A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs

To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT). Cross-sectional study. A total of 9282 pairs of optic dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of ophthalmology Jg. 201; S. 9 - 18
Hauptverfasser: Thompson, Atalie C., Jammal, Alessandro A., Medeiros, Felipe A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 01.05.2019
Elsevier Limited
Schlagworte:
ISSN:0002-9394, 1879-1891, 1879-1891
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT). Cross-sectional study. A total of 9282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets (20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global and sector values when evaluating optic disc photographs. The predictions of the DL network were compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from normal eyes. The DL predictions of global BMO-MRW from all optic disc photographs in the test set (mean ± standard deviation [SD]: 228.8 ± 63.1 μm) were highly correlated with the observed values from SDOCT (mean ± SD: 226.0 ± 73.8 μm) (Pearson's r = 0.88; R2 = 77%; P < .001), with mean absolute error of the predictions of 27.8 μm. The AUCs for discriminating glaucomatous from healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 0.945 (95% confidence interval [CI]: 0.874–0.980) and 0.933 (95% CI: 0.856–0.975), respectively (P = .587). A DL network can be trained to quantify the amount of neuroretinal damage on optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of disc photographs.
AbstractList To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT). Cross-sectional study. A total of 9282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets (20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global and sector values when evaluating optic disc photographs. The predictions of the DL network were compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from normal eyes. The DL predictions of global BMO-MRW from all optic disc photographs in the test set (mean ± standard deviation [SD]: 228.8 ± 63.1 μm) were highly correlated with the observed values from SDOCT (mean ± SD: 226.0 ± 73.8 μm) (Pearson's r = 0.88; R2 = 77%; P < .001), with mean absolute error of the predictions of 27.8 μm. The AUCs for discriminating glaucomatous from healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 0.945 (95% confidence interval [CI]: 0.874–0.980) and 0.933 (95% CI: 0.856–0.975), respectively (P = .587). A DL network can be trained to quantify the amount of neuroretinal damage on optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of disc photographs.
To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT).PURPOSETo train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT).Cross-sectional study.DESIGNCross-sectional study.A total of 9282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets (20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global and sector values when evaluating optic disc photographs. The predictions of the DL network were compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from normal eyes.METHODSA total of 9282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets (20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global and sector values when evaluating optic disc photographs. The predictions of the DL network were compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from normal eyes.The DL predictions of global BMO-MRW from all optic disc photographs in the test set (mean ± standard deviation [SD]: 228.8 ± 63.1 μm) were highly correlated with the observed values from SDOCT (mean ± SD: 226.0 ± 73.8 μm) (Pearson's r = 0.88; R2 = 77%; P < .001), with mean absolute error of the predictions of 27.8 μm. The AUCs for discriminating glaucomatous from healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 0.945 (95% confidence interval [CI]: 0.874-0.980) and 0.933 (95% CI: 0.856-0.975), respectively (P = .587).RESULTSThe DL predictions of global BMO-MRW from all optic disc photographs in the test set (mean ± standard deviation [SD]: 228.8 ± 63.1 μm) were highly correlated with the observed values from SDOCT (mean ± SD: 226.0 ± 73.8 μm) (Pearson's r = 0.88; R2 = 77%; P < .001), with mean absolute error of the predictions of 27.8 μm. The AUCs for discriminating glaucomatous from healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 0.945 (95% confidence interval [CI]: 0.874-0.980) and 0.933 (95% CI: 0.856-0.975), respectively (P = .587).A DL network can be trained to quantify the amount of neuroretinal damage on optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of disc photographs.CONCLUSIONSA DL network can be trained to quantify the amount of neuroretinal damage on optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of disc photographs.
To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT). Cross-sectional study. A total of 9282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets (20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global and sector values when evaluating optic disc photographs. The predictions of the DL network were compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from normal eyes. The DL predictions of global BMO-MRW from all optic disc photographs in the test set (mean ± standard deviation [SD]: 228.8 ± 63.1 μm) were highly correlated with the observed values from SDOCT (mean ± SD: 226.0 ± 73.8 μm) (Pearson's r = 0.88; R  = 77%; P < .001), with mean absolute error of the predictions of 27.8 μm. The AUCs for discriminating glaucomatous from healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 0.945 (95% confidence interval [CI]: 0.874-0.980) and 0.933 (95% CI: 0.856-0.975), respectively (P = .587). A DL network can be trained to quantify the amount of neuroretinal damage on optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of disc photographs.
PurposeTo train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT).DesignCross-sectional study.MethodsA total of 9282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets (20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global and sector values when evaluating optic disc photographs. The predictions of the DL network were compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from normal eyes.ResultsThe DL predictions of global BMO-MRW from all optic disc photographs in the test set (mean ± standard deviation [SD]: 228.8 ± 63.1 μm) were highly correlated with the observed values from SDOCT (mean ± SD: 226.0 ± 73.8 μm) (Pearson's r = 0.88; R2 = 77%; P < .001), with mean absolute error of the predictions of 27.8 μm. The AUCs for discriminating glaucomatous from healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 0.945 (95% confidence interval [CI]: 0.874–0.980) and 0.933 (95% CI: 0.856–0.975), respectively (P = .587).ConclusionsA DL network can be trained to quantify the amount of neuroretinal damage on optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of disc photographs.
Author Medeiros, Felipe A.
Thompson, Atalie C.
Jammal, Alessandro A.
AuthorAffiliation 1. Vision, Imaging and Performance (VIP) Laboratory, Duke Eye Center and Department of Ophthalmology, Duke University, Durham, NC
AuthorAffiliation_xml – name: 1. Vision, Imaging and Performance (VIP) Laboratory, Duke Eye Center and Department of Ophthalmology, Duke University, Durham, NC
Author_xml – sequence: 1
  givenname: Atalie C.
  surname: Thompson
  fullname: Thompson, Atalie C.
– sequence: 2
  givenname: Alessandro A.
  orcidid: 0000-0001-5341-8353
  surname: Jammal
  fullname: Jammal, Alessandro A.
– sequence: 3
  givenname: Felipe A.
  surname: Medeiros
  fullname: Medeiros, Felipe A.
  email: felipe.medeiros@duke.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30689990$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9rFDEUxYNU7Lb6AXyRgC--zJpkZvIHQVha2wqLVVF8DNnMnd2sM8mYyRT225tlW9F9qHAhhPzO4eSeM3TigweEXlIyp4Tyt9u52YY5I1TNCc1Dn6AZlUIVVCp6gmaEEFaoUlWn6Gwct_nKRSWeodOScKmUIjP0Y4EvAQa8BBO982u86NYhurTpcQr4y2R8cu0Of4IphgjJedPhr67HyzCO-CqGHt8OyVl86UaLP29CCutohs34HD1tTTfCi_vzHH2_-vDt4qZY3l5_vFgsC1szlQppmSl5U6uqWtWGKdMAkFKuGC15DdQoJoRoVkqoGnhFhKCcyZa0XEBpGmHKc_T-4DtMqx4aCz5F0-khut7EnQ7G6X9fvNvodbjTXMqKSJkN3twbxPBrgjHpPn8Fus54CNOoGRWqokxwltHXR-g2TDFvJFMscxUtqypTr_5O9CfKw84zIA6AjXmJEVptXTLJhX1A12lK9L5dvdW5Xb1vVxOah2YlPVI-mD-meXfQQG7hzkHUo3XgLTQugk26Ce5RtTpS2855Z033E3b_0f4GITzO8Q
CitedBy_id crossref_primary_10_1016_j_ophtha_2020_07_045
crossref_primary_10_1007_s00347_021_01385_6
crossref_primary_10_4103_ijo_IJO_2583_21
crossref_primary_10_1016_j_oftale_2019_04_002
crossref_primary_10_1097_ICU_0000000000000676
crossref_primary_10_3390_diagnostics12112894
crossref_primary_10_1371_journal_pdig_0000193
crossref_primary_10_1038_s41598_019_46294_6
crossref_primary_10_1177_20552076221090042
crossref_primary_10_1038_s41746_023_00857_0
crossref_primary_10_1097_IJG_0000000000002379
crossref_primary_10_4103_ijo_IJO_1569_22
crossref_primary_10_3390_jcm14072166
crossref_primary_10_1038_s41433_020_01191_5
crossref_primary_10_1016_j_ogla_2021_12_003
crossref_primary_10_1097_APO_0000000000000596
crossref_primary_10_3390_math11133021
crossref_primary_10_1111_opo_13435
crossref_primary_10_3389_fmed_2021_710329
crossref_primary_10_3390_diagnostics12010134
crossref_primary_10_1038_s41598_021_99605_1
crossref_primary_10_1097_CEH_0000000000000258
crossref_primary_10_1038_s41598_020_60277_y
crossref_primary_10_3389_fmed_2022_891369
crossref_primary_10_4103_tjo_TJO_D_24_00079
crossref_primary_10_3389_fmed_2022_860574
crossref_primary_10_3390_jcm10153231
crossref_primary_10_1155_2022_5212128
crossref_primary_10_1097_WCO_0000000000000773
crossref_primary_10_1016_j_oftale_2022_02_007
crossref_primary_10_1038_s41598_020_78144_1
crossref_primary_10_1016_j_oftal_2019_04_004
crossref_primary_10_1016_j_ogla_2023_01_007
crossref_primary_10_3389_fmed_2025_1567159
crossref_primary_10_3390_s25144337
crossref_primary_10_1038_s41433_019_0577_x
crossref_primary_10_1117_1_NPh_6_4_041110
crossref_primary_10_1007_s42979_023_01945_4
crossref_primary_10_1080_14737159_2020_1758067
crossref_primary_10_1016_j_oftal_2021_10_004
crossref_primary_10_1016_j_bios_2021_113700
crossref_primary_10_1016_j_ogla_2022_02_010
crossref_primary_10_1016_j_xops_2025_100703
crossref_primary_10_1038_s41746_025_01768_y
crossref_primary_10_1177_1120672120977346
crossref_primary_10_3390_bioengineering12030321
crossref_primary_10_3389_fdgth_2022_889445
crossref_primary_10_1007_s40135_019_00209_w
crossref_primary_10_1093_bmb_ldaa012
crossref_primary_10_3390_jcm14072139
crossref_primary_10_1097_IJG_0000000000002392
crossref_primary_10_3390_ijms24032814
crossref_primary_10_3390_jpm14101062
crossref_primary_10_4103_ijo_IJO_1820_21
crossref_primary_10_1007_s11042_022_12826_y
crossref_primary_10_1001_jamaophthalmol_2025_1740
crossref_primary_10_4103_IJO_IJO_1456_23
crossref_primary_10_1038_s41433_024_03026_z
Cites_doi 10.1001/jamaophthalmol.2013.1686
10.1016/S0161-6420(00)00284-0
10.1001/jama.2016.17216
10.1370/afm.293
10.3341/jkos.2017.58.7.836
10.1167/iovs.15-16701
10.1136/bjo.2005.081224
10.1016/S0161-6420(98)91040-5
10.1016/j.ajo.2013.11.007
10.1016/j.ophtha.2007.06.013
10.1111/j.1442-9071.2007.01457.x
10.1016/j.ophtha.2012.09.055
10.1167/tvst.7.4.14
10.1111/aos.13464
10.1089/tmj.2016.0039
10.1016/j.ajo.2014.01.024
10.1167/iovs.15-18906
10.1097/00061198-199910000-00004
10.1001/jamaophthalmol.2014.4652
10.1001/jama.2017.18152
10.1167/iovs.15-17820
10.1016/S0161-6420(94)31118-3
10.1371/journal.pone.0179790
10.1016/j.ophtha.2018.01.023
10.1001/jama.2014.3192
10.1167/iovs.05-1441
10.1167/iovs.13-13482
10.1016/j.ajo.2017.07.010
10.1016/S0161-6420(92)31990-6
10.1109/CVPR.2009.5206848
10.1167/iovs.11-9309
10.1016/j.ajo.2008.07.023
10.4103/0301-4738.55073
10.1089/tmj.2013.0185
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
2019. Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
– notice: 2019. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
5PM
DOI 10.1016/j.ajo.2019.01.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-1891
EndPage 18
ExternalDocumentID PMC6884088
30689990
10_1016_j_ajo_2019_01_011
S0002939419300248
Genre Validation Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R21 EY025056
– fundername: NEI NIH HHS
  grantid: R01 EY029885
– fundername: NEI NIH HHS
  grantid: R01 EY021818
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1CY
1P~
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHTB
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABCQX
ABDPE
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABPEJ
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACLOT
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OF-
OPF
OQ~
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSZ
SV3
T5K
UNMZH
UV1
VH1
WH7
WOW
X7M
XPP
Z5R
ZGI
ZXP
~G-
~HD
AACTN
AFCTW
RIG
9DU
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c529t-8c2a36d5944b5a29adee038b21365e1a92777db9795e640771628f0f67e3ad7a3
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468253700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0002-9394
1879-1891
IngestDate Tue Sep 30 15:57:46 EDT 2025
Thu Oct 02 06:55:44 EDT 2025
Mon Oct 06 18:30:29 EDT 2025
Mon Jul 21 06:02:48 EDT 2025
Sat Nov 29 07:30:13 EST 2025
Tue Nov 18 22:19:49 EST 2025
Sun Apr 06 06:53:37 EDT 2025
Tue Oct 14 19:30:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c529t-8c2a36d5944b5a29adee038b21365e1a92777db9795e640771628f0f67e3ad7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-5341-8353
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6884088
PMID 30689990
PQID 2221741344
PQPubID 41749
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6884088
proquest_miscellaneous_2179412762
proquest_journals_2221741344
pubmed_primary_30689990
crossref_citationtrail_10_1016_j_ajo_2019_01_011
crossref_primary_10_1016_j_ajo_2019_01_011
elsevier_sciencedirect_doi_10_1016_j_ajo_2019_01_011
elsevier_clinicalkey_doi_10_1016_j_ajo_2019_01_011
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chicago
PublicationTitle American journal of ophthalmology
PublicationTitleAlternate Am J Ophthalmol
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Reznicek, Burzer, Laubichler (bib25) 2017; 10
Park, Kim, Lee (bib40) 2018; 7
Sathyamangalam, Paul, George (bib4) 2009; 57
Gmeiner, Schrems, Mardin (bib26) 2016; 57
Abrams, Scott, Spaeth (bib15) 1994; 101
He, Zhang, Ren, Sun (bib32) 2015
Medeiros, Sample, Zangwill (bib35) 2006; 47
Kumar, Giubilato, Morgan (bib10) 2007; 35
Li, He, Keel (bib17) 2018; 125
Ting, Cheung, Lim (bib18) 2017; 318
Takahashi, Tampo, Arai (bib21) 2017; 12
Reis, Zangalli, Abe (bib36) 2017; 95
Miller, Thapa, Robin (bib38) 2017; 182
Marcus, Brooks, Ulrich (bib12) 1998; 105
Maa, Patel, Chasan (bib7) 2017; 23
Lichter (bib9) 1976; 74
Pollet-Villard, Chiquet, Romanet (bib24) 2014; 55
Gardiner, Ren, Yang (bib28) 2014; 157
Danthurebandara, Vianna, Sharpe (bib27) 2016; 57
Selvaraju, Cogswell, Das (bib33) 2016
Yogesan, Constable, Barry (bib13) 1999; 8
Maa, Evans, DeLaune (bib11) 2014; 20
Gardiner, Boey, Yang (bib29) 2015; 56
Owsley, McGwin, Lee (bib6) 2015; 133
Chauhan, O’Leary, AlMobarak (bib22) 2013; 120
Fleming, Whitlock, Beil (bib39) 2005; 3
Kim, Park, Lee (bib37) 2017; 58
Chan, Ong, Kong (bib8) 2014; 157
Quigley, Broman (bib1) 2006; 90
Weinreb, Aung, Medeiros (bib5) 2014; 311
Selvaraju, Das, Vedantam (bib34) 2016
Hennis, Wu, Nemesure (bib3) 2007; 114
Varma, Steinmann, Scott (bib14) 1992; 99
Gulshan, Peng, Coram (bib19) 2016; 316
Jampel, Friedman, Quigley (bib16) 2009; 147
Budenz, Barton, Whiteside-de Vos (bib2) 2013; 131
Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009 June;248–255.
Garway-Heath, Poinoosawmy, Fitzke, Hitchings (bib30) 2000; 107
Reis, O’Leary, Yang (bib23) 2012; 53
Raju, Pagidimarri, Barreto (bib20) 2017; 245
10.1016/j.ajo.2019.01.011_bib31
He (10.1016/j.ajo.2019.01.011_bib32) 2015
Gardiner (10.1016/j.ajo.2019.01.011_bib29) 2015; 56
Garway-Heath (10.1016/j.ajo.2019.01.011_bib30) 2000; 107
Maa (10.1016/j.ajo.2019.01.011_bib7) 2017; 23
Budenz (10.1016/j.ajo.2019.01.011_bib2) 2013; 131
Lichter (10.1016/j.ajo.2019.01.011_bib9) 1976; 74
Selvaraju (10.1016/j.ajo.2019.01.011_bib33) 2016
Li (10.1016/j.ajo.2019.01.011_bib17) 2018; 125
Gmeiner (10.1016/j.ajo.2019.01.011_bib26) 2016; 57
Varma (10.1016/j.ajo.2019.01.011_bib14) 1992; 99
Reznicek (10.1016/j.ajo.2019.01.011_bib25) 2017; 10
Chan (10.1016/j.ajo.2019.01.011_bib8) 2014; 157
Selvaraju (10.1016/j.ajo.2019.01.011_bib34) 2016
Raju (10.1016/j.ajo.2019.01.011_bib20) 2017; 245
Sathyamangalam (10.1016/j.ajo.2019.01.011_bib4) 2009; 57
Danthurebandara (10.1016/j.ajo.2019.01.011_bib27) 2016; 57
Pollet-Villard (10.1016/j.ajo.2019.01.011_bib24) 2014; 55
Abrams (10.1016/j.ajo.2019.01.011_bib15) 1994; 101
Weinreb (10.1016/j.ajo.2019.01.011_bib5) 2014; 311
Yogesan (10.1016/j.ajo.2019.01.011_bib13) 1999; 8
Kumar (10.1016/j.ajo.2019.01.011_bib10) 2007; 35
Quigley (10.1016/j.ajo.2019.01.011_bib1) 2006; 90
Gulshan (10.1016/j.ajo.2019.01.011_bib19) 2016; 316
Fleming (10.1016/j.ajo.2019.01.011_bib39) 2005; 3
Owsley (10.1016/j.ajo.2019.01.011_bib6) 2015; 133
Medeiros (10.1016/j.ajo.2019.01.011_bib35) 2006; 47
Reis (10.1016/j.ajo.2019.01.011_bib36) 2017; 95
Kim (10.1016/j.ajo.2019.01.011_bib37) 2017; 58
Park (10.1016/j.ajo.2019.01.011_bib40) 2018; 7
Marcus (10.1016/j.ajo.2019.01.011_bib12) 1998; 105
Maa (10.1016/j.ajo.2019.01.011_bib11) 2014; 20
Gardiner (10.1016/j.ajo.2019.01.011_bib28) 2014; 157
Miller (10.1016/j.ajo.2019.01.011_bib38) 2017; 182
Jampel (10.1016/j.ajo.2019.01.011_bib16) 2009; 147
Ting (10.1016/j.ajo.2019.01.011_bib18) 2017; 318
Hennis (10.1016/j.ajo.2019.01.011_bib3) 2007; 114
Takahashi (10.1016/j.ajo.2019.01.011_bib21) 2017; 12
Chauhan (10.1016/j.ajo.2019.01.011_bib22) 2013; 120
Reis (10.1016/j.ajo.2019.01.011_bib23) 2012; 53
References_xml – volume: 318
  start-page: 2211
  year: 2017
  end-page: 2223
  ident: bib18
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: JAMA
– volume: 47
  start-page: 2520
  year: 2006
  end-page: 2527
  ident: bib35
  article-title: A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– volume: 10
  start-page: 1534
  year: 2017
  end-page: 1538
  ident: bib25
  article-title: Structure-function relationship comparison between retinal nerve fibre layer and Bruch’s membrane opening-minimum rim width in glaucoma
  publication-title: Int J Ophthalmol
– volume: 101
  start-page: 1662
  year: 1994
  end-page: 1667
  ident: bib15
  article-title: Agreement among optometrists, ophthalmologists, and residents in evaluating the optic disc for glaucoma
  publication-title: Ophthalmology
– volume: 114
  start-page: 1816
  year: 2007
  end-page: 1821
  ident: bib3
  article-title: Awareness of incident open-angle glaucoma in a population study: the Barbados Eye Studies
  publication-title: Ophthalmology
– volume: 23
  start-page: 41
  year: 2017
  end-page: 48
  ident: bib7
  article-title: Retrospective evaluation of a teleretinal screening program in detecting multiple nondiabetic eye diseases
  publication-title: Telemed J E Health
– volume: 74
  start-page: 532
  year: 1976
  end-page: 572
  ident: bib9
  article-title: Variability of expert observers in evaluating the optic disc
  publication-title: Trans Am Ophthalmol Soc
– year: 2015
  ident: bib32
  article-title: Deep Residual Learning for Image Recognition
  publication-title: ArXiv e-prints
– volume: 90
  start-page: 262
  year: 2006
  end-page: 267
  ident: bib1
  article-title: The number of people with glaucoma worldwide in 2010 and 2020
  publication-title: Br J Ophthalmol
– volume: 20
  start-page: 318
  year: 2014
  end-page: 323
  ident: bib11
  article-title: A novel tele-eye protocol for ocular disease detection and access to eye care services
  publication-title: Telemed J E Health
– volume: 95
  start-page: e548
  year: 2017
  end-page: e555
  ident: bib36
  article-title: Intra- and interobserver reproducibility of Bruch’s membrane opening minimum rim width measurements with spectral domain optical coherence tomography
  publication-title: Acta Ophthalmol
– volume: 53
  start-page: 1852
  year: 2012
  end-page: 1860
  ident: bib23
  article-title: Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation
  publication-title: Invest Ophthalmol Vis Sci
– volume: 35
  start-page: 237
  year: 2007
  end-page: 243
  ident: bib10
  article-title: Glaucoma screening: analysis of conventional and telemedicine-friendly devices
  publication-title: Clin Exp Ophthalmol
– volume: 311
  start-page: 1901
  year: 2014
  end-page: 1911
  ident: bib5
  article-title: The pathophysiology and treatment of glaucoma: a review
  publication-title: JAMA
– volume: 245
  start-page: 559
  year: 2017
  end-page: 563
  ident: bib20
  article-title: Development of a deep learning algorithm for automatic diagnosis of diabetic retinopathy
  publication-title: Stud Health Technol Inform
– volume: 58
  start-page: 836
  year: 2017
  end-page: 845
  ident: bib37
  article-title: Diagnostic accuracies of Bruch membrane opening-minimum rim width and retinal nerve fiber layer thickness in glaucoma
  publication-title: J Korean Ophthalmol Soc
– volume: 56
  start-page: 6886
  year: 2015
  end-page: 6891
  ident: bib29
  article-title: Structural measurements for monitoring change in glaucoma: comparing retinal nerve fiber layer thickness with minimum rim width and area
  publication-title: Invest Ophthalmol Vis Sci
– volume: 133
  start-page: 174
  year: 2015
  end-page: 181
  ident: bib6
  article-title: Diabetes eye screening in urban settings serving minority populations: detection of diabetic retinopathy and other ocular findings using telemedicine
  publication-title: JAMA Ophthalmol
– volume: 107
  start-page: 1809
  year: 2000
  end-page: 1815
  ident: bib30
  article-title: Mapping the visual field to the optic disc in normal tension glaucoma eyes
  publication-title: Ophthalmology
– volume: 57
  start-page: Oct575
  year: 2016
  end-page: Oct584
  ident: bib26
  article-title: Comparison of Bruch’s membrane opening minimum rim width and peripapillary retinal nerve fiber layer thickness in early glaucoma assessment
  publication-title: Invest Ophthalmol Vis Sci
– volume: 8
  start-page: 297
  year: 1999
  end-page: 301
  ident: bib13
  article-title: Evaluation of a portable fundus camera for use in the teleophthalmologic diagnosis of glaucoma
  publication-title: J Glaucoma
– volume: 12
  start-page: e0179790
  year: 2017
  ident: bib21
  article-title: Applying artificial intelligence to disease staging: deep learning for improved staging of diabetic retinopathy
  publication-title: PLoS One
– volume: 182
  start-page: 99
  year: 2017
  end-page: 106
  ident: bib38
  article-title: Glaucoma screening in Nepal: cup-to-disc estimate with standard mydriatic fundus camera compared to portable nonmydriatic camera
  publication-title: Am J Ophthalmol
– volume: 120
  start-page: 535
  year: 2013
  end-page: 543
  ident: bib22
  article-title: Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter
  publication-title: Ophthalmology
– volume: 99
  start-page: 215
  year: 1992
  end-page: 221
  ident: bib14
  article-title: Expert agreement in evaluating the optic disc for glaucoma
  publication-title: Ophthalmology
– volume: 125
  start-page: 1199
  year: 2018
  end-page: 1206
  ident: bib17
  article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs
  publication-title: Ophthalmology
– year: 2016
  ident: bib33
  article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
  publication-title: ArXiv e-prints
– year: 2016
  ident: bib34
  article-title: Grad-CAM: Why did you say that?
  publication-title: ArXiv e-prints
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: bib19
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– volume: 147
  start-page: 39
  year: 2009
  end-page: 44 e1
  ident: bib16
  article-title: Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients
  publication-title: Am J Ophthalmol
– volume: 105
  start-page: 1907
  year: 1998
  end-page: 1914
  ident: bib12
  article-title: Telemedicine diagnosis of eye disorders by direct ophthalmoscopy. A pilot study
  publication-title: Ophthalmology
– volume: 157
  start-page: 540
  year: 2014
  end-page: 549.e1-2
  ident: bib28
  article-title: A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area
  publication-title: Am J Ophthalmol
– volume: 157
  start-page: 936
  year: 2014
  end-page: 944
  ident: bib8
  article-title: Glaucomatous optic neuropathy evaluation (GONE) project: the effect of monoscopic versus stereoscopic viewing conditions on optic nerve evaluation
  publication-title: Am J Ophthalmol
– volume: 131
  start-page: 651
  year: 2013
  end-page: 658
  ident: bib2
  article-title: Prevalence of glaucoma in an urban West African population: the Tema Eye Survey
  publication-title: JAMA Ophthalmol
– reference: Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009 June;248–255.
– volume: 55
  start-page: 2953
  year: 2014
  end-page: 2962
  ident: bib24
  article-title: Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements
  publication-title: Invest Ophthalmol Vis Sci
– volume: 7
  start-page: 14
  year: 2018
  ident: bib40
  article-title: The relationship between Bruch’s membrane opening-minimum rim width and retinal nerve fiber layer thickness and a new index using a neural network
  publication-title: Transl Vis Sci Technol
– volume: 57
  start-page: 181
  year: 2016
  end-page: 187
  ident: bib27
  article-title: Diagnostic accuracy of glaucoma with sector-based and a new total profile-based analysis of neuroretinal rim and retinal nerve fiber layer thickness
  publication-title: Invest Ophthalmol Vis Sci
– volume: 3
  start-page: 167
  year: 2005
  end-page: 170
  ident: bib39
  article-title: Screening for primary open-angle glaucoma in the primary care setting: an update for the US preventive services task force
  publication-title: Ann Fam Med
– volume: 57
  start-page: 355
  year: 2009
  end-page: 360
  ident: bib4
  article-title: Determinants of glaucoma awareness and knowledge in urban Chennai
  publication-title: Indian J Ophthalmol
– volume: 131
  start-page: 651
  issue: 5
  year: 2013
  ident: 10.1016/j.ajo.2019.01.011_bib2
  article-title: Prevalence of glaucoma in an urban West African population: the Tema Eye Survey
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2013.1686
– volume: 107
  start-page: 1809
  issue: 10
  year: 2000
  ident: 10.1016/j.ajo.2019.01.011_bib30
  article-title: Mapping the visual field to the optic disc in normal tension glaucoma eyes
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(00)00284-0
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  ident: 10.1016/j.ajo.2019.01.011_bib19
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 3
  start-page: 167
  issue: 2
  year: 2005
  ident: 10.1016/j.ajo.2019.01.011_bib39
  article-title: Screening for primary open-angle glaucoma in the primary care setting: an update for the US preventive services task force
  publication-title: Ann Fam Med
  doi: 10.1370/afm.293
– volume: 58
  start-page: 836
  issue: 7
  year: 2017
  ident: 10.1016/j.ajo.2019.01.011_bib37
  article-title: Diagnostic accuracies of Bruch membrane opening-minimum rim width and retinal nerve fiber layer thickness in glaucoma
  publication-title: J Korean Ophthalmol Soc
  doi: 10.3341/jkos.2017.58.7.836
– volume: 56
  start-page: 6886
  issue: 11
  year: 2015
  ident: 10.1016/j.ajo.2019.01.011_bib29
  article-title: Structural measurements for monitoring change in glaucoma: comparing retinal nerve fiber layer thickness with minimum rim width and area
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.15-16701
– volume: 90
  start-page: 262
  issue: 3
  year: 2006
  ident: 10.1016/j.ajo.2019.01.011_bib1
  article-title: The number of people with glaucoma worldwide in 2010 and 2020
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.2005.081224
– volume: 105
  start-page: 1907
  issue: 10
  year: 1998
  ident: 10.1016/j.ajo.2019.01.011_bib12
  article-title: Telemedicine diagnosis of eye disorders by direct ophthalmoscopy. A pilot study
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(98)91040-5
– volume: 157
  start-page: 540
  issue: 3
  year: 2014
  ident: 10.1016/j.ajo.2019.01.011_bib28
  article-title: A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2013.11.007
– volume: 114
  start-page: 1816
  issue: 10
  year: 2007
  ident: 10.1016/j.ajo.2019.01.011_bib3
  article-title: Awareness of incident open-angle glaucoma in a population study: the Barbados Eye Studies
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2007.06.013
– volume: 35
  start-page: 237
  issue: 3
  year: 2007
  ident: 10.1016/j.ajo.2019.01.011_bib10
  article-title: Glaucoma screening: analysis of conventional and telemedicine-friendly devices
  publication-title: Clin Exp Ophthalmol
  doi: 10.1111/j.1442-9071.2007.01457.x
– volume: 120
  start-page: 535
  issue: 3
  year: 2013
  ident: 10.1016/j.ajo.2019.01.011_bib22
  article-title: Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.09.055
– volume: 74
  start-page: 532
  year: 1976
  ident: 10.1016/j.ajo.2019.01.011_bib9
  article-title: Variability of expert observers in evaluating the optic disc
  publication-title: Trans Am Ophthalmol Soc
– volume: 7
  start-page: 14
  issue: 4
  year: 2018
  ident: 10.1016/j.ajo.2019.01.011_bib40
  article-title: The relationship between Bruch’s membrane opening-minimum rim width and retinal nerve fiber layer thickness and a new index using a neural network
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.7.4.14
– volume: 95
  start-page: e548
  issue: 7
  year: 2017
  ident: 10.1016/j.ajo.2019.01.011_bib36
  article-title: Intra- and interobserver reproducibility of Bruch’s membrane opening minimum rim width measurements with spectral domain optical coherence tomography
  publication-title: Acta Ophthalmol
  doi: 10.1111/aos.13464
– volume: 23
  start-page: 41
  issue: 1
  year: 2017
  ident: 10.1016/j.ajo.2019.01.011_bib7
  article-title: Retrospective evaluation of a teleretinal screening program in detecting multiple nondiabetic eye diseases
  publication-title: Telemed J E Health
  doi: 10.1089/tmj.2016.0039
– volume: 157
  start-page: 936
  issue: 5
  year: 2014
  ident: 10.1016/j.ajo.2019.01.011_bib8
  article-title: Glaucomatous optic neuropathy evaluation (GONE) project: the effect of monoscopic versus stereoscopic viewing conditions on optic nerve evaluation
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2014.01.024
– volume: 245
  start-page: 559
  year: 2017
  ident: 10.1016/j.ajo.2019.01.011_bib20
  article-title: Development of a deep learning algorithm for automatic diagnosis of diabetic retinopathy
  publication-title: Stud Health Technol Inform
– volume: 57
  start-page: Oct575
  issue: 9
  year: 2016
  ident: 10.1016/j.ajo.2019.01.011_bib26
  article-title: Comparison of Bruch’s membrane opening minimum rim width and peripapillary retinal nerve fiber layer thickness in early glaucoma assessment
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.15-18906
– volume: 8
  start-page: 297
  issue: 5
  year: 1999
  ident: 10.1016/j.ajo.2019.01.011_bib13
  article-title: Evaluation of a portable fundus camera for use in the teleophthalmologic diagnosis of glaucoma
  publication-title: J Glaucoma
  doi: 10.1097/00061198-199910000-00004
– volume: 133
  start-page: 174
  issue: 2
  year: 2015
  ident: 10.1016/j.ajo.2019.01.011_bib6
  article-title: Diabetes eye screening in urban settings serving minority populations: detection of diabetic retinopathy and other ocular findings using telemedicine
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2014.4652
– year: 2015
  ident: 10.1016/j.ajo.2019.01.011_bib32
  article-title: Deep Residual Learning for Image Recognition
  publication-title: ArXiv e-prints
– volume: 318
  start-page: 2211
  issue: 22
  year: 2017
  ident: 10.1016/j.ajo.2019.01.011_bib18
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: JAMA
  doi: 10.1001/jama.2017.18152
– volume: 57
  start-page: 181
  issue: 1
  year: 2016
  ident: 10.1016/j.ajo.2019.01.011_bib27
  article-title: Diagnostic accuracy of glaucoma with sector-based and a new total profile-based analysis of neuroretinal rim and retinal nerve fiber layer thickness
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.15-17820
– volume: 101
  start-page: 1662
  issue: 10
  year: 1994
  ident: 10.1016/j.ajo.2019.01.011_bib15
  article-title: Agreement among optometrists, ophthalmologists, and residents in evaluating the optic disc for glaucoma
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(94)31118-3
– volume: 12
  start-page: e0179790
  issue: 6
  year: 2017
  ident: 10.1016/j.ajo.2019.01.011_bib21
  article-title: Applying artificial intelligence to disease staging: deep learning for improved staging of diabetic retinopathy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0179790
– volume: 125
  start-page: 1199
  issue: 8
  year: 2018
  ident: 10.1016/j.ajo.2019.01.011_bib17
  article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.01.023
– volume: 311
  start-page: 1901
  issue: 18
  year: 2014
  ident: 10.1016/j.ajo.2019.01.011_bib5
  article-title: The pathophysiology and treatment of glaucoma: a review
  publication-title: JAMA
  doi: 10.1001/jama.2014.3192
– year: 2016
  ident: 10.1016/j.ajo.2019.01.011_bib33
  article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
  publication-title: ArXiv e-prints
– year: 2016
  ident: 10.1016/j.ajo.2019.01.011_bib34
  article-title: Grad-CAM: Why did you say that?
  publication-title: ArXiv e-prints
– volume: 47
  start-page: 2520
  issue: 6
  year: 2006
  ident: 10.1016/j.ajo.2019.01.011_bib35
  article-title: A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.05-1441
– volume: 55
  start-page: 2953
  issue: 5
  year: 2014
  ident: 10.1016/j.ajo.2019.01.011_bib24
  article-title: Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.13-13482
– volume: 182
  start-page: 99
  year: 2017
  ident: 10.1016/j.ajo.2019.01.011_bib38
  article-title: Glaucoma screening in Nepal: cup-to-disc estimate with standard mydriatic fundus camera compared to portable nonmydriatic camera
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2017.07.010
– volume: 99
  start-page: 215
  issue: 2
  year: 1992
  ident: 10.1016/j.ajo.2019.01.011_bib14
  article-title: Expert agreement in evaluating the optic disc for glaucoma
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(92)31990-6
– ident: 10.1016/j.ajo.2019.01.011_bib31
  doi: 10.1109/CVPR.2009.5206848
– volume: 53
  start-page: 1852
  issue: 4
  year: 2012
  ident: 10.1016/j.ajo.2019.01.011_bib23
  article-title: Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.11-9309
– volume: 10
  start-page: 1534
  issue: 10
  year: 2017
  ident: 10.1016/j.ajo.2019.01.011_bib25
  article-title: Structure-function relationship comparison between retinal nerve fibre layer and Bruch’s membrane opening-minimum rim width in glaucoma
  publication-title: Int J Ophthalmol
– volume: 147
  start-page: 39
  issue: 1
  year: 2009
  ident: 10.1016/j.ajo.2019.01.011_bib16
  article-title: Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2008.07.023
– volume: 57
  start-page: 355
  issue: 5
  year: 2009
  ident: 10.1016/j.ajo.2019.01.011_bib4
  article-title: Determinants of glaucoma awareness and knowledge in urban Chennai
  publication-title: Indian J Ophthalmol
  doi: 10.4103/0301-4738.55073
– volume: 20
  start-page: 318
  issue: 4
  year: 2014
  ident: 10.1016/j.ajo.2019.01.011_bib11
  article-title: A novel tele-eye protocol for ocular disease detection and access to eye care services
  publication-title: Telemed J E Health
  doi: 10.1089/tmj.2013.0185
SSID ssj0006747
Score 2.5540636
Snippet To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch...
PurposeTo train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms Aged
Aged, 80 and over
Algorithms
Area Under Curve
Bruch Membrane - pathology
Cross-Sectional Studies
Deep Learning
Diabetic retinopathy
Female
Glaucoma
Glaucoma, Open-Angle - diagnosis
Glaucoma, Open-Angle - physiopathology
Humans
Hypertension
Intraocular Pressure - physiology
Male
Middle Aged
Nerve Fibers - pathology
Neural networks
Ophthalmology
Optic Disk - diagnostic imaging
Optic nerve
Optic Nerve Diseases - diagnosis
Optic Nerve Diseases - physiopathology
Optics
Photography - methods
Retinal Ganglion Cells - pathology
Retrospective Studies
Software
Tomography, Optical Coherence
Vision Disorders - diagnosis
Vision Disorders - physiopathology
Visual Field Tests
Visual Fields - physiology
Title A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0002939419300248
https://dx.doi.org/10.1016/j.ajo.2019.01.011
https://www.ncbi.nlm.nih.gov/pubmed/30689990
https://www.proquest.com/docview/2221741344
https://www.proquest.com/docview/2179412762
https://pubmed.ncbi.nlm.nih.gov/PMC6884088
Volume 201
WOSCitedRecordID wos000468253700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1891
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006747
  issn: 0002-9394
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb5swFLbSdpr2Mu2-bF3lSXsaouJu-zHqWm3T2t06LW_IgGmICESBVN2_3zmAKWm17iJNilCEMQjO5-PP9jmfCXmVokY58FQzSazI9FzJoEkF0kygL3Yi7ktHes1mE-zkhE-n4tNotNa5MOc5Kwp-cSGW_9XUcA6Mjamzf2Hu_qZwAv6D0eEIZofjHxl-Aj5ELbVw6pkxyc_KVVbPFkgzP68lRgf9MBpRDsxgRDb6JVsYH6C3BBpbLoyPSxRxfZNVuDNOWbea1tWQxfbLPAPdiXI5q2cyX2xM01-Gm4AHQq1FZRzs90E7crGQeZdlU1USpROMSV98rBKVrdoowCOVZ0ulC7tJCsyL8oeTFH32zEZwZ-ONhdtucqy9sdNVa_2pGHTMrZ--5vLb2Yf5vpxjLqctGhXWzoFvKml_xQfi84C0NlpuW2THYb4Af74zeXc4fd934QHzmB43YQW9HN4EBl550K8IzfUBy9W42wGROb1H7nYjEDppkXOfjFTxgNw-7mIsHpLvE4oAohpAtAcQrUuqAUSHAKIAIIoAoggg2gCIIoDoAECPyLejw9ODt2a3_YYZ-46oTR470g0SX3heBG1WyEQpy-WRg5GRypbCYYwlkWDCV7gcjFpkPLXSgClXJky6j8l2URbqKaFBKrgbR0pIP_WEy7lrqTgN4iBSjNtBOiaW_oZh3GnT4xYpeaiDEOchfPYQP3to2fCzx-R1X2XZCrPcdLGjDRPqjGPoI0PA0E2VvL5SR0dbmvm7arva8mHXCqsQWDgM_W3X88bkZV8MnhyX52ShyjVcg32j7QA7GZMnLVD6N4OBPYehnDUmbANC_QWoEr9ZUmSzRi0-4NwDKvHs397mOblz2Z53yXa9WqsX5FZ8XmfVao9ssSnf61rPTzGs4Xc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Algorithm+to+Quantify+Neuroretinal+Rim+Loss+From+Optic+Disc+Photographs&rft.jtitle=American+journal+of+ophthalmology&rft.au=Thompson%2C+Atalie+C.&rft.au=Jammal%2C+Alessandro+A.&rft.au=Medeiros%2C+Felipe+A.&rft.date=2019-05-01&rft.pub=Elsevier+Inc&rft.issn=0002-9394&rft.volume=201&rft.spage=9&rft.epage=18&rft_id=info:doi/10.1016%2Fj.ajo.2019.01.011&rft.externalDocID=S0002939419300248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9394&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9394&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9394&client=summon