Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses

Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cell reports (Cambridge) Ročník 30; číslo 2; s. 481 - 496.e6
Hlavní autori: Blagih, Julianna, Zani, Fabio, Chakravarty, Probir, Hennequart, Marc, Pilley, Steven, Hobor, Sebastijan, Hock, Andreas K., Walton, Josephine B., Morton, Jennifer P., Gronroos, Eva, Mason, Susan, Yang, Ming, McNeish, Iain, Swanton, Charles, Blyth, Karen, Vousden, Karen H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 14.01.2020
Cell Press
Elsevier
Predmet:
ISSN:2211-1247, 2211-1247
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the tumor-immune landscape to circumvent immune destruction. Deletion of p53 promotes the recruitment and instruction of suppressive myeloid CD11b+ cells, in part through increased expression of CXCR3/CCR2-associated chemokines and macrophage colony-stimulating factor (M-CSF), and attenuates the CD4+ T helper 1 (Th1) and CD8+ T cell responses in vivo. p53-null tumors also show an accumulation of suppressive regulatory T (Treg) cells. Finally, we show that two key drivers of tumorigenesis, activation of KRAS and deletion of p53, cooperate to promote immune tolerance. [Display omitted] •Tumor-specific loss of p53 delays tumor rejection in immune-competent hosts•p53 loss increases myeloid infiltration through enhanced cytokine secretion•The increase in Treg cells in response to loss of p53 is independent of Kras mutation•Kras mutations coordinate with p53 loss to regulate myeloid recruitment TP53 is one of the most frequently mutated genes in cancer; however, its significance in controlling tumor-immune crosstalk is not fully understood. Blagih et al. highlight a key role for tumor-associated loss of p53, a common oncogenic event, in regulating myeloid and T cell responses.
AbstractList Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the tumor-immune landscape to circumvent immune destruction. Deletion of p53 promotes the recruitment and instruction of suppressive myeloid CD11b+ cells, in part through increased expression of CXCR3/CCR2-associated chemokines and macrophage colony-stimulating factor (M-CSF), and attenuates the CD4+ T helper 1 (Th1) and CD8+ T cell responses in vivo. p53-null tumors also show an accumulation of suppressive regulatory T (Treg) cells. Finally, we show that two key drivers of tumorigenesis, activation of KRAS and deletion of p53, cooperate to promote immune tolerance. • Tumor-specific loss of p53 delays tumor rejection in immune-competent hosts • p53 loss increases myeloid infiltration through enhanced cytokine secretion • The increase in Treg cells in response to loss of p53 is independent of Kras mutation • Kras mutations coordinate with p53 loss to regulate myeloid recruitment TP53 is one of the most frequently mutated genes in cancer; however, its significance in controlling tumor-immune crosstalk is not fully understood. Blagih et al. highlight a key role for tumor-associated loss of p53, a common oncogenic event, in regulating myeloid and T cell responses.
Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the tumor-immune landscape to circumvent immune destruction. Deletion of p53 promotes the recruitment and instruction of suppressive myeloid CD11b+ cells, in part through increased expression of CXCR3/CCR2-associated chemokines and macrophage colony-stimulating factor (M-CSF), and attenuates the CD4+ T helper 1 (Th1) and CD8+ T cell responses in vivo. p53-null tumors also show an accumulation of suppressive regulatory T (Treg) cells. Finally, we show that two key drivers of tumorigenesis, activation of KRAS and deletion of p53, cooperate to promote immune tolerance.Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the tumor-immune landscape to circumvent immune destruction. Deletion of p53 promotes the recruitment and instruction of suppressive myeloid CD11b+ cells, in part through increased expression of CXCR3/CCR2-associated chemokines and macrophage colony-stimulating factor (M-CSF), and attenuates the CD4+ T helper 1 (Th1) and CD8+ T cell responses in vivo. p53-null tumors also show an accumulation of suppressive regulatory T (Treg) cells. Finally, we show that two key drivers of tumorigenesis, activation of KRAS and deletion of p53, cooperate to promote immune tolerance.
Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the tumor-immune landscape to circumvent immune destruction. Deletion of p53 promotes the recruitment and instruction of suppressive myeloid CD11b+ cells, in part through increased expression of CXCR3/CCR2-associated chemokines and macrophage colony-stimulating factor (M-CSF), and attenuates the CD4+ T helper 1 (Th1) and CD8+ T cell responses in vivo. p53-null tumors also show an accumulation of suppressive regulatory T (Treg) cells. Finally, we show that two key drivers of tumorigenesis, activation of KRAS and deletion of p53, cooperate to promote immune tolerance. : TP53 is one of the most frequently mutated genes in cancer; however, its significance in controlling tumor-immune crosstalk is not fully understood. Blagih et al. highlight a key role for tumor-associated loss of p53, a common oncogenic event, in regulating myeloid and T cell responses. Keywords: p53, Kras, tumor, myeloid cells, T cell response
Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the tumor-immune landscape to circumvent immune destruction. Deletion of p53 promotes the recruitment and instruction of suppressive myeloid CD11b cells, in part through increased expression of CXCR3/CCR2-associated chemokines and macrophage colony-stimulating factor (M-CSF), and attenuates the CD4 T helper 1 (Th1) and CD8 T cell responses in vivo. p53-null tumors also show an accumulation of suppressive regulatory T (Treg) cells. Finally, we show that two key drivers of tumorigenesis, activation of KRAS and deletion of p53, cooperate to promote immune tolerance.
Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the tumor-immune landscape to circumvent immune destruction. Deletion of p53 promotes the recruitment and instruction of suppressive myeloid CD11b+ cells, in part through increased expression of CXCR3/CCR2-associated chemokines and macrophage colony-stimulating factor (M-CSF), and attenuates the CD4+ T helper 1 (Th1) and CD8+ T cell responses in vivo. p53-null tumors also show an accumulation of suppressive regulatory T (Treg) cells. Finally, we show that two key drivers of tumorigenesis, activation of KRAS and deletion of p53, cooperate to promote immune tolerance. [Display omitted] •Tumor-specific loss of p53 delays tumor rejection in immune-competent hosts•p53 loss increases myeloid infiltration through enhanced cytokine secretion•The increase in Treg cells in response to loss of p53 is independent of Kras mutation•Kras mutations coordinate with p53 loss to regulate myeloid recruitment TP53 is one of the most frequently mutated genes in cancer; however, its significance in controlling tumor-immune crosstalk is not fully understood. Blagih et al. highlight a key role for tumor-associated loss of p53, a common oncogenic event, in regulating myeloid and T cell responses.
Author Gronroos, Eva
Zani, Fabio
Hobor, Sebastijan
Vousden, Karen H.
Pilley, Steven
Morton, Jennifer P.
Swanton, Charles
Walton, Josephine B.
Chakravarty, Probir
Hock, Andreas K.
Blyth, Karen
Blagih, Julianna
Mason, Susan
Yang, Ming
McNeish, Iain
Hennequart, Marc
AuthorAffiliation 4 Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, UK
5 Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
2 Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
3 Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
1 The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
AuthorAffiliation_xml – name: 1 The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
– name: 5 Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
– name: 2 Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
– name: 4 Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, UK
– name: 3 Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
Author_xml – sequence: 1
  givenname: Julianna
  surname: Blagih
  fullname: Blagih, Julianna
  organization: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
– sequence: 2
  givenname: Fabio
  surname: Zani
  fullname: Zani, Fabio
  organization: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
– sequence: 3
  givenname: Probir
  surname: Chakravarty
  fullname: Chakravarty, Probir
  organization: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
– sequence: 4
  givenname: Marc
  surname: Hennequart
  fullname: Hennequart, Marc
  organization: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
– sequence: 5
  givenname: Steven
  surname: Pilley
  fullname: Pilley, Steven
  organization: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
– sequence: 6
  givenname: Sebastijan
  surname: Hobor
  fullname: Hobor, Sebastijan
  organization: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
– sequence: 7
  givenname: Andreas K.
  surname: Hock
  fullname: Hock, Andreas K.
  organization: Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
– sequence: 8
  givenname: Josephine B.
  surname: Walton
  fullname: Walton, Josephine B.
  organization: Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
– sequence: 9
  givenname: Jennifer P.
  surname: Morton
  fullname: Morton, Jennifer P.
  organization: Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
– sequence: 10
  givenname: Eva
  surname: Gronroos
  fullname: Gronroos, Eva
  organization: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
– sequence: 11
  givenname: Susan
  surname: Mason
  fullname: Mason, Susan
  organization: Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
– sequence: 12
  givenname: Ming
  surname: Yang
  fullname: Yang, Ming
  organization: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
– sequence: 13
  givenname: Iain
  surname: McNeish
  fullname: McNeish, Iain
  organization: Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
– sequence: 14
  givenname: Charles
  surname: Swanton
  fullname: Swanton, Charles
  organization: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
– sequence: 15
  givenname: Karen
  surname: Blyth
  fullname: Blyth, Karen
  organization: Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
– sequence: 16
  givenname: Karen H.
  surname: Vousden
  fullname: Vousden, Karen H.
  email: karen.vousden@crick.ac.uk
  organization: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31940491$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URMvSf4CQj1w2-CtxzAEJrfiotBUCytma2JPiVTYOdrZS_z3e7ha1HMCXsTwzz2vNvM_JyRhHJOQlZxVnvHmzqRwOCadKMG4qLiom2ifkTAjOl1woffLgfkrOc96wchrGuVHPyKksgSnDz8jXFYwO0_L7hC70wdF1zJnGnk61pGsEn-kcKdDL6HcDzCGO--TlLQ4xeAqjp1d0hcNAv2Ge4pgxvyBPexgynh_jgvz4-OFq9Xm5_vLpYvV-vXS1MPOybVWrGwcNV0oD8Lp2nTbegPJKd84xLWXfaqhRImclBwxQ9J4xoVvJQS7IxYHrI2zslMIW0q2NEOzdQ0zXFtIc3IDWYNszAS3voFVCgun7upbAGtN1GnlbWO8OrGnXbdE7HOcEwyPo48wYftrreGMb08jynQJ4fQSk-GuHebbbkMuKBhgx7rIVUhptWF3UF-TVQ60_Ivc7KQVvDwUulV0k7K0L893oi3QYLGd27wG7sQcP2L0HLBe2eKA0q7-a7_n_aTsOAMvGbgImm13A4gwfErq5jDT8G_Ab7erLkQ
CitedBy_id crossref_primary_10_1126_sciimmunol_abo5570
crossref_primary_10_1016_j_canlet_2024_216766
crossref_primary_10_1016_j_molcel_2022_12_023
crossref_primary_10_1136_jitc_2023_008086
crossref_primary_10_3389_fimmu_2024_1393173
crossref_primary_10_1158_1078_0432_CCR_22_3350
crossref_primary_10_1210_clinem_dgae667
crossref_primary_10_1016_j_canlet_2024_217185
crossref_primary_10_1101_gad_347542_120
crossref_primary_10_3390_cancers13081798
crossref_primary_10_1186_s12935_022_02815_4
crossref_primary_10_3389_fonc_2022_806963
crossref_primary_10_1016_j_ccell_2020_06_017
crossref_primary_10_1158_2159_8290_CD_21_0925
crossref_primary_10_3389_fcell_2021_759691
crossref_primary_10_1002_cam4_70978
crossref_primary_10_1016_j_clinre_2024_102520
crossref_primary_10_1016_j_apsb_2021_03_027
crossref_primary_10_1038_s41586_023_05801_6
crossref_primary_10_3389_fgene_2023_1088455
crossref_primary_10_1038_s42255_020_00317_z
crossref_primary_10_1158_2159_8290_CD_22_1220
crossref_primary_10_2147_JHC_S291553
crossref_primary_10_1038_s41388_022_02368_w
crossref_primary_10_3389_fimmu_2023_1258538
crossref_primary_10_3390_biomedicines8080286
crossref_primary_10_1038_s41467_024_53390_3
crossref_primary_10_1126_science_abg5784
crossref_primary_10_1016_j_smim_2021_101546
crossref_primary_10_3389_fimmu_2021_637960
crossref_primary_10_3389_fphar_2025_1492305
crossref_primary_10_1158_2159_8290_CD_24_1421
crossref_primary_10_1016_j_fertnstert_2023_02_025
crossref_primary_10_1038_s43018_024_00796_z
crossref_primary_10_1038_s41388_024_03219_6
crossref_primary_10_1016_j_ygyno_2025_01_002
crossref_primary_10_1186_s12943_023_01843_6
crossref_primary_10_1126_scitranslmed_abq5931
crossref_primary_10_1073_pnas_2025631118
crossref_primary_10_3390_biom13121803
crossref_primary_10_1016_j_yexcr_2022_113210
crossref_primary_10_3389_fimmu_2022_1050484
crossref_primary_10_1016_j_semcdb_2021_04_003
crossref_primary_10_1016_j_imbio_2022_152177
crossref_primary_10_2147_IJN_S247443
crossref_primary_10_3390_cancers16173069
crossref_primary_10_1038_s41419_022_05408_1
crossref_primary_10_1016_j_ygyno_2025_08_013
crossref_primary_10_1242_jcs_237453
crossref_primary_10_3390_biom10020307
crossref_primary_10_3389_fgene_2020_560546
crossref_primary_10_3390_genes15121615
crossref_primary_10_3390_membranes12020202
crossref_primary_10_1136_jitc_2023_006666
crossref_primary_10_1016_j_biopha_2025_118308
crossref_primary_10_1038_s41419_025_07346_0
crossref_primary_10_3389_fcell_2021_762651
crossref_primary_10_3390_cancers13030554
crossref_primary_10_3389_fimmu_2022_899975
crossref_primary_10_1016_j_bbcan_2024_189183
crossref_primary_10_1016_j_trecan_2024_12_002
crossref_primary_10_1016_j_jare_2024_10_026
crossref_primary_10_1038_s41568_022_00544_4
crossref_primary_10_1126_sciimmunol_ade4656
crossref_primary_10_1186_s12935_023_03006_5
crossref_primary_10_1016_j_canlet_2022_215868
crossref_primary_10_3390_cancers13102429
crossref_primary_10_1126_scitranslmed_abc3911
crossref_primary_10_3390_biom15081088
crossref_primary_10_1146_annurev_pathol_042320_025840
crossref_primary_10_1016_j_semcancer_2022_10_001
crossref_primary_10_1038_s41388_022_02406_7
crossref_primary_10_3389_fonc_2024_1437325
crossref_primary_10_1093_intimm_dxaf020
crossref_primary_10_1038_s41418_025_01502_x
crossref_primary_10_3390_ijms21114087
crossref_primary_10_3389_fgene_2022_720651
crossref_primary_10_3390_biom12020305
crossref_primary_10_3389_fimmu_2022_840923
crossref_primary_10_3389_fphys_2020_583333
crossref_primary_10_3389_fimmu_2021_739768
crossref_primary_10_3390_cancers13164121
crossref_primary_10_1084_jem_20220011
crossref_primary_10_1186_s12943_025_02395_7
crossref_primary_10_1016_j_lfs_2023_121377
crossref_primary_10_1158_1078_0432_CCR_22_3815
crossref_primary_10_3390_cells13131120
crossref_primary_10_1080_2162402X_2021_1907912
crossref_primary_10_1136_gutjnl_2021_325918
crossref_primary_10_1038_s41418_024_01380_9
crossref_primary_10_1073_pnas_2311460120
crossref_primary_10_1007_s13193_020_01192_6
crossref_primary_10_1080_2162402X_2023_2233403
crossref_primary_10_1016_j_tcb_2020_12_011
crossref_primary_10_3390_cells11213434
crossref_primary_10_1016_j_addr_2025_115697
crossref_primary_10_1146_annurev_cancerbio_061521_085949
crossref_primary_10_3389_fimmu_2024_1462496
crossref_primary_10_1002_mco2_644
crossref_primary_10_3390_cells10040831
crossref_primary_10_3390_biomedicines10102498
crossref_primary_10_3390_cancers16122270
crossref_primary_10_3390_biomedicines12071453
crossref_primary_10_3390_cancers12071872
crossref_primary_10_3390_cancers14235906
crossref_primary_10_1126_sciimmunol_abc6424
crossref_primary_10_1186_s13048_023_01196_0
crossref_primary_10_3390_biom12040548
crossref_primary_10_3389_fmolb_2023_1148389
crossref_primary_10_1016_j_immuni_2023_09_004
crossref_primary_10_1016_j_biopha_2023_116058
crossref_primary_10_1016_j_cpt_2024_07_004
crossref_primary_10_3390_molecules29225315
crossref_primary_10_3390_diagnostics12051178
crossref_primary_10_1158_1078_0432_CCR_22_0391
crossref_primary_10_2147_PGPM_S313848
crossref_primary_10_3389_fonc_2025_1564572
crossref_primary_10_1016_j_bbcan_2021_188662
crossref_primary_10_1007_s12032_025_02930_y
crossref_primary_10_1038_s41388_021_01852_z
crossref_primary_10_1016_j_tig_2022_02_010
Cites_doi 10.1038/nrd.2018.169
10.4049/jimmunol.1101303
10.1038/nature05529
10.1016/j.immuni.2007.05.023
10.1007/s00018-018-2997-3
10.1016/j.cell.2010.03.014
10.1158/2159-8290.CD-15-0283
10.4161/cc.26985
10.2337/diabetes.54.5.1423
10.1016/j.cell.2015.08.021
10.1016/j.cell.2017.10.001
10.1016/j.immuni.2017.03.013
10.4049/jimmunol.172.1.61
10.1158/0008-5472.CAN-13-3723
10.1016/j.ccr.2012.04.025
10.1073/pnas.0908428107
10.1371/journal.pone.0179726
10.1093/nar/29.9.e45
10.1074/jbc.M103933200
10.1016/j.immuni.2014.06.010
10.1038/onc.2013.287
10.1186/s13059-014-0550-8
10.1016/j.stem.2013.04.006
10.1038/ncomms3359
10.1158/0008-5472.CAN-16-1272
10.1182/blood.V92.10.3780
10.1038/ni1213
10.1038/nprot.2009.171
10.1126/science.1261669
10.1038/s41467-018-03224-w
10.1158/1078-0432.CCR-08-1283
10.1016/j.cell.2008.05.009
10.1126/science.aar4060
10.1038/cr.2016.151
10.1038/s41598-017-17204-5
10.1158/2159-8290.CD-12-0095
10.1016/j.cell.2017.11.013
10.1158/0008-5472.CAN-12-3810
10.1038/sj.onc.1203235
10.1124/mi.8.1.6
10.1002/eji.200939613
10.1073/pnas.84.17.6179
10.4049/jimmunol.1103768
10.1158/2159-8290.CD-18-0099
10.1016/j.tranon.2018.07.012
10.1038/nmeth.2089
10.1073/pnas.0911587107
10.1016/j.immuni.2017.11.016
10.1158/0008-5472.CAN-16-2832
10.4049/jimmunol.170.9.4457
10.1084/jem.20130783
10.1016/j.immuni.2014.04.006
10.4049/jimmunol.1300509
10.1182/blood-2010-07-299321
10.1016/j.cell.2013.03.020
10.1016/j.immuni.2017.02.001
10.1038/nmeth.2521
10.1002/art.37841
10.4049/jimmunol.163.10.5211
10.1126/science.1905840
10.1158/0008-5472.CAN-13-1070
10.1038/nature14404
10.1038/nm.4463
10.3389/fonc.2017.00024
10.1007/978-1-61737-979-6_2
10.1016/S0165-5728(02)00428-9
10.1016/j.cell.2012.01.058
10.1016/j.celrep.2018.03.131
10.1038/srep10501
10.1136/gutjnl-2015-310049
10.1182/blood-2006-07-035972
10.1096/fj.10-175299
10.1016/j.ccr.2012.04.024
10.1038/s41586-019-1450-6
10.1016/j.cell.2015.08.016
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2019.12.028
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 496.e6
ExternalDocumentID oai_doaj_org_article_9e8f02a81ba8423a9ff553a069bb7e18
PMC6963783
31940491
10_1016_j_celrep_2019_12_028
S221112471931678X
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: FC001557
– fundername: Cancer Research UK
  grantid: FC001202
– fundername: Cancer Research UK
  grantid: C596/A10419
– fundername: Cancer Research UK
  grantid: 29799
– fundername: Cancer Research UK
  grantid: C596/A26855
– fundername: Wellcome Trust
  grantid: FC001202
– fundername: Cancer Research UK
  grantid: FC001557
– fundername: Wellcome Trust
  grantid: FC001169
– fundername: Cancer Research UK
  grantid: 29996
– fundername: Wellcome Trust
  grantid: FC001557
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-884876ca61447aa155cb79d9a4d47bcc0733f87a5e3e10cb7a0ae2fd0027831a3
IEDL.DBID DOA
ISICitedReferencesCount 140
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000507498100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Fri Oct 03 12:47:05 EDT 2025
Tue Sep 30 16:14:42 EDT 2025
Sun Nov 09 10:09:28 EST 2025
Mon Jul 21 06:05:07 EDT 2025
Wed Nov 05 20:58:03 EST 2025
Tue Nov 18 21:55:12 EST 2025
Wed May 17 00:10:07 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Kras
myeloid cells
tumor
T cell response
p53
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-884876ca61447aa155cb79d9a4d47bcc0733f87a5e3e10cb7a0ae2fd0027831a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://doaj.org/article/9e8f02a81ba8423a9ff553a069bb7e18
PMID 31940491
PQID 2339790542
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9e8f02a81ba8423a9ff553a069bb7e18
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6963783
proquest_miscellaneous_2339790542
pubmed_primary_31940491
crossref_citationtrail_10_1016_j_celrep_2019_12_028
crossref_primary_10_1016_j_celrep_2019_12_028
elsevier_sciencedirect_doi_10_1016_j_celrep_2019_12_028
PublicationCentury 2000
PublicationDate 2020-01-14
PublicationDateYYYYMMDD 2020-01-14
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2020
Publisher Elsevier Inc
Cell Press
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Cell Press
– name: Elsevier
References Collison, Vignali (bib17) 2011; 707
Chang, Qiu, O’Sullivan, Buck, Noguchi, Curtis, Chen, Gindin, Gubin, van der Windt (bib13) 2015; 162
Cheng, Yuan, Tsai, Podack, Yu, Malek (bib14) 2012; 189
Guo, Yu, Xiao, Celis, Cui (bib25) 2017; 77
Griesmann, Drexel, Milosevic, Sipos, Rosendahl, Gress, Michl (bib23) 2017; 66
Candido, Morton, Bailey, Campbell, Karim, Jamieson, Lapienyte, Gopinathan, Clark, McGhee (bib10) 2018; 23
Pear, Miller, Xu, Pui, Soffer, Quackenbush, Pendergast, Bronson, Aster, Scott, Baltimore (bib46) 1998; 92
Bankhead, Loughrey, Fernández, Dombrowski, McArt, Dunne, McQuaid, Gray, Murray, Coleman (bib5) 2017; 7
Dunn, Bruce, Sheehan, Shankaran, Uppaluri, Bui, Diamond, Koebel, Arthur, White, Schreiber (bib20) 2005; 6
Ribas, Wolchok (bib52) 2018; 359
Cassetta, Pollard (bib11) 2018; 17
Christopoulos, Pfeifer, Bartholomé, Follo, Timmer, Fisch, Veelken (bib15) 2011; 117
Sakaguchi, Yamaguchi, Nomura, Ono (bib53) 2008; 133
Bartocci, Mastrogiannis, Migliorati, Stockert, Wolkoff, Stanley (bib6) 1987; 84
Siemers, Holloway, Chang, Chasalow, Ross-MacDonald, Voliva, Szustakowski (bib58) 2017; 12
McGranahan, Rosenthal, Hiley, Rowan, Watkins, Wilson, Birkbak, Veeriah, Van Loo, Herrero (bib39) 2017; 171
Bezzi, Seitzer, Ishikawa, Reschke, Chen, Wang, Mitchell, Ng, Katon, Lunardi (bib9) 2018; 24
Guo, Marrero, Rodriguez, Del Valle, Ochoa, Cui (bib24) 2013; 73
Arce Vargas, Furness, Solomon, Joshi, Mekkaoui, Lesko, Miranda Rota, Dahan, Georgiou, Sledzinska (bib2) 2017; 46
Kortlever, Sodir, Wilson, Burkhart, Pellegrinet, Brown Swigart, Littlewood, Evan (bib34) 2017; 171
Prenen, Mazzone (bib49) 2019; 76
Kim, Evans, Wang, Abbruzzese, Fleming, Gallick (bib32) 2009; 4
Yoon, Byun, Kwon, Hwang, Chu, Hiraki, Jo, Weins, Hakroush, Cebulla (bib72) 2015; 349
Dodge, Carr, Cernadas, Brenner (bib19) 2003; 170
Iannello, Thompson, Ardolino, Lowe, Raulet (bib28) 2013; 210
Love, Huber, Anders (bib35) 2014; 15
Pylayeva-Gupta, Lee, Hajdu, Miller, Bar-Sagi (bib50) 2012; 21
Ying, Kimmelman, Lyssiotis, Hua, Chu, Fletcher-Sananikone, Locasale, Son, Zhang, Coloff (bib71) 2012; 149
Qian, Pollard (bib51) 2010; 141
Ancrile, O’Hayer, Counter (bib1) 2008; 8
Spranger, Bao, Gajewski (bib60) 2015; 523
Lujambio, Akkari, Simon, Grace, Tschaharganeh, Bolden, Zhao, Thapar, Joyce, Krizhanovsky, Lowe (bib37) 2013; 153
Schneider, Rasband, Eliceiri (bib77) 2012; 9
Wang, Niu, Lai, Ren (bib64) 2013; 4
Skoulidis, Goldberg, Greenawalt, Hellmann, Awad, Gainor, Schrock, Hartmaier, Trabucco, Gay (bib59) 2018; 8
Hock, Lee, Maddocks, Mason, Blyth, Vousden (bib26) 2014; 13
Noy, Pollard (bib42) 2014; 41
Zhu, Wang, Zhu, Jiang, Shou, Chen (bib75) 1999; 18
Fischer, Hoffmann, Voelkl, Meidenbauer, Ammer, Edinger, Gottfried, Schwarz, Rothe, Hoves (bib21) 2007; 109
Xue, Zender, Miething, Dickins, Hernando, Krizhanovsky, Cordon-Cardo, Lowe (bib69) 2007; 445
Hollstein, Sidransky, Vogelstein, Harris (bib27) 1991; 253
Tan, Morton, Timpson, Tucci, Melino, Flores, Sansom, Vousden, Muller (bib61) 2014; 33
Myant, Cammareri, McGhee, Ridgway, Huels, Cordero, Schwitalla, Kalna, Ogg, Athineos (bib41) 2013; 12
Bayne, Beatty, Jhala, Clark, Rhim, Stanger, Vonderheide (bib7) 2012; 21
Beck, Espinosa, Edris, Li, Montgomery, Zhu, Varma, Marinelli, van de Rijn, West (bib8) 2009; 15
Shcherbakova, Verkhusha (bib56) 2013; 10
Cooks, Pateras, Jenkins, Patel, Robles, Morris, Forshew, Appella, Gorgoulis, Harris (bib18) 2018; 9
Kawashima, Takatori, Suzuki, Iwata, Yokota, Suto, Minamino, Hirose, Nakajima (bib31) 2013; 191
Walton, Blagih, Ennis, Leung, Dowson, Farquharson, Tookman, Orange, Athineos, Mason (bib63) 2016; 76
Peng, Chen, Liu, Malu, Creasy, Tetzlaff, Xu, McKenzie, Zhang, Liang (bib47) 2016; 6
Yang, Sanderson, Wawrowsky, Puntel, Castro, Lowenstein (bib70) 2010; 107
Kornete, Sgouroudis, Piccirillo (bib33) 2012; 188
Park, Lim, Cho, Ryu, Moon, Jhun, Byun, Kim, Hwang, Ju (bib45) 2013; 65
Worzfeld, Pogge von Strandmann, Huber, Adhikary, Wagner, Reinartz, Müller (bib67) 2017; 7
Onizuka, Tawara, Shimizu, Sakaguchi, Fujita, Nakayama (bib44) 1999; 59
Coelho, de Carne Trecesson, Rana, Zecchin, Moore, Molina-Arcas, East, Spencer-Dene, Nye, Barnouin (bib16) 2017; 47
Martinelli, Sabroe, LaRosa, Williams, Pease (bib38) 2001; 276
Tanaka, Sakaguchi (bib62) 2017; 27
Setiady, Coccia, Park (bib55) 2010; 40
Jones, Bui, White, Madesh, Krawczyk, Lindsten, Hawkins, Kubek, Frauwirth, Wang (bib30) 2007; 27
Cerami, Gao, Dogrusoz, Gross, Sumer, Aksoy, Jacobsen, Byrne, Heuer, Larsson (bib12) 2012; 2
Morton, Timpson, Karim, Ridgway, Athineos, Doyle, Jamieson, Oien, Lowy, Brunton (bib40) 2010; 107
Zhang, Zheng, Kibe, Huang, Marrero, Warren, Zieske, Iwakuma, Kolls, Cui (bib73) 2011; 25
Pfaffl (bib48) 2001; 29
Jiang, Liu, Li, Chen, Wang (bib29) 2018; 11
Wu, Dietze, Gibbert, Lang, Trilling, Yan, Wu, Yang, Lu, Roggendorf (bib68) 2015; 5
George, Miao, Demetri, Adeegbe, Rodig, Shukla, Lipschitz, Amin-Mansour, Raut, Carter (bib22) 2017; 46
Lowe, Menendez, Bushel, Shatz, Kirk, Troester, Garantziotis, Fessler, Resnick (bib36) 2014; 74
Zheng, Lamhamedi-Cherradi, Wang, Xu, Chen (bib74) 2005; 54
Arpaia, Green, Moltedo, Arvey, Hemmers, Yuan, Treuting, Rudensky (bib3) 2015; 162
Okuda, Okuda, Bernard (bib43) 2003; 135
Watanabe, Moon, Vacchio, Hathcock, Hodes (bib65) 2014; 40
Wellenstein, Coffelt, Duits, van Miltenburg, Slagter, de Rink, Henneman, Kas, Prekovic, Hau (bib66) 2019; 572
Athie-Morales, Smits, Cantrell, Hilkens (bib4) 2004; 172
Shimizu, Yamazaki, Sakaguchi (bib57) 1999; 163
Zhu, Knolhoff, Meyer, Nywening, West, Luo, Wang-Gillam, Goedegebuure, Linehan, DeNardo (bib76) 2014; 74
Prenen (10.1016/j.celrep.2019.12.028_bib49) 2019; 76
Ribas (10.1016/j.celrep.2019.12.028_bib52) 2018; 359
Sakaguchi (10.1016/j.celrep.2019.12.028_bib53) 2008; 133
Okuda (10.1016/j.celrep.2019.12.028_bib43) 2003; 135
Shcherbakova (10.1016/j.celrep.2019.12.028_bib56) 2013; 10
Ancrile (10.1016/j.celrep.2019.12.028_bib1) 2008; 8
Wu (10.1016/j.celrep.2019.12.028_bib68) 2015; 5
Pfaffl (10.1016/j.celrep.2019.12.028_bib48) 2001; 29
Tan (10.1016/j.celrep.2019.12.028_bib61) 2014; 33
George (10.1016/j.celrep.2019.12.028_bib22) 2017; 46
Xue (10.1016/j.celrep.2019.12.028_bib69) 2007; 445
Dodge (10.1016/j.celrep.2019.12.028_bib19) 2003; 170
Zhu (10.1016/j.celrep.2019.12.028_bib75) 1999; 18
Candido (10.1016/j.celrep.2019.12.028_bib10) 2018; 23
Yang (10.1016/j.celrep.2019.12.028_bib70) 2010; 107
Jiang (10.1016/j.celrep.2019.12.028_bib29) 2018; 11
Griesmann (10.1016/j.celrep.2019.12.028_bib23) 2017; 66
Ying (10.1016/j.celrep.2019.12.028_bib71) 2012; 149
Qian (10.1016/j.celrep.2019.12.028_bib51) 2010; 141
Athie-Morales (10.1016/j.celrep.2019.12.028_bib4) 2004; 172
Bezzi (10.1016/j.celrep.2019.12.028_bib9) 2018; 24
Noy (10.1016/j.celrep.2019.12.028_bib42) 2014; 41
Iannello (10.1016/j.celrep.2019.12.028_bib28) 2013; 210
Martinelli (10.1016/j.celrep.2019.12.028_bib38) 2001; 276
Bankhead (10.1016/j.celrep.2019.12.028_bib5) 2017; 7
Lowe (10.1016/j.celrep.2019.12.028_bib36) 2014; 74
Chang (10.1016/j.celrep.2019.12.028_bib13) 2015; 162
Kortlever (10.1016/j.celrep.2019.12.028_bib34) 2017; 171
Spranger (10.1016/j.celrep.2019.12.028_bib60) 2015; 523
Pylayeva-Gupta (10.1016/j.celrep.2019.12.028_bib50) 2012; 21
Bartocci (10.1016/j.celrep.2019.12.028_bib6) 1987; 84
Schneider (10.1016/j.celrep.2019.12.028_bib77) 2012; 9
Pear (10.1016/j.celrep.2019.12.028_bib46) 1998; 92
Worzfeld (10.1016/j.celrep.2019.12.028_bib67) 2017; 7
Kawashima (10.1016/j.celrep.2019.12.028_bib31) 2013; 191
Guo (10.1016/j.celrep.2019.12.028_bib24) 2013; 73
Shimizu (10.1016/j.celrep.2019.12.028_bib57) 1999; 163
Arce Vargas (10.1016/j.celrep.2019.12.028_bib2) 2017; 46
Kornete (10.1016/j.celrep.2019.12.028_bib33) 2012; 188
Collison (10.1016/j.celrep.2019.12.028_bib17) 2011; 707
Park (10.1016/j.celrep.2019.12.028_bib45) 2013; 65
Cerami (10.1016/j.celrep.2019.12.028_bib12) 2012; 2
Siemers (10.1016/j.celrep.2019.12.028_bib58) 2017; 12
McGranahan (10.1016/j.celrep.2019.12.028_bib39) 2017; 171
Walton (10.1016/j.celrep.2019.12.028_bib63) 2016; 76
Zhu (10.1016/j.celrep.2019.12.028_bib76) 2014; 74
Dunn (10.1016/j.celrep.2019.12.028_bib20) 2005; 6
Watanabe (10.1016/j.celrep.2019.12.028_bib65) 2014; 40
Wellenstein (10.1016/j.celrep.2019.12.028_bib66) 2019; 572
Coelho (10.1016/j.celrep.2019.12.028_bib16) 2017; 47
Love (10.1016/j.celrep.2019.12.028_bib35) 2014; 15
Jones (10.1016/j.celrep.2019.12.028_bib30) 2007; 27
Hock (10.1016/j.celrep.2019.12.028_bib26) 2014; 13
Setiady (10.1016/j.celrep.2019.12.028_bib55) 2010; 40
Onizuka (10.1016/j.celrep.2019.12.028_bib44) 1999; 59
Kim (10.1016/j.celrep.2019.12.028_bib32) 2009; 4
Tanaka (10.1016/j.celrep.2019.12.028_bib62) 2017; 27
Yoon (10.1016/j.celrep.2019.12.028_bib72) 2015; 349
Beck (10.1016/j.celrep.2019.12.028_bib8) 2009; 15
Cheng (10.1016/j.celrep.2019.12.028_bib14) 2012; 189
Hollstein (10.1016/j.celrep.2019.12.028_bib27) 1991; 253
Arpaia (10.1016/j.celrep.2019.12.028_bib3) 2015; 162
Fischer (10.1016/j.celrep.2019.12.028_bib21) 2007; 109
Zheng (10.1016/j.celrep.2019.12.028_bib74) 2005; 54
Myant (10.1016/j.celrep.2019.12.028_bib41) 2013; 12
Guo (10.1016/j.celrep.2019.12.028_bib25) 2017; 77
Peng (10.1016/j.celrep.2019.12.028_bib47) 2016; 6
Skoulidis (10.1016/j.celrep.2019.12.028_bib59) 2018; 8
Cooks (10.1016/j.celrep.2019.12.028_bib18) 2018; 9
Morton (10.1016/j.celrep.2019.12.028_bib40) 2010; 107
Lujambio (10.1016/j.celrep.2019.12.028_bib37) 2013; 153
Wang (10.1016/j.celrep.2019.12.028_bib64) 2013; 4
Cassetta (10.1016/j.celrep.2019.12.028_bib11) 2018; 17
Zhang (10.1016/j.celrep.2019.12.028_bib73) 2011; 25
Bayne (10.1016/j.celrep.2019.12.028_bib7) 2012; 21
Christopoulos (10.1016/j.celrep.2019.12.028_bib15) 2011; 117
References_xml – volume: 47
  start-page: 1083
  year: 2017
  end-page: 1099.e1086
  ident: bib16
  article-title: Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA
  publication-title: Immunity
– volume: 73
  start-page: 1668
  year: 2013
  end-page: 1675
  ident: bib24
  article-title: Trp53 inactivation in the tumor microenvironment promotes tumor progression by expanding the immunosuppressive lymphoid-like stromal network
  publication-title: Cancer Res.
– volume: 27
  start-page: 268
  year: 2007
  end-page: 280
  ident: bib30
  article-title: The proapoptotic factors Bax and Bak regulate T cell proliferation through control of endoplasmic reticulum Ca(2+) homeostasis
  publication-title: Immunity
– volume: 149
  start-page: 656
  year: 2012
  end-page: 670
  ident: bib71
  article-title: Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
  publication-title: Cell
– volume: 21
  start-page: 822
  year: 2012
  end-page: 835
  ident: bib7
  article-title: Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer
  publication-title: Cancer Cell
– volume: 74
  start-page: 2182
  year: 2014
  end-page: 2192
  ident: bib36
  article-title: p53 and NF-κB coregulate proinflammatory gene responses in human macrophages
  publication-title: Cancer Res.
– volume: 8
  start-page: 22
  year: 2008
  end-page: 27
  ident: bib1
  article-title: Oncogenic ras-induced expression of cytokines: a new target of anti-cancer therapeutics
  publication-title: Mol. Interv.
– volume: 77
  start-page: 2292
  year: 2017
  end-page: 2305
  ident: bib25
  article-title: Local activation of p53 in the tumor microenvironment overcomes immune suppression and enhances antitumor immunity
  publication-title: Cancer Res.
– volume: 65
  start-page: 949
  year: 2013
  end-page: 959
  ident: bib45
  article-title: p53 controls autoimmune arthritis via STAT-mediated regulation of the Th17 cell/Treg cell balance in mice
  publication-title: Arthritis Rheum.
– volume: 572
  start-page: 538
  year: 2019
  end-page: 542
  ident: bib66
  article-title: Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis
  publication-title: Nature
– volume: 153
  start-page: 449
  year: 2013
  end-page: 460
  ident: bib37
  article-title: Non-cell-autonomous tumor suppression by p53
  publication-title: Cell
– volume: 76
  start-page: 1447
  year: 2019
  end-page: 1458
  ident: bib49
  article-title: Tumor-associated macrophages: a short compendium
  publication-title: Cell. Mol. Life Sci.
– volume: 41
  start-page: 49
  year: 2014
  end-page: 61
  ident: bib42
  article-title: Tumor-associated macrophages: from mechanisms to therapy
  publication-title: Immunity
– volume: 12
  start-page: 761
  year: 2013
  end-page: 773
  ident: bib41
  article-title: ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation
  publication-title: Cell Stem Cell
– volume: 6
  start-page: 202
  year: 2016
  end-page: 216
  ident: bib47
  article-title: Loss of PTEN promotes resistance to T cell-mediated immunotherapy
  publication-title: Cancer Discov.
– volume: 46
  start-page: 577
  year: 2017
  end-page: 586
  ident: bib2
  article-title: Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors
  publication-title: Immunity
– volume: 15
  start-page: 550
  year: 2014
  ident: bib35
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 163
  start-page: 5211
  year: 1999
  end-page: 5218
  ident: bib57
  article-title: Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity
  publication-title: J. Immunol.
– volume: 15
  start-page: 778
  year: 2009
  end-page: 787
  ident: bib8
  article-title: The macrophage colony-stimulating factor 1 response signature in breast carcinoma
  publication-title: Clin. Cancer Res.
– volume: 6
  start-page: 722
  year: 2005
  end-page: 729
  ident: bib20
  article-title: A critical function for type I interferons in cancer immunoediting
  publication-title: Nat. Immunol.
– volume: 27
  start-page: 109
  year: 2017
  end-page: 118
  ident: bib62
  article-title: Regulatory T cells in cancer immunotherapy
  publication-title: Cell Res.
– volume: 8
  start-page: 822
  year: 2018
  end-page: 835
  ident: bib59
  article-title: mutations and PD-1 inhibitor resistance in
  publication-title: Cancer Discov.
– volume: 109
  start-page: 3812
  year: 2007
  end-page: 3819
  ident: bib21
  article-title: Inhibitory effect of tumor cell-derived lactic acid on human T cells
  publication-title: Blood
– volume: 171
  start-page: 1301
  year: 2017
  end-page: 1315.e1314
  ident: bib34
  article-title: Myc cooperates with Ras by programming inflammation and immune suppression
  publication-title: Cell
– volume: 25
  start-page: 2387
  year: 2011
  end-page: 2398
  ident: bib73
  article-title: Trp53 negatively regulates autoimmunity via the STAT3-Th17 axis
  publication-title: FASEB J.
– volume: 253
  start-page: 49
  year: 1991
  end-page: 53
  ident: bib27
  article-title: p53 mutations in human cancers
  publication-title: Science
– volume: 40
  start-page: 681
  year: 2014
  end-page: 691
  ident: bib65
  article-title: Downmodulation of tumor suppressor p53 by T cell receptor signaling is critical for antigen-specific CD4(+) T cell responses
  publication-title: Immunity
– volume: 24
  start-page: 165
  year: 2018
  end-page: 175
  ident: bib9
  article-title: Diverse genetic-driven immune landscapes dictate tumor progression through distinct mechanisms
  publication-title: Nat. Med.
– volume: 170
  start-page: 4457
  year: 2003
  end-page: 4464
  ident: bib19
  article-title: IL-6 production by pulmonary dendritic cells impedes Th1 immune responses
  publication-title: J. Immunol.
– volume: 21
  start-page: 836
  year: 2012
  end-page: 847
  ident: bib50
  article-title: Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia
  publication-title: Cancer Cell
– volume: 523
  start-page: 231
  year: 2015
  end-page: 235
  ident: bib60
  article-title: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity
  publication-title: Nature
– volume: 162
  start-page: 1229
  year: 2015
  end-page: 1241
  ident: bib13
  article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression
  publication-title: Cell
– volume: 59
  start-page: 3128
  year: 1999
  end-page: 3133
  ident: bib44
  article-title: Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody
  publication-title: Cancer Res.
– volume: 5
  start-page: 10501
  year: 2015
  ident: bib68
  article-title: TLR ligand induced IL-6 counter-regulates the anti-viral CD8(+) T cell response during an acute retrovirus infection
  publication-title: Sci. Rep.
– volume: 276
  start-page: 42957
  year: 2001
  end-page: 42964
  ident: bib38
  article-title: The CC chemokine eotaxin (CCL11) is a partial agonist of CC chemokine receptor 2b
  publication-title: J. Biol. Chem.
– volume: 359
  start-page: 1350
  year: 2018
  end-page: 1355
  ident: bib52
  article-title: Cancer immunotherapy using checkpoint blockade
  publication-title: Science
– volume: 11
  start-page: 1171
  year: 2018
  end-page: 1187
  ident: bib29
  article-title: Immunogenomics analysis reveals that TP53 mutations inhibit tumor immunity in gastric cancer
  publication-title: Transl. Oncol.
– volume: 2
  start-page: 401
  year: 2012
  end-page: 404
  ident: bib12
  article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
  publication-title: Cancer Discov.
– volume: 46
  start-page: 197
  year: 2017
  end-page: 204
  ident: bib22
  article-title: Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma
  publication-title: Immunity
– volume: 7
  start-page: 16878
  year: 2017
  ident: bib5
  article-title: QuPath: open source software for digital pathology image analysis
  publication-title: Sci. Rep.
– volume: 188
  start-page: 1064
  year: 2012
  end-page: 1074
  ident: bib33
  article-title: ICOS-dependent homeostasis and function of Foxp3+ regulatory T cells in islets of nonobese diabetic mice
  publication-title: J. Immunol.
– volume: 135
  start-page: 29
  year: 2003
  end-page: 37
  ident: bib43
  article-title: Regulatory role of p53 in experimental autoimmune encephalomyelitis
  publication-title: J. Neuroimmunol.
– volume: 76
  start-page: 6118
  year: 2016
  end-page: 6129
  ident: bib63
  article-title: CRISPR/Cas9-mediated Trp53 and Brca2 knockout to generate improved murine models of ovarian high-grade serous carcinoma
  publication-title: Cancer Res.
– volume: 107
  start-page: 4716
  year: 2010
  end-page: 4721
  ident: bib70
  article-title: Kupfer-type immunological synapse characteristics do not predict anti-brain tumor cytolytic T-cell function in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 24
  year: 2017
  ident: bib67
  article-title: The unique molecular and cellular microenvironment of ovarian cancer
  publication-title: Front. Oncol.
– volume: 172
  start-page: 61
  year: 2004
  end-page: 69
  ident: bib4
  article-title: Sustained IL-12 signaling is required for Th1 development
  publication-title: J. Immunol.
– volume: 13
  start-page: 220
  year: 2014
  end-page: 226
  ident: bib26
  article-title: iRFP is a sensitive marker for cell number and tumor growth in high-throughput systems
  publication-title: Cell Cycle
– volume: 29
  start-page: e45
  year: 2001
  ident: bib48
  article-title: A new mathematical model for relative quantification in real-time RT-PCR
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 771
  year: 2018
  ident: bib18
  article-title: Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246
  publication-title: Nat. Commun.
– volume: 445
  start-page: 656
  year: 2007
  end-page: 660
  ident: bib69
  article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas
  publication-title: Nature
– volume: 107
  start-page: 246
  year: 2010
  end-page: 251
  ident: bib40
  article-title: Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 117
  start-page: 3836
  year: 2011
  end-page: 3846
  ident: bib15
  article-title: Definition and characterization of the systemic T-cell dysregulation in untreated indolent B-cell lymphoma and very early CLL
  publication-title: Blood
– volume: 162
  start-page: 1078
  year: 2015
  end-page: 1089
  ident: bib3
  article-title: A distinct function of regulatory T cells in tissue protection
  publication-title: Cell
– volume: 210
  start-page: 2057
  year: 2013
  end-page: 2069
  ident: bib28
  article-title: p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells
  publication-title: J. Exp. Med.
– volume: 66
  start-page: 1278
  year: 2017
  end-page: 1285
  ident: bib23
  article-title: Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer
  publication-title: Gut
– volume: 54
  start-page: 1423
  year: 2005
  end-page: 1428
  ident: bib74
  article-title: Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function
  publication-title: Diabetes
– volume: 141
  start-page: 39
  year: 2010
  end-page: 51
  ident: bib51
  article-title: Macrophage diversity enhances tumor progression and metastasis
  publication-title: Cell
– volume: 33
  start-page: 3325
  year: 2014
  end-page: 3333
  ident: bib61
  article-title: Functions of TAp63 and p53 in restraining the development of metastatic cancer
  publication-title: Oncogene
– volume: 17
  start-page: 887
  year: 2018
  end-page: 904
  ident: bib11
  article-title: Targeting macrophages: therapeutic approaches in cancer
  publication-title: Nat. Rev. Drug Discov.
– volume: 12
  start-page: e0179726
  year: 2017
  ident: bib58
  article-title: Genome-wide association analysis identifies genetic correlates of immune infiltrates in solid tumors
  publication-title: PLoS ONE
– volume: 84
  start-page: 6179
  year: 1987
  end-page: 6183
  ident: bib6
  article-title: Macrophages specifically regulate the concentration of their own growth factor in the circulation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 23
  start-page: 1448
  year: 2018
  end-page: 1460
  ident: bib10
  article-title: CSF1R
  publication-title: Cell Rep.
– volume: 171
  start-page: 1259
  year: 2017
  end-page: 1271.e1211
  ident: bib39
  article-title: Allele-specific HLA loss and immune escape in lung cancer evolution
  publication-title: Cell
– volume: 74
  start-page: 5057
  year: 2014
  end-page: 5069
  ident: bib76
  article-title: CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models
  publication-title: Cancer Res.
– volume: 707
  start-page: 21
  year: 2011
  end-page: 37
  ident: bib17
  article-title: In vitro Treg suppression assays
  publication-title: Methods Mol. Biol.
– volume: 40
  start-page: 780
  year: 2010
  end-page: 786
  ident: bib55
  article-title: In vivo depletion of CD4+FOXP3+ Treg cells by the PC61 anti-CD25 monoclonal antibody is mediated by FcgammaRIII+ phagocytes
  publication-title: Eur. J. Immunol.
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: bib77
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nature Methods
– volume: 349
  start-page: 1261669
  year: 2015
  ident: bib72
  article-title: Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53
  publication-title: Science
– volume: 4
  start-page: 2359
  year: 2013
  ident: bib64
  article-title: p53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1
  publication-title: Nat. Commun.
– volume: 191
  start-page: 3614
  year: 2013
  end-page: 3623
  ident: bib31
  article-title: Tumor suppressor p53 inhibits systemic autoimmune diseases by inducing regulatory T cells
  publication-title: J. Immunol.
– volume: 92
  start-page: 3780
  year: 1998
  end-page: 3792
  ident: bib46
  article-title: Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow
  publication-title: Blood
– volume: 10
  start-page: 751
  year: 2013
  end-page: 754
  ident: bib56
  article-title: Near-infrared fluorescent proteins for multicolor in vivo imaging
  publication-title: Nat. Methods
– volume: 133
  start-page: 775
  year: 2008
  end-page: 787
  ident: bib53
  article-title: Regulatory T cells and immune tolerance
  publication-title: Cell
– volume: 4
  start-page: 1670
  year: 2009
  end-page: 1680
  ident: bib32
  article-title: Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice
  publication-title: Nat. Protoc.
– volume: 18
  start-page: 7740
  year: 1999
  end-page: 7747
  ident: bib75
  article-title: p53 induces TAP1 and enhances the transport of MHC class I peptides
  publication-title: Oncogene
– volume: 189
  start-page: 1780
  year: 2012
  end-page: 1791
  ident: bib14
  article-title: IL-2 receptor signaling is essential for the development of Klrg1+ terminally differentiated T regulatory cells
  publication-title: J. Immunol.
– volume: 17
  start-page: 887
  year: 2018
  ident: 10.1016/j.celrep.2019.12.028_bib11
  article-title: Targeting macrophages: therapeutic approaches in cancer
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2018.169
– volume: 188
  start-page: 1064
  year: 2012
  ident: 10.1016/j.celrep.2019.12.028_bib33
  article-title: ICOS-dependent homeostasis and function of Foxp3+ regulatory T cells in islets of nonobese diabetic mice
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1101303
– volume: 445
  start-page: 656
  year: 2007
  ident: 10.1016/j.celrep.2019.12.028_bib69
  article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas
  publication-title: Nature
  doi: 10.1038/nature05529
– volume: 27
  start-page: 268
  year: 2007
  ident: 10.1016/j.celrep.2019.12.028_bib30
  article-title: The proapoptotic factors Bax and Bak regulate T cell proliferation through control of endoplasmic reticulum Ca(2+) homeostasis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.05.023
– volume: 76
  start-page: 1447
  year: 2019
  ident: 10.1016/j.celrep.2019.12.028_bib49
  article-title: Tumor-associated macrophages: a short compendium
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-018-2997-3
– volume: 141
  start-page: 39
  year: 2010
  ident: 10.1016/j.celrep.2019.12.028_bib51
  article-title: Macrophage diversity enhances tumor progression and metastasis
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.014
– volume: 6
  start-page: 202
  year: 2016
  ident: 10.1016/j.celrep.2019.12.028_bib47
  article-title: Loss of PTEN promotes resistance to T cell-mediated immunotherapy
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-15-0283
– volume: 13
  start-page: 220
  year: 2014
  ident: 10.1016/j.celrep.2019.12.028_bib26
  article-title: iRFP is a sensitive marker for cell number and tumor growth in high-throughput systems
  publication-title: Cell Cycle
  doi: 10.4161/cc.26985
– volume: 54
  start-page: 1423
  year: 2005
  ident: 10.1016/j.celrep.2019.12.028_bib74
  article-title: Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.5.1423
– volume: 162
  start-page: 1078
  year: 2015
  ident: 10.1016/j.celrep.2019.12.028_bib3
  article-title: A distinct function of regulatory T cells in tissue protection
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.021
– volume: 171
  start-page: 1259
  year: 2017
  ident: 10.1016/j.celrep.2019.12.028_bib39
  article-title: Allele-specific HLA loss and immune escape in lung cancer evolution
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.001
– volume: 59
  start-page: 3128
  year: 1999
  ident: 10.1016/j.celrep.2019.12.028_bib44
  article-title: Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody
  publication-title: Cancer Res.
– volume: 46
  start-page: 577
  year: 2017
  ident: 10.1016/j.celrep.2019.12.028_bib2
  article-title: Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.03.013
– volume: 172
  start-page: 61
  year: 2004
  ident: 10.1016/j.celrep.2019.12.028_bib4
  article-title: Sustained IL-12 signaling is required for Th1 development
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.172.1.61
– volume: 74
  start-page: 5057
  year: 2014
  ident: 10.1016/j.celrep.2019.12.028_bib76
  article-title: CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-3723
– volume: 21
  start-page: 822
  year: 2012
  ident: 10.1016/j.celrep.2019.12.028_bib7
  article-title: Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.04.025
– volume: 107
  start-page: 246
  year: 2010
  ident: 10.1016/j.celrep.2019.12.028_bib40
  article-title: Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0908428107
– volume: 12
  start-page: e0179726
  year: 2017
  ident: 10.1016/j.celrep.2019.12.028_bib58
  article-title: Genome-wide association analysis identifies genetic correlates of immune infiltrates in solid tumors
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0179726
– volume: 29
  start-page: e45
  year: 2001
  ident: 10.1016/j.celrep.2019.12.028_bib48
  article-title: A new mathematical model for relative quantification in real-time RT-PCR
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.9.e45
– volume: 276
  start-page: 42957
  year: 2001
  ident: 10.1016/j.celrep.2019.12.028_bib38
  article-title: The CC chemokine eotaxin (CCL11) is a partial agonist of CC chemokine receptor 2b
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M103933200
– volume: 41
  start-page: 49
  year: 2014
  ident: 10.1016/j.celrep.2019.12.028_bib42
  article-title: Tumor-associated macrophages: from mechanisms to therapy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.06.010
– volume: 33
  start-page: 3325
  year: 2014
  ident: 10.1016/j.celrep.2019.12.028_bib61
  article-title: Functions of TAp63 and p53 in restraining the development of metastatic cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2013.287
– volume: 15
  start-page: 550
  year: 2014
  ident: 10.1016/j.celrep.2019.12.028_bib35
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 12
  start-page: 761
  year: 2013
  ident: 10.1016/j.celrep.2019.12.028_bib41
  article-title: ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.04.006
– volume: 4
  start-page: 2359
  year: 2013
  ident: 10.1016/j.celrep.2019.12.028_bib64
  article-title: p53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3359
– volume: 76
  start-page: 6118
  year: 2016
  ident: 10.1016/j.celrep.2019.12.028_bib63
  article-title: CRISPR/Cas9-mediated Trp53 and Brca2 knockout to generate improved murine models of ovarian high-grade serous carcinoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-1272
– volume: 92
  start-page: 3780
  year: 1998
  ident: 10.1016/j.celrep.2019.12.028_bib46
  article-title: Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow
  publication-title: Blood
  doi: 10.1182/blood.V92.10.3780
– volume: 6
  start-page: 722
  year: 2005
  ident: 10.1016/j.celrep.2019.12.028_bib20
  article-title: A critical function for type I interferons in cancer immunoediting
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1213
– volume: 4
  start-page: 1670
  year: 2009
  ident: 10.1016/j.celrep.2019.12.028_bib32
  article-title: Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.171
– volume: 349
  start-page: 1261669
  year: 2015
  ident: 10.1016/j.celrep.2019.12.028_bib72
  article-title: Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53
  publication-title: Science
  doi: 10.1126/science.1261669
– volume: 9
  start-page: 771
  year: 2018
  ident: 10.1016/j.celrep.2019.12.028_bib18
  article-title: Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03224-w
– volume: 15
  start-page: 778
  year: 2009
  ident: 10.1016/j.celrep.2019.12.028_bib8
  article-title: The macrophage colony-stimulating factor 1 response signature in breast carcinoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-08-1283
– volume: 133
  start-page: 775
  year: 2008
  ident: 10.1016/j.celrep.2019.12.028_bib53
  article-title: Regulatory T cells and immune tolerance
  publication-title: Cell
  doi: 10.1016/j.cell.2008.05.009
– volume: 359
  start-page: 1350
  year: 2018
  ident: 10.1016/j.celrep.2019.12.028_bib52
  article-title: Cancer immunotherapy using checkpoint blockade
  publication-title: Science
  doi: 10.1126/science.aar4060
– volume: 27
  start-page: 109
  year: 2017
  ident: 10.1016/j.celrep.2019.12.028_bib62
  article-title: Regulatory T cells in cancer immunotherapy
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.151
– volume: 7
  start-page: 16878
  year: 2017
  ident: 10.1016/j.celrep.2019.12.028_bib5
  article-title: QuPath: open source software for digital pathology image analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17204-5
– volume: 2
  start-page: 401
  year: 2012
  ident: 10.1016/j.celrep.2019.12.028_bib12
  article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-12-0095
– volume: 171
  start-page: 1301
  year: 2017
  ident: 10.1016/j.celrep.2019.12.028_bib34
  article-title: Myc cooperates with Ras by programming inflammation and immune suppression
  publication-title: Cell
  doi: 10.1016/j.cell.2017.11.013
– volume: 73
  start-page: 1668
  year: 2013
  ident: 10.1016/j.celrep.2019.12.028_bib24
  article-title: Trp53 inactivation in the tumor microenvironment promotes tumor progression by expanding the immunosuppressive lymphoid-like stromal network
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3810
– volume: 18
  start-page: 7740
  year: 1999
  ident: 10.1016/j.celrep.2019.12.028_bib75
  article-title: p53 induces TAP1 and enhances the transport of MHC class I peptides
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203235
– volume: 8
  start-page: 22
  year: 2008
  ident: 10.1016/j.celrep.2019.12.028_bib1
  article-title: Oncogenic ras-induced expression of cytokines: a new target of anti-cancer therapeutics
  publication-title: Mol. Interv.
  doi: 10.1124/mi.8.1.6
– volume: 40
  start-page: 780
  year: 2010
  ident: 10.1016/j.celrep.2019.12.028_bib55
  article-title: In vivo depletion of CD4+FOXP3+ Treg cells by the PC61 anti-CD25 monoclonal antibody is mediated by FcgammaRIII+ phagocytes
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200939613
– volume: 84
  start-page: 6179
  year: 1987
  ident: 10.1016/j.celrep.2019.12.028_bib6
  article-title: Macrophages specifically regulate the concentration of their own growth factor in the circulation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.84.17.6179
– volume: 189
  start-page: 1780
  year: 2012
  ident: 10.1016/j.celrep.2019.12.028_bib14
  article-title: IL-2 receptor signaling is essential for the development of Klrg1+ terminally differentiated T regulatory cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1103768
– volume: 8
  start-page: 822
  year: 2018
  ident: 10.1016/j.celrep.2019.12.028_bib59
  article-title: STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-18-0099
– volume: 11
  start-page: 1171
  year: 2018
  ident: 10.1016/j.celrep.2019.12.028_bib29
  article-title: Immunogenomics analysis reveals that TP53 mutations inhibit tumor immunity in gastric cancer
  publication-title: Transl. Oncol.
  doi: 10.1016/j.tranon.2018.07.012
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.celrep.2019.12.028_bib77
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2089
– volume: 107
  start-page: 4716
  year: 2010
  ident: 10.1016/j.celrep.2019.12.028_bib70
  article-title: Kupfer-type immunological synapse characteristics do not predict anti-brain tumor cytolytic T-cell function in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0911587107
– volume: 47
  start-page: 1083
  year: 2017
  ident: 10.1016/j.celrep.2019.12.028_bib16
  article-title: Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.11.016
– volume: 77
  start-page: 2292
  year: 2017
  ident: 10.1016/j.celrep.2019.12.028_bib25
  article-title: Local activation of p53 in the tumor microenvironment overcomes immune suppression and enhances antitumor immunity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-2832
– volume: 170
  start-page: 4457
  year: 2003
  ident: 10.1016/j.celrep.2019.12.028_bib19
  article-title: IL-6 production by pulmonary dendritic cells impedes Th1 immune responses
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.170.9.4457
– volume: 210
  start-page: 2057
  year: 2013
  ident: 10.1016/j.celrep.2019.12.028_bib28
  article-title: p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20130783
– volume: 40
  start-page: 681
  year: 2014
  ident: 10.1016/j.celrep.2019.12.028_bib65
  article-title: Downmodulation of tumor suppressor p53 by T cell receptor signaling is critical for antigen-specific CD4(+) T cell responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.04.006
– volume: 191
  start-page: 3614
  year: 2013
  ident: 10.1016/j.celrep.2019.12.028_bib31
  article-title: Tumor suppressor p53 inhibits systemic autoimmune diseases by inducing regulatory T cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1300509
– volume: 117
  start-page: 3836
  year: 2011
  ident: 10.1016/j.celrep.2019.12.028_bib15
  article-title: Definition and characterization of the systemic T-cell dysregulation in untreated indolent B-cell lymphoma and very early CLL
  publication-title: Blood
  doi: 10.1182/blood-2010-07-299321
– volume: 153
  start-page: 449
  year: 2013
  ident: 10.1016/j.celrep.2019.12.028_bib37
  article-title: Non-cell-autonomous tumor suppression by p53
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.020
– volume: 46
  start-page: 197
  year: 2017
  ident: 10.1016/j.celrep.2019.12.028_bib22
  article-title: Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.02.001
– volume: 10
  start-page: 751
  year: 2013
  ident: 10.1016/j.celrep.2019.12.028_bib56
  article-title: Near-infrared fluorescent proteins for multicolor in vivo imaging
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2521
– volume: 65
  start-page: 949
  year: 2013
  ident: 10.1016/j.celrep.2019.12.028_bib45
  article-title: p53 controls autoimmune arthritis via STAT-mediated regulation of the Th17 cell/Treg cell balance in mice
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.37841
– volume: 163
  start-page: 5211
  year: 1999
  ident: 10.1016/j.celrep.2019.12.028_bib57
  article-title: Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.163.10.5211
– volume: 253
  start-page: 49
  year: 1991
  ident: 10.1016/j.celrep.2019.12.028_bib27
  article-title: p53 mutations in human cancers
  publication-title: Science
  doi: 10.1126/science.1905840
– volume: 74
  start-page: 2182
  year: 2014
  ident: 10.1016/j.celrep.2019.12.028_bib36
  article-title: p53 and NF-κB coregulate proinflammatory gene responses in human macrophages
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-1070
– volume: 523
  start-page: 231
  year: 2015
  ident: 10.1016/j.celrep.2019.12.028_bib60
  article-title: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity
  publication-title: Nature
  doi: 10.1038/nature14404
– volume: 24
  start-page: 165
  year: 2018
  ident: 10.1016/j.celrep.2019.12.028_bib9
  article-title: Diverse genetic-driven immune landscapes dictate tumor progression through distinct mechanisms
  publication-title: Nat. Med.
  doi: 10.1038/nm.4463
– volume: 7
  start-page: 24
  year: 2017
  ident: 10.1016/j.celrep.2019.12.028_bib67
  article-title: The unique molecular and cellular microenvironment of ovarian cancer
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2017.00024
– volume: 707
  start-page: 21
  year: 2011
  ident: 10.1016/j.celrep.2019.12.028_bib17
  article-title: In vitro Treg suppression assays
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61737-979-6_2
– volume: 135
  start-page: 29
  year: 2003
  ident: 10.1016/j.celrep.2019.12.028_bib43
  article-title: Regulatory role of p53 in experimental autoimmune encephalomyelitis
  publication-title: J. Neuroimmunol.
  doi: 10.1016/S0165-5728(02)00428-9
– volume: 149
  start-page: 656
  year: 2012
  ident: 10.1016/j.celrep.2019.12.028_bib71
  article-title: Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.058
– volume: 23
  start-page: 1448
  year: 2018
  ident: 10.1016/j.celrep.2019.12.028_bib10
  article-title: CSF1R+ macrophages sustain pancreatic tumor growth through T Cell suppression and maintenance of key gene programs that define the squamous subtype
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.03.131
– volume: 5
  start-page: 10501
  year: 2015
  ident: 10.1016/j.celrep.2019.12.028_bib68
  article-title: TLR ligand induced IL-6 counter-regulates the anti-viral CD8(+) T cell response during an acute retrovirus infection
  publication-title: Sci. Rep.
  doi: 10.1038/srep10501
– volume: 66
  start-page: 1278
  year: 2017
  ident: 10.1016/j.celrep.2019.12.028_bib23
  article-title: Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-310049
– volume: 109
  start-page: 3812
  year: 2007
  ident: 10.1016/j.celrep.2019.12.028_bib21
  article-title: Inhibitory effect of tumor cell-derived lactic acid on human T cells
  publication-title: Blood
  doi: 10.1182/blood-2006-07-035972
– volume: 25
  start-page: 2387
  year: 2011
  ident: 10.1016/j.celrep.2019.12.028_bib73
  article-title: Trp53 negatively regulates autoimmunity via the STAT3-Th17 axis
  publication-title: FASEB J.
  doi: 10.1096/fj.10-175299
– volume: 21
  start-page: 836
  year: 2012
  ident: 10.1016/j.celrep.2019.12.028_bib50
  article-title: Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.04.024
– volume: 572
  start-page: 538
  year: 2019
  ident: 10.1016/j.celrep.2019.12.028_bib66
  article-title: Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis
  publication-title: Nature
  doi: 10.1038/s41586-019-1450-6
– volume: 162
  start-page: 1229
  year: 2015
  ident: 10.1016/j.celrep.2019.12.028_bib13
  article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.016
SSID ssj0000601194
Score 2.5903118
Snippet Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 481
SubjectTerms Animals
Humans
Kras
Mice
myeloid cells
Myeloid Cells - metabolism
p53
T cell response
T-Lymphocytes, Regulatory - metabolism
tumor
Tumor Suppressor Protein p53 - metabolism
Title Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses
URI https://dx.doi.org/10.1016/j.celrep.2019.12.028
https://www.ncbi.nlm.nih.gov/pubmed/31940491
https://www.proquest.com/docview/2339790542
https://pubmed.ncbi.nlm.nih.gov/PMC6963783
https://doaj.org/article/9e8f02a81ba8423a9ff553a069bb7e18
Volume 30
WOSCitedRecordID wos000507498100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgBRIXxHvLY2UkrhGJncT2ESpWHNgVoEXqzZo4tgiKklXbRdp_z4ydVC0ceuEaO3E8Hnu-scfzMfbOVEabulUZaKPRQanrrCm1zLRHc4UmFktdJJtQl5d6tTJf96i-KCYspQdOgntvvA65AERXoNH0gwmhqiTktWka5Yt4zRdRz54zldZgymVGR8pCUMyWKNV8by4Gdznfrz2lqyxM3A0kMvY9uxTT9x-Yp3_h599RlHtm6fwRezjhSf4h9eMxu-OHJ-x-Ypi8fcq-LWlU11mkmQ-d41-wcT4Gfl1JTvSaG74dOfCLsZ14vKjw4tb3Y9dyGFp-xZe-7_n3FEvrN8_Yj_NPV8vP2cSikLlKmG2mNfoktQPy_BQA4gfXKNMaKNtSNc4Ra2PQCiovfZFjGeTgRWjjmaQsQD5nJ8M4-FPGjc9NU0Ih0ccqjZY6CKlyMFADArkmLJicZWjdlGKcmC56O8eS_bJJ8pYkbwthUfILlu3euk4pNo7U_0jDs6tLCbLjA1QbO6mNPaY2C6bmwbUT1kgYAj_VHWn-7awLFqcina_A4MebjRWSDkkRA4sFe5F0Y_eTuNKV6IwV2O6B1hz04rBk6H7GdN81rpE4Ei__R7dfsQeCNgxynBPla3ayXd_4N-ye-73tNuszdlet9FmcSX8AV6QdvQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer-Specific+Loss+of+p53+Leads+to+a+Modulation+of+Myeloid+and+T+Cell+Responses&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Blagih%2C+Julianna&rft.au=Zani%2C+Fabio&rft.au=Chakravarty%2C+Probir&rft.au=Hennequart%2C+Marc&rft.date=2020-01-14&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=30&rft.issue=2&rft.spage=481&rft_id=info:doi/10.1016%2Fj.celrep.2019.12.028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon