Cauchy Combination Test: A Powerful Test With Analytic p-Value Calculation Under Arbitrary Dependency Structures

Abstract-Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association Vol. 115; no. 529; pp. 393 - 402
Main Authors: Liu, Yaowu, Xie, Jun
Format: Journal Article
Language:English
Published: United States Taylor & Francis 02.01.2020
Taylor & Francis Ltd
Subjects:
ISSN:0162-1459, 1537-274X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract-Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual p-values. We prove a nonasymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to p-value calculations, especially for very small p-values. The proposed test has also been applied to a genome-wide association study of Crohn's disease and compared with several existing tests. Supplementary materials for this article are available online.
AbstractList Combining individual -values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual -values. We prove a non-asymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the -value calculation of our proposed test is not only accurate, but also as simple as the classic -test or -test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to -value calculations, especially for very small -values. The proposed test has also been applied to a genome-wide association study of Crohn's disease and compared with several existing tests.
Abstract-Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual p-values. We prove a nonasymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to p-value calculations, especially for very small p-values. The proposed test has also been applied to a genome-wide association study of Crohn's disease and compared with several existing tests. Supplementary materials for this article are available online.
Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual p-values. We prove a non-asymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to p-value calculations, especially for very small p-values. The proposed test has also been applied to a genome-wide association study of Crohn's disease and compared with several existing tests.Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual p-values. We prove a non-asymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to p-value calculations, especially for very small p-values. The proposed test has also been applied to a genome-wide association study of Crohn's disease and compared with several existing tests.
Abstract–Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher’s combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual p-values. We prove a nonasymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to p-value calculations, especially for very small p-values. The proposed test has also been applied to a genome-wide association study of Crohn’s disease and compared with several existing tests. Supplementary materials for this article are available online.
Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher’s combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual p-values. We prove a non-asymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to p-value calculations, especially for very small p-values. The proposed test has also been applied to a genome-wide association study of Crohn’s disease and compared with several existing tests.
Author Liu, Yaowu
Xie, Jun
Author_xml – sequence: 1
  givenname: Yaowu
  surname: Liu
  fullname: Liu, Yaowu
  organization: Department of Biostatistics, Harvard School of Public Health
– sequence: 2
  givenname: Jun
  surname: Xie
  fullname: Xie, Jun
  email: junxie@purdue.edu
  organization: Department of Statistics, Purdue University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33012899$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1vFCEYhYmpsdvqT9CQeOPNrDAMw4wmjZupX0kTTWzVO8IA49KwMAJjM_--bHfXaC-UGxJ4zsvhnBNw5LzTADzFaIlRg14iXJe4ou2yRLhZYkqrqqEPwAJTwoqSVd-PwGLLFFvoGJzEeI3yYk3zCBwTgnDZtO0CjJ2Y5HqGnd_0xolkvIOXOqZXcAU_-xsdhsneHcBvJq3hygk7JyPhWHwVdtKwE1ZOdqe7ckoHuAq9SUGEGZ7rUecjJ2f4JYVJpino-Bg8HISN-sl-PwVX795edh-Ki0_vP3ari0LSsk1Fhdq6VwRXaFAII4IFQlTpVtekZ2WPG4EHquoGYUYaRVSv6pY1pcaECSkGRU7B2W7uOPUbraR22ZTlYzCb7I17YfjfN86s-Q__izNKMKtpHvBiPyD4n1NOgG9MlNpa4bSfIi9z4HVFCGEZfX4PvfZTyFFlirA2_4VgnKlnfzr6beVQRgZe7wAZfIxBD1yadBdtNmgsx4hvq-eH6vm2er6vPqvpPfXhgf_p3ux0xg0-bMSND1bxJGbrwxCEkyZy8u8Rt7DgxZk
CitedBy_id crossref_primary_10_1080_07350015_2024_2313543
crossref_primary_10_1016_j_cell_2024_01_027
crossref_primary_10_1002_hbm_25795
crossref_primary_10_1093_bib_bbae522
crossref_primary_10_1002_gepi_22533
crossref_primary_10_1186_s12859_024_06029_5
crossref_primary_10_1111_biom_13634
crossref_primary_10_1371_journal_pgen_1011659
crossref_primary_10_1002_sim_9389
crossref_primary_10_1080_03610918_2023_2176881
crossref_primary_10_1093_neuonc_noae275
crossref_primary_10_1093_bib_bbab488
crossref_primary_10_1073_pnas_2205518119
crossref_primary_10_1093_biomtc_ujaf011
crossref_primary_10_1093_biomet_asab041
crossref_primary_10_1016_j_ajhg_2023_03_010
crossref_primary_10_3389_fgene_2024_1494401
crossref_primary_10_1007_s10114_024_3328_2
crossref_primary_10_1002_gepi_22527
crossref_primary_10_1080_07420528_2025_2532796
crossref_primary_10_3389_fgene_2024_1359591
crossref_primary_10_1007_s11357_024_01203_2
crossref_primary_10_3390_genes13071220
crossref_primary_10_1002_alz_14128
crossref_primary_10_1515_sagmb_2022_0061
crossref_primary_10_1093_ismejo_wrae104
crossref_primary_10_1016_j_csda_2025_108277
crossref_primary_10_1007_s42952_025_00305_7
crossref_primary_10_1002_gepi_22513
crossref_primary_10_1093_bib_bbae543
crossref_primary_10_1007_s10182_024_00516_z
crossref_primary_10_1186_s13195_025_01774_y
crossref_primary_10_1038_s41467_024_50726_x
crossref_primary_10_1016_j_immuni_2025_07_022
crossref_primary_10_3389_fgene_2021_710055
crossref_primary_10_1080_01621459_2025_2476781
crossref_primary_10_1080_01621459_2025_2516205
crossref_primary_10_1002_sim_9720
crossref_primary_10_1038_s41598_023_30415_3
crossref_primary_10_1093_biomtc_ujaf034
crossref_primary_10_1016_j_risk_2024_100003
crossref_primary_10_1080_01621459_2024_2366030
crossref_primary_10_1080_01621459_2025_2529602
crossref_primary_10_1016_j_immuni_2023_10_002
crossref_primary_10_1371_journal_pcbi_1008108
crossref_primary_10_1111_sjos_70019
crossref_primary_10_1002_sim_9975
crossref_primary_10_1371_journal_ppat_1012969
crossref_primary_10_1186_s13073_024_01329_0
crossref_primary_10_1177_09622802211002864
crossref_primary_10_1186_s12874_022_01613_w
crossref_primary_10_1038_s41586_023_06426_5
crossref_primary_10_1186_s40168_022_01266_3
crossref_primary_10_1038_s41467_025_57887_3
crossref_primary_10_1016_j_ajhg_2023_04_005
crossref_primary_10_1016_j_ajhg_2024_12_007
crossref_primary_10_1080_07350015_2022_2067545
crossref_primary_10_1002_sim_9747
crossref_primary_10_1080_01621459_2022_2156349
crossref_primary_10_1007_s12041_021_01351_w
crossref_primary_10_1038_s41588_022_01178_w
crossref_primary_10_1177_09622802211037076
crossref_primary_10_1038_s41467_021_22889_4
crossref_primary_10_1155_2021_8812282
crossref_primary_10_1093_bib_bbab323
crossref_primary_10_1186_s12967_022_03637_8
crossref_primary_10_1002_gepi_22330
crossref_primary_10_1186_s13059_025_03731_2
crossref_primary_10_3390_math10183376
crossref_primary_10_3389_fgene_2021_656545
crossref_primary_10_1186_s13195_024_01488_7
crossref_primary_10_1038_s41586_022_05477_4
crossref_primary_10_1002_cjs_70017
crossref_primary_10_1007_s42519_024_00385_4
crossref_primary_10_1038_s41467_023_35888_4
crossref_primary_10_1016_j_cell_2023_08_039
crossref_primary_10_1038_s41380_024_02605_6
crossref_primary_10_1080_03610926_2025_2522111
crossref_primary_10_1089_cmb_2024_0721
crossref_primary_10_1186_s12859_025_06126_z
crossref_primary_10_1002_gepi_22438
crossref_primary_10_1007_s11424_021_0257_3
crossref_primary_10_1186_s12859_025_06163_8
crossref_primary_10_1111_cts_13745
crossref_primary_10_3389_fgene_2022_1009428
crossref_primary_10_1038_s41467_022_34016_y
crossref_primary_10_1007_s42835_024_02039_8
crossref_primary_10_1038_s41467_022_30956_7
crossref_primary_10_1002_sim_9082
crossref_primary_10_1080_2331186X_2025_2543115
crossref_primary_10_1093_gpbjnl_qzae077
crossref_primary_10_1002_gepi_22422
crossref_primary_10_1002_gepi_22542
crossref_primary_10_1093_braincomms_fcaf184
crossref_primary_10_1016_j_spl_2022_109509
crossref_primary_10_1038_s41588_020_0676_4
crossref_primary_10_1002_gepi_22425
crossref_primary_10_1016_j_spl_2022_109748
crossref_primary_10_1007_s00439_024_02701_1
crossref_primary_10_1038_s41398_022_02186_4
crossref_primary_10_1080_00031305_2022_2116109
crossref_primary_10_1002_gepi_22427
crossref_primary_10_1146_annurev_biodatasci_122120_110102
crossref_primary_10_1016_j_ajhg_2021_01_009
crossref_primary_10_1038_s41598_022_07465_0
crossref_primary_10_1186_s12967_021_03090_z
crossref_primary_10_1002_sta4_704
crossref_primary_10_1002_alz_12761
crossref_primary_10_1038_s41588_021_00840_z
crossref_primary_10_1093_biomtc_ujaf001
crossref_primary_10_1038_s41467_022_32864_2
crossref_primary_10_1109_TIM_2025_3588963
crossref_primary_10_1371_journal_pgen_1009060
crossref_primary_10_3390_genes15070939
crossref_primary_10_3389_fgene_2020_587243
crossref_primary_10_1515_sagmb_2021_0068
crossref_primary_10_1093_genetics_iyac095
crossref_primary_10_1038_s41467_022_31473_3
crossref_primary_10_1002_cjs_11768
crossref_primary_10_1016_j_jspi_2025_106311
crossref_primary_10_1214_21_AOS2109
crossref_primary_10_3390_app12010322
crossref_primary_10_1515_ijb_2022_0123
crossref_primary_10_12688_wellcomeopenres_15761_1
crossref_primary_10_3389_fgene_2021_667877
crossref_primary_10_1038_s42003_025_07454_9
crossref_primary_10_1016_j_csbj_2021_05_042
crossref_primary_10_1002_sam_70006
crossref_primary_10_1038_s41746_021_00488_3
crossref_primary_10_1214_24_AOAS1999
crossref_primary_10_1007_s11222_025_10591_0
crossref_primary_10_1080_01621459_2022_2061354
crossref_primary_10_1371_journal_pone_0289498
crossref_primary_10_1016_j_ajhg_2023_10_017
crossref_primary_10_1212_WNL_0000000000206833
crossref_primary_10_1093_biomet_asad070
crossref_primary_10_29220_CSAM_2025_32_1_047
crossref_primary_10_1038_s41593_024_01788_z
crossref_primary_10_1002_sim_8912
crossref_primary_10_1111_biom_13214
crossref_primary_10_1016_j_ajhg_2024_07_001
crossref_primary_10_1093_bib_bbab305
crossref_primary_10_1038_s41598_022_26278_9
crossref_primary_10_1212_NXG_0000000000200012
crossref_primary_10_1002_sam_70015
crossref_primary_10_1093_biostatistics_kxac051
crossref_primary_10_1093_jrsssb_qkad018
crossref_primary_10_1093_jrsssb_qkad019
crossref_primary_10_1093_biostatistics_kxad004
crossref_primary_10_1038_s41467_025_56280_4
crossref_primary_10_1093_jrsssb_qkad131
crossref_primary_10_1515_ijb_2022_0106
crossref_primary_10_1038_s41431_023_01389_7
crossref_primary_10_1093_hmg_ddad205
crossref_primary_10_1186_s12859_022_04897_3
crossref_primary_10_1016_j_spasta_2020_100459
crossref_primary_10_1038_s41467_025_63141_7
crossref_primary_10_1038_s41588_025_02156_8
crossref_primary_10_1038_s41576_021_00387_z
crossref_primary_10_1186_s12859_023_05147_w
crossref_primary_10_1038_s41598_023_44638_x
crossref_primary_10_1177_09622802231151204
crossref_primary_10_1016_j_ajhg_2024_08_021
crossref_primary_10_3390_math10060993
crossref_primary_10_1093_g3journal_jkad118
crossref_primary_10_1038_s41467_024_45779_x
crossref_primary_10_1016_j_jmva_2024_105358
crossref_primary_10_1016_j_ajhg_2022_12_006
crossref_primary_10_1093_jrsssb_qkae091
crossref_primary_10_1007_s10255_022_1019_2
crossref_primary_10_1007_s11222_025_10705_8
crossref_primary_10_1080_01621459_2020_1831926
crossref_primary_10_1186_s13073_021_00959_y
crossref_primary_10_1016_j_ajhg_2024_04_010
crossref_primary_10_1080_01621459_2022_2126781
crossref_primary_10_1093_biomtc_ujaf050
crossref_primary_10_1007_s10260_024_00769_7
crossref_primary_10_1002_gepi_22297
crossref_primary_10_1111_acel_13995
crossref_primary_10_1038_s41467_025_56669_1
crossref_primary_10_1186_s13059_025_03485_x
crossref_primary_10_1177_09622802231217644
crossref_primary_10_1002_qre_3787
crossref_primary_10_1002_gepi_22601
crossref_primary_10_1111_sjos_12614
crossref_primary_10_1007_s00362_025_01661_6
crossref_primary_10_1002_sta4_522
crossref_primary_10_1038_s43588_024_00764_8
crossref_primary_10_1093_bib_bbac376
crossref_primary_10_3389_fgene_2022_867724
crossref_primary_10_1038_s41467_025_61712_2
crossref_primary_10_1080_01621459_2022_2110876
crossref_primary_10_3389_fgene_2022_1027345
crossref_primary_10_1038_s41598_022_07094_7
crossref_primary_10_1080_03610918_2021_1955265
crossref_primary_10_3389_fmicb_2022_990870
crossref_primary_10_1038_s41588_022_01282_x
crossref_primary_10_1080_01621459_2023_2218030
crossref_primary_10_1007_s13258_020_01034_3
crossref_primary_10_1186_s13059_023_03159_6
crossref_primary_10_1038_s42003_024_05897_0
crossref_primary_10_1038_s41437_022_00560_y
crossref_primary_10_1038_s41586_025_08757_x
crossref_primary_10_1016_j_isci_2023_108238
crossref_primary_10_1212_WNL_0000000000214024
crossref_primary_10_1016_j_ajhg_2023_07_001
crossref_primary_10_1038_s41467_025_60439_4
crossref_primary_10_1007_s13253_024_00603_3
crossref_primary_10_1214_21_AOAS1548
crossref_primary_10_1214_21_AOAS1442
crossref_primary_10_1093_bib_bbae456
crossref_primary_10_1051_0004_6361_202243690
crossref_primary_10_1080_01621459_2020_1799811
crossref_primary_10_1093_bioinformatics_btae425
crossref_primary_10_1371_journal_pone_0260911
crossref_primary_10_1038_s41416_024_02587_w
crossref_primary_10_1080_00224065_2024_2344536
crossref_primary_10_1093_gpbjnl_qzae003
crossref_primary_10_1093_bib_bbae327
crossref_primary_10_1126_science_abg5601
crossref_primary_10_1111_adb_13071
crossref_primary_10_1186_s40168_021_01129_3
Cites_doi 10.1038/ng.3404
10.1038/ng.717
10.1214/13-AOS1161
10.1086/519795
10.1214/15-AOS1407
10.1214/09-AOS764
10.1093/bioinformatics/btu816
10.1080/01621459.2016.1192039
10.1080/01621459.2018.1513363
10.1214/009053604000000265
10.1016/j.ajhg.2014.06.009
10.1007/BF00533250
10.3150/14-BEJ620
10.1080/01621459.2012.720478
10.1214/11-AOS910
10.1016/j.ajhg.2010.05.002
10.1111/insr.12000
10.1016/j.ajhg.2011.05.029
10.1111/rssb.12204
10.1080/01621459.1978.10480095
10.1214/10-AOAS338
10.1038/ng.2213
10.1126/science.1135245
10.1111/rssb.12034
10.1198/016214506000001211
10.1080/01621459.2014.946318
10.1198/jasa.2011.tm09803
ContentType Journal Article
Copyright 2019 American Statistical Association 2019
2019 American Statistical Association
Copyright_xml – notice: 2019 American Statistical Association 2019
– notice: 2019 American Statistical Association
DBID AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7X8
5PM
DOI 10.1080/01621459.2018.1554485
DatabaseName CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
International Bibliography of the Social Sciences (IBSS)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 402
ExternalDocumentID PMC7531765
33012899
10_1080_01621459_2018_1554485
1554485
Genre Article
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R21GM101504
– fundername: NIGMS NIH HHS
  grantid: R21 GM101504
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABRLO
ABTAI
ABUFD
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
ADXHL
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
JAS
JMS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAYXX
CITATION
.-4
.GJ
07G
1OL
2AX
3R3
3V.
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8P6
8R4
8R5
AAFWJ
AAIKQ
AAKBW
ABBHK
ABEFU
ABJCF
ABPQH
ABUWG
ABXSQ
ABYAD
ACAGQ
ACGEE
ACTWD
ACUBG
ADBBV
ADODI
ADULT
ADYSH
AELPN
AEUMN
AEUPB
AFKRA
AFQQW
AFSUE
AGCQS
AGLEN
AGROQ
AHMOU
AI.
AIHAF
ALCKM
ALIPV
ALRMG
AMATQ
AMEWO
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DQDLB
DSRWC
DWIFK
DWQXO
E.L
ECEWR
EJD
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HQ6
HVGLF
IAO
IEA
IGG
IOF
IPO
IPSME
IVXBP
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JSODD
JST
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
N95
NHB
NPM
NUSFT
P-O
PADUT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SA0
SJN
TAQ
TFMCV
UB9
UKHRP
UQL
VH1
VOH
VXZ
WHG
YXB
YYP
ZCG
ZGI
ZUP
ZXP
8BJ
FQK
JBE
K9.
7X8
5PM
ID FETCH-LOGICAL-c529t-4096bd3140fd01031a005de9e63b72b18a1f5d6801738d3dbd69782e137acafd3
IEDL.DBID TFW
ISICitedReferencesCount 266
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471522600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
IngestDate Tue Nov 04 01:59:49 EST 2025
Thu Oct 02 11:59:07 EDT 2025
Sat Nov 08 23:46:23 EST 2025
Wed Feb 19 02:29:30 EST 2025
Tue Nov 18 22:25:13 EST 2025
Sat Nov 29 03:56:44 EST 2025
Mon Oct 20 23:48:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 529
Keywords Global hypothesis testing
Sparse alternative
Non-asymptotic approximation
High dimensional data
Cauchy distribution
Correlation matrix
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-4096bd3140fd01031a005de9e63b72b18a1f5d6801738d3dbd69782e137acafd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7531765
PMID 33012899
PQID 2379409311
PQPubID 41715
PageCount 10
ParticipantIDs proquest_journals_2379409311
crossref_primary_10_1080_01621459_2018_1554485
pubmed_primary_33012899
proquest_miscellaneous_2448643337
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7531765
crossref_citationtrail_10_1080_01621459_2018_1554485
informaworld_taylorfrancis_310_1080_01621459_2018_1554485
PublicationCentury 2000
PublicationDate 2020-01-02
PublicationDateYYYYMMDD 2020-01-02
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Chernozhukov V. (CIT0006) 2014; 1412
CIT0030
CIT0010
CIT0012
CIT0011
Fisher R. A (CIT0014) 1932
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
Tippett L. H. C (CIT0024) 1931
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0013
  doi: 10.1038/ng.3404
– ident: CIT0015
  doi: 10.1038/ng.717
– ident: CIT0005
  doi: 10.1214/13-AOS1161
– ident: CIT0023
  doi: 10.1086/519795
– ident: CIT0022
  doi: 10.1214/15-AOS1407
– ident: CIT0016
  doi: 10.1214/09-AOS764
– ident: CIT0018
  doi: 10.1093/bioinformatics/btu816
– ident: CIT0002
  doi: 10.1080/01621459.2016.1192039
– ident: CIT0021
  doi: 10.1080/01621459.2018.1513363
– ident: CIT0007
  doi: 10.1214/009053604000000265
– ident: CIT0019
  doi: 10.1016/j.ajhg.2014.06.009
– ident: CIT0003
  doi: 10.1007/BF00533250
– ident: CIT0008
  doi: 10.3150/14-BEJ620
– ident: CIT0012
  doi: 10.1080/01621459.2012.720478
– ident: CIT0001
  doi: 10.1214/11-AOS910
– ident: CIT0026
  doi: 10.1016/j.ajhg.2010.05.002
– volume-title: The Methods of Statistics
  year: 1931
  ident: CIT0024
– ident: CIT0029
  doi: 10.1111/insr.12000
– ident: CIT0027
  doi: 10.1016/j.ajhg.2011.05.029
– ident: CIT0011
  doi: 10.1111/rssb.12204
– volume-title: Statistical Methods for Research Workers
  year: 1932
  ident: CIT0014
– ident: CIT0017
  doi: 10.1080/01621459.1978.10480095
– volume: 1412
  start-page: 3661
  year: 2014
  ident: CIT0006
  publication-title: arXiv no
– ident: CIT0025
  doi: 10.1214/10-AOAS338
– ident: CIT0030
  doi: 10.1038/ng.2213
– ident: CIT0009
  doi: 10.1126/science.1135245
– ident: CIT0004
  doi: 10.1111/rssb.12034
– ident: CIT0010
  doi: 10.1198/016214506000001211
– ident: CIT0020
  doi: 10.1080/01621459.2014.946318
– ident: CIT0028
  doi: 10.1198/jasa.2011.tm09803
SSID ssj0000788
Score 2.687396
Snippet Abstract-Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's...
Combining individual -values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination...
Abstract–Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher’s...
Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination...
Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher’s combination...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 393
SubjectTerms Arbitrariness
Cauchy distribution
Computation
Computer simulation
Correlation analysis
Correlation matrix
Data analysis
Dependence
Dependency
Dependency grammar
Distribution
Genomics
Global hypothesis testing
High-dimensional data
Mathematical analysis
Nonasymptotic approximation
Power
Regression analysis
Sparse alternative
Sparsity
Statistical methods
Statistical tests
Statistics
Transformation
Values
Title Cauchy Combination Test: A Powerful Test With Analytic p-Value Calculation Under Arbitrary Dependency Structures
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2018.1554485
https://www.ncbi.nlm.nih.gov/pubmed/33012899
https://www.proquest.com/docview/2379409311
https://www.proquest.com/docview/2448643337
https://pubmed.ncbi.nlm.nih.gov/PMC7531765
Volume 115
WOSCitedRecordID wos000471522600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-CicMufH9kjMlIXDMau4nt3aZCxWmaRGG9RU6eo1aqsmptkPbf857jlBWBdoBrnOfEzvt07N8P4EMxUoikJ6m0iClZIvlBNcbUFGrssYfQCmQT-uLCzOf2Mu4m3MRtlVxDNz1QRPDVbNyu2gw74j5SlsL42nzMJDOnHBCpT_LCFPrZNGfTq1--WAfmSZZIWWQ4w_O3Xvai0x526Z8y0N83Ut6JTNMn_2FMT-FxTEvFea9Hz-CBb5_DIWeiPZDzC1hPXFcvbgU5ECqmw_cUM3rNM3EuLplqrelW4YK4Wm4XIoCdkKRYp9_dqvNi4lZ1pAoTgWyJHlYtw6F_8Sky8da34mvAs-1u_OYlfJt-nk2-pJGuIa1zabdUidqiQkUVW4OBPcKRhaO3vlCVllVmXNbkWFBI1MqgwgoLKmGlz5R2tWtQvYKD9rr1b0BIY5AKy1zyj9uxLYzzFp3EXJrGjCqZwHj4TGUdscyZUmNVZgPkaZzPkuezjPOZwOlObN2DedwnYO_qQLkNqyhNT3lSqntkjweFKaNf2JRSkf8bWZVlCbzfNZNF828a1_rrju4hacoTldIJvO71a_e2SnFCYW0Cek_zdjcwWvh-S7tcBNRwqkszXeRH_zCkt3AoebmBV6DkMRyQRvh38Kj-Qbp4cwIP9dycBPv7Ce-RKSE
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-CgcQu43MQNsBIXDMau0ns3aaOaohRIVHYbpaT56iVqqza2kn773nPSUo7gXaAa5znxM77dOzfD-BD1lOIpCexNIgxWSL5QdXHWGeq77GB0ApkE_lopM_PzfpZGN5WyTV01QBFBF_Nxs2L0d2WuI-UpjDANp8zSfQBR0Tq9D48SCnWMn7-eHj22xvngXuSRWKW6U7x_K2bjfi0gV76pxz09lbKtdg0fPw_RvUEdtrMVBw1qvQU7vn6GWxzMtpgOT-H-cAty8mNIB9C9XT4pGJM73kojsQ3ZlujB4UL4my6mIiAd0KSYh7_dLOlFwM3K1u2MBH4luhhxTSc-xfHLRlveSO-B0jb5aW_egE_hp_Gg5O4ZWyIy1SaBRWjJitQUdFWYSCQcGTk6I3PVJHLItEuqVLMKCrmSqPCAjOqYqVPVO5KV6Haha36ovavQEitkWrLVPK_277JtPMGncRU6kr3ChlBv_tOtmzhzJlVY2aTDvW0nU_L82nb-YzgYCU2b_A87hIw60pgF2EhpWpYT6y6Q3a_0xjbuoYrKxW5wJ5RSRLB-1UzGTX_qXG1v1jSPSRNqaJSeQQvGwVbva1SnFMYE0G-oXqrGxgwfLOlnk4CcDiVpkmepa__YUjv4NHJ-OupPf08-rIH25JXH3hBSu7DFmmHfwMPy2vSy8u3wQx_Aa5ELGM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BQGgv4zcEBhiJ14zGbhybt6mjAoGqShS2N8uJHbVSlVVrg7T_fneOU1YE2gO8Jrkkdr473zn29wG8kwPhHOIk5dq5FD0R46AYulRJMfSuo9AKYhPFZKLOzvQ0riZcx2WVVEPXHVFEiNXk3CtX9yvi3mOWQvzatM0kU0c0IOI9b8MdTJ0lgXw2Pv0VjIsgPUkmKdn0m3j-dpud4WmHvPRPKejvKymvDU3j-_-hUQ_gIOal7LgD0kO45ZtHsE-paMfk_BhWI9tW80uGEQSr6fBB2Qxf8wM7ZlPSWqvbZTjAThebOQtsJ2jJVukPu2w9G9llFbXCWFBbwoeVi7Drn51EKd7qkn0LhLbthV8_ge_jj7PRpzTqNaRVzvUGS1EtSyewZKtdkI-w6OLOay9FWfAyUzarcydxTCyEcsKVTmINy30mClvZ2omnsNecN_45MK6Uw8oy5_Tndqilsl47y13OVa0GJU9g2H8mU0Uyc9LUWJqs5zyN_WmoP03szwSOtmarjs3jJgN9HQNmE6ZR6k7zxIgbbA97wJgYGNaGCwyAAy2yLIG329Po0vSfxjb-vMVr0BoTRSGKBJ51-Nq-rRCUUWidQLGDvO0FRBe-e6ZZzANtOBamWSHzF__QpDdwb3oyNl8_T768hH1OUw80G8UPYQ_B4V_B3eonwvLidXDCK_tAKxU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cauchy+Combination+Test%3A+A+Powerful+Test+With+Analytic+p-Value+Calculation+Under+Arbitrary+Dependency+Structures&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Liu%2C+Yaowu&rft.au=Xie%2C+Jun&rft.date=2020-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=115&rft.issue=529&rft.spage=393&rft.epage=402&rft_id=info:doi/10.1080%2F01621459.2018.1554485&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon