Cauchy Combination Test: A Powerful Test With Analytic p-Value Calculation Under Arbitrary Dependency Structures
Abstract-Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary...
Saved in:
| Published in: | Journal of the American Statistical Association Vol. 115; no. 529; pp. 393 - 402 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Taylor & Francis
02.01.2020
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0162-1459, 1537-274X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Abstract-Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual p-values. We prove a nonasymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to p-value calculations, especially for very small p-values. The proposed test has also been applied to a genome-wide association study of Crohn's disease and compared with several existing tests.
Supplementary materials
for this article are available online. |
|---|---|
| AbstractList | Combining individual
-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual
-values. We prove a non-asymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the
-value calculation of our proposed test is not only accurate, but also as simple as the classic
-test or
-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to
-value calculations, especially for very small
-values. The proposed test has also been applied to a genome-wide association study of Crohn's disease and compared with several existing tests. Abstract-Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual p-values. We prove a nonasymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to p-value calculations, especially for very small p-values. The proposed test has also been applied to a genome-wide association study of Crohn's disease and compared with several existing tests. Supplementary materials for this article are available online. Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual p-values. We prove a non-asymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to p-value calculations, especially for very small p-values. The proposed test has also been applied to a genome-wide association study of Crohn's disease and compared with several existing tests.Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual p-values. We prove a non-asymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to p-value calculations, especially for very small p-values. The proposed test has also been applied to a genome-wide association study of Crohn's disease and compared with several existing tests. Abstract–Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher’s combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual p-values. We prove a nonasymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to p-value calculations, especially for very small p-values. The proposed test has also been applied to a genome-wide association study of Crohn’s disease and compared with several existing tests. Supplementary materials for this article are available online. Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher’s combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual p-values. We prove a non-asymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to p-value calculations, especially for very small p-values. The proposed test has also been applied to a genome-wide association study of Crohn’s disease and compared with several existing tests. |
| Author | Liu, Yaowu Xie, Jun |
| Author_xml | – sequence: 1 givenname: Yaowu surname: Liu fullname: Liu, Yaowu organization: Department of Biostatistics, Harvard School of Public Health – sequence: 2 givenname: Jun surname: Xie fullname: Xie, Jun email: junxie@purdue.edu organization: Department of Statistics, Purdue University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33012899$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkV1vFCEYhYmpsdvqT9CQeOPNrDAMw4wmjZupX0kTTWzVO8IA49KwMAJjM_--bHfXaC-UGxJ4zsvhnBNw5LzTADzFaIlRg14iXJe4ou2yRLhZYkqrqqEPwAJTwoqSVd-PwGLLFFvoGJzEeI3yYk3zCBwTgnDZtO0CjJ2Y5HqGnd_0xolkvIOXOqZXcAU_-xsdhsneHcBvJq3hygk7JyPhWHwVdtKwE1ZOdqe7ckoHuAq9SUGEGZ7rUecjJ2f4JYVJpino-Bg8HISN-sl-PwVX795edh-Ki0_vP3ari0LSsk1Fhdq6VwRXaFAII4IFQlTpVtekZ2WPG4EHquoGYUYaRVSv6pY1pcaECSkGRU7B2W7uOPUbraR22ZTlYzCb7I17YfjfN86s-Q__izNKMKtpHvBiPyD4n1NOgG9MlNpa4bSfIi9z4HVFCGEZfX4PvfZTyFFlirA2_4VgnKlnfzr6beVQRgZe7wAZfIxBD1yadBdtNmgsx4hvq-eH6vm2er6vPqvpPfXhgf_p3ux0xg0-bMSND1bxJGbrwxCEkyZy8u8Rt7DgxZk |
| CitedBy_id | crossref_primary_10_1080_07350015_2024_2313543 crossref_primary_10_1016_j_cell_2024_01_027 crossref_primary_10_1002_hbm_25795 crossref_primary_10_1093_bib_bbae522 crossref_primary_10_1002_gepi_22533 crossref_primary_10_1186_s12859_024_06029_5 crossref_primary_10_1111_biom_13634 crossref_primary_10_1371_journal_pgen_1011659 crossref_primary_10_1002_sim_9389 crossref_primary_10_1080_03610918_2023_2176881 crossref_primary_10_1093_neuonc_noae275 crossref_primary_10_1093_bib_bbab488 crossref_primary_10_1073_pnas_2205518119 crossref_primary_10_1093_biomtc_ujaf011 crossref_primary_10_1093_biomet_asab041 crossref_primary_10_1016_j_ajhg_2023_03_010 crossref_primary_10_3389_fgene_2024_1494401 crossref_primary_10_1007_s10114_024_3328_2 crossref_primary_10_1002_gepi_22527 crossref_primary_10_1080_07420528_2025_2532796 crossref_primary_10_3389_fgene_2024_1359591 crossref_primary_10_1007_s11357_024_01203_2 crossref_primary_10_3390_genes13071220 crossref_primary_10_1002_alz_14128 crossref_primary_10_1515_sagmb_2022_0061 crossref_primary_10_1093_ismejo_wrae104 crossref_primary_10_1016_j_csda_2025_108277 crossref_primary_10_1007_s42952_025_00305_7 crossref_primary_10_1002_gepi_22513 crossref_primary_10_1093_bib_bbae543 crossref_primary_10_1007_s10182_024_00516_z crossref_primary_10_1186_s13195_025_01774_y crossref_primary_10_1038_s41467_024_50726_x crossref_primary_10_1016_j_immuni_2025_07_022 crossref_primary_10_3389_fgene_2021_710055 crossref_primary_10_1080_01621459_2025_2476781 crossref_primary_10_1080_01621459_2025_2516205 crossref_primary_10_1002_sim_9720 crossref_primary_10_1038_s41598_023_30415_3 crossref_primary_10_1093_biomtc_ujaf034 crossref_primary_10_1016_j_risk_2024_100003 crossref_primary_10_1080_01621459_2024_2366030 crossref_primary_10_1080_01621459_2025_2529602 crossref_primary_10_1016_j_immuni_2023_10_002 crossref_primary_10_1371_journal_pcbi_1008108 crossref_primary_10_1111_sjos_70019 crossref_primary_10_1002_sim_9975 crossref_primary_10_1371_journal_ppat_1012969 crossref_primary_10_1186_s13073_024_01329_0 crossref_primary_10_1177_09622802211002864 crossref_primary_10_1186_s12874_022_01613_w crossref_primary_10_1038_s41586_023_06426_5 crossref_primary_10_1186_s40168_022_01266_3 crossref_primary_10_1038_s41467_025_57887_3 crossref_primary_10_1016_j_ajhg_2023_04_005 crossref_primary_10_1016_j_ajhg_2024_12_007 crossref_primary_10_1080_07350015_2022_2067545 crossref_primary_10_1002_sim_9747 crossref_primary_10_1080_01621459_2022_2156349 crossref_primary_10_1007_s12041_021_01351_w crossref_primary_10_1038_s41588_022_01178_w crossref_primary_10_1177_09622802211037076 crossref_primary_10_1038_s41467_021_22889_4 crossref_primary_10_1155_2021_8812282 crossref_primary_10_1093_bib_bbab323 crossref_primary_10_1186_s12967_022_03637_8 crossref_primary_10_1002_gepi_22330 crossref_primary_10_1186_s13059_025_03731_2 crossref_primary_10_3390_math10183376 crossref_primary_10_3389_fgene_2021_656545 crossref_primary_10_1186_s13195_024_01488_7 crossref_primary_10_1038_s41586_022_05477_4 crossref_primary_10_1002_cjs_70017 crossref_primary_10_1007_s42519_024_00385_4 crossref_primary_10_1038_s41467_023_35888_4 crossref_primary_10_1016_j_cell_2023_08_039 crossref_primary_10_1038_s41380_024_02605_6 crossref_primary_10_1080_03610926_2025_2522111 crossref_primary_10_1089_cmb_2024_0721 crossref_primary_10_1186_s12859_025_06126_z crossref_primary_10_1002_gepi_22438 crossref_primary_10_1007_s11424_021_0257_3 crossref_primary_10_1186_s12859_025_06163_8 crossref_primary_10_1111_cts_13745 crossref_primary_10_3389_fgene_2022_1009428 crossref_primary_10_1038_s41467_022_34016_y crossref_primary_10_1007_s42835_024_02039_8 crossref_primary_10_1038_s41467_022_30956_7 crossref_primary_10_1002_sim_9082 crossref_primary_10_1080_2331186X_2025_2543115 crossref_primary_10_1093_gpbjnl_qzae077 crossref_primary_10_1002_gepi_22422 crossref_primary_10_1002_gepi_22542 crossref_primary_10_1093_braincomms_fcaf184 crossref_primary_10_1016_j_spl_2022_109509 crossref_primary_10_1038_s41588_020_0676_4 crossref_primary_10_1002_gepi_22425 crossref_primary_10_1016_j_spl_2022_109748 crossref_primary_10_1007_s00439_024_02701_1 crossref_primary_10_1038_s41398_022_02186_4 crossref_primary_10_1080_00031305_2022_2116109 crossref_primary_10_1002_gepi_22427 crossref_primary_10_1146_annurev_biodatasci_122120_110102 crossref_primary_10_1016_j_ajhg_2021_01_009 crossref_primary_10_1038_s41598_022_07465_0 crossref_primary_10_1186_s12967_021_03090_z crossref_primary_10_1002_sta4_704 crossref_primary_10_1002_alz_12761 crossref_primary_10_1038_s41588_021_00840_z crossref_primary_10_1093_biomtc_ujaf001 crossref_primary_10_1038_s41467_022_32864_2 crossref_primary_10_1109_TIM_2025_3588963 crossref_primary_10_1371_journal_pgen_1009060 crossref_primary_10_3390_genes15070939 crossref_primary_10_3389_fgene_2020_587243 crossref_primary_10_1515_sagmb_2021_0068 crossref_primary_10_1093_genetics_iyac095 crossref_primary_10_1038_s41467_022_31473_3 crossref_primary_10_1002_cjs_11768 crossref_primary_10_1016_j_jspi_2025_106311 crossref_primary_10_1214_21_AOS2109 crossref_primary_10_3390_app12010322 crossref_primary_10_1515_ijb_2022_0123 crossref_primary_10_12688_wellcomeopenres_15761_1 crossref_primary_10_3389_fgene_2021_667877 crossref_primary_10_1038_s42003_025_07454_9 crossref_primary_10_1016_j_csbj_2021_05_042 crossref_primary_10_1002_sam_70006 crossref_primary_10_1038_s41746_021_00488_3 crossref_primary_10_1214_24_AOAS1999 crossref_primary_10_1007_s11222_025_10591_0 crossref_primary_10_1080_01621459_2022_2061354 crossref_primary_10_1371_journal_pone_0289498 crossref_primary_10_1016_j_ajhg_2023_10_017 crossref_primary_10_1212_WNL_0000000000206833 crossref_primary_10_1093_biomet_asad070 crossref_primary_10_29220_CSAM_2025_32_1_047 crossref_primary_10_1038_s41593_024_01788_z crossref_primary_10_1002_sim_8912 crossref_primary_10_1111_biom_13214 crossref_primary_10_1016_j_ajhg_2024_07_001 crossref_primary_10_1093_bib_bbab305 crossref_primary_10_1038_s41598_022_26278_9 crossref_primary_10_1212_NXG_0000000000200012 crossref_primary_10_1002_sam_70015 crossref_primary_10_1093_biostatistics_kxac051 crossref_primary_10_1093_jrsssb_qkad018 crossref_primary_10_1093_jrsssb_qkad019 crossref_primary_10_1093_biostatistics_kxad004 crossref_primary_10_1038_s41467_025_56280_4 crossref_primary_10_1093_jrsssb_qkad131 crossref_primary_10_1515_ijb_2022_0106 crossref_primary_10_1038_s41431_023_01389_7 crossref_primary_10_1093_hmg_ddad205 crossref_primary_10_1186_s12859_022_04897_3 crossref_primary_10_1016_j_spasta_2020_100459 crossref_primary_10_1038_s41467_025_63141_7 crossref_primary_10_1038_s41588_025_02156_8 crossref_primary_10_1038_s41576_021_00387_z crossref_primary_10_1186_s12859_023_05147_w crossref_primary_10_1038_s41598_023_44638_x crossref_primary_10_1177_09622802231151204 crossref_primary_10_1016_j_ajhg_2024_08_021 crossref_primary_10_3390_math10060993 crossref_primary_10_1093_g3journal_jkad118 crossref_primary_10_1038_s41467_024_45779_x crossref_primary_10_1016_j_jmva_2024_105358 crossref_primary_10_1016_j_ajhg_2022_12_006 crossref_primary_10_1093_jrsssb_qkae091 crossref_primary_10_1007_s10255_022_1019_2 crossref_primary_10_1007_s11222_025_10705_8 crossref_primary_10_1080_01621459_2020_1831926 crossref_primary_10_1186_s13073_021_00959_y crossref_primary_10_1016_j_ajhg_2024_04_010 crossref_primary_10_1080_01621459_2022_2126781 crossref_primary_10_1093_biomtc_ujaf050 crossref_primary_10_1007_s10260_024_00769_7 crossref_primary_10_1002_gepi_22297 crossref_primary_10_1111_acel_13995 crossref_primary_10_1038_s41467_025_56669_1 crossref_primary_10_1186_s13059_025_03485_x crossref_primary_10_1177_09622802231217644 crossref_primary_10_1002_qre_3787 crossref_primary_10_1002_gepi_22601 crossref_primary_10_1111_sjos_12614 crossref_primary_10_1007_s00362_025_01661_6 crossref_primary_10_1002_sta4_522 crossref_primary_10_1038_s43588_024_00764_8 crossref_primary_10_1093_bib_bbac376 crossref_primary_10_3389_fgene_2022_867724 crossref_primary_10_1038_s41467_025_61712_2 crossref_primary_10_1080_01621459_2022_2110876 crossref_primary_10_3389_fgene_2022_1027345 crossref_primary_10_1038_s41598_022_07094_7 crossref_primary_10_1080_03610918_2021_1955265 crossref_primary_10_3389_fmicb_2022_990870 crossref_primary_10_1038_s41588_022_01282_x crossref_primary_10_1080_01621459_2023_2218030 crossref_primary_10_1007_s13258_020_01034_3 crossref_primary_10_1186_s13059_023_03159_6 crossref_primary_10_1038_s42003_024_05897_0 crossref_primary_10_1038_s41437_022_00560_y crossref_primary_10_1038_s41586_025_08757_x crossref_primary_10_1016_j_isci_2023_108238 crossref_primary_10_1212_WNL_0000000000214024 crossref_primary_10_1016_j_ajhg_2023_07_001 crossref_primary_10_1038_s41467_025_60439_4 crossref_primary_10_1007_s13253_024_00603_3 crossref_primary_10_1214_21_AOAS1548 crossref_primary_10_1214_21_AOAS1442 crossref_primary_10_1093_bib_bbae456 crossref_primary_10_1051_0004_6361_202243690 crossref_primary_10_1080_01621459_2020_1799811 crossref_primary_10_1093_bioinformatics_btae425 crossref_primary_10_1371_journal_pone_0260911 crossref_primary_10_1038_s41416_024_02587_w crossref_primary_10_1080_00224065_2024_2344536 crossref_primary_10_1093_gpbjnl_qzae003 crossref_primary_10_1093_bib_bbae327 crossref_primary_10_1126_science_abg5601 crossref_primary_10_1111_adb_13071 crossref_primary_10_1186_s40168_021_01129_3 |
| Cites_doi | 10.1038/ng.3404 10.1038/ng.717 10.1214/13-AOS1161 10.1086/519795 10.1214/15-AOS1407 10.1214/09-AOS764 10.1093/bioinformatics/btu816 10.1080/01621459.2016.1192039 10.1080/01621459.2018.1513363 10.1214/009053604000000265 10.1016/j.ajhg.2014.06.009 10.1007/BF00533250 10.3150/14-BEJ620 10.1080/01621459.2012.720478 10.1214/11-AOS910 10.1016/j.ajhg.2010.05.002 10.1111/insr.12000 10.1016/j.ajhg.2011.05.029 10.1111/rssb.12204 10.1080/01621459.1978.10480095 10.1214/10-AOAS338 10.1038/ng.2213 10.1126/science.1135245 10.1111/rssb.12034 10.1198/016214506000001211 10.1080/01621459.2014.946318 10.1198/jasa.2011.tm09803 |
| ContentType | Journal Article |
| Copyright | 2019 American Statistical Association 2019 2019 American Statistical Association |
| Copyright_xml | – notice: 2019 American Statistical Association 2019 – notice: 2019 American Statistical Association |
| DBID | AAYXX CITATION NPM 8BJ FQK JBE K9. 7X8 5PM |
| DOI | 10.1080/01621459.2018.1554485 |
| DatabaseName | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic International Bibliography of the Social Sciences (IBSS) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 402 |
| ExternalDocumentID | PMC7531765 33012899 10_1080_01621459_2018_1554485 1554485 |
| Genre | Article Journal Article |
| GrantInformation_xml | – fundername: National Institutes of Health grantid: R21GM101504 – fundername: NIGMS NIH HHS grantid: R21 GM101504 |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABRLO ABTAI ABUFD ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF ADMHG ADXHL AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P FJW GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P JAS JMS K60 K6~ KYCEM LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ~S~ AAYXX CITATION .-4 .GJ 07G 1OL 2AX 3R3 3V. 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8P6 8R4 8R5 AAFWJ AAIKQ AAKBW ABBHK ABEFU ABJCF ABPQH ABUWG ABXSQ ABYAD ACAGQ ACGEE ACTWD ACUBG ADBBV ADODI ADULT ADYSH AELPN AEUMN AEUPB AFKRA AFQQW AFSUE AGCQS AGLEN AGROQ AHMOU AI. AIHAF ALCKM ALIPV ALRMG AMATQ AMEWO AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CRFIH DMQIW DQDLB DSRWC DWIFK DWQXO E.L ECEWR EJD FEDTE FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HQ6 HVGLF IAO IEA IGG IOF IPO IPSME IVXBP JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPL JSODD JST K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S MVM N95 NHB NPM NUSFT P-O PADUT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RNS S0X SA0 SJN TAQ TFMCV UB9 UKHRP UQL VH1 VOH VXZ WHG YXB YYP ZCG ZGI ZUP ZXP 8BJ FQK JBE K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c529t-4096bd3140fd01031a005de9e63b72b18a1f5d6801738d3dbd69782e137acafd3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 266 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471522600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-1459 |
| IngestDate | Tue Nov 04 01:59:49 EST 2025 Thu Oct 02 11:59:07 EDT 2025 Sat Nov 08 23:46:23 EST 2025 Wed Feb 19 02:29:30 EST 2025 Tue Nov 18 22:25:13 EST 2025 Sat Nov 29 03:56:44 EST 2025 Mon Oct 20 23:48:34 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 529 |
| Keywords | Global hypothesis testing Sparse alternative Non-asymptotic approximation High dimensional data Cauchy distribution Correlation matrix |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c529t-4096bd3140fd01031a005de9e63b72b18a1f5d6801738d3dbd69782e137acafd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7531765 |
| PMID | 33012899 |
| PQID | 2379409311 |
| PQPubID | 41715 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2379409311 crossref_primary_10_1080_01621459_2018_1554485 pubmed_primary_33012899 proquest_miscellaneous_2448643337 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7531765 crossref_citationtrail_10_1080_01621459_2018_1554485 informaworld_taylorfrancis_310_1080_01621459_2018_1554485 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-02 |
| PublicationDateYYYYMMDD | 2020-01-02 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationTitleAlternate | J Am Stat Assoc |
| PublicationYear | 2020 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | Chernozhukov V. (CIT0006) 2014; 1412 CIT0030 CIT0010 CIT0012 CIT0011 Fisher R. A (CIT0014) 1932 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 Tippett L. H. C (CIT0024) 1931 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 CIT0003 CIT0025 CIT0002 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0013 doi: 10.1038/ng.3404 – ident: CIT0015 doi: 10.1038/ng.717 – ident: CIT0005 doi: 10.1214/13-AOS1161 – ident: CIT0023 doi: 10.1086/519795 – ident: CIT0022 doi: 10.1214/15-AOS1407 – ident: CIT0016 doi: 10.1214/09-AOS764 – ident: CIT0018 doi: 10.1093/bioinformatics/btu816 – ident: CIT0002 doi: 10.1080/01621459.2016.1192039 – ident: CIT0021 doi: 10.1080/01621459.2018.1513363 – ident: CIT0007 doi: 10.1214/009053604000000265 – ident: CIT0019 doi: 10.1016/j.ajhg.2014.06.009 – ident: CIT0003 doi: 10.1007/BF00533250 – ident: CIT0008 doi: 10.3150/14-BEJ620 – ident: CIT0012 doi: 10.1080/01621459.2012.720478 – ident: CIT0001 doi: 10.1214/11-AOS910 – ident: CIT0026 doi: 10.1016/j.ajhg.2010.05.002 – volume-title: The Methods of Statistics year: 1931 ident: CIT0024 – ident: CIT0029 doi: 10.1111/insr.12000 – ident: CIT0027 doi: 10.1016/j.ajhg.2011.05.029 – ident: CIT0011 doi: 10.1111/rssb.12204 – volume-title: Statistical Methods for Research Workers year: 1932 ident: CIT0014 – ident: CIT0017 doi: 10.1080/01621459.1978.10480095 – volume: 1412 start-page: 3661 year: 2014 ident: CIT0006 publication-title: arXiv no – ident: CIT0025 doi: 10.1214/10-AOAS338 – ident: CIT0030 doi: 10.1038/ng.2213 – ident: CIT0009 doi: 10.1126/science.1135245 – ident: CIT0004 doi: 10.1111/rssb.12034 – ident: CIT0010 doi: 10.1198/016214506000001211 – ident: CIT0020 doi: 10.1080/01621459.2014.946318 – ident: CIT0028 doi: 10.1198/jasa.2011.tm09803 |
| SSID | ssj0000788 |
| Score | 2.687396 |
| Snippet | Abstract-Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's... Combining individual -values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination... Abstract–Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher’s... Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination... Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher’s combination... |
| SourceID | pubmedcentral proquest pubmed crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 393 |
| SubjectTerms | Arbitrariness Cauchy distribution Computation Computer simulation Correlation analysis Correlation matrix Data analysis Dependence Dependency Dependency grammar Distribution Genomics Global hypothesis testing High-dimensional data Mathematical analysis Nonasymptotic approximation Power Regression analysis Sparse alternative Sparsity Statistical methods Statistical tests Statistics Transformation Values |
| Title | Cauchy Combination Test: A Powerful Test With Analytic p-Value Calculation Under Arbitrary Dependency Structures |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2018.1554485 https://www.ncbi.nlm.nih.gov/pubmed/33012899 https://www.proquest.com/docview/2379409311 https://www.proquest.com/docview/2448643337 https://pubmed.ncbi.nlm.nih.gov/PMC7531765 |
| Volume | 115 |
| WOSCitedRecordID | wos000471522600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-CicMufH9kjMlIXDMau4nt3aZCxWmaRGG9RU6eo1aqsmptkPbf857jlBWBdoBrnOfEzvt07N8P4EMxUoikJ6m0iClZIvlBNcbUFGrssYfQCmQT-uLCzOf2Mu4m3MRtlVxDNz1QRPDVbNyu2gw74j5SlsL42nzMJDOnHBCpT_LCFPrZNGfTq1--WAfmSZZIWWQ4w_O3Xvai0x526Z8y0N83Ut6JTNMn_2FMT-FxTEvFea9Hz-CBb5_DIWeiPZDzC1hPXFcvbgU5ECqmw_cUM3rNM3EuLplqrelW4YK4Wm4XIoCdkKRYp9_dqvNi4lZ1pAoTgWyJHlYtw6F_8Sky8da34mvAs-1u_OYlfJt-nk2-pJGuIa1zabdUidqiQkUVW4OBPcKRhaO3vlCVllVmXNbkWFBI1MqgwgoLKmGlz5R2tWtQvYKD9rr1b0BIY5AKy1zyj9uxLYzzFp3EXJrGjCqZwHj4TGUdscyZUmNVZgPkaZzPkuezjPOZwOlObN2DedwnYO_qQLkNqyhNT3lSqntkjweFKaNf2JRSkf8bWZVlCbzfNZNF828a1_rrju4hacoTldIJvO71a_e2SnFCYW0Cek_zdjcwWvh-S7tcBNRwqkszXeRH_zCkt3AoebmBV6DkMRyQRvh38Kj-Qbp4cwIP9dycBPv7Ce-RKSE |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-CgcQu43MQNsBIXDMau0ns3aaOaohRIVHYbpaT56iVqqza2kn773nPSUo7gXaAa5znxM77dOzfD-BD1lOIpCexNIgxWSL5QdXHWGeq77GB0ApkE_lopM_PzfpZGN5WyTV01QBFBF_Nxs2L0d2WuI-UpjDANp8zSfQBR0Tq9D48SCnWMn7-eHj22xvngXuSRWKW6U7x_K2bjfi0gV76pxz09lbKtdg0fPw_RvUEdtrMVBw1qvQU7vn6GWxzMtpgOT-H-cAty8mNIB9C9XT4pGJM73kojsQ3ZlujB4UL4my6mIiAd0KSYh7_dLOlFwM3K1u2MBH4luhhxTSc-xfHLRlveSO-B0jb5aW_egE_hp_Gg5O4ZWyIy1SaBRWjJitQUdFWYSCQcGTk6I3PVJHLItEuqVLMKCrmSqPCAjOqYqVPVO5KV6Haha36ovavQEitkWrLVPK_277JtPMGncRU6kr3ChlBv_tOtmzhzJlVY2aTDvW0nU_L82nb-YzgYCU2b_A87hIw60pgF2EhpWpYT6y6Q3a_0xjbuoYrKxW5wJ5RSRLB-1UzGTX_qXG1v1jSPSRNqaJSeQQvGwVbva1SnFMYE0G-oXqrGxgwfLOlnk4CcDiVpkmepa__YUjv4NHJ-OupPf08-rIH25JXH3hBSu7DFmmHfwMPy2vSy8u3wQx_Aa5ELGM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BQGgv4zcEBhiJ14zGbhybt6mjAoGqShS2N8uJHbVSlVVrg7T_fneOU1YE2gO8Jrkkdr473zn29wG8kwPhHOIk5dq5FD0R46AYulRJMfSuo9AKYhPFZKLOzvQ0riZcx2WVVEPXHVFEiNXk3CtX9yvi3mOWQvzatM0kU0c0IOI9b8MdTJ0lgXw2Pv0VjIsgPUkmKdn0m3j-dpud4WmHvPRPKejvKymvDU3j-_-hUQ_gIOal7LgD0kO45ZtHsE-paMfk_BhWI9tW80uGEQSr6fBB2Qxf8wM7ZlPSWqvbZTjAThebOQtsJ2jJVukPu2w9G9llFbXCWFBbwoeVi7Drn51EKd7qkn0LhLbthV8_ge_jj7PRpzTqNaRVzvUGS1EtSyewZKtdkI-w6OLOay9FWfAyUzarcydxTCyEcsKVTmINy30mClvZ2omnsNecN_45MK6Uw8oy5_Tndqilsl47y13OVa0GJU9g2H8mU0Uyc9LUWJqs5zyN_WmoP03szwSOtmarjs3jJgN9HQNmE6ZR6k7zxIgbbA97wJgYGNaGCwyAAy2yLIG329Po0vSfxjb-vMVr0BoTRSGKBJ51-Nq-rRCUUWidQLGDvO0FRBe-e6ZZzANtOBamWSHzF__QpDdwb3oyNl8_T768hH1OUw80G8UPYQ_B4V_B3eonwvLidXDCK_tAKxU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cauchy+Combination+Test%3A+A+Powerful+Test+With+Analytic+p-Value+Calculation+Under+Arbitrary+Dependency+Structures&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Liu%2C+Yaowu&rft.au=Xie%2C+Jun&rft.date=2020-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=115&rft.issue=529&rft.spage=393&rft.epage=402&rft_id=info:doi/10.1080%2F01621459.2018.1554485&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |