A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs
To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT). Cross-sectional study. A total of 9282 pairs of optic dis...
Gespeichert in:
| Veröffentlicht in: | American journal of ophthalmology Jg. 201; S. 9 - 18 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
01.05.2019
Elsevier Limited |
| Schlagworte: | |
| ISSN: | 0002-9394, 1879-1891, 1879-1891 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT).
Cross-sectional study.
A total of 9282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets (20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global and sector values when evaluating optic disc photographs. The predictions of the DL network were compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from normal eyes.
The DL predictions of global BMO-MRW from all optic disc photographs in the test set (mean ± standard deviation [SD]: 228.8 ± 63.1 μm) were highly correlated with the observed values from SDOCT (mean ± SD: 226.0 ± 73.8 μm) (Pearson's r = 0.88; R2 = 77%; P < .001), with mean absolute error of the predictions of 27.8 μm. The AUCs for discriminating glaucomatous from healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 0.945 (95% confidence interval [CI]: 0.874–0.980) and 0.933 (95% CI: 0.856–0.975), respectively (P = .587).
A DL network can be trained to quantify the amount of neuroretinal damage on optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of disc photographs. |
|---|---|
| AbstractList | To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT).
Cross-sectional study.
A total of 9282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets (20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global and sector values when evaluating optic disc photographs. The predictions of the DL network were compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from normal eyes.
The DL predictions of global BMO-MRW from all optic disc photographs in the test set (mean ± standard deviation [SD]: 228.8 ± 63.1 μm) were highly correlated with the observed values from SDOCT (mean ± SD: 226.0 ± 73.8 μm) (Pearson's r = 0.88; R2 = 77%; P < .001), with mean absolute error of the predictions of 27.8 μm. The AUCs for discriminating glaucomatous from healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 0.945 (95% confidence interval [CI]: 0.874–0.980) and 0.933 (95% CI: 0.856–0.975), respectively (P = .587).
A DL network can be trained to quantify the amount of neuroretinal damage on optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of disc photographs. To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT).PURPOSETo train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT).Cross-sectional study.DESIGNCross-sectional study.A total of 9282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets (20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global and sector values when evaluating optic disc photographs. The predictions of the DL network were compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from normal eyes.METHODSA total of 9282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets (20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global and sector values when evaluating optic disc photographs. The predictions of the DL network were compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from normal eyes.The DL predictions of global BMO-MRW from all optic disc photographs in the test set (mean ± standard deviation [SD]: 228.8 ± 63.1 μm) were highly correlated with the observed values from SDOCT (mean ± SD: 226.0 ± 73.8 μm) (Pearson's r = 0.88; R2 = 77%; P < .001), with mean absolute error of the predictions of 27.8 μm. The AUCs for discriminating glaucomatous from healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 0.945 (95% confidence interval [CI]: 0.874-0.980) and 0.933 (95% CI: 0.856-0.975), respectively (P = .587).RESULTSThe DL predictions of global BMO-MRW from all optic disc photographs in the test set (mean ± standard deviation [SD]: 228.8 ± 63.1 μm) were highly correlated with the observed values from SDOCT (mean ± SD: 226.0 ± 73.8 μm) (Pearson's r = 0.88; R2 = 77%; P < .001), with mean absolute error of the predictions of 27.8 μm. The AUCs for discriminating glaucomatous from healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 0.945 (95% confidence interval [CI]: 0.874-0.980) and 0.933 (95% CI: 0.856-0.975), respectively (P = .587).A DL network can be trained to quantify the amount of neuroretinal damage on optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of disc photographs.CONCLUSIONSA DL network can be trained to quantify the amount of neuroretinal damage on optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of disc photographs. To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT). Cross-sectional study. A total of 9282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets (20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global and sector values when evaluating optic disc photographs. The predictions of the DL network were compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from normal eyes. The DL predictions of global BMO-MRW from all optic disc photographs in the test set (mean ± standard deviation [SD]: 228.8 ± 63.1 μm) were highly correlated with the observed values from SDOCT (mean ± SD: 226.0 ± 73.8 μm) (Pearson's r = 0.88; R = 77%; P < .001), with mean absolute error of the predictions of 27.8 μm. The AUCs for discriminating glaucomatous from healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 0.945 (95% confidence interval [CI]: 0.874-0.980) and 0.933 (95% CI: 0.856-0.975), respectively (P = .587). A DL network can be trained to quantify the amount of neuroretinal damage on optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of disc photographs. PurposeTo train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT).DesignCross-sectional study.MethodsA total of 9282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets (20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global and sector values when evaluating optic disc photographs. The predictions of the DL network were compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from normal eyes.ResultsThe DL predictions of global BMO-MRW from all optic disc photographs in the test set (mean ± standard deviation [SD]: 228.8 ± 63.1 μm) were highly correlated with the observed values from SDOCT (mean ± SD: 226.0 ± 73.8 μm) (Pearson's r = 0.88; R2 = 77%; P < .001), with mean absolute error of the predictions of 27.8 μm. The AUCs for discriminating glaucomatous from healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 0.945 (95% confidence interval [CI]: 0.874–0.980) and 0.933 (95% CI: 0.856–0.975), respectively (P = .587).ConclusionsA DL network can be trained to quantify the amount of neuroretinal damage on optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of disc photographs. |
| Author | Medeiros, Felipe A. Thompson, Atalie C. Jammal, Alessandro A. |
| AuthorAffiliation | 1. Vision, Imaging and Performance (VIP) Laboratory, Duke Eye Center and Department of Ophthalmology, Duke University, Durham, NC |
| AuthorAffiliation_xml | – name: 1. Vision, Imaging and Performance (VIP) Laboratory, Duke Eye Center and Department of Ophthalmology, Duke University, Durham, NC |
| Author_xml | – sequence: 1 givenname: Atalie C. surname: Thompson fullname: Thompson, Atalie C. – sequence: 2 givenname: Alessandro A. orcidid: 0000-0001-5341-8353 surname: Jammal fullname: Jammal, Alessandro A. – sequence: 3 givenname: Felipe A. surname: Medeiros fullname: Medeiros, Felipe A. email: felipe.medeiros@duke.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30689990$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkV9rFDEUxYNU7Lb6AXyRgC--zJpkZvIHQVha2wqLVVF8DNnMnd2sM8mYyRT225tlW9F9qHAhhPzO4eSeM3TigweEXlIyp4Tyt9u52YY5I1TNCc1Dn6AZlUIVVCp6gmaEEFaoUlWn6Gwct_nKRSWeodOScKmUIjP0Y4EvAQa8BBO982u86NYhurTpcQr4y2R8cu0Of4IphgjJedPhr67HyzCO-CqGHt8OyVl86UaLP29CCutohs34HD1tTTfCi_vzHH2_-vDt4qZY3l5_vFgsC1szlQppmSl5U6uqWtWGKdMAkFKuGC15DdQoJoRoVkqoGnhFhKCcyZa0XEBpGmHKc_T-4DtMqx4aCz5F0-khut7EnQ7G6X9fvNvodbjTXMqKSJkN3twbxPBrgjHpPn8Fus54CNOoGRWqokxwltHXR-g2TDFvJFMscxUtqypTr_5O9CfKw84zIA6AjXmJEVptXTLJhX1A12lK9L5dvdW5Xb1vVxOah2YlPVI-mD-meXfQQG7hzkHUo3XgLTQugk26Ce5RtTpS2855Z033E3b_0f4GITzO8Q |
| CitedBy_id | crossref_primary_10_1016_j_ophtha_2020_07_045 crossref_primary_10_1007_s00347_021_01385_6 crossref_primary_10_4103_ijo_IJO_2583_21 crossref_primary_10_1016_j_oftale_2019_04_002 crossref_primary_10_1097_ICU_0000000000000676 crossref_primary_10_3390_diagnostics12112894 crossref_primary_10_1371_journal_pdig_0000193 crossref_primary_10_1038_s41598_019_46294_6 crossref_primary_10_1177_20552076221090042 crossref_primary_10_1038_s41746_023_00857_0 crossref_primary_10_1097_IJG_0000000000002379 crossref_primary_10_4103_ijo_IJO_1569_22 crossref_primary_10_3390_jcm14072166 crossref_primary_10_1038_s41433_020_01191_5 crossref_primary_10_1016_j_ogla_2021_12_003 crossref_primary_10_1097_APO_0000000000000596 crossref_primary_10_3390_math11133021 crossref_primary_10_1111_opo_13435 crossref_primary_10_3389_fmed_2021_710329 crossref_primary_10_3390_diagnostics12010134 crossref_primary_10_1038_s41598_021_99605_1 crossref_primary_10_1097_CEH_0000000000000258 crossref_primary_10_1038_s41598_020_60277_y crossref_primary_10_3389_fmed_2022_891369 crossref_primary_10_4103_tjo_TJO_D_24_00079 crossref_primary_10_3389_fmed_2022_860574 crossref_primary_10_3390_jcm10153231 crossref_primary_10_1155_2022_5212128 crossref_primary_10_1097_WCO_0000000000000773 crossref_primary_10_1016_j_oftale_2022_02_007 crossref_primary_10_1038_s41598_020_78144_1 crossref_primary_10_1016_j_oftal_2019_04_004 crossref_primary_10_1016_j_ogla_2023_01_007 crossref_primary_10_3389_fmed_2025_1567159 crossref_primary_10_3390_s25144337 crossref_primary_10_1038_s41433_019_0577_x crossref_primary_10_1117_1_NPh_6_4_041110 crossref_primary_10_1007_s42979_023_01945_4 crossref_primary_10_1080_14737159_2020_1758067 crossref_primary_10_1016_j_oftal_2021_10_004 crossref_primary_10_1016_j_bios_2021_113700 crossref_primary_10_1016_j_ogla_2022_02_010 crossref_primary_10_1016_j_xops_2025_100703 crossref_primary_10_1038_s41746_025_01768_y crossref_primary_10_1177_1120672120977346 crossref_primary_10_3390_bioengineering12030321 crossref_primary_10_3389_fdgth_2022_889445 crossref_primary_10_1007_s40135_019_00209_w crossref_primary_10_1093_bmb_ldaa012 crossref_primary_10_3390_jcm14072139 crossref_primary_10_1097_IJG_0000000000002392 crossref_primary_10_3390_ijms24032814 crossref_primary_10_3390_jpm14101062 crossref_primary_10_4103_ijo_IJO_1820_21 crossref_primary_10_1007_s11042_022_12826_y crossref_primary_10_1001_jamaophthalmol_2025_1740 crossref_primary_10_4103_IJO_IJO_1456_23 crossref_primary_10_1038_s41433_024_03026_z |
| Cites_doi | 10.1001/jamaophthalmol.2013.1686 10.1016/S0161-6420(00)00284-0 10.1001/jama.2016.17216 10.1370/afm.293 10.3341/jkos.2017.58.7.836 10.1167/iovs.15-16701 10.1136/bjo.2005.081224 10.1016/S0161-6420(98)91040-5 10.1016/j.ajo.2013.11.007 10.1016/j.ophtha.2007.06.013 10.1111/j.1442-9071.2007.01457.x 10.1016/j.ophtha.2012.09.055 10.1167/tvst.7.4.14 10.1111/aos.13464 10.1089/tmj.2016.0039 10.1016/j.ajo.2014.01.024 10.1167/iovs.15-18906 10.1097/00061198-199910000-00004 10.1001/jamaophthalmol.2014.4652 10.1001/jama.2017.18152 10.1167/iovs.15-17820 10.1016/S0161-6420(94)31118-3 10.1371/journal.pone.0179790 10.1016/j.ophtha.2018.01.023 10.1001/jama.2014.3192 10.1167/iovs.05-1441 10.1167/iovs.13-13482 10.1016/j.ajo.2017.07.010 10.1016/S0161-6420(92)31990-6 10.1109/CVPR.2009.5206848 10.1167/iovs.11-9309 10.1016/j.ajo.2008.07.023 10.4103/0301-4738.55073 10.1089/tmj.2013.0185 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 5PM |
| DOI | 10.1016/j.ajo.2019.01.011 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-1891 |
| EndPage | 18 |
| ExternalDocumentID | PMC6884088 30689990 10_1016_j_ajo_2019_01_011 S0002939419300248 |
| Genre | Validation Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NEI NIH HHS grantid: R21 EY025056 – fundername: NEI NIH HHS grantid: R01 EY029885 – fundername: NEI NIH HHS grantid: R01 EY021818 |
| GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1CY 1P~ 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAHTB AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABCQX ABDPE ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABOCM ABPEJ ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACLOT ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J5H K-O KOM L7B M41 MO0 N4W N9A O-L O9- OAUVE OF- OPF OQ~ OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SPCBC SSH SSZ SV3 T5K UNMZH UV1 VH1 WH7 WOW X7M XPP Z5R ZGI ZXP ~G- ~HD AACTN AFCTW RIG 9DU AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 5PM |
| ID | FETCH-LOGICAL-c529t-8c2a36d5944b5a29adee038b21365e1a92777db9795e640771628f0f67e3ad7a3 |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468253700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0002-9394 1879-1891 |
| IngestDate | Tue Sep 30 15:57:46 EDT 2025 Thu Oct 02 06:55:44 EDT 2025 Mon Oct 06 18:30:29 EDT 2025 Mon Jul 21 06:02:48 EDT 2025 Sat Nov 29 07:30:13 EST 2025 Tue Nov 18 22:19:49 EST 2025 Sun Apr 06 06:53:37 EDT 2025 Tue Oct 14 19:30:39 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | Copyright © 2019 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c529t-8c2a36d5944b5a29adee038b21365e1a92777db9795e640771628f0f67e3ad7a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0001-5341-8353 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6884088 |
| PMID | 30689990 |
| PQID | 2221741344 |
| PQPubID | 41749 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6884088 proquest_miscellaneous_2179412762 proquest_journals_2221741344 pubmed_primary_30689990 crossref_citationtrail_10_1016_j_ajo_2019_01_011 crossref_primary_10_1016_j_ajo_2019_01_011 elsevier_sciencedirect_doi_10_1016_j_ajo_2019_01_011 elsevier_clinicalkey_doi_10_1016_j_ajo_2019_01_011 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Chicago |
| PublicationTitle | American journal of ophthalmology |
| PublicationTitleAlternate | Am J Ophthalmol |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Reznicek, Burzer, Laubichler (bib25) 2017; 10 Park, Kim, Lee (bib40) 2018; 7 Sathyamangalam, Paul, George (bib4) 2009; 57 Gmeiner, Schrems, Mardin (bib26) 2016; 57 Abrams, Scott, Spaeth (bib15) 1994; 101 He, Zhang, Ren, Sun (bib32) 2015 Medeiros, Sample, Zangwill (bib35) 2006; 47 Kumar, Giubilato, Morgan (bib10) 2007; 35 Li, He, Keel (bib17) 2018; 125 Ting, Cheung, Lim (bib18) 2017; 318 Takahashi, Tampo, Arai (bib21) 2017; 12 Reis, Zangalli, Abe (bib36) 2017; 95 Miller, Thapa, Robin (bib38) 2017; 182 Marcus, Brooks, Ulrich (bib12) 1998; 105 Maa, Patel, Chasan (bib7) 2017; 23 Lichter (bib9) 1976; 74 Pollet-Villard, Chiquet, Romanet (bib24) 2014; 55 Gardiner, Ren, Yang (bib28) 2014; 157 Danthurebandara, Vianna, Sharpe (bib27) 2016; 57 Selvaraju, Cogswell, Das (bib33) 2016 Yogesan, Constable, Barry (bib13) 1999; 8 Maa, Evans, DeLaune (bib11) 2014; 20 Gardiner, Boey, Yang (bib29) 2015; 56 Owsley, McGwin, Lee (bib6) 2015; 133 Chauhan, O’Leary, AlMobarak (bib22) 2013; 120 Fleming, Whitlock, Beil (bib39) 2005; 3 Kim, Park, Lee (bib37) 2017; 58 Chan, Ong, Kong (bib8) 2014; 157 Quigley, Broman (bib1) 2006; 90 Weinreb, Aung, Medeiros (bib5) 2014; 311 Selvaraju, Das, Vedantam (bib34) 2016 Hennis, Wu, Nemesure (bib3) 2007; 114 Varma, Steinmann, Scott (bib14) 1992; 99 Gulshan, Peng, Coram (bib19) 2016; 316 Jampel, Friedman, Quigley (bib16) 2009; 147 Budenz, Barton, Whiteside-de Vos (bib2) 2013; 131 Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009 June;248–255. Garway-Heath, Poinoosawmy, Fitzke, Hitchings (bib30) 2000; 107 Reis, O’Leary, Yang (bib23) 2012; 53 Raju, Pagidimarri, Barreto (bib20) 2017; 245 10.1016/j.ajo.2019.01.011_bib31 He (10.1016/j.ajo.2019.01.011_bib32) 2015 Gardiner (10.1016/j.ajo.2019.01.011_bib29) 2015; 56 Garway-Heath (10.1016/j.ajo.2019.01.011_bib30) 2000; 107 Maa (10.1016/j.ajo.2019.01.011_bib7) 2017; 23 Budenz (10.1016/j.ajo.2019.01.011_bib2) 2013; 131 Lichter (10.1016/j.ajo.2019.01.011_bib9) 1976; 74 Selvaraju (10.1016/j.ajo.2019.01.011_bib33) 2016 Li (10.1016/j.ajo.2019.01.011_bib17) 2018; 125 Gmeiner (10.1016/j.ajo.2019.01.011_bib26) 2016; 57 Varma (10.1016/j.ajo.2019.01.011_bib14) 1992; 99 Reznicek (10.1016/j.ajo.2019.01.011_bib25) 2017; 10 Chan (10.1016/j.ajo.2019.01.011_bib8) 2014; 157 Selvaraju (10.1016/j.ajo.2019.01.011_bib34) 2016 Raju (10.1016/j.ajo.2019.01.011_bib20) 2017; 245 Sathyamangalam (10.1016/j.ajo.2019.01.011_bib4) 2009; 57 Danthurebandara (10.1016/j.ajo.2019.01.011_bib27) 2016; 57 Pollet-Villard (10.1016/j.ajo.2019.01.011_bib24) 2014; 55 Abrams (10.1016/j.ajo.2019.01.011_bib15) 1994; 101 Weinreb (10.1016/j.ajo.2019.01.011_bib5) 2014; 311 Yogesan (10.1016/j.ajo.2019.01.011_bib13) 1999; 8 Kumar (10.1016/j.ajo.2019.01.011_bib10) 2007; 35 Quigley (10.1016/j.ajo.2019.01.011_bib1) 2006; 90 Gulshan (10.1016/j.ajo.2019.01.011_bib19) 2016; 316 Fleming (10.1016/j.ajo.2019.01.011_bib39) 2005; 3 Owsley (10.1016/j.ajo.2019.01.011_bib6) 2015; 133 Medeiros (10.1016/j.ajo.2019.01.011_bib35) 2006; 47 Reis (10.1016/j.ajo.2019.01.011_bib36) 2017; 95 Kim (10.1016/j.ajo.2019.01.011_bib37) 2017; 58 Park (10.1016/j.ajo.2019.01.011_bib40) 2018; 7 Marcus (10.1016/j.ajo.2019.01.011_bib12) 1998; 105 Maa (10.1016/j.ajo.2019.01.011_bib11) 2014; 20 Gardiner (10.1016/j.ajo.2019.01.011_bib28) 2014; 157 Miller (10.1016/j.ajo.2019.01.011_bib38) 2017; 182 Jampel (10.1016/j.ajo.2019.01.011_bib16) 2009; 147 Ting (10.1016/j.ajo.2019.01.011_bib18) 2017; 318 Hennis (10.1016/j.ajo.2019.01.011_bib3) 2007; 114 Takahashi (10.1016/j.ajo.2019.01.011_bib21) 2017; 12 Chauhan (10.1016/j.ajo.2019.01.011_bib22) 2013; 120 Reis (10.1016/j.ajo.2019.01.011_bib23) 2012; 53 |
| References_xml | – volume: 318 start-page: 2211 year: 2017 end-page: 2223 ident: bib18 article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes publication-title: JAMA – volume: 47 start-page: 2520 year: 2006 end-page: 2527 ident: bib35 article-title: A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma publication-title: Invest Ophthalmol Vis Sci – volume: 10 start-page: 1534 year: 2017 end-page: 1538 ident: bib25 article-title: Structure-function relationship comparison between retinal nerve fibre layer and Bruch’s membrane opening-minimum rim width in glaucoma publication-title: Int J Ophthalmol – volume: 101 start-page: 1662 year: 1994 end-page: 1667 ident: bib15 article-title: Agreement among optometrists, ophthalmologists, and residents in evaluating the optic disc for glaucoma publication-title: Ophthalmology – volume: 114 start-page: 1816 year: 2007 end-page: 1821 ident: bib3 article-title: Awareness of incident open-angle glaucoma in a population study: the Barbados Eye Studies publication-title: Ophthalmology – volume: 23 start-page: 41 year: 2017 end-page: 48 ident: bib7 article-title: Retrospective evaluation of a teleretinal screening program in detecting multiple nondiabetic eye diseases publication-title: Telemed J E Health – volume: 74 start-page: 532 year: 1976 end-page: 572 ident: bib9 article-title: Variability of expert observers in evaluating the optic disc publication-title: Trans Am Ophthalmol Soc – year: 2015 ident: bib32 article-title: Deep Residual Learning for Image Recognition publication-title: ArXiv e-prints – volume: 90 start-page: 262 year: 2006 end-page: 267 ident: bib1 article-title: The number of people with glaucoma worldwide in 2010 and 2020 publication-title: Br J Ophthalmol – volume: 20 start-page: 318 year: 2014 end-page: 323 ident: bib11 article-title: A novel tele-eye protocol for ocular disease detection and access to eye care services publication-title: Telemed J E Health – volume: 95 start-page: e548 year: 2017 end-page: e555 ident: bib36 article-title: Intra- and interobserver reproducibility of Bruch’s membrane opening minimum rim width measurements with spectral domain optical coherence tomography publication-title: Acta Ophthalmol – volume: 53 start-page: 1852 year: 2012 end-page: 1860 ident: bib23 article-title: Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation publication-title: Invest Ophthalmol Vis Sci – volume: 35 start-page: 237 year: 2007 end-page: 243 ident: bib10 article-title: Glaucoma screening: analysis of conventional and telemedicine-friendly devices publication-title: Clin Exp Ophthalmol – volume: 311 start-page: 1901 year: 2014 end-page: 1911 ident: bib5 article-title: The pathophysiology and treatment of glaucoma: a review publication-title: JAMA – volume: 245 start-page: 559 year: 2017 end-page: 563 ident: bib20 article-title: Development of a deep learning algorithm for automatic diagnosis of diabetic retinopathy publication-title: Stud Health Technol Inform – volume: 58 start-page: 836 year: 2017 end-page: 845 ident: bib37 article-title: Diagnostic accuracies of Bruch membrane opening-minimum rim width and retinal nerve fiber layer thickness in glaucoma publication-title: J Korean Ophthalmol Soc – volume: 56 start-page: 6886 year: 2015 end-page: 6891 ident: bib29 article-title: Structural measurements for monitoring change in glaucoma: comparing retinal nerve fiber layer thickness with minimum rim width and area publication-title: Invest Ophthalmol Vis Sci – volume: 133 start-page: 174 year: 2015 end-page: 181 ident: bib6 article-title: Diabetes eye screening in urban settings serving minority populations: detection of diabetic retinopathy and other ocular findings using telemedicine publication-title: JAMA Ophthalmol – volume: 107 start-page: 1809 year: 2000 end-page: 1815 ident: bib30 article-title: Mapping the visual field to the optic disc in normal tension glaucoma eyes publication-title: Ophthalmology – volume: 57 start-page: Oct575 year: 2016 end-page: Oct584 ident: bib26 article-title: Comparison of Bruch’s membrane opening minimum rim width and peripapillary retinal nerve fiber layer thickness in early glaucoma assessment publication-title: Invest Ophthalmol Vis Sci – volume: 8 start-page: 297 year: 1999 end-page: 301 ident: bib13 article-title: Evaluation of a portable fundus camera for use in the teleophthalmologic diagnosis of glaucoma publication-title: J Glaucoma – volume: 12 start-page: e0179790 year: 2017 ident: bib21 article-title: Applying artificial intelligence to disease staging: deep learning for improved staging of diabetic retinopathy publication-title: PLoS One – volume: 182 start-page: 99 year: 2017 end-page: 106 ident: bib38 article-title: Glaucoma screening in Nepal: cup-to-disc estimate with standard mydriatic fundus camera compared to portable nonmydriatic camera publication-title: Am J Ophthalmol – volume: 120 start-page: 535 year: 2013 end-page: 543 ident: bib22 article-title: Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter publication-title: Ophthalmology – volume: 99 start-page: 215 year: 1992 end-page: 221 ident: bib14 article-title: Expert agreement in evaluating the optic disc for glaucoma publication-title: Ophthalmology – volume: 125 start-page: 1199 year: 2018 end-page: 1206 ident: bib17 article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs publication-title: Ophthalmology – year: 2016 ident: bib33 article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization publication-title: ArXiv e-prints – year: 2016 ident: bib34 article-title: Grad-CAM: Why did you say that? publication-title: ArXiv e-prints – volume: 316 start-page: 2402 year: 2016 end-page: 2410 ident: bib19 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA – volume: 147 start-page: 39 year: 2009 end-page: 44 e1 ident: bib16 article-title: Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients publication-title: Am J Ophthalmol – volume: 105 start-page: 1907 year: 1998 end-page: 1914 ident: bib12 article-title: Telemedicine diagnosis of eye disorders by direct ophthalmoscopy. A pilot study publication-title: Ophthalmology – volume: 157 start-page: 540 year: 2014 end-page: 549.e1-2 ident: bib28 article-title: A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area publication-title: Am J Ophthalmol – volume: 157 start-page: 936 year: 2014 end-page: 944 ident: bib8 article-title: Glaucomatous optic neuropathy evaluation (GONE) project: the effect of monoscopic versus stereoscopic viewing conditions on optic nerve evaluation publication-title: Am J Ophthalmol – volume: 131 start-page: 651 year: 2013 end-page: 658 ident: bib2 article-title: Prevalence of glaucoma in an urban West African population: the Tema Eye Survey publication-title: JAMA Ophthalmol – reference: Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009 June;248–255. – volume: 55 start-page: 2953 year: 2014 end-page: 2962 ident: bib24 article-title: Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements publication-title: Invest Ophthalmol Vis Sci – volume: 7 start-page: 14 year: 2018 ident: bib40 article-title: The relationship between Bruch’s membrane opening-minimum rim width and retinal nerve fiber layer thickness and a new index using a neural network publication-title: Transl Vis Sci Technol – volume: 57 start-page: 181 year: 2016 end-page: 187 ident: bib27 article-title: Diagnostic accuracy of glaucoma with sector-based and a new total profile-based analysis of neuroretinal rim and retinal nerve fiber layer thickness publication-title: Invest Ophthalmol Vis Sci – volume: 3 start-page: 167 year: 2005 end-page: 170 ident: bib39 article-title: Screening for primary open-angle glaucoma in the primary care setting: an update for the US preventive services task force publication-title: Ann Fam Med – volume: 57 start-page: 355 year: 2009 end-page: 360 ident: bib4 article-title: Determinants of glaucoma awareness and knowledge in urban Chennai publication-title: Indian J Ophthalmol – volume: 131 start-page: 651 issue: 5 year: 2013 ident: 10.1016/j.ajo.2019.01.011_bib2 article-title: Prevalence of glaucoma in an urban West African population: the Tema Eye Survey publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2013.1686 – volume: 107 start-page: 1809 issue: 10 year: 2000 ident: 10.1016/j.ajo.2019.01.011_bib30 article-title: Mapping the visual field to the optic disc in normal tension glaucoma eyes publication-title: Ophthalmology doi: 10.1016/S0161-6420(00)00284-0 – volume: 316 start-page: 2402 issue: 22 year: 2016 ident: 10.1016/j.ajo.2019.01.011_bib19 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 3 start-page: 167 issue: 2 year: 2005 ident: 10.1016/j.ajo.2019.01.011_bib39 article-title: Screening for primary open-angle glaucoma in the primary care setting: an update for the US preventive services task force publication-title: Ann Fam Med doi: 10.1370/afm.293 – volume: 58 start-page: 836 issue: 7 year: 2017 ident: 10.1016/j.ajo.2019.01.011_bib37 article-title: Diagnostic accuracies of Bruch membrane opening-minimum rim width and retinal nerve fiber layer thickness in glaucoma publication-title: J Korean Ophthalmol Soc doi: 10.3341/jkos.2017.58.7.836 – volume: 56 start-page: 6886 issue: 11 year: 2015 ident: 10.1016/j.ajo.2019.01.011_bib29 article-title: Structural measurements for monitoring change in glaucoma: comparing retinal nerve fiber layer thickness with minimum rim width and area publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.15-16701 – volume: 90 start-page: 262 issue: 3 year: 2006 ident: 10.1016/j.ajo.2019.01.011_bib1 article-title: The number of people with glaucoma worldwide in 2010 and 2020 publication-title: Br J Ophthalmol doi: 10.1136/bjo.2005.081224 – volume: 105 start-page: 1907 issue: 10 year: 1998 ident: 10.1016/j.ajo.2019.01.011_bib12 article-title: Telemedicine diagnosis of eye disorders by direct ophthalmoscopy. A pilot study publication-title: Ophthalmology doi: 10.1016/S0161-6420(98)91040-5 – volume: 157 start-page: 540 issue: 3 year: 2014 ident: 10.1016/j.ajo.2019.01.011_bib28 article-title: A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2013.11.007 – volume: 114 start-page: 1816 issue: 10 year: 2007 ident: 10.1016/j.ajo.2019.01.011_bib3 article-title: Awareness of incident open-angle glaucoma in a population study: the Barbados Eye Studies publication-title: Ophthalmology doi: 10.1016/j.ophtha.2007.06.013 – volume: 35 start-page: 237 issue: 3 year: 2007 ident: 10.1016/j.ajo.2019.01.011_bib10 article-title: Glaucoma screening: analysis of conventional and telemedicine-friendly devices publication-title: Clin Exp Ophthalmol doi: 10.1111/j.1442-9071.2007.01457.x – volume: 120 start-page: 535 issue: 3 year: 2013 ident: 10.1016/j.ajo.2019.01.011_bib22 article-title: Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.09.055 – volume: 74 start-page: 532 year: 1976 ident: 10.1016/j.ajo.2019.01.011_bib9 article-title: Variability of expert observers in evaluating the optic disc publication-title: Trans Am Ophthalmol Soc – volume: 7 start-page: 14 issue: 4 year: 2018 ident: 10.1016/j.ajo.2019.01.011_bib40 article-title: The relationship between Bruch’s membrane opening-minimum rim width and retinal nerve fiber layer thickness and a new index using a neural network publication-title: Transl Vis Sci Technol doi: 10.1167/tvst.7.4.14 – volume: 95 start-page: e548 issue: 7 year: 2017 ident: 10.1016/j.ajo.2019.01.011_bib36 article-title: Intra- and interobserver reproducibility of Bruch’s membrane opening minimum rim width measurements with spectral domain optical coherence tomography publication-title: Acta Ophthalmol doi: 10.1111/aos.13464 – volume: 23 start-page: 41 issue: 1 year: 2017 ident: 10.1016/j.ajo.2019.01.011_bib7 article-title: Retrospective evaluation of a teleretinal screening program in detecting multiple nondiabetic eye diseases publication-title: Telemed J E Health doi: 10.1089/tmj.2016.0039 – volume: 157 start-page: 936 issue: 5 year: 2014 ident: 10.1016/j.ajo.2019.01.011_bib8 article-title: Glaucomatous optic neuropathy evaluation (GONE) project: the effect of monoscopic versus stereoscopic viewing conditions on optic nerve evaluation publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2014.01.024 – volume: 245 start-page: 559 year: 2017 ident: 10.1016/j.ajo.2019.01.011_bib20 article-title: Development of a deep learning algorithm for automatic diagnosis of diabetic retinopathy publication-title: Stud Health Technol Inform – volume: 57 start-page: Oct575 issue: 9 year: 2016 ident: 10.1016/j.ajo.2019.01.011_bib26 article-title: Comparison of Bruch’s membrane opening minimum rim width and peripapillary retinal nerve fiber layer thickness in early glaucoma assessment publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.15-18906 – volume: 8 start-page: 297 issue: 5 year: 1999 ident: 10.1016/j.ajo.2019.01.011_bib13 article-title: Evaluation of a portable fundus camera for use in the teleophthalmologic diagnosis of glaucoma publication-title: J Glaucoma doi: 10.1097/00061198-199910000-00004 – volume: 133 start-page: 174 issue: 2 year: 2015 ident: 10.1016/j.ajo.2019.01.011_bib6 article-title: Diabetes eye screening in urban settings serving minority populations: detection of diabetic retinopathy and other ocular findings using telemedicine publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2014.4652 – year: 2015 ident: 10.1016/j.ajo.2019.01.011_bib32 article-title: Deep Residual Learning for Image Recognition publication-title: ArXiv e-prints – volume: 318 start-page: 2211 issue: 22 year: 2017 ident: 10.1016/j.ajo.2019.01.011_bib18 article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes publication-title: JAMA doi: 10.1001/jama.2017.18152 – volume: 57 start-page: 181 issue: 1 year: 2016 ident: 10.1016/j.ajo.2019.01.011_bib27 article-title: Diagnostic accuracy of glaucoma with sector-based and a new total profile-based analysis of neuroretinal rim and retinal nerve fiber layer thickness publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.15-17820 – volume: 101 start-page: 1662 issue: 10 year: 1994 ident: 10.1016/j.ajo.2019.01.011_bib15 article-title: Agreement among optometrists, ophthalmologists, and residents in evaluating the optic disc for glaucoma publication-title: Ophthalmology doi: 10.1016/S0161-6420(94)31118-3 – volume: 12 start-page: e0179790 issue: 6 year: 2017 ident: 10.1016/j.ajo.2019.01.011_bib21 article-title: Applying artificial intelligence to disease staging: deep learning for improved staging of diabetic retinopathy publication-title: PLoS One doi: 10.1371/journal.pone.0179790 – volume: 125 start-page: 1199 issue: 8 year: 2018 ident: 10.1016/j.ajo.2019.01.011_bib17 article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.01.023 – volume: 311 start-page: 1901 issue: 18 year: 2014 ident: 10.1016/j.ajo.2019.01.011_bib5 article-title: The pathophysiology and treatment of glaucoma: a review publication-title: JAMA doi: 10.1001/jama.2014.3192 – year: 2016 ident: 10.1016/j.ajo.2019.01.011_bib33 article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization publication-title: ArXiv e-prints – year: 2016 ident: 10.1016/j.ajo.2019.01.011_bib34 article-title: Grad-CAM: Why did you say that? publication-title: ArXiv e-prints – volume: 47 start-page: 2520 issue: 6 year: 2006 ident: 10.1016/j.ajo.2019.01.011_bib35 article-title: A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.05-1441 – volume: 55 start-page: 2953 issue: 5 year: 2014 ident: 10.1016/j.ajo.2019.01.011_bib24 article-title: Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.13-13482 – volume: 182 start-page: 99 year: 2017 ident: 10.1016/j.ajo.2019.01.011_bib38 article-title: Glaucoma screening in Nepal: cup-to-disc estimate with standard mydriatic fundus camera compared to portable nonmydriatic camera publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2017.07.010 – volume: 99 start-page: 215 issue: 2 year: 1992 ident: 10.1016/j.ajo.2019.01.011_bib14 article-title: Expert agreement in evaluating the optic disc for glaucoma publication-title: Ophthalmology doi: 10.1016/S0161-6420(92)31990-6 – ident: 10.1016/j.ajo.2019.01.011_bib31 doi: 10.1109/CVPR.2009.5206848 – volume: 53 start-page: 1852 issue: 4 year: 2012 ident: 10.1016/j.ajo.2019.01.011_bib23 article-title: Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.11-9309 – volume: 10 start-page: 1534 issue: 10 year: 2017 ident: 10.1016/j.ajo.2019.01.011_bib25 article-title: Structure-function relationship comparison between retinal nerve fibre layer and Bruch’s membrane opening-minimum rim width in glaucoma publication-title: Int J Ophthalmol – volume: 147 start-page: 39 issue: 1 year: 2009 ident: 10.1016/j.ajo.2019.01.011_bib16 article-title: Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2008.07.023 – volume: 57 start-page: 355 issue: 5 year: 2009 ident: 10.1016/j.ajo.2019.01.011_bib4 article-title: Determinants of glaucoma awareness and knowledge in urban Chennai publication-title: Indian J Ophthalmol doi: 10.4103/0301-4738.55073 – volume: 20 start-page: 318 issue: 4 year: 2014 ident: 10.1016/j.ajo.2019.01.011_bib11 article-title: A novel tele-eye protocol for ocular disease detection and access to eye care services publication-title: Telemed J E Health doi: 10.1089/tmj.2013.0185 |
| SSID | ssj0006747 |
| Score | 2.5540636 |
| Snippet | To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch... PurposeTo train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9 |
| SubjectTerms | Aged Aged, 80 and over Algorithms Area Under Curve Bruch Membrane - pathology Cross-Sectional Studies Deep Learning Diabetic retinopathy Female Glaucoma Glaucoma, Open-Angle - diagnosis Glaucoma, Open-Angle - physiopathology Humans Hypertension Intraocular Pressure - physiology Male Middle Aged Nerve Fibers - pathology Neural networks Ophthalmology Optic Disk - diagnostic imaging Optic nerve Optic Nerve Diseases - diagnosis Optic Nerve Diseases - physiopathology Optics Photography - methods Retinal Ganglion Cells - pathology Retrospective Studies Software Tomography, Optical Coherence Vision Disorders - diagnosis Vision Disorders - physiopathology Visual Field Tests Visual Fields - physiology |
| Title | A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0002939419300248 https://dx.doi.org/10.1016/j.ajo.2019.01.011 https://www.ncbi.nlm.nih.gov/pubmed/30689990 https://www.proquest.com/docview/2221741344 https://www.proquest.com/docview/2179412762 https://pubmed.ncbi.nlm.nih.gov/PMC6884088 |
| Volume | 201 |
| WOSCitedRecordID | wos000468253700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1891 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006747 issn: 0002-9394 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb5swFLbSdpr2Mu2-bF3lSXsaouJu-zHqWm3T2t06LW_IgGmICESBVN2_3zmAKWm17iJNilCEMQjO5-PP9jmfCXmVokY58FQzSazI9FzJoEkF0kygL3Yi7ktHes1mE-zkhE-n4tNotNa5MOc5Kwp-cSGW_9XUcA6Mjamzf2Hu_qZwAv6D0eEIZofjHxl-Aj5ELbVw6pkxyc_KVVbPFkgzP68lRgf9MBpRDsxgRDb6JVsYH6C3BBpbLoyPSxRxfZNVuDNOWbea1tWQxfbLPAPdiXI5q2cyX2xM01-Gm4AHQq1FZRzs90E7crGQeZdlU1USpROMSV98rBKVrdoowCOVZ0ulC7tJCsyL8oeTFH32zEZwZ-ONhdtucqy9sdNVa_2pGHTMrZ--5vLb2Yf5vpxjLqctGhXWzoFvKml_xQfi84C0NlpuW2THYb4Af74zeXc4fd934QHzmB43YQW9HN4EBl550K8IzfUBy9W42wGROb1H7nYjEDppkXOfjFTxgNw-7mIsHpLvE4oAohpAtAcQrUuqAUSHAKIAIIoAoggg2gCIIoDoAECPyLejw9ODt2a3_YYZ-46oTR470g0SX3heBG1WyEQpy-WRg5GRypbCYYwlkWDCV7gcjFpkPLXSgClXJky6j8l2URbqKaFBKrgbR0pIP_WEy7lrqTgN4iBSjNtBOiaW_oZh3GnT4xYpeaiDEOchfPYQP3to2fCzx-R1X2XZCrPcdLGjDRPqjGPoI0PA0E2VvL5SR0dbmvm7arva8mHXCqsQWDgM_W3X88bkZV8MnhyX52ShyjVcg32j7QA7GZMnLVD6N4OBPYehnDUmbANC_QWoEr9ZUmSzRi0-4NwDKvHs397mOblz2Z53yXa9WqsX5FZ8XmfVao9ssSnf61rPTzGs4Xc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Algorithm+to+Quantify+Neuroretinal+Rim+Loss+From+Optic+Disc+Photographs&rft.jtitle=American+journal+of+ophthalmology&rft.au=Thompson%2C+Atalie+C.&rft.au=Jammal%2C+Alessandro+A.&rft.au=Medeiros%2C+Felipe+A.&rft.date=2019-05-01&rft.pub=Elsevier+Inc&rft.issn=0002-9394&rft.volume=201&rft.spage=9&rft.epage=18&rft_id=info:doi/10.1016%2Fj.ajo.2019.01.011&rft.externalDocID=S0002939419300248 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9394&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9394&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9394&client=summon |