Chronic FLT3-ITD Signaling in Acute Myeloid Leukemia Is Connected to a Specific Chromatin Signature

Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) Vol. 12; no. 5; pp. 821 - 836
Main Authors: Cauchy, Pierre, James, Sally R., Zacarias-Cabeza, Joaquin, Ptasinska, Anetta, Imperato, Maria Rosaria, Assi, Salam A., Piper, Jason, Canestraro, Martina, Hoogenkamp, Maarten, Raghavan, Manoj, Loke, Justin, Akiki, Susanna, Clokie, Samuel J., Richards, Stephen J., Westhead, David R., Griffiths, Michael J., Ott, Sascha, Bonifer, Constanze, Cockerill, Peter N.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 04.08.2015
Cell Press
Elsevier
Subjects:
ISSN:2211-1247, 2211-1247
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML. [Display omitted] •FLT3-ITD signaling is associated with a common gene expression signature•FLT3-ITD-specific gene expression is associated with a common chromatin signature•FLT3-ITD AML displays chronic activation of the inducible transcription factor AP-1•AP-1 cooperates with RUNX1 to shape the epigenome of FLT3-ITD AML Cauchy et al. identify a specific gene expression and regulatory signature associated with aberrant signaling in acute myeloid leukemia with FLT3-ITD mutations. In FLT3-ITD AML, the inducible transcription factor AP-1 is chronically activated and cooperates with RUNX1, shaping the epigenome to transactivate specific target genes.
AbstractList Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML.
Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML. • FLT3-ITD signaling is associated with a common gene expression signature • FLT3-ITD-specific gene expression is associated with a common chromatin signature • FLT3-ITD AML displays chronic activation of the inducible transcription factor AP-1 • AP-1 cooperates with RUNX1 to shape the epigenome of FLT3-ITD AML Cauchy et al. identify a specific gene expression and regulatory signature associated with aberrant signaling in acute myeloid leukemia with FLT3-ITD mutations. In FLT3-ITD AML, the inducible transcription factor AP-1 is chronically activated and cooperates with RUNX1, shaping the epigenome to transactivate specific target genes.
Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML.Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML.
Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML. [Display omitted] •FLT3-ITD signaling is associated with a common gene expression signature•FLT3-ITD-specific gene expression is associated with a common chromatin signature•FLT3-ITD AML displays chronic activation of the inducible transcription factor AP-1•AP-1 cooperates with RUNX1 to shape the epigenome of FLT3-ITD AML Cauchy et al. identify a specific gene expression and regulatory signature associated with aberrant signaling in acute myeloid leukemia with FLT3-ITD mutations. In FLT3-ITD AML, the inducible transcription factor AP-1 is chronically activated and cooperates with RUNX1, shaping the epigenome to transactivate specific target genes.
Author Westhead, David R.
Bonifer, Constanze
Loke, Justin
Piper, Jason
Zacarias-Cabeza, Joaquin
Cockerill, Peter N.
Clokie, Samuel J.
Canestraro, Martina
Ptasinska, Anetta
Imperato, Maria Rosaria
Hoogenkamp, Maarten
Raghavan, Manoj
Richards, Stephen J.
Griffiths, Michael J.
Assi, Salam A.
Ott, Sascha
Cauchy, Pierre
James, Sally R.
Akiki, Susanna
AuthorAffiliation 1 School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
2 Section of Experimental Haematology, Leeds Institute for Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
5 West Midlands Regional Genetics Laboratory, Birmingham Women’s NHS Foundation Trust, Birmingham B15 2TG, UK
3 Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK
4 Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham B15 2TH, UK
8 School of Immunity and Infection, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
6 Haematological Malignancy Diagnostic Service, St. James’s University Hospital, Leeds LS9 7TF, UK
7 School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
AuthorAffiliation_xml – name: 3 Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK
– name: 2 Section of Experimental Haematology, Leeds Institute for Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
– name: 7 School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
– name: 5 West Midlands Regional Genetics Laboratory, Birmingham Women’s NHS Foundation Trust, Birmingham B15 2TG, UK
– name: 8 School of Immunity and Infection, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
– name: 4 Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham B15 2TH, UK
– name: 1 School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
– name: 6 Haematological Malignancy Diagnostic Service, St. James’s University Hospital, Leeds LS9 7TF, UK
Author_xml – sequence: 1
  givenname: Pierre
  surname: Cauchy
  fullname: Cauchy, Pierre
  organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 2
  givenname: Sally R.
  surname: James
  fullname: James, Sally R.
  organization: Section of Experimental Haematology, Leeds Institute for Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
– sequence: 3
  givenname: Joaquin
  surname: Zacarias-Cabeza
  fullname: Zacarias-Cabeza, Joaquin
  organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 4
  givenname: Anetta
  surname: Ptasinska
  fullname: Ptasinska, Anetta
  organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 5
  givenname: Maria Rosaria
  surname: Imperato
  fullname: Imperato, Maria Rosaria
  organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 6
  givenname: Salam A.
  surname: Assi
  fullname: Assi, Salam A.
  organization: Section of Experimental Haematology, Leeds Institute for Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
– sequence: 7
  givenname: Jason
  surname: Piper
  fullname: Piper, Jason
  organization: Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK
– sequence: 8
  givenname: Martina
  surname: Canestraro
  fullname: Canestraro, Martina
  organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 9
  givenname: Maarten
  surname: Hoogenkamp
  fullname: Hoogenkamp, Maarten
  organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 10
  givenname: Manoj
  surname: Raghavan
  fullname: Raghavan, Manoj
  organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 11
  givenname: Justin
  surname: Loke
  fullname: Loke, Justin
  organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 12
  givenname: Susanna
  surname: Akiki
  fullname: Akiki, Susanna
  organization: West Midlands Regional Genetics Laboratory, Birmingham Women’s NHS Foundation Trust, Birmingham B15 2TG, UK
– sequence: 13
  givenname: Samuel J.
  surname: Clokie
  fullname: Clokie, Samuel J.
  organization: West Midlands Regional Genetics Laboratory, Birmingham Women’s NHS Foundation Trust, Birmingham B15 2TG, UK
– sequence: 14
  givenname: Stephen J.
  surname: Richards
  fullname: Richards, Stephen J.
  organization: Haematological Malignancy Diagnostic Service, St. James’s University Hospital, Leeds LS9 7TF, UK
– sequence: 15
  givenname: David R.
  surname: Westhead
  fullname: Westhead, David R.
  organization: School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
– sequence: 16
  givenname: Michael J.
  surname: Griffiths
  fullname: Griffiths, Michael J.
  organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 17
  givenname: Sascha
  surname: Ott
  fullname: Ott, Sascha
  organization: Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK
– sequence: 18
  givenname: Constanze
  surname: Bonifer
  fullname: Bonifer, Constanze
  email: c.bonifer@bham.ac.uk
  organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 19
  givenname: Peter N.
  surname: Cockerill
  fullname: Cockerill, Peter N.
  email: p.n.cockerill@bham.ac.uk
  organization: School of Immunity and Infection, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26212328$$D View this record in MEDLINE/PubMed
BookMark eNqFksFu1DAQhiNUREvpGyDkI5cstpPYCQekakthpUUcupytiT3ZeknsxU4q9e1xukvVcgBrJFv2P5_t-ed1duK8wyx7y-iCUSY-7BYa-4D7BaesWlCRonmRnXHOWM54KU-erE-zixh3NA1BGWvKV9kpF5zxgtdnmV7eBu-sJtfrTZGvNlfkxm4d9NZtiXXkUk8jkm_32HtryBqnnzhYIKtIlt451CMaMnoC5GaP2naJM_MGGFPuA2icAr7JXnbQR7w4zufZj-vPm-XXfP39y2p5uc51xZsxF7QuRI1QVbJtDYeCdk0hjalK2UoNFJKghrplsuBtiabgDCqQtKxM1YlOFOfZ6sA1HnZqH-wA4V55sOphw4etgjBa3aOqG9qZVnSybkQpoQYudMt1yyooUdImsT4dWPupHdBodGOA_hn0-Ymzt2rr71QpuWjY_Jj3R0DwvyaMoxpsTKb14NBPUTFJuaiEaIokfff0rsdL_riUBOVBoIOPMWD3KGFUzf2gdurQD2ruB0VFivkPH_9K03ZM1vj5xbb_X_KxAJgcu7MYVNQWnUZjQ_I9ldT-G_AbU9HSOw
CitedBy_id crossref_primary_10_1016_j_phrs_2019_104556
crossref_primary_10_1038_s41588_018_0270_1
crossref_primary_10_1186_s13059_023_02964_3
crossref_primary_10_1016_j_sjbs_2021_07_012
crossref_primary_10_1182_blood_2016_07_726877
crossref_primary_10_1084_jem_20160927
crossref_primary_10_14712_fb2019065010011
crossref_primary_10_1038_leu_2016_177
crossref_primary_10_1186_s13045_019_0765_y
crossref_primary_10_3390_cancers11060865
crossref_primary_10_1080_10428194_2020_1805740
crossref_primary_10_1158_2159_8290_CD_23_1445
crossref_primary_10_3390_jpm15090431
crossref_primary_10_1177_1176935119859863
crossref_primary_10_1038_s41467_023_41954_8
crossref_primary_10_7554_eLife_64960
crossref_primary_10_1038_s41588_021_00925_9
crossref_primary_10_1038_ng_3646
crossref_primary_10_1182_bloodadvances_2017012781
crossref_primary_10_1016_j_exphem_2018_08_002
crossref_primary_10_1016_j_exphem_2022_03_009
crossref_primary_10_1007_s10529_025_03630_3
crossref_primary_10_1038_s41598_017_11718_8
crossref_primary_10_1016_j_bcp_2020_114348
crossref_primary_10_1038_s41375_021_01316_z
crossref_primary_10_3390_cancers11020184
crossref_primary_10_1002_hem3_70006
crossref_primary_10_1038_s41598_020_60480_x
crossref_primary_10_1002_gcc_22794
crossref_primary_10_1038_s41568_019_0196_7
crossref_primary_10_1038_s41375_018_0084_2
crossref_primary_10_1038_s41417_025_00939_z
crossref_primary_10_2174_0929867326666190325100636
crossref_primary_10_1038_s41467_022_29639_0
crossref_primary_10_1093_nar_gkv1475
crossref_primary_10_1016_j_ccell_2018_08_014
crossref_primary_10_1038_s41467_022_28376_8
crossref_primary_10_1182_blood_2022016889
crossref_primary_10_3390_biology6020028
crossref_primary_10_3390_cancers13163929
crossref_primary_10_4049_jimmunol_1602033
crossref_primary_10_1002_iub_2184
crossref_primary_10_1016_j_ccell_2016_06_002
crossref_primary_10_1016_j_exphem_2020_10_005
crossref_primary_10_1038_s41422_019_0162_7
crossref_primary_10_3390_genes12081175
Cites_doi 10.1084/jem.192.5.719
10.1038/onc.2012.329
10.1182/blood-2009-02-206573
10.1182/blood-2007-07-103010
10.1038/leu.2008.19
10.1182/blood-2010-08-301796
10.1053/j.seminoncol.2008.04.004
10.1084/jem.20130751
10.1182/blood-2002-11-3441
10.1182/blood.V96.12.3907
10.1038/leu.2012.49
10.3324/haematol.13299
10.1038/nbt1010-1045
10.1182/blood-2007-05-092510
10.1038/sj.onc.1204036
10.1016/j.ejcb.2013.10.003
10.1073/pnas.1406985111
10.1038/onc.2014.305
10.1016/j.cellsig.2009.12.008
10.1093/nar/gkt850
10.1038/nrc1169
10.1182/blood-2012-05-429050
10.4161/cc.25386
10.1182/blood-2010-08-301416
10.1182/blood.V99.12.4326
10.1016/j.celrep.2014.10.039
10.1038/nature12615
10.1038/nrm3545
10.1038/nature08448
10.1056/NEJMoa1301689
10.1111/j.1742-4658.2011.08128.x
10.1016/j.celrep.2014.08.024
10.1371/journal.pone.0019169
10.1038/ncb0502-e131
10.1101/gad.176826.111
10.1038/leu.2014.211
10.1016/j.canlet.2006.01.035
10.1182/blood-2010-07-295113
10.1038/leu.2014.231
10.1073/pnas.1324297111
10.1016/j.cellsig.2009.06.002
10.1016/j.molcel.2010.05.004
10.1016/j.exphem.2014.04.012
10.1016/j.stem.2010.07.016
ContentType Journal Article
Copyright 2015 The Authors
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
2015 The Authors 2015
Copyright_xml – notice: 2015 The Authors
– notice: Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2015 The Authors 2015
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2015.06.069
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 836
ExternalDocumentID oai_doaj_org_article_890fdb6f789647a8a26cb2cb15a4e709
PMC4726916
26212328
10_1016_j_celrep_2015_06_069
S221112471500707X
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/L01629X/1
– fundername: Medical Research Council
  grantid: MR/M009157/1
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IPNFZ
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-608368ea557bbd2a30f937dd547b7ca0a6088a8b1732b4ed321a5a7045d5f6f63
IEDL.DBID DOA
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358999800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Fri Oct 03 12:38:49 EDT 2025
Tue Sep 30 16:53:45 EDT 2025
Fri Jul 11 15:56:00 EDT 2025
Mon Jul 21 05:58:45 EDT 2025
Wed Nov 05 20:46:34 EST 2025
Tue Nov 18 21:42:05 EST 2025
Wed May 17 01:06:24 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://creativecommons.org/licenses/by/4.0
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-608368ea557bbd2a30f937dd547b7ca0a6088a8b1732b4ed321a5a7045d5f6f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/890fdb6f789647a8a26cb2cb15a4e709
PMID 26212328
PQID 1702656693
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_890fdb6f789647a8a26cb2cb15a4e709
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4726916
proquest_miscellaneous_1702656693
pubmed_primary_26212328
crossref_primary_10_1016_j_celrep_2015_06_069
crossref_citationtrail_10_1016_j_celrep_2015_06_069
elsevier_sciencedirect_doi_10_1016_j_celrep_2015_06_069
PublicationCentury 2000
PublicationDate 2015-08-04
PublicationDateYYYYMMDD 2015-08-04
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2015
Publisher Elsevier Inc
Cell Press
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Cell Press
– name: Elsevier
References Wilson, Foster, Wang, Knezevic, Schütte, Kaimakis, Chilarska, Kinston, Ouwehand, Dzierzak (bib38) 2010; 7
Ray, Kwon, Ptasinska, Bonifer (bib27) 2013; 12
Chatterjee, Ghosh, Ramdas, Mali, Martin, Kobayashi, Vemula, Canela, Waskow, Visconte (bib4) 2014; 9
Wood, Chen, Donaldson, Hattangadi, Burke, Dawson, Miranda-Saavedra, Lodish, Green, Göttgens (bib40) 2009; 114
de Pater, Kaimakis, Vink, Yokomizo, Yamada-Inagawa, van der Linden, Kartalaei, Camper, Speck, Dzierzak (bib9) 2013; 210
Gerloff, Grundler, Wurm, Brauer-Hartmann, Katzerke, Hartmann, Madan, Muller-Tidow, Duyster, Tenen (bib10) 2015; 29
Grundler, Thiede, Miething, Steudel, Peschel, Duyster (bib13) 2003; 102
Prange, Singh, Martens (bib24) 2014; 42
Tam, Gu, Chen, Lee, Bullinger, Fröhling, Wang, Monti, Golub, Gilliland (bib35) 2008; 112
Kappelmann, Bosserhoff, Kuphal (bib17) 2014; 93
Reddy, Sargin, Choudhary, Stein, Grez, Müller-Tidow, Berdel, Serve, Brandts (bib28) 2012; 120
Corces-Zimmerman, Hong, Weissman, Medeiros, Majeti (bib7) 2014; 111
Scholl, Gilliland, Fröhling (bib31) 2008; 35
Stirewalt, Radich (bib34) 2003; 3
Dawson, Bannister, Göttgens, Foster, Bartke, Green, Kouzarides (bib8) 2009; 461
Pencovich, Jaschek, Tanay, Groner (bib23) 2011; 117
Badeaux, Shi (bib1) 2013; 14
Ptasinska, Assi, Martinez-Soria, Imperato, Piper, Cauchy, Pickin, James, Hoogenkamp, Williamson (bib26) 2014; 8
Verhaak, Wouters, Erpelinck, Abbas, Beverloo, Lugthart, Löwenberg, Delwel, Valk (bib37) 2009; 94
Wolf, Rudolph, Morgan, Büsche, Salguero, Stripecke, Schlegelberger, Baum, Modlich (bib39) 2013; 32
Heinz, Benner, Spann, Bertolino, Lin, Laslo, Cheng, Murre, Singh, Glass (bib15) 2010; 38
Piper, Elze, Cauchy, Cockerill, Bonifer, Ott (bib44) 2013; 41
Kreher, Bouhlel, Cauchy, Lamprecht, Li, Grau, Hummel, Köchert, Anagnostopoulos, Jöhrens (bib18) 2014; 111
(bib3) 2013; 368
Gu, Nardone, Wang, Loriaux, Villén, Beausoleil, Tucker, Kornhauser, Ren, MacNeill (bib14) 2011; 6
Masson, Rönnstrand (bib21) 2009; 21
Sallmyr, Fan, Datta, Kim, Grosu, Shapiro, Small, Rassool (bib30) 2008; 111
Zaret, Carroll (bib42) 2011; 25
Giancotti (bib11) 2006; 243
Goyama, Huang, Kurokawa, Mulloy (bib12) 2014; 34
Levis, Ravandi, Wang, Baer, Perl, Coutre, Erba, Stuart, Baccarani, Cripe (bib19) 2011; 117
Bernstein, Stamatoyannopoulos, Costello, Ren, Milosavljevic, Meissner, Kellis, Marra, Beaudet, Ecker (bib2) 2010; 28
Yordy, Muise-Helmericks (bib41) 2000; 19
Cockerill (bib5) 2011; 278
Ptasinska, Assi, Mannari, James, Williamson, Dunne, Hoogenkamp, Wu, Care, McNeill (bib25) 2012; 26
Heinz, Romanoski, Benner, Allison, Kaikkonen, Orozco, Glass (bib16) 2013; 503
Martens, Mandoli, Simmer, Wierenga, Saeed, Singh, Altucci, Vellenga, Stunnenberg (bib20) 2012; 120
Zhang, Fukuda, Lee, Hangoc, Cooper, Spolski, Leonard, Broxmeyer (bib43) 2000; 192
Corces-Zimmerman, Majeti (bib6) 2014; 28
Renneville, Roumier, Biggio, Nibourel, Boissel, Fenaux, Preudhomme (bib29) 2008; 22
Thiede, Steudel, Mohr, Schaich, Schäkel, Platzbecker, Wermke, Bornhäuser, Ritter, Neubauer (bib36) 2002; 99
Mizuki, Fenski, Halfter, Matsumura, Schmidt, Müller, Grüning, Kratz-Albers, Serve, Steur (bib22) 2000; 96
Shaulian (bib32) 2010; 22
Shaulian, Karin (bib33) 2002; 4
Dawson (10.1016/j.celrep.2015.06.069_bib8) 2009; 461
de Pater (10.1016/j.celrep.2015.06.069_bib9) 2013; 210
Levis (10.1016/j.celrep.2015.06.069_bib19) 2011; 117
(10.1016/j.celrep.2015.06.069_bib3) 2013; 368
Martens (10.1016/j.celrep.2015.06.069_bib20) 2012; 120
Heinz (10.1016/j.celrep.2015.06.069_bib16) 2013; 503
Gerloff (10.1016/j.celrep.2015.06.069_bib10) 2015; 29
Renneville (10.1016/j.celrep.2015.06.069_bib29) 2008; 22
Heinz (10.1016/j.celrep.2015.06.069_bib15) 2010; 38
Pencovich (10.1016/j.celrep.2015.06.069_bib23) 2011; 117
Yordy (10.1016/j.celrep.2015.06.069_bib41) 2000; 19
Kreher (10.1016/j.celrep.2015.06.069_bib18) 2014; 111
Corces-Zimmerman (10.1016/j.celrep.2015.06.069_bib6) 2014; 28
Masson (10.1016/j.celrep.2015.06.069_bib21) 2009; 21
Mizuki (10.1016/j.celrep.2015.06.069_bib22) 2000; 96
Gu (10.1016/j.celrep.2015.06.069_bib14) 2011; 6
Prange (10.1016/j.celrep.2015.06.069_bib24) 2014; 42
Bernstein (10.1016/j.celrep.2015.06.069_bib2) 2010; 28
Stirewalt (10.1016/j.celrep.2015.06.069_bib34) 2003; 3
Zaret (10.1016/j.celrep.2015.06.069_bib42) 2011; 25
Giancotti (10.1016/j.celrep.2015.06.069_bib11) 2006; 243
Ray (10.1016/j.celrep.2015.06.069_bib27) 2013; 12
Reddy (10.1016/j.celrep.2015.06.069_bib28) 2012; 120
Cockerill (10.1016/j.celrep.2015.06.069_bib5) 2011; 278
Thiede (10.1016/j.celrep.2015.06.069_bib36) 2002; 99
Goyama (10.1016/j.celrep.2015.06.069_bib12) 2014; 34
Badeaux (10.1016/j.celrep.2015.06.069_bib1) 2013; 14
Wilson (10.1016/j.celrep.2015.06.069_bib38) 2010; 7
Ptasinska (10.1016/j.celrep.2015.06.069_bib26) 2014; 8
Ptasinska (10.1016/j.celrep.2015.06.069_bib25) 2012; 26
Wood (10.1016/j.celrep.2015.06.069_bib40) 2009; 114
Kappelmann (10.1016/j.celrep.2015.06.069_bib17) 2014; 93
Shaulian (10.1016/j.celrep.2015.06.069_bib32) 2010; 22
Piper (10.1016/j.celrep.2015.06.069_bib44) 2013; 41
Zhang (10.1016/j.celrep.2015.06.069_bib43) 2000; 192
Corces-Zimmerman (10.1016/j.celrep.2015.06.069_bib7) 2014; 111
Shaulian (10.1016/j.celrep.2015.06.069_bib33) 2002; 4
Verhaak (10.1016/j.celrep.2015.06.069_bib37) 2009; 94
Chatterjee (10.1016/j.celrep.2015.06.069_bib4) 2014; 9
Scholl (10.1016/j.celrep.2015.06.069_bib31) 2008; 35
Tam (10.1016/j.celrep.2015.06.069_bib35) 2008; 112
Sallmyr (10.1016/j.celrep.2015.06.069_bib30) 2008; 111
Wolf (10.1016/j.celrep.2015.06.069_bib39) 2013; 32
Grundler (10.1016/j.celrep.2015.06.069_bib13) 2003; 102
References_xml – volume: 4
  start-page: E131
  year: 2002
  end-page: E136
  ident: bib33
  article-title: AP-1 as a regulator of cell life and death
  publication-title: Nat. Cell Biol.
– volume: 6
  start-page: e19169
  year: 2011
  ident: bib14
  article-title: Survey of activated FLT3 signaling in leukemia
  publication-title: PLoS ONE
– volume: 38
  start-page: 576
  year: 2010
  end-page: 589
  ident: bib15
  article-title: Simple combinations of lineage-determining transcription factors prime
  publication-title: Mol. Cell
– volume: 192
  start-page: 719
  year: 2000
  end-page: 728
  ident: bib43
  article-title: Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent signaling
  publication-title: J. Exp. Med.
– volume: 278
  start-page: 2182
  year: 2011
  end-page: 2210
  ident: bib5
  article-title: Structure and function of active chromatin and DNase I hypersensitive sites
  publication-title: FEBS J.
– volume: 28
  start-page: 2276
  year: 2014
  end-page: 2282
  ident: bib6
  article-title: Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis
  publication-title: Leukemia
– volume: 461
  start-page: 819
  year: 2009
  end-page: 822
  ident: bib8
  article-title: JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin
  publication-title: Nature
– volume: 503
  start-page: 487
  year: 2013
  end-page: 492
  ident: bib16
  article-title: Effect of natural genetic variation on enhancer selection and function
  publication-title: Nature
– volume: 41
  start-page: e201
  year: 2013
  ident: bib44
  article-title: Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data
  publication-title: Nucleic Acids Res
– volume: 112
  start-page: 1981
  year: 2008
  end-page: 1992
  ident: bib35
  article-title: Id1 is a common downstream target of oncogenic tyrosine kinases in leukemic cells
  publication-title: Blood
– volume: 120
  start-page: 4038
  year: 2012
  end-page: 4048
  ident: bib20
  article-title: ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia
  publication-title: Blood
– volume: 117
  start-page: e1
  year: 2011
  end-page: e14
  ident: bib23
  article-title: Dynamic combinatorial interactions of RUNX1 and cooperating partners regulates megakaryocytic differentiation in cell line models
  publication-title: Blood
– volume: 114
  start-page: 1820
  year: 2009
  end-page: 1830
  ident: bib40
  article-title: ID1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signaling
  publication-title: Blood
– volume: 26
  start-page: 1829
  year: 2012
  end-page: 1841
  ident: bib25
  article-title: Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding
  publication-title: Leukemia
– volume: 111
  start-page: 3173
  year: 2008
  end-page: 3182
  ident: bib30
  article-title: Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML
  publication-title: Blood
– volume: 96
  start-page: 3907
  year: 2000
  end-page: 3914
  ident: bib22
  article-title: Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways
  publication-title: Blood
– volume: 28
  start-page: 1045
  year: 2010
  end-page: 1048
  ident: bib2
  article-title: The NIH Roadmap Epigenomics Mapping Consortium
  publication-title: Nat. Biotechnol.
– volume: 120
  start-page: 1691
  year: 2012
  end-page: 1702
  ident: bib28
  article-title: SOCS1 cooperates with FLT3-ITD in the development of myeloproliferative disease by promoting the escape from external cytokine control
  publication-title: Blood
– volume: 8
  start-page: 1974
  year: 2014
  end-page: 1988
  ident: bib26
  article-title: Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal
  publication-title: Cell Rep.
– volume: 111
  start-page: E4513
  year: 2014
  end-page: E4522
  ident: bib18
  article-title: Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 111
  start-page: 2548
  year: 2014
  end-page: 2553
  ident: bib7
  article-title: Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 532
  year: 2010
  end-page: 544
  ident: bib38
  article-title: Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators
  publication-title: Cell Stem Cell
– volume: 93
  start-page: 76
  year: 2014
  end-page: 81
  ident: bib17
  article-title: AP-1/c-Jun transcription factors: regulation and function in malignant melanoma
  publication-title: Eur. J. Cell Biol.
– volume: 117
  start-page: 3294
  year: 2011
  end-page: 3301
  ident: bib19
  article-title: Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse
  publication-title: Blood
– volume: 21
  start-page: 1717
  year: 2009
  end-page: 1726
  ident: bib21
  article-title: Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3
  publication-title: Cell. Signal.
– volume: 22
  start-page: 915
  year: 2008
  end-page: 931
  ident: bib29
  article-title: Cooperating gene mutations in acute myeloid leukemia: a review of the literature
  publication-title: Leukemia
– volume: 29
  start-page: 535
  year: 2015
  end-page: 547
  ident: bib10
  article-title: NF-κB/STAT5/miR-155 network targets PU.1 in FLT3-ITD-driven acute myeloid leukemia
  publication-title: Leukemia
– volume: 22
  start-page: 894
  year: 2010
  end-page: 899
  ident: bib32
  article-title: AP-1—The Jun proteins: oncogenes or tumor suppressors in disguise?
  publication-title: Cell. Signal.
– volume: 368
  start-page: 2059
  year: 2013
  end-page: 2074
  ident: bib3
  article-title: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
  publication-title: N. Engl. J. Med.
– volume: 9
  start-page: 1333
  year: 2014
  end-page: 1348
  ident: bib4
  article-title: Regulation of Stat5 by FAK and PAK1 in oncogenic FLT3- and KIT-driven leukemogenesis
  publication-title: Cell Rep.
– volume: 99
  start-page: 4326
  year: 2002
  end-page: 4335
  ident: bib36
  article-title: Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis
  publication-title: Blood
– volume: 32
  start-page: 3028
  year: 2013
  end-page: 3038
  ident: bib39
  article-title: Selection for Evi1 activation in myelomonocytic leukemia induced by hyperactive signaling through wild-type NRas
  publication-title: Oncogene
– volume: 243
  start-page: 145
  year: 2006
  end-page: 159
  ident: bib11
  article-title: Breast cancer markers
  publication-title: Cancer Lett.
– volume: 102
  start-page: 646
  year: 2003
  end-page: 651
  ident: bib13
  article-title: Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor
  publication-title: Blood
– volume: 210
  start-page: 2843
  year: 2013
  end-page: 2850
  ident: bib9
  article-title: Gata2 is required for HSC generation and survival
  publication-title: J. Exp. Med.
– volume: 3
  start-page: 650
  year: 2003
  end-page: 665
  ident: bib34
  article-title: The role of FLT3 in haematopoietic malignancies
  publication-title: Nat. Rev. Cancer
– volume: 25
  start-page: 2227
  year: 2011
  end-page: 2241
  ident: bib42
  article-title: Pioneer transcription factors: establishing competence for gene expression
  publication-title: Genes Dev.
– volume: 94
  start-page: 131
  year: 2009
  end-page: 134
  ident: bib37
  article-title: Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling
  publication-title: Haematologica
– volume: 14
  start-page: 211
  year: 2013
  end-page: 224
  ident: bib1
  article-title: Emerging roles for chromatin as a signal integration and storage platform
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 42
  start-page: 637
  year: 2014
  end-page: 650
  ident: bib24
  article-title: The genome-wide molecular signature of transcription factors in leukemia
  publication-title: Exp. Hematol.
– volume: 34
  start-page: 3483
  year: 2014
  end-page: 3492
  ident: bib12
  article-title: Posttranslational modifications of RUNX1 as potential anticancer targets
  publication-title: Oncogene
– volume: 12
  start-page: 2159
  year: 2013
  end-page: 2160
  ident: bib27
  article-title: Chronic growth factor receptor signaling and lineage inappropriate gene expression in AML: the polycomb connection
  publication-title: Cell Cycle
– volume: 35
  start-page: 336
  year: 2008
  end-page: 345
  ident: bib31
  article-title: Deregulation of signaling pathways in acute myeloid leukemia
  publication-title: Semin. Oncol.
– volume: 19
  start-page: 6503
  year: 2000
  end-page: 6513
  ident: bib41
  article-title: Signal transduction and the Ets family of transcription factors
  publication-title: Oncogene
– volume: 192
  start-page: 719
  year: 2000
  ident: 10.1016/j.celrep.2015.06.069_bib43
  article-title: Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent signaling
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.192.5.719
– volume: 32
  start-page: 3028
  year: 2013
  ident: 10.1016/j.celrep.2015.06.069_bib39
  article-title: Selection for Evi1 activation in myelomonocytic leukemia induced by hyperactive signaling through wild-type NRas
  publication-title: Oncogene
  doi: 10.1038/onc.2012.329
– volume: 114
  start-page: 1820
  year: 2009
  ident: 10.1016/j.celrep.2015.06.069_bib40
  article-title: ID1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signaling
  publication-title: Blood
  doi: 10.1182/blood-2009-02-206573
– volume: 112
  start-page: 1981
  year: 2008
  ident: 10.1016/j.celrep.2015.06.069_bib35
  article-title: Id1 is a common downstream target of oncogenic tyrosine kinases in leukemic cells
  publication-title: Blood
  doi: 10.1182/blood-2007-07-103010
– volume: 22
  start-page: 915
  year: 2008
  ident: 10.1016/j.celrep.2015.06.069_bib29
  article-title: Cooperating gene mutations in acute myeloid leukemia: a review of the literature
  publication-title: Leukemia
  doi: 10.1038/leu.2008.19
– volume: 117
  start-page: 3294
  year: 2011
  ident: 10.1016/j.celrep.2015.06.069_bib19
  article-title: Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse
  publication-title: Blood
  doi: 10.1182/blood-2010-08-301796
– volume: 35
  start-page: 336
  year: 2008
  ident: 10.1016/j.celrep.2015.06.069_bib31
  article-title: Deregulation of signaling pathways in acute myeloid leukemia
  publication-title: Semin. Oncol.
  doi: 10.1053/j.seminoncol.2008.04.004
– volume: 210
  start-page: 2843
  year: 2013
  ident: 10.1016/j.celrep.2015.06.069_bib9
  article-title: Gata2 is required for HSC generation and survival
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20130751
– volume: 102
  start-page: 646
  year: 2003
  ident: 10.1016/j.celrep.2015.06.069_bib13
  article-title: Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor
  publication-title: Blood
  doi: 10.1182/blood-2002-11-3441
– volume: 96
  start-page: 3907
  year: 2000
  ident: 10.1016/j.celrep.2015.06.069_bib22
  article-title: Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways
  publication-title: Blood
  doi: 10.1182/blood.V96.12.3907
– volume: 26
  start-page: 1829
  year: 2012
  ident: 10.1016/j.celrep.2015.06.069_bib25
  article-title: Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding
  publication-title: Leukemia
  doi: 10.1038/leu.2012.49
– volume: 94
  start-page: 131
  year: 2009
  ident: 10.1016/j.celrep.2015.06.069_bib37
  article-title: Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling
  publication-title: Haematologica
  doi: 10.3324/haematol.13299
– volume: 28
  start-page: 1045
  year: 2010
  ident: 10.1016/j.celrep.2015.06.069_bib2
  article-title: The NIH Roadmap Epigenomics Mapping Consortium
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1010-1045
– volume: 111
  start-page: 3173
  year: 2008
  ident: 10.1016/j.celrep.2015.06.069_bib30
  article-title: Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML
  publication-title: Blood
  doi: 10.1182/blood-2007-05-092510
– volume: 19
  start-page: 6503
  year: 2000
  ident: 10.1016/j.celrep.2015.06.069_bib41
  article-title: Signal transduction and the Ets family of transcription factors
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1204036
– volume: 93
  start-page: 76
  year: 2014
  ident: 10.1016/j.celrep.2015.06.069_bib17
  article-title: AP-1/c-Jun transcription factors: regulation and function in malignant melanoma
  publication-title: Eur. J. Cell Biol.
  doi: 10.1016/j.ejcb.2013.10.003
– volume: 111
  start-page: E4513
  year: 2014
  ident: 10.1016/j.celrep.2015.06.069_bib18
  article-title: Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1406985111
– volume: 34
  start-page: 3483
  year: 2014
  ident: 10.1016/j.celrep.2015.06.069_bib12
  article-title: Posttranslational modifications of RUNX1 as potential anticancer targets
  publication-title: Oncogene
  doi: 10.1038/onc.2014.305
– volume: 22
  start-page: 894
  year: 2010
  ident: 10.1016/j.celrep.2015.06.069_bib32
  article-title: AP-1—The Jun proteins: oncogenes or tumor suppressors in disguise?
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2009.12.008
– volume: 41
  start-page: e201
  year: 2013
  ident: 10.1016/j.celrep.2015.06.069_bib44
  article-title: Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt850
– volume: 3
  start-page: 650
  year: 2003
  ident: 10.1016/j.celrep.2015.06.069_bib34
  article-title: The role of FLT3 in haematopoietic malignancies
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1169
– volume: 120
  start-page: 4038
  year: 2012
  ident: 10.1016/j.celrep.2015.06.069_bib20
  article-title: ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia
  publication-title: Blood
  doi: 10.1182/blood-2012-05-429050
– volume: 12
  start-page: 2159
  year: 2013
  ident: 10.1016/j.celrep.2015.06.069_bib27
  article-title: Chronic growth factor receptor signaling and lineage inappropriate gene expression in AML: the polycomb connection
  publication-title: Cell Cycle
  doi: 10.4161/cc.25386
– volume: 120
  start-page: 1691
  year: 2012
  ident: 10.1016/j.celrep.2015.06.069_bib28
  article-title: SOCS1 cooperates with FLT3-ITD in the development of myeloproliferative disease by promoting the escape from external cytokine control
  publication-title: Blood
  doi: 10.1182/blood-2010-08-301416
– volume: 99
  start-page: 4326
  year: 2002
  ident: 10.1016/j.celrep.2015.06.069_bib36
  article-title: Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis
  publication-title: Blood
  doi: 10.1182/blood.V99.12.4326
– volume: 9
  start-page: 1333
  year: 2014
  ident: 10.1016/j.celrep.2015.06.069_bib4
  article-title: Regulation of Stat5 by FAK and PAK1 in oncogenic FLT3- and KIT-driven leukemogenesis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.039
– volume: 503
  start-page: 487
  year: 2013
  ident: 10.1016/j.celrep.2015.06.069_bib16
  article-title: Effect of natural genetic variation on enhancer selection and function
  publication-title: Nature
  doi: 10.1038/nature12615
– volume: 14
  start-page: 211
  year: 2013
  ident: 10.1016/j.celrep.2015.06.069_bib1
  article-title: Emerging roles for chromatin as a signal integration and storage platform
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3545
– volume: 461
  start-page: 819
  year: 2009
  ident: 10.1016/j.celrep.2015.06.069_bib8
  article-title: JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin
  publication-title: Nature
  doi: 10.1038/nature08448
– volume: 368
  start-page: 2059
  year: 2013
  ident: 10.1016/j.celrep.2015.06.069_bib3
  article-title: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1301689
– volume: 278
  start-page: 2182
  year: 2011
  ident: 10.1016/j.celrep.2015.06.069_bib5
  article-title: Structure and function of active chromatin and DNase I hypersensitive sites
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2011.08128.x
– volume: 8
  start-page: 1974
  year: 2014
  ident: 10.1016/j.celrep.2015.06.069_bib26
  article-title: Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.08.024
– volume: 6
  start-page: e19169
  year: 2011
  ident: 10.1016/j.celrep.2015.06.069_bib14
  article-title: Survey of activated FLT3 signaling in leukemia
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0019169
– volume: 4
  start-page: E131
  year: 2002
  ident: 10.1016/j.celrep.2015.06.069_bib33
  article-title: AP-1 as a regulator of cell life and death
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb0502-e131
– volume: 25
  start-page: 2227
  year: 2011
  ident: 10.1016/j.celrep.2015.06.069_bib42
  article-title: Pioneer transcription factors: establishing competence for gene expression
  publication-title: Genes Dev.
  doi: 10.1101/gad.176826.111
– volume: 28
  start-page: 2276
  year: 2014
  ident: 10.1016/j.celrep.2015.06.069_bib6
  article-title: Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis
  publication-title: Leukemia
  doi: 10.1038/leu.2014.211
– volume: 243
  start-page: 145
  year: 2006
  ident: 10.1016/j.celrep.2015.06.069_bib11
  article-title: Breast cancer markers
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2006.01.035
– volume: 117
  start-page: e1
  year: 2011
  ident: 10.1016/j.celrep.2015.06.069_bib23
  article-title: Dynamic combinatorial interactions of RUNX1 and cooperating partners regulates megakaryocytic differentiation in cell line models
  publication-title: Blood
  doi: 10.1182/blood-2010-07-295113
– volume: 29
  start-page: 535
  year: 2015
  ident: 10.1016/j.celrep.2015.06.069_bib10
  article-title: NF-κB/STAT5/miR-155 network targets PU.1 in FLT3-ITD-driven acute myeloid leukemia
  publication-title: Leukemia
  doi: 10.1038/leu.2014.231
– volume: 111
  start-page: 2548
  year: 2014
  ident: 10.1016/j.celrep.2015.06.069_bib7
  article-title: Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1324297111
– volume: 21
  start-page: 1717
  year: 2009
  ident: 10.1016/j.celrep.2015.06.069_bib21
  article-title: Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2009.06.002
– volume: 38
  start-page: 576
  year: 2010
  ident: 10.1016/j.celrep.2015.06.069_bib15
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 42
  start-page: 637
  year: 2014
  ident: 10.1016/j.celrep.2015.06.069_bib24
  article-title: The genome-wide molecular signature of transcription factors in leukemia
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2014.04.012
– volume: 7
  start-page: 532
  year: 2010
  ident: 10.1016/j.celrep.2015.06.069_bib38
  article-title: Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.07.016
SSID ssj0000601194
Score 2.3663197
Snippet Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 821
SubjectTerms Core Binding Factor Alpha 2 Subunit - genetics
Core Binding Factor Alpha 2 Subunit - metabolism
fms-Like Tyrosine Kinase 3 - genetics
fms-Like Tyrosine Kinase 3 - metabolism
Gene Expression Regulation, Leukemic
Humans
Leukemia, Myeloid, Acute - enzymology
Leukemia, Myeloid, Acute - genetics
Leukemia, Myeloid, Acute - pathology
Male
MAP Kinase Signaling System
Mitogen-Activated Protein Kinase Kinases - genetics
Mitogen-Activated Protein Kinase Kinases - metabolism
Mutation
Protein Structure, Tertiary
Transcription Factor AP-1 - genetics
Transcription Factor AP-1 - metabolism
Title Chronic FLT3-ITD Signaling in Acute Myeloid Leukemia Is Connected to a Specific Chromatin Signature
URI https://dx.doi.org/10.1016/j.celrep.2015.06.069
https://www.ncbi.nlm.nih.gov/pubmed/26212328
https://www.proquest.com/docview/1702656693
https://pubmed.ncbi.nlm.nih.gov/PMC4726916
https://doaj.org/article/890fdb6f789647a8a26cb2cb15a4e709
Volume 12
WOSCitedRecordID wos000358999800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgBRIXxJvyWBmJa0TixI8cl0fFSssKiSL1Zo0dZwmUFPWBtP-eGTupWjj0wi1KHCfjGduf5c_fMPY6B-xhughZHhxklcQrUwWXKQHBNLgAAOVisgl9eWnm8_rzXqov4oQleeDUcG9Mnbd0VEwbOjMJBoTyTnhXSKiCTkf3EPXsLabSGExaZrSlLARxtkSlx3Nzkdzlw2IVSK6ykFG-k_jOe_NSlO8_mJ7-hZ9_syj3pqXpPXZ3wJP8LNlxn90I_QN2O2WYvH7I_CB-y6cXszI7n73nX7orwt79Fe96fua3m8A_XYfFsmv4Rdj-CD874OdrHgkwHuEo3yw58JimvsV6qD4CuX2qiPYfHrGv0w-zdx-zIa9C5qWoN5kiRWoTQErtXCOgzFsEKU0jK-20B3QPDj1gXKFL4arQlKIACRrBXyNb1aryMTvpl314yrgEqKAF59FBVZk7aBBO5h5BRl3WRrUTVo6tav0gOk65LxZ2ZJd9t8kXlnxhiWSn6gnLdm_9SqIbR8q_JYftypJkdryBgWSHQLLHAmnC9OhuO6CPhCqwqu7I51-N0WGxc9KOC_RhuV3bQuMSFwFzXU7YkxQtu58UilCDMPjdgzg6sOLwSd99iwLglRYKYf2z_2H2c3aHTImcxuoFO9mstuElu-V_b7r16pTd1HNzGvvWHzpjJnA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chronic+FLT3-ITD+Signaling+in+Acute+Myeloid+Leukemia+Is+Connected+to+a+Specific+Chromatin+Signature&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Pierre+Cauchy&rft.au=Sally%C2%A0R.+James&rft.au=Joaquin+Zacarias-Cabeza&rft.au=Anetta+Ptasinska&rft.date=2015-08-04&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=12&rft.issue=5&rft.spage=821&rft.epage=836&rft_id=info:doi/10.1016%2Fj.celrep.2015.06.069&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_890fdb6f789647a8a26cb2cb15a4e709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon