  article-title: A generative approach for image-based modeling of tumor growth
– year: 2009
  ident: 10.1016/j.media.2015.04.002_bib0041
– volume: 24
  start-page: 1334
  issue: 10
  year: 2005
  ident: 10.1016/j.media.2015.04.002_bib0009
  article-title: Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with biomechanical deformation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2005.857217
– volume: 227
  start-page: 431
  issue: 2
  year: 2012
  ident: 10.1016/j.media.2015.04.002_bib0025
  article-title: Cellular modeling of cancer invasion: integration of in silico and in vitro approaches
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.22766
– year: 2007
  ident: 10.1016/j.media.2015.04.002_bib0042
– volume: 121
  start-page: 379
  issue: 2
  year: 1976
  ident: 10.1016/j.media.2015.04.002_bib0029
  article-title: Extravascular contrast material: the major component of contrast enhancement
  publication-title: Radiology
  doi: 10.1148/121.2.379
– volume: 18
  start-page: 555
  issue: 3
  year: 2014
  ident: 10.1016/j.media.2015.04.002_bib0031
  article-title: Patient specific tumor growth prediction using multimodal images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.02.005
– volume: 254
  start-page: 178
  issue: 1
  year: 2008
  ident: 10.1016/j.media.2015.04.002_bib0032
  article-title: A methodology for performing global uncertainty and sensitivity analysis in systems biology
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2008.04.011
– volume: 40
  start-page: 1297
  issue: 12
  year: 2002
  ident: 10.1016/j.media.2015.04.002_bib0002
  article-title: On the mechanics of a growing tumor
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/S0020-7225(02)00014-9
– volume: 18
  start-page: 580
  issue: 7
  year: 1999
  ident: 10.1016/j.media.2015.04.002_bib0030
  article-title: Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.790458
– year: 1993
  ident: 10.1016/j.media.2015.04.002_bib0015
– volume: 89
  start-page: 3884
  issue: 6
  year: 2005
  ident: 10.1016/j.media.2015.04.002_bib0024
  article-title: A multiscale model for avascular tumor growth
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.060640
– volume: 264
  start-page: 876
  issue: 3
  year: 2012
  ident: 10.1016/j.media.2015.04.002_bib0037
  article-title: Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT
  publication-title: Radiology
  doi: 10.1148/radiol.12112458
– volume: 56
  start-page: 5745
  year: 1996
  ident: 10.1016/j.media.2015.04.002_bib0017
  article-title: A reaction-diffusion model of cancer invasion
  publication-title: Cancer Res.
– year: 2000
  ident: 10.1016/j.media.2015.04.002_bib0023
– volume: 9
  start-page: 363
  issue: 5
  year: 2010
  ident: 10.1016/j.media.2015.04.002_bib0046
  article-title: Personalized medicine in oncology: The future is now
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3181
– year: 2005
  ident: 10.1016/j.media.2015.04.002_bib0018
– volume: 109
  start-page: 15101
  issue: 38
  year: 2012
  ident: 10.1016/j.media.2015.04.002_bib0047
  article-title: Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1213353109
– volume: 31
  start-page: 790
  issue: 3
  year: 2012
  ident: 10.1016/j.media.2015.04.002_bib0020
  article-title: Tumor-cut: Segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2011.2181857
– volume: 21
  start-page: 27
  issue: 1
  year: 2001
  ident: 10.1016/j.media.2015.04.002_bib0016
  article-title: A locally-biased form of the DIRECT algorithm
  publication-title: J. Global Optim.
  doi: 10.1023/A:1017930332101
– volume: Vol. 8
  year: 2009
  ident: 10.1016/j.media.2015.04.002_bib0011
– volume: 10
  start-page: 221
  issue: 3
  year: 2010
  ident: 10.1016/j.media.2015.04.002_bib0007
  article-title: Dissecting cancer through mathematics: from the cell to the animal model
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2808
– year: 2009
  ident: 10.1016/j.media.2015.04.002_bib0040
SSID ssj0007440
Score 2.3004441
Snippet •Tumor growth prediction with physiological data fusion.•A tumor growth model with reaction-diffusion and hyperelastic biomechanical model.•A derivative-free...
The goal of tumor growth prediction is to model the tumor growth process, which can be achieved by physiological modeling and model personalization from...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 72
SubjectTerms Algorithms
Biomechanical Phenomena
Contrast Media
Derivative-free optimization
Fluorodeoxyglucose F18
Humans
Model personalization
Neoplasms - pathology
Nonlinear solid mechanics
Physiological data fusion
Positron-Emission Tomography - methods
Predictive Value of Tests
Radiographic Image Interpretation, Computer-Assisted - methods
Radiopharmaceuticals
Sensitivity and Specificity
Tomography, X-Ray Computed - methods
Tumor growth prediction
Title Tumor growth prediction with reaction-diffusion and hyperelastic biomechanical model by physiological data fusion
URI https://dx.doi.org/10.1016/j.media.2015.04.002
https://www.ncbi.nlm.nih.gov/pubmed/25962846
https://www.proquest.com/docview/1705001573
https://pubmed.ncbi.nlm.nih.gov/PMC4540673
Volume 25
WOSCitedRecordID wos000360864700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 20160831
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiF4QDBu5TIZibcSlDhxnDxOaIiLmHgYUt8iO3FopzUtbTPGv-Anc44dp8mqTfDAS9QmjtP2-3p8bJ_zHUJeK5mzlEvfE4UovSiSgSd1GHqpYFroIPaL0jfFJsTJSTKZpF8Hg98uF-biXFRVcnmZLv8r1HAOwMbU2X-Au-0UTsBrAB2OADsc_w74er5Yjb_D9HozRQmAYmargZsVV3ARzTsPC6PUaxeLPIXZKGa1oGjz2GTkY0Kwwc-UykEn1ayBtKYSI0vHtoeuf-v2fWZzjAWSjeJJa_mb-F-w7mOX72A2pMzquQ30xqXq7RLtZ0Bf6Z82AM0W7GntlLSbRsDvaS27qxcBb-PgYPCxFjeMAy-JbNKxM8k2F7pHPWtfbZmfHbNvVyDO3ppsG4zX40a_1u-1BpiWcwM6w5JDSXRFgtsM6u7SHtlngqfJkOwffTyefGpHdxRUdOpVJk5w55moL930cp2zszuZuRqT23FyTu-Te83shB5ZVj0gA10dkLsdzcoDcvtLE43xkPwwVKOWanRLNYpUo7tUo0A12qUa7VGNGqpR9Yv2qEaRatT28Ih8e398-u6D15Tw8HLO0o1XlsLPCy3A0Rd5KnLJZMI0DCQq5jwuhJJhnnAdFpEuixzcKaV4IJkquVYlNnxMhtWi0k8JDYs4BD8L2obg9bJARZIrvywTAbYlkuGIMPdbZ3mjb49lVs4zF8h4lhmsMsQq86MMsBqRN-1NSyvvcnPz2IGYNR6q9TwzYOLNN75ykGdgv3FTTlZ6Ua8zlLPCiYuAL_DEUqD9JI5GIyJ65GgboDZ8_0o1mxqNeBTWjEX47No-n5M72__jCzLcrGr9ktzKLzaz9eqQ7IlJcthw_w_vTNwX
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+growth+prediction+with+reaction-diffusion+and+hyperelastic+biomechanical+model+by+physiological+data+fusion&rft.jtitle=Medical+image+analysis&rft.au=Wong%2C+Ken+C+L&rft.au=Summers%2C+Ronald+M&rft.au=Kebebew%2C+Electron&rft.au=Yao%2C+Jianhua&rft.date=2015-10-01&rft.eissn=1361-8423&rft.volume=25&rft.issue=1&rft.spage=72&rft_id=info:doi/10.1016%2Fj.media.2015.04.002&rft_id=info%3Apmid%2F25962846&rft.externalDocID=25962846
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon