The protease SPRTN and SUMOylation coordinate DNA-protein crosslink repair to prevent genome instability
DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability, cancer, neurodegeneration, and accelerated aging. DPC proteolysis was recently identified as a specialized pathway for DPC repair. The DNA-de...
Gespeichert in:
| Veröffentlicht in: | Cell reports (Cambridge) Jg. 37; H. 10; S. 110080 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
07.12.2021
Cell Press |
| Schlagworte: | |
| ISSN: | 2211-1247, 2211-1247 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability, cancer, neurodegeneration, and accelerated aging. DPC proteolysis was recently identified as a specialized pathway for DPC repair. The DNA-dependent protease SPRTN and the 26S proteasome emerged as two independent proteolytic systems. DPCs are also repaired by homologous recombination (HR), a canonical DNA repair pathway. While studying the cellular response to DPC formation, we identify ubiquitylation and SUMOylation as two major signaling events in DNA replication-coupled DPC repair. DPC ubiquitylation recruits SPRTN to repair sites, promoting DPC removal. DPC SUMOylation prevents DNA double-strand break formation, HR activation, and potentially deleterious genomic rearrangements. In this way, SUMOylation channels DPC repair toward SPRTN proteolysis, which is a safer pathway choice for DPC repair and prevention of genomic instability.
[Display omitted]
•SUMOylation and ubiquitylation enable DPC repair during DNA replication•Resolution of ubiquitylated and SUMOylated DPCs requires the protease SPRTN•Inactivation of SUMOylation after DPC formation activates homologous recombination•DPC SUMOylation and SPRTN prevent recombination-dependent genomic instability
Ruggiano et al. show that ubiquitylation and SUMOylation of DNA-protein crosslinks is linked to repair by SPRTN during DNA replication. Blocking SUMOylation causes double-strand breaks and switches the repair pathway to homologous recombination, potentially causing chromosomal rearrangements and genomic instability. Inactivation of DPC repair causes synthetic lethality in recombination-defective cells. |
|---|---|
| AbstractList | DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability, cancer, neurodegeneration, and accelerated aging. DPC proteolysis was recently identified as a specialized pathway for DPC repair. The DNA-dependent protease SPRTN and the 26S proteasome emerged as two independent proteolytic systems. DPCs are also repaired by homologous recombination (HR), a canonical DNA repair pathway. While studying the cellular response to DPC formation, we identify ubiquitylation and SUMOylation as two major signaling events in DNA replication-coupled DPC repair. DPC ubiquitylation recruits SPRTN to repair sites, promoting DPC removal. DPC SUMOylation prevents DNA double-strand break formation, HR activation, and potentially deleterious genomic rearrangements. In this way, SUMOylation channels DPC repair toward SPRTN proteolysis, which is a safer pathway choice for DPC repair and prevention of genomic instability.
•
SUMOylation and ubiquitylation enable DPC repair during DNA replication
•
Resolution of ubiquitylated and SUMOylated DPCs requires the protease SPRTN
•
Inactivation of SUMOylation after DPC formation activates homologous recombination
•
DPC SUMOylation and SPRTN prevent recombination-dependent genomic instability
Ruggiano et al. show that ubiquitylation and SUMOylation of DNA-protein crosslinks is linked to repair by SPRTN during DNA replication. Blocking SUMOylation causes double-strand breaks and switches the repair pathway to homologous recombination, potentially causing chromosomal rearrangements and genomic instability. Inactivation of DPC repair causes synthetic lethality in recombination-defective cells. DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability, cancer, neurodegeneration, and accelerated aging. DPC proteolysis was recently identified as a specialized pathway for DPC repair. The DNA-dependent protease SPRTN and the 26S proteasome emerged as two independent proteolytic systems. DPCs are also repaired by homologous recombination (HR), a canonical DNA repair pathway. While studying the cellular response to DPC formation, we identify ubiquitylation and SUMOylation as two major signaling events in DNA replication-coupled DPC repair. DPC ubiquitylation recruits SPRTN to repair sites, promoting DPC removal. DPC SUMOylation prevents DNA double-strand break formation, HR activation, and potentially deleterious genomic rearrangements. In this way, SUMOylation channels DPC repair toward SPRTN proteolysis, which is a safer pathway choice for DPC repair and prevention of genomic instability. DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability, cancer, neurodegeneration, and accelerated aging. DPC proteolysis was recently identified as a specialized pathway for DPC repair. The DNA-dependent protease SPRTN and the 26S proteasome emerged as two independent proteolytic systems. DPCs are also repaired by homologous recombination (HR), a canonical DNA repair pathway. While studying the cellular response to DPC formation, we identify ubiquitylation and SUMOylation as two major signaling events in DNA replication-coupled DPC repair. DPC ubiquitylation recruits SPRTN to repair sites, promoting DPC removal. DPC SUMOylation prevents DNA double-strand break formation, HR activation, and potentially deleterious genomic rearrangements. In this way, SUMOylation channels DPC repair toward SPRTN proteolysis, which is a safer pathway choice for DPC repair and prevention of genomic instability.DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability, cancer, neurodegeneration, and accelerated aging. DPC proteolysis was recently identified as a specialized pathway for DPC repair. The DNA-dependent protease SPRTN and the 26S proteasome emerged as two independent proteolytic systems. DPCs are also repaired by homologous recombination (HR), a canonical DNA repair pathway. While studying the cellular response to DPC formation, we identify ubiquitylation and SUMOylation as two major signaling events in DNA replication-coupled DPC repair. DPC ubiquitylation recruits SPRTN to repair sites, promoting DPC removal. DPC SUMOylation prevents DNA double-strand break formation, HR activation, and potentially deleterious genomic rearrangements. In this way, SUMOylation channels DPC repair toward SPRTN proteolysis, which is a safer pathway choice for DPC repair and prevention of genomic instability. DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability, cancer, neurodegeneration, and accelerated aging. DPC proteolysis was recently identified as a specialized pathway for DPC repair. The DNA-dependent protease SPRTN and the 26S proteasome emerged as two independent proteolytic systems. DPCs are also repaired by homologous recombination (HR), a canonical DNA repair pathway. While studying the cellular response to DPC formation, we identify ubiquitylation and SUMOylation as two major signaling events in DNA replication-coupled DPC repair. DPC ubiquitylation recruits SPRTN to repair sites, promoting DPC removal. DPC SUMOylation prevents DNA double-strand break formation, HR activation, and potentially deleterious genomic rearrangements. In this way, SUMOylation channels DPC repair toward SPRTN proteolysis, which is a safer pathway choice for DPC repair and prevention of genomic instability. [Display omitted] •SUMOylation and ubiquitylation enable DPC repair during DNA replication•Resolution of ubiquitylated and SUMOylated DPCs requires the protease SPRTN•Inactivation of SUMOylation after DPC formation activates homologous recombination•DPC SUMOylation and SPRTN prevent recombination-dependent genomic instability Ruggiano et al. show that ubiquitylation and SUMOylation of DNA-protein crosslinks is linked to repair by SPRTN during DNA replication. Blocking SUMOylation causes double-strand breaks and switches the repair pathway to homologous recombination, potentially causing chromosomal rearrangements and genomic instability. Inactivation of DPC repair causes synthetic lethality in recombination-defective cells. |
| ArticleNumber | 110080 |
| Author | Singh, Abhay N. Higgins, Geoff S. Kiltie, Anne E. Ruggiano, Annamaria Popović, Marta Rodriguez-Berriguete, Gonzalo Vaz, Bruno Kilgas, Susan Ramadan, Kristijan |
| Author_xml | – sequence: 1 givenname: Annamaria orcidid: 0000-0003-4514-7922 surname: Ruggiano fullname: Ruggiano, Annamaria organization: Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK – sequence: 2 givenname: Bruno surname: Vaz fullname: Vaz, Bruno organization: Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK – sequence: 3 givenname: Susan surname: Kilgas fullname: Kilgas, Susan organization: Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK – sequence: 4 givenname: Marta orcidid: 0000-0002-9464-5824 surname: Popović fullname: Popović, Marta organization: Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK – sequence: 5 givenname: Gonzalo surname: Rodriguez-Berriguete fullname: Rodriguez-Berriguete, Gonzalo organization: Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK – sequence: 6 givenname: Abhay N. surname: Singh fullname: Singh, Abhay N. organization: Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK – sequence: 7 givenname: Geoff S. surname: Higgins fullname: Higgins, Geoff S. organization: Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK – sequence: 8 givenname: Anne E. orcidid: 0000-0001-7208-2912 surname: Kiltie fullname: Kiltie, Anne E. organization: Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK – sequence: 9 givenname: Kristijan surname: Ramadan fullname: Ramadan, Kristijan email: kristijan.ramadan@oncology.ox.ac.uk organization: Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34879279$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUctuEzEUtVARLaV_gJCXbCb4MTOeYYFUladUWkTTteWxb5obJnawnUj5e9wkRYUFeGPr-jyuznlOjnzwQMhLziac8fbNYmJhjLCaCCb4hHPGOvaEnAjBecVFrY4evY_JWUoLVk7LOO_rZ-RY1p3qhepPyHw6B7qKIYNJQG--fZ9eUeMdvbn9er0dTcbgqQ0hOvQmA31_dV7t0FjGMaQ0ov9ByyIGI82hKMEGfKZ34MMSKPqUzYAj5u0L8nRmxgRnh_uU3H78ML34XF1ef_pycX5Z2Ub0uTItV4wPVgo1zJraQOvq2rU9tBLEYJ1QSoDpB-WU7WdOGCul4twp3nWN7KU8Je_2uqv1sARnyzbRjHoVcWniVgeD-s8fj3N9Fza6a1XdyKYIvD4IxPBzDSnrJaaS9mg8hHXSomVd3TDFWIG-euz12-Qh3gJ4uwfssoow0xbzLtRijaPmTN_XqRd6X6e-r1Pv6yzk-i_yg_5_aIcAoKS8QYg6WQRvwWEEm7UL-G-BX1fkvLM |
| CitedBy_id | crossref_primary_10_1093_nar_gkaf638 crossref_primary_10_1038_s41467_023_40695_y crossref_primary_10_1038_s41467_023_35802_y crossref_primary_10_1038_s41467_025_61224_z crossref_primary_10_3389_fmolb_2022_916697 crossref_primary_10_1093_plcell_koad020 crossref_primary_10_1016_j_molcel_2023_10_012 crossref_primary_10_3389_fmolb_2022_871161 crossref_primary_10_1016_j_dnarep_2024_103691 crossref_primary_10_1038_s41467_023_35988_1 crossref_primary_10_1093_nar_gkad1178 crossref_primary_10_1093_nar_gkad860 crossref_primary_10_1038_s41467_023_37498_6 crossref_primary_10_1002_iub_2890 crossref_primary_10_1042_BST20230862 crossref_primary_10_1016_j_celrep_2024_114522 crossref_primary_10_1016_j_semcdb_2022_02_013 crossref_primary_10_15252_embj_2023113609 crossref_primary_10_1016_j_celrep_2023_113427 crossref_primary_10_1093_nar_gkae658 crossref_primary_10_1038_s42003_024_06263_w crossref_primary_10_1016_j_molcel_2023_11_009 crossref_primary_10_1016_j_cell_2024_08_020 crossref_primary_10_1146_annurev_biochem_032620_105820 crossref_primary_10_1038_s41598_025_12238_6 crossref_primary_10_1111_acel_13603 crossref_primary_10_3389_fcell_2024_1394531 crossref_primary_10_1080_26896583_2025_2545086 crossref_primary_10_1098_rsob_230113 crossref_primary_10_3390_genes15010085 crossref_primary_10_1080_09553002_2025_2527898 crossref_primary_10_3389_fmolb_2022_944775 crossref_primary_10_1021_acs_chemrestox_5c00215 crossref_primary_10_1016_j_mrfmmm_2024_111886 crossref_primary_10_1038_s41556_024_01394_y |
| Cites_doi | 10.1093/nar/gkaa1224 10.1101/pdb.prot5651 10.1038/nrm4015 10.1016/j.tibs.2014.10.012 10.1016/S1097-2765(03)00060-1 10.1038/nrm.2016.58 10.1016/j.cell.2014.04.053 10.1016/j.tibs.2017.03.005 10.1074/jbc.M109.019174 10.1016/j.cell.2018.10.053 10.1111/j.1751-1097.1984.tb03417.x 10.1093/toxsci/kfq303 10.1016/j.dnarep.2011.11.001 10.1016/j.molcel.2012.05.020 10.1093/nar/gkt171 10.1016/j.dnarep.2015.04.026 10.1016/j.molcel.2018.11.024 10.1074/jbc.M803493200 10.1038/ng.3103 10.1016/0968-0004(91)90133-G 10.1042/BJ20101841 10.1038/s42003-020-01539-3 10.1016/j.gde.2012.02.012 10.1016/j.molcel.2016.10.011 10.1038/ncomms6744 10.1074/jbc.M112.400135 10.1073/pnas.080536597 10.1038/s41467-019-11095-y 10.1038/nsmb.2395 10.1016/j.dnarep.2018.08.024 10.1083/jcb.201504005 10.1038/ng.2929 10.1083/jcb.200908074 10.1016/j.dnarep.2018.08.025 10.4161/cc.21694 10.1038/nrc3892 10.1016/j.molcel.2016.09.032 10.1016/j.cell.2006.08.050 10.1016/j.tibs.2020.10.007 10.1038/nsmb.2394 10.1128/MCB.23.7.2341-2350.2003 10.1016/j.jmb.2008.06.028 10.1038/nrm.2016.48 10.3389/fgene.2016.00122 10.1016/j.molcel.2016.09.031 10.1016/j.cell.2014.09.024 10.3389/fgene.2014.00175 10.1016/j.dnarep.2020.102924 10.1074/jbc.M104009200 10.1038/nrd3404 10.1093/nar/gks850 10.1038/s41467-020-15000-w 10.7554/eLife.21491 10.1016/j.molcel.2007.07.029 10.1016/j.dnarep.2009.06.007 10.1126/sciadv.aba6290 10.1074/jbc.M112.388470 10.1007/978-1-61779-421-6_5 10.1074/jbc.272.39.24159 10.15252/embj.2019101496 10.1016/j.dnarep.2018.06.003 10.1093/nar/gkx107 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. 2021 The Authors 2021 |
| Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2021 The Authors 2021 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.celrep.2021.110080 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2211-1247 |
| ExternalDocumentID | PMC8674535 34879279 10_1016_j_celrep_2021_110080 S2211124721015710 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MC_PC 12001/1 – fundername: Medical Research Council grantid: MC_UU_00001/1 – fundername: Cancer Research UK grantid: 19590 – fundername: Cancer Research UK grantid: C5255/A23755 – fundername: Cancer Research UK grantid: C34326/A19590 – fundername: Cancer Research UK grantid: 23279 – fundername: Medical Research Council grantid: MC_UU 00001/1 – fundername: Medical Research Council grantid: MC_PC_12001/1 |
| GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c529t-a61701bc327bf54ae6d44d69e63e2bcd2772ea9b7d7c9fd2ac33711d718853933 |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000729731600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2211-1247 |
| IngestDate | Tue Sep 30 16:56:21 EDT 2025 Thu Oct 02 05:59:25 EDT 2025 Mon Jul 21 05:45:32 EDT 2025 Wed Nov 05 20:43:29 EST 2025 Tue Nov 18 21:56:19 EST 2025 Tue Jul 25 20:59:28 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | genome stability DNA replication SUMO homologous recombination DNA-protein crosslink repair SPRTN protease synthetic lethality formaldehyde toxicity BRCA deficiency ubiquitin |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c529t-a61701bc327bf54ae6d44d69e63e2bcd2772ea9b7d7c9fd2ac33711d718853933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: The Rowett Institute, University of Aberdeen, Foresterhill Road, Aberdeen AB25 2ZD, UK These authors contributed equally Lead contact |
| ORCID | 0000-0001-7208-2912 0000-0002-9464-5824 0000-0003-4514-7922 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.celrep.2021.110080 |
| PMID | 34879279 |
| PQID | 2608450700 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8674535 proquest_miscellaneous_2608450700 pubmed_primary_34879279 crossref_citationtrail_10_1016_j_celrep_2021_110080 crossref_primary_10_1016_j_celrep_2021_110080 elsevier_sciencedirect_doi_10_1016_j_celrep_2021_110080 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-07 |
| PublicationDateYYYYMMDD | 2021-12-07 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports (Cambridge) |
| PublicationTitleAlternate | Cell Rep |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Cell Press |
| Publisher_xml | – name: Elsevier Inc – name: Cell Press |
| References | Flynn, Neher, Kim, Sauer, Baker (bib17) 2003; 11 Stingele, Schwarz, Bloemeke, Wolf, Jentsch (bib58) 2014; 158 Maskey, Kim, Baker, Childs, Malureanu, Jeganathan, Machida, van Deursen, Machida (bib40) 2014; 5 Centore, Yazinski, Tse, Zou (bib7) 2012; 46 Harper (bib22) 2005; 296 Schwertman, Bekker-Jensen, Mailand (bib52) 2016; 17 Sun, Miller Jenkins, Su, Nitiss, Nitiss, Pommier (bib61) 2020; 6 Kiianitsa, Maizels (bib28) 2013; 41 Sparks, Chistol, Gao, Räschle, Larsen, Mann, Duxin, Walter (bib56) 2019; 176 Nakano, Katafuchi, Matsubara, Terato, Tsuboi, Masuda, Tatsumoto, Pack, Makino, Croteau (bib46) 2009; 284 Stingele, Bellelli, Alte, Hewitt, Sarek, Maslen, Tsutakawa, Borg, Kjær, Tainer (bib60) 2016; 64 Ruggiano, Ramadan (bib51) 2021; 46 de Graaf, Clore, McCullough (bib11) 2009; 8 Machida, Kim, Machida (bib37) 2012; 11 Hoa, Shimizu, Zhou, Wang, Deshpande, Paull, Akter, Tsuda, Furuta, Tsutsui (bib24) 2016; 64 Juhasz, Balogh, Hajdu, Burkovics, Villamil, Zhuang, Haracska (bib27) 2012; 40 Stingele, Habermann, Jentsch (bib59) 2015; 40 Interthal, Champoux (bib26) 2011; 436 Nakazato, Kajita, Ooka, Akagawa, Abe, Takeda, Branzei, Hirota (bib47) 2018; 68 Ide, Nakano, Salem, Shoulkamy (bib25) 2018; 71 Aparicio, Baer, Gottesman, Gautier (bib2) 2016; 212 Borgermann, Ackermann, Schwertman, Hendriks, Thijssen, Liu, Lans, Nielsen, Mailand (bib4) 2019; 38 Gómez-Herreros, Schuurs-Hoeijmakers, McCormack, Greally, Rulten, Romero-Granados, Counihan, Chaila, Conroy, Ennis (bib19) 2014; 46 Vaz, Popovic, Newman, Fielden, Aitkenhead, Halder, Singh, Vendrell, Fischer, Torrecilla (bib62) 2016; 64 Desai, Liu, Vazquez-Abad, D’Arpa (bib12) 1997; 272 Shetlar, Christensen, Hom (bib53) 1984; 39 Branzei, Sollier, Liberi, Zhao, Maeda, Seki, Enomoto, Ohta, Foiani (bib5) 2006; 127 Maskey, Flatten, Sieben, Peterson, Baker, Nam, Kim, Smyrk, Kojima, Machida (bib41) 2017; 45 Nakano, Morishita, Katafuchi, Matsubara, Horikawa, Terato, Salem, Izumi, Pack, Makino, Ide (bib45) 2007; 28 Link, LaBaer (bib34) 2011; 2011 Vaz, Popovic, Ramadan (bib63) 2017; 42 Sordet, Larochelle, Nicolas, Stevens, Zhang, Shokat, Fisher, Pommier (bib55) 2008; 381 Messick, Greenberg (bib42) 2009; 187 Fielden, Ruggiano, Popović, Ramadan (bib15) 2018; 71 Mosbech, Gibbs-Seymour, Kagias, Thorslund, Beli, Povlsen, Nielsen, Smedegaard, Sedgwick, Lukas (bib44) 2012; 19 Andersen, Clewell, Bermudez, Dodd, Willson, Campbell, Thomas (bib1) 2010; 118 Davis, Lachaud, Appleton, Macartney, Näthke, Rouse (bib10) 2012; 19 Mórocz, Zsigmond, Tóth, Enyedi, Pintér, Haracska (bib43) 2017; 45 Stingele, Jentsch (bib57) 2015; 16 Cortez (bib9) 2015; 32 Ghosal, Leung, Nair, Fong, Chen (bib18) 2012; 287 Mao, Sun, Desai, Liu (bib38) 2000; 97 Ashour, Atteya, El-Khamisy (bib3) 2015; 15 Westphal, Langklotz, Thomanek, Narberhaus (bib64) 2012; 287 Clare (bib8) 2012; 817 Duxin, Dewar, Yardimci, Walter (bib14) 2014; 159 Mao, Desai, Ting, Hwang, Liu (bib39) 2001; 276 Larsen, Gao, Sparks, Gallina, Wu, Mann, Räschle, Walter, Duxin (bib31) 2019; 73 Desai, Zhang, Rodriguez-Bauman, Yang, Wu, Gounder, Rubin, Liu (bib13) 2003; 23 Kühbacher, Duxin (bib29) 2020; 94 Ceccaldi, Sarangi, D’Andrea (bib6) 2016; 17 Fielden, Wiseman, Torrecilla, Li, Hume, Chiang, Ruggiano, Narayan Singh, Freire, Hassanieh (bib16) 2020; 11 Lin, Ban, Lyu, Desai, Liu (bib33) 2008; 283 Kumari, Lim, Newell, Olson, McCullough (bib30) 2012; 11 Guirouilh-Barbat, Lambert, Bertrand, Lopez (bib20) 2014; 5 Henderson, Wolf (bib23) 1992; 80 Lopez-Mosqueda, Maddi, Prgomet, Kalayil, Marinovic-Terzic, Terzic, Dikic (bib36) 2016; 5 Ruggiano, Ramadan (bib50) 2021; 4 Pashev, Dimitrov, Angelov (bib48) 1991; 16 Halder, Torrecilla, Burkhalter, Popović, Fielden, Vaz, Oehler, Pilger, Lessel, Wiseman (bib21) 2019; 10 Liu, Carvalho, Hastings, Lupski (bib35) 2012; 22 Pommier, Marchand (bib49) 2011; 11 Smeenk, Mailand (bib54) 2016; 7 Zhao, Kieser, Li, Reinking, Weickert, Euteneuer, Yaneva, Acampora, Götz, Feederle, Stingele (bib65) 2021; 49 Lessel, Vaz, Halder, Lockhart, Marinovic-Terzic, Lopez-Mosqueda, Philipp, Sim, Smith, Oehler (bib32) 2014; 46 Kumari (10.1016/j.celrep.2021.110080_bib30) 2012; 11 de Graaf (10.1016/j.celrep.2021.110080_bib11) 2009; 8 Machida (10.1016/j.celrep.2021.110080_bib37) 2012; 11 Henderson (10.1016/j.celrep.2021.110080_bib23) 1992; 80 Link (10.1016/j.celrep.2021.110080_bib34) 2011; 2011 Mao (10.1016/j.celrep.2021.110080_bib39) 2001; 276 Maskey (10.1016/j.celrep.2021.110080_bib40) 2014; 5 Cortez (10.1016/j.celrep.2021.110080_bib9) 2015; 32 Smeenk (10.1016/j.celrep.2021.110080_bib54) 2016; 7 Nakano (10.1016/j.celrep.2021.110080_bib46) 2009; 284 Stingele (10.1016/j.celrep.2021.110080_bib57) 2015; 16 Clare (10.1016/j.celrep.2021.110080_bib8) 2012; 817 Mosbech (10.1016/j.celrep.2021.110080_bib44) 2012; 19 Lin (10.1016/j.celrep.2021.110080_bib33) 2008; 283 Lessel (10.1016/j.celrep.2021.110080_bib32) 2014; 46 Pommier (10.1016/j.celrep.2021.110080_bib49) 2011; 11 Halder (10.1016/j.celrep.2021.110080_bib21) 2019; 10 Sun (10.1016/j.celrep.2021.110080_bib61) 2020; 6 Juhasz (10.1016/j.celrep.2021.110080_bib27) 2012; 40 Sparks (10.1016/j.celrep.2021.110080_bib56) 2019; 176 Ghosal (10.1016/j.celrep.2021.110080_bib18) 2012; 287 Ashour (10.1016/j.celrep.2021.110080_bib3) 2015; 15 Harper (10.1016/j.celrep.2021.110080_bib22) 2005; 296 Larsen (10.1016/j.celrep.2021.110080_bib31) 2019; 73 Desai (10.1016/j.celrep.2021.110080_bib12) 1997; 272 Aparicio (10.1016/j.celrep.2021.110080_bib2) 2016; 212 Nakano (10.1016/j.celrep.2021.110080_bib45) 2007; 28 Stingele (10.1016/j.celrep.2021.110080_bib60) 2016; 64 Flynn (10.1016/j.celrep.2021.110080_bib17) 2003; 11 Liu (10.1016/j.celrep.2021.110080_bib35) 2012; 22 Centore (10.1016/j.celrep.2021.110080_bib7) 2012; 46 Fielden (10.1016/j.celrep.2021.110080_bib16) 2020; 11 Mórocz (10.1016/j.celrep.2021.110080_bib43) 2017; 45 Messick (10.1016/j.celrep.2021.110080_bib42) 2009; 187 Maskey (10.1016/j.celrep.2021.110080_bib41) 2017; 45 Borgermann (10.1016/j.celrep.2021.110080_bib4) 2019; 38 Davis (10.1016/j.celrep.2021.110080_bib10) 2012; 19 Ceccaldi (10.1016/j.celrep.2021.110080_bib6) 2016; 17 Lopez-Mosqueda (10.1016/j.celrep.2021.110080_bib36) 2016; 5 Fielden (10.1016/j.celrep.2021.110080_bib15) 2018; 71 Guirouilh-Barbat (10.1016/j.celrep.2021.110080_bib20) 2014; 5 Ruggiano (10.1016/j.celrep.2021.110080_bib50) 2021; 4 Duxin (10.1016/j.celrep.2021.110080_bib14) 2014; 159 Sordet (10.1016/j.celrep.2021.110080_bib55) 2008; 381 Pashev (10.1016/j.celrep.2021.110080_bib48) 1991; 16 Kiianitsa (10.1016/j.celrep.2021.110080_bib28) 2013; 41 Nakazato (10.1016/j.celrep.2021.110080_bib47) 2018; 68 Andersen (10.1016/j.celrep.2021.110080_bib1) 2010; 118 Gómez-Herreros (10.1016/j.celrep.2021.110080_bib19) 2014; 46 Schwertman (10.1016/j.celrep.2021.110080_bib52) 2016; 17 Branzei (10.1016/j.celrep.2021.110080_bib5) 2006; 127 Vaz (10.1016/j.celrep.2021.110080_bib62) 2016; 64 Westphal (10.1016/j.celrep.2021.110080_bib64) 2012; 287 Ide (10.1016/j.celrep.2021.110080_bib25) 2018; 71 Ruggiano (10.1016/j.celrep.2021.110080_bib51) 2021; 46 Shetlar (10.1016/j.celrep.2021.110080_bib53) 1984; 39 Zhao (10.1016/j.celrep.2021.110080_bib65) 2021; 49 Hoa (10.1016/j.celrep.2021.110080_bib24) 2016; 64 Interthal (10.1016/j.celrep.2021.110080_bib26) 2011; 436 Desai (10.1016/j.celrep.2021.110080_bib13) 2003; 23 Stingele (10.1016/j.celrep.2021.110080_bib59) 2015; 40 Vaz (10.1016/j.celrep.2021.110080_bib63) 2017; 42 Kühbacher (10.1016/j.celrep.2021.110080_bib29) 2020; 94 Stingele (10.1016/j.celrep.2021.110080_bib58) 2014; 158 Mao (10.1016/j.celrep.2021.110080_bib38) 2000; 97 |
| References_xml | – volume: 212 start-page: 399 year: 2016 end-page: 408 ident: bib2 article-title: MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts publication-title: J. Cell Biol. – volume: 64 start-page: 704 year: 2016 end-page: 719 ident: bib62 article-title: Metalloprotease SPRTN/DVC1 orchestrates replication-coupled DNA-protein crosslink repair publication-title: Mol. Cell – volume: 4 start-page: 11 year: 2021 ident: bib50 article-title: DNA-protein crosslink proteases in genome stability publication-title: Commun. Biol. – volume: 40 start-page: 10795 year: 2012 end-page: 10808 ident: bib27 article-title: Characterization of human Spartan/C1orf124, an ubiquitin-PCNA interacting regulator of DNA damage tolerance publication-title: Nucleic Acids Res. – volume: 23 start-page: 2341 year: 2003 end-page: 2350 ident: bib13 article-title: Transcription-dependent degradation of topoisomerase I-DNA covalent complexes publication-title: Mol. Cell. Biol. – volume: 16 start-page: 455 year: 2015 end-page: 460 ident: bib57 article-title: DNA-protein crosslink repair publication-title: Nat. Rev. Mol. Cell Biol. – volume: 15 start-page: 137 year: 2015 end-page: 151 ident: bib3 article-title: Topoisomerase-mediated chromosomal break repair: An emerging player in many games publication-title: Nat. Rev. Cancer – volume: 46 start-page: 516 year: 2014 end-page: 521 ident: bib19 article-title: TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function publication-title: Nat. Genet. – volume: 158 start-page: 327 year: 2014 end-page: 338 ident: bib58 article-title: A DNA-dependent protease involved in DNA-protein crosslink repair publication-title: Cell – volume: 5 start-page: 1 year: 2016 end-page: 19 ident: bib36 article-title: SPRTN is a mammalian DNA-binding metalloprotease that resolves DNA-protein crosslinks publication-title: eLife – volume: 159 start-page: 346 year: 2014 end-page: 357 ident: bib14 article-title: Repair of a DNA-protein crosslink by replication-coupled proteolysis publication-title: Cell – volume: 19 start-page: 1093 year: 2012 end-page: 1100 ident: bib10 article-title: DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage publication-title: Nat. Struct. Mol. Biol. – volume: 127 start-page: 509 year: 2006 end-page: 522 ident: bib5 article-title: Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks publication-title: Cell – volume: 5 start-page: 5744 year: 2014 ident: bib40 article-title: Spartan deficiency causes genomic instability and progeroid phenotypes publication-title: Nat. Commun. – volume: 7 start-page: 122 year: 2016 ident: bib54 article-title: Writers, readers, and erasers of histone ubiquitylation in DNA double-strand break repair publication-title: Front. Genet. – volume: 46 start-page: 2 year: 2021 end-page: 4 ident: bib51 article-title: The Trinity of SPRTN protease regulation publication-title: Trends Biochem. Sci. – volume: 41 start-page: e104 year: 2013 ident: bib28 article-title: A rapid and sensitive assay for DNA-protein covalent complexes in living cells publication-title: Nucleic Acids Res. – volume: 118 start-page: 716 year: 2010 end-page: 731 ident: bib1 article-title: Formaldehyde: Integrating dosimetry, cytotoxicity, and genomics to understand dose-dependent transitions for an endogenous compound publication-title: Toxicol. Sci. – volume: 94 start-page: 102924 year: 2020 ident: bib29 article-title: How to fix DNA-protein crosslinks publication-title: DNA Repair (Amst.) – volume: 283 start-page: 21074 year: 2008 end-page: 21083 ident: bib33 article-title: A ubiquitin-proteasome pathway for the repair of topoisomerase I-DNA covalent complexes publication-title: J. Biol. Chem. – volume: 71 start-page: 198 year: 2018 end-page: 204 ident: bib15 article-title: DNA protein crosslink proteolysis repair: From yeast to premature ageing and cancer in humans publication-title: DNA Repair (Amst.) – volume: 11 start-page: 671 year: 2003 end-page: 683 ident: bib17 article-title: Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals publication-title: Mol. Cell – volume: 64 start-page: 580 year: 2016 end-page: 592 ident: bib24 article-title: Mre11 is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes publication-title: Mol. Cell – volume: 16 start-page: 323 year: 1991 end-page: 326 ident: bib48 article-title: Crosslinking proteins to nucleic acids by ultraviolet laser irradiation publication-title: Trends Biochem. Sci. – volume: 97 start-page: 4046 year: 2000 end-page: 4051 ident: bib38 article-title: SUMO-1 conjugation to topoisomerase I: A possible repair response to topoisomerase-mediated DNA damage publication-title: Proc. Natl. Acad. Sci. USA – volume: 287 start-page: 42962 year: 2012 end-page: 42971 ident: bib64 article-title: A trapping approach reveals novel substrates and physiological functions of the essential protease FtsH in publication-title: J. Biol. Chem. – volume: 10 start-page: 3142 year: 2019 ident: bib21 article-title: SPRTN protease and checkpoint kinase 1 cross-activation loop safeguards DNA replication publication-title: Nat. Commun. – volume: 381 start-page: 540 year: 2008 end-page: 549 ident: bib55 article-title: Hyperphosphorylation of RNA polymerase II in response to topoisomerase I cleavage complexes and its association with transcription- and BRCA1-dependent degradation of topoisomerase I publication-title: J. Mol. Biol. – volume: 6 start-page: eaba6290 year: 2020 ident: bib61 article-title: A conserved SUMO pathway repairs topoisomerase DNA-protein cross-links by engaging ubiquitin-mediated proteasomal degradation publication-title: Sci. Adv. – volume: 17 start-page: 337 year: 2016 end-page: 349 ident: bib6 article-title: The Fanconi anaemia pathway: New players and new functions publication-title: Nat. Rev. Mol. Cell Biol. – volume: 817 start-page: 69 year: 2012 end-page: 91 ident: bib8 article-title: The in vitro mammalian chromosome aberration test publication-title: Methods Mol. Biol. – volume: 284 start-page: 27065 year: 2009 end-page: 27076 ident: bib46 article-title: Homologous recombination but not nucleotide excision repair plays a pivotal role in tolerance of DNA-protein cross-links in mammalian cells publication-title: J. Biol. Chem. – volume: 39 start-page: 125 year: 1984 end-page: 133 ident: bib53 article-title: Photochemical addition of amino acids and peptides to DNA publication-title: Photochem. Photobiol. – volume: 45 start-page: 3172 year: 2017 end-page: 3188 ident: bib43 article-title: DNA-dependent protease activity of human Spartan facilitates replication of DNA-protein crosslink-containing DNA publication-title: Nucleic Acids Res. – volume: 46 start-page: 625 year: 2012 end-page: 635 ident: bib7 article-title: Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response publication-title: Mol. Cell – volume: 17 start-page: 379 year: 2016 end-page: 394 ident: bib52 article-title: Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers publication-title: Nat. Rev. Mol. Cell Biol. – volume: 187 start-page: 319 year: 2009 end-page: 326 ident: bib42 article-title: The ubiquitin landscape at DNA double-strand breaks publication-title: J. Cell Biol. – volume: 2011 start-page: 993 year: 2011 end-page: 994 ident: bib34 article-title: Trichloroacetic acid (TCA) precipitation of proteins publication-title: Cold Spring Harb. Protoc. – volume: 19 start-page: 1084 year: 2012 end-page: 1092 ident: bib44 article-title: DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks publication-title: Nat. Struct. Mol. Biol. – volume: 32 start-page: 149 year: 2015 end-page: 157 ident: bib9 article-title: Preventing replication fork collapse to maintain genome integrity publication-title: DNA Repair (Amst.) – volume: 8 start-page: 1207 year: 2009 end-page: 1214 ident: bib11 article-title: Cellular pathways for DNA repair and damage tolerance of formaldehyde-induced DNA-protein crosslinks publication-title: DNA Repair (Amst.) – volume: 276 start-page: 40652 year: 2001 end-page: 40658 ident: bib39 article-title: 26 S proteasome-mediated degradation of topoisomerase II cleavable complexes publication-title: J. Biol. Chem. – volume: 71 start-page: 190 year: 2018 end-page: 197 ident: bib25 article-title: DNA-protein cross-links: Formidable challenges to maintaining genome integrity publication-title: DNA Repair (Amst.) – volume: 11 start-page: 236 year: 2012 end-page: 246 ident: bib30 article-title: Formaldehyde-induced genome instability is suppressed by an XPF-dependent pathway publication-title: DNA Repair (Amst.) – volume: 80 start-page: 221 year: 1992 end-page: 233 ident: bib23 article-title: Immunodetection of proteins by western blotting publication-title: Methods Mol. Biol. – volume: 46 start-page: 1239 year: 2014 end-page: 1244 ident: bib32 article-title: Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features publication-title: Nat. Genet. – volume: 436 start-page: 559 year: 2011 end-page: 566 ident: bib26 article-title: Effects of DNA and protein size on substrate cleavage by human tyrosyl-DNA phosphodiesterase 1 publication-title: Biochem. J. – volume: 73 start-page: 574 year: 2019 end-page: 588.e7 ident: bib31 article-title: Replication-coupled DNA-protein crosslink repair by SPRTN and the proteasome in publication-title: Mol. Cell – volume: 28 start-page: 147 year: 2007 end-page: 158 ident: bib45 article-title: Nucleotide excision repair and homologous recombination systems commit differentially to the repair of DNA-protein crosslinks publication-title: Mol. Cell – volume: 64 start-page: 688 year: 2016 end-page: 703 ident: bib60 article-title: Mechanism and regulation of DNA-protein crosslink repair by the DNA-dependent metalloprotease SPRTN publication-title: Mol. Cell – volume: 42 start-page: 483 year: 2017 end-page: 495 ident: bib63 article-title: DNA-protein crosslink proteolysis repair publication-title: Trends Biochem. Sci. – volume: 11 start-page: 1274 year: 2020 ident: bib16 article-title: TEX264 coordinates p97- and SPRTN-mediated resolution of topoisomerase 1-DNA adducts publication-title: Nat. Commun. – volume: 38 start-page: e101496 year: 2019 ident: bib4 article-title: SUMOylation promotes protective responses to DNA-protein crosslinks publication-title: EMBO J. – volume: 272 start-page: 24159 year: 1997 end-page: 24164 ident: bib12 article-title: Ubiquitin-dependent destruction of topoisomerase I is stimulated by the antitumor drug camptothecin publication-title: J. Biol. Chem. – volume: 287 start-page: 34225 year: 2012 end-page: 34233 ident: bib18 article-title: Proliferating cell nuclear antigen (PCNA)-binding protein C1orf124 is a regulator of translesion synthesis publication-title: J. Biol. Chem. – volume: 5 start-page: 175 year: 2014 ident: bib20 article-title: Is homologous recombination really an error-free process? publication-title: Front. Genet. – volume: 11 start-page: 3395 year: 2012 end-page: 3402 ident: bib37 article-title: Spartan/C1orf124 is important to prevent UV-induced mutagenesis publication-title: Cell Cycle – volume: 45 start-page: 4564 year: 2017 end-page: 4576 ident: bib41 article-title: Spartan deficiency causes accumulation of Topoisomerase 1 cleavage complexes and tumorigenesis publication-title: Nucleic Acids Res. – volume: 22 start-page: 211 year: 2012 end-page: 220 ident: bib35 article-title: Mechanisms for recurrent and complex human genomic rearrangements publication-title: Curr. Opin. Genet. Dev. – volume: 11 start-page: 25 year: 2011 end-page: 36 ident: bib49 article-title: Interfacial inhibitors: Targeting macromolecular complexes publication-title: Nat. Rev. Drug Discov. – volume: 40 start-page: 67 year: 2015 end-page: 71 ident: bib59 article-title: DNA-protein crosslink repair: Proteases as DNA repair enzymes publication-title: Trends Biochem. Sci. – volume: 176 start-page: 167 year: 2019 end-page: 181.e21 ident: bib56 article-title: The CMG helicase bypasses DNA-protein cross-links to facilitate their repair publication-title: Cell – volume: 68 start-page: 50 year: 2018 end-page: 57 ident: bib47 article-title: SPARTAN promotes genetic diversification of the immunoglobulin-variable gene locus in avian DT40 cells publication-title: DNA Repair (Amst.) – volume: 49 start-page: 902 year: 2021 end-page: 915 ident: bib65 article-title: A ubiquitin switch controls autocatalytic inactivation of the DNA-protein crosslink repair protease SPRTN publication-title: Nucleic Acids Res. – volume: 296 start-page: 157 year: 2005 end-page: 166 ident: bib22 article-title: Synchronization of cell populations in G publication-title: Methods Mol. Biol. – volume: 49 start-page: 902 year: 2021 ident: 10.1016/j.celrep.2021.110080_bib65 article-title: A ubiquitin switch controls autocatalytic inactivation of the DNA-protein crosslink repair protease SPRTN publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1224 – volume: 2011 start-page: 993 year: 2011 ident: 10.1016/j.celrep.2021.110080_bib34 article-title: Trichloroacetic acid (TCA) precipitation of proteins publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot5651 – volume: 16 start-page: 455 year: 2015 ident: 10.1016/j.celrep.2021.110080_bib57 article-title: DNA-protein crosslink repair publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4015 – volume: 40 start-page: 67 year: 2015 ident: 10.1016/j.celrep.2021.110080_bib59 article-title: DNA-protein crosslink repair: Proteases as DNA repair enzymes publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2014.10.012 – volume: 11 start-page: 671 year: 2003 ident: 10.1016/j.celrep.2021.110080_bib17 article-title: Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00060-1 – volume: 17 start-page: 379 year: 2016 ident: 10.1016/j.celrep.2021.110080_bib52 article-title: Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.58 – volume: 158 start-page: 327 year: 2014 ident: 10.1016/j.celrep.2021.110080_bib58 article-title: A DNA-dependent protease involved in DNA-protein crosslink repair publication-title: Cell doi: 10.1016/j.cell.2014.04.053 – volume: 42 start-page: 483 year: 2017 ident: 10.1016/j.celrep.2021.110080_bib63 article-title: DNA-protein crosslink proteolysis repair publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2017.03.005 – volume: 284 start-page: 27065 year: 2009 ident: 10.1016/j.celrep.2021.110080_bib46 article-title: Homologous recombination but not nucleotide excision repair plays a pivotal role in tolerance of DNA-protein cross-links in mammalian cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.019174 – volume: 176 start-page: 167 year: 2019 ident: 10.1016/j.celrep.2021.110080_bib56 article-title: The CMG helicase bypasses DNA-protein cross-links to facilitate their repair publication-title: Cell doi: 10.1016/j.cell.2018.10.053 – volume: 39 start-page: 125 year: 1984 ident: 10.1016/j.celrep.2021.110080_bib53 article-title: Photochemical addition of amino acids and peptides to DNA publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1984.tb03417.x – volume: 118 start-page: 716 year: 2010 ident: 10.1016/j.celrep.2021.110080_bib1 article-title: Formaldehyde: Integrating dosimetry, cytotoxicity, and genomics to understand dose-dependent transitions for an endogenous compound publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfq303 – volume: 11 start-page: 236 year: 2012 ident: 10.1016/j.celrep.2021.110080_bib30 article-title: Formaldehyde-induced genome instability is suppressed by an XPF-dependent pathway publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2011.11.001 – volume: 46 start-page: 625 year: 2012 ident: 10.1016/j.celrep.2021.110080_bib7 article-title: Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.020 – volume: 41 start-page: e104 year: 2013 ident: 10.1016/j.celrep.2021.110080_bib28 article-title: A rapid and sensitive assay for DNA-protein covalent complexes in living cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt171 – volume: 32 start-page: 149 year: 2015 ident: 10.1016/j.celrep.2021.110080_bib9 article-title: Preventing replication fork collapse to maintain genome integrity publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2015.04.026 – volume: 45 start-page: 3172 year: 2017 ident: 10.1016/j.celrep.2021.110080_bib43 article-title: DNA-dependent protease activity of human Spartan facilitates replication of DNA-protein crosslink-containing DNA publication-title: Nucleic Acids Res. – volume: 73 start-page: 574 year: 2019 ident: 10.1016/j.celrep.2021.110080_bib31 article-title: Replication-coupled DNA-protein crosslink repair by SPRTN and the proteasome in Xenopus egg extracts publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.11.024 – volume: 283 start-page: 21074 year: 2008 ident: 10.1016/j.celrep.2021.110080_bib33 article-title: A ubiquitin-proteasome pathway for the repair of topoisomerase I-DNA covalent complexes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M803493200 – volume: 46 start-page: 1239 year: 2014 ident: 10.1016/j.celrep.2021.110080_bib32 article-title: Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features publication-title: Nat. Genet. doi: 10.1038/ng.3103 – volume: 16 start-page: 323 year: 1991 ident: 10.1016/j.celrep.2021.110080_bib48 article-title: Crosslinking proteins to nucleic acids by ultraviolet laser irradiation publication-title: Trends Biochem. Sci. doi: 10.1016/0968-0004(91)90133-G – volume: 436 start-page: 559 year: 2011 ident: 10.1016/j.celrep.2021.110080_bib26 article-title: Effects of DNA and protein size on substrate cleavage by human tyrosyl-DNA phosphodiesterase 1 publication-title: Biochem. J. doi: 10.1042/BJ20101841 – volume: 4 start-page: 11 year: 2021 ident: 10.1016/j.celrep.2021.110080_bib50 article-title: DNA-protein crosslink proteases in genome stability publication-title: Commun. Biol. doi: 10.1038/s42003-020-01539-3 – volume: 22 start-page: 211 year: 2012 ident: 10.1016/j.celrep.2021.110080_bib35 article-title: Mechanisms for recurrent and complex human genomic rearrangements publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2012.02.012 – volume: 64 start-page: 580 year: 2016 ident: 10.1016/j.celrep.2021.110080_bib24 article-title: Mre11 is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.10.011 – volume: 5 start-page: 5744 year: 2014 ident: 10.1016/j.celrep.2021.110080_bib40 article-title: Spartan deficiency causes genomic instability and progeroid phenotypes publication-title: Nat. Commun. doi: 10.1038/ncomms6744 – volume: 287 start-page: 34225 year: 2012 ident: 10.1016/j.celrep.2021.110080_bib18 article-title: Proliferating cell nuclear antigen (PCNA)-binding protein C1orf124 is a regulator of translesion synthesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.400135 – volume: 97 start-page: 4046 year: 2000 ident: 10.1016/j.celrep.2021.110080_bib38 article-title: SUMO-1 conjugation to topoisomerase I: A possible repair response to topoisomerase-mediated DNA damage publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.080536597 – volume: 10 start-page: 3142 year: 2019 ident: 10.1016/j.celrep.2021.110080_bib21 article-title: SPRTN protease and checkpoint kinase 1 cross-activation loop safeguards DNA replication publication-title: Nat. Commun. doi: 10.1038/s41467-019-11095-y – volume: 19 start-page: 1084 year: 2012 ident: 10.1016/j.celrep.2021.110080_bib44 article-title: DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2395 – volume: 71 start-page: 190 year: 2018 ident: 10.1016/j.celrep.2021.110080_bib25 article-title: DNA-protein cross-links: Formidable challenges to maintaining genome integrity publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2018.08.024 – volume: 212 start-page: 399 year: 2016 ident: 10.1016/j.celrep.2021.110080_bib2 article-title: MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts publication-title: J. Cell Biol. doi: 10.1083/jcb.201504005 – volume: 46 start-page: 516 year: 2014 ident: 10.1016/j.celrep.2021.110080_bib19 article-title: TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function publication-title: Nat. Genet. doi: 10.1038/ng.2929 – volume: 187 start-page: 319 year: 2009 ident: 10.1016/j.celrep.2021.110080_bib42 article-title: The ubiquitin landscape at DNA double-strand breaks publication-title: J. Cell Biol. doi: 10.1083/jcb.200908074 – volume: 71 start-page: 198 year: 2018 ident: 10.1016/j.celrep.2021.110080_bib15 article-title: DNA protein crosslink proteolysis repair: From yeast to premature ageing and cancer in humans publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2018.08.025 – volume: 11 start-page: 3395 year: 2012 ident: 10.1016/j.celrep.2021.110080_bib37 article-title: Spartan/C1orf124 is important to prevent UV-induced mutagenesis publication-title: Cell Cycle doi: 10.4161/cc.21694 – volume: 15 start-page: 137 year: 2015 ident: 10.1016/j.celrep.2021.110080_bib3 article-title: Topoisomerase-mediated chromosomal break repair: An emerging player in many games publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3892 – volume: 64 start-page: 704 year: 2016 ident: 10.1016/j.celrep.2021.110080_bib62 article-title: Metalloprotease SPRTN/DVC1 orchestrates replication-coupled DNA-protein crosslink repair publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.09.032 – volume: 127 start-page: 509 year: 2006 ident: 10.1016/j.celrep.2021.110080_bib5 article-title: Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks publication-title: Cell doi: 10.1016/j.cell.2006.08.050 – volume: 46 start-page: 2 year: 2021 ident: 10.1016/j.celrep.2021.110080_bib51 article-title: The Trinity of SPRTN protease regulation publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2020.10.007 – volume: 19 start-page: 1093 year: 2012 ident: 10.1016/j.celrep.2021.110080_bib10 article-title: DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2394 – volume: 23 start-page: 2341 year: 2003 ident: 10.1016/j.celrep.2021.110080_bib13 article-title: Transcription-dependent degradation of topoisomerase I-DNA covalent complexes publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.7.2341-2350.2003 – volume: 381 start-page: 540 year: 2008 ident: 10.1016/j.celrep.2021.110080_bib55 article-title: Hyperphosphorylation of RNA polymerase II in response to topoisomerase I cleavage complexes and its association with transcription- and BRCA1-dependent degradation of topoisomerase I publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.06.028 – volume: 17 start-page: 337 year: 2016 ident: 10.1016/j.celrep.2021.110080_bib6 article-title: The Fanconi anaemia pathway: New players and new functions publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.48 – volume: 7 start-page: 122 year: 2016 ident: 10.1016/j.celrep.2021.110080_bib54 article-title: Writers, readers, and erasers of histone ubiquitylation in DNA double-strand break repair publication-title: Front. Genet. doi: 10.3389/fgene.2016.00122 – volume: 64 start-page: 688 year: 2016 ident: 10.1016/j.celrep.2021.110080_bib60 article-title: Mechanism and regulation of DNA-protein crosslink repair by the DNA-dependent metalloprotease SPRTN publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.09.031 – volume: 159 start-page: 346 year: 2014 ident: 10.1016/j.celrep.2021.110080_bib14 article-title: Repair of a DNA-protein crosslink by replication-coupled proteolysis publication-title: Cell doi: 10.1016/j.cell.2014.09.024 – volume: 5 start-page: 175 year: 2014 ident: 10.1016/j.celrep.2021.110080_bib20 article-title: Is homologous recombination really an error-free process? publication-title: Front. Genet. doi: 10.3389/fgene.2014.00175 – volume: 94 start-page: 102924 year: 2020 ident: 10.1016/j.celrep.2021.110080_bib29 article-title: How to fix DNA-protein crosslinks publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2020.102924 – volume: 276 start-page: 40652 year: 2001 ident: 10.1016/j.celrep.2021.110080_bib39 article-title: 26 S proteasome-mediated degradation of topoisomerase II cleavable complexes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M104009200 – volume: 11 start-page: 25 year: 2011 ident: 10.1016/j.celrep.2021.110080_bib49 article-title: Interfacial inhibitors: Targeting macromolecular complexes publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3404 – volume: 40 start-page: 10795 year: 2012 ident: 10.1016/j.celrep.2021.110080_bib27 article-title: Characterization of human Spartan/C1orf124, an ubiquitin-PCNA interacting regulator of DNA damage tolerance publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks850 – volume: 296 start-page: 157 year: 2005 ident: 10.1016/j.celrep.2021.110080_bib22 article-title: Synchronization of cell populations in G1/S and G2/M phases of the cell cycle publication-title: Methods Mol. Biol. – volume: 11 start-page: 1274 year: 2020 ident: 10.1016/j.celrep.2021.110080_bib16 article-title: TEX264 coordinates p97- and SPRTN-mediated resolution of topoisomerase 1-DNA adducts publication-title: Nat. Commun. doi: 10.1038/s41467-020-15000-w – volume: 5 start-page: 1 year: 2016 ident: 10.1016/j.celrep.2021.110080_bib36 article-title: SPRTN is a mammalian DNA-binding metalloprotease that resolves DNA-protein crosslinks publication-title: eLife doi: 10.7554/eLife.21491 – volume: 80 start-page: 221 year: 1992 ident: 10.1016/j.celrep.2021.110080_bib23 article-title: Immunodetection of proteins by western blotting publication-title: Methods Mol. Biol. – volume: 28 start-page: 147 year: 2007 ident: 10.1016/j.celrep.2021.110080_bib45 article-title: Nucleotide excision repair and homologous recombination systems commit differentially to the repair of DNA-protein crosslinks publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.07.029 – volume: 8 start-page: 1207 year: 2009 ident: 10.1016/j.celrep.2021.110080_bib11 article-title: Cellular pathways for DNA repair and damage tolerance of formaldehyde-induced DNA-protein crosslinks publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2009.06.007 – volume: 6 start-page: eaba6290 year: 2020 ident: 10.1016/j.celrep.2021.110080_bib61 article-title: A conserved SUMO pathway repairs topoisomerase DNA-protein cross-links by engaging ubiquitin-mediated proteasomal degradation publication-title: Sci. Adv. doi: 10.1126/sciadv.aba6290 – volume: 287 start-page: 42962 year: 2012 ident: 10.1016/j.celrep.2021.110080_bib64 article-title: A trapping approach reveals novel substrates and physiological functions of the essential protease FtsH in Escherichia coli publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.388470 – volume: 817 start-page: 69 year: 2012 ident: 10.1016/j.celrep.2021.110080_bib8 article-title: The in vitro mammalian chromosome aberration test publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-421-6_5 – volume: 272 start-page: 24159 year: 1997 ident: 10.1016/j.celrep.2021.110080_bib12 article-title: Ubiquitin-dependent destruction of topoisomerase I is stimulated by the antitumor drug camptothecin publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.39.24159 – volume: 38 start-page: e101496 year: 2019 ident: 10.1016/j.celrep.2021.110080_bib4 article-title: SUMOylation promotes protective responses to DNA-protein crosslinks publication-title: EMBO J. doi: 10.15252/embj.2019101496 – volume: 68 start-page: 50 year: 2018 ident: 10.1016/j.celrep.2021.110080_bib47 article-title: SPARTAN promotes genetic diversification of the immunoglobulin-variable gene locus in avian DT40 cells publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2018.06.003 – volume: 45 start-page: 4564 year: 2017 ident: 10.1016/j.celrep.2021.110080_bib41 article-title: Spartan deficiency causes accumulation of Topoisomerase 1 cleavage complexes and tumorigenesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx107 |
| SSID | ssj0000601194 |
| Score | 2.4921994 |
| Snippet | DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability,... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 110080 |
| SubjectTerms | BRCA deficiency DNA Breaks, Double-Stranded DNA Damage DNA Repair DNA Replication DNA, Neoplasm - biosynthesis DNA, Neoplasm - genetics DNA, Neoplasm - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism DNA-protein crosslink repair Female formaldehyde toxicity genome stability Genomic Instability HEK293 Cells HeLa Cells Homologous Recombination Humans Male Proteolysis SPRTN protease SUMO Sumoylation Synthetic Lethal Mutations synthetic lethality ubiquitin |
| Title | The protease SPRTN and SUMOylation coordinate DNA-protein crosslink repair to prevent genome instability |
| URI | https://dx.doi.org/10.1016/j.celrep.2021.110080 https://www.ncbi.nlm.nih.gov/pubmed/34879279 https://www.proquest.com/docview/2608450700 https://pubmed.ncbi.nlm.nih.gov/PMC8674535 |
| Volume | 37 |
| WOSCitedRecordID | wos000729731600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9sgFEZpd1Ffpt3XXSom7S1ylIBtzGPVbdrDlkVdOuXNwpi0qRIc5aa2_6P_dwcwrlOr6vawF8uyMU78fcA5cPgOQp9yBS0sFCwgYsyCMMxFACc8yGmuYLTOGLeSQr-_s34_GY34oNW69nthNlOmdXJxwef_FWq4BmCbrbP_AHdVKVyAcwAdjgA7HP8aeKu-AONT-9fgeNh34ZknP35eusC3tizA5ZxoMDPbn_uHgS1t4tHNiGlWdM1KgpgsjF06dxJPJtNyMTMCI2BN2njareXgIzMD6JcfzLqw3wlWm2g4Xp-eAhfdthqtxUy4COcy39dVyTRdbIUFLBuhQ4NiXmwm1ghm5W6jlahPXpCeDQRxA6yynRwhJqSOONVN3yM7GRjPvG6tfzUCdy7zU6Prd7MQ5x2ppvB_O-ZtnWZxwGo-s8hTcNU4cZlsbklu-1s76AFhEec1T90N8EYoL_QbMW20YPOte-ixr-cum6fp09wOza3ZOsOn6EnppOBDR65nqKX0c_TIpS29fIHOgGLYUwxbimGgGK5RDN9QDNcohiuKYUcxvCpwSTHsKIZrFHuJTr5-GR59C8qMHYGMCF8Fwsr7Z5ISlo2jUKg4h-YfcxVTRTKZE_DllOAZy5nk45wISSnr9XIwkMBs5JS-Qru60OoNwpxGNBpL0s1iFhImkyhUzCSKARM5j2O1j6j_pqks5exNVpVp6uMWz1MHSmpASR0o-yionpo7OZd7yjMPV1qapM7UTIF29zz50aObQo9tluGEVsV6mZK4m4TghnWhzGuHdvVbPGPgvVs8qAoYNfjtO3pyZlXhE_hO8Mne3lnnO7R30wTfo93VYq0-oIdys5osFwdoh42SA0v0P0kY0Hw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+protease+SPRTN+and+SUMOylation+coordinate+DNA-protein+crosslink+repair+to+prevent+genome+instability&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Ruggiano%2C+Annamaria&rft.au=Vaz%2C+Bruno&rft.au=Kilgas%2C+Susan&rft.au=Popovi%C4%87%2C+Marta&rft.date=2021-12-07&rft.eissn=2211-1247&rft.volume=37&rft.issue=10&rft.spage=110080&rft_id=info:doi/10.1016%2Fj.celrep.2021.110080&rft_id=info%3Apmid%2F34879279&rft.externalDocID=34879279 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |