Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments
We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 36; číslo 7; s. 1325 - 1339 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Los Alamitos, CA
IEEE
01.07.2014
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and algorithms. Besides increasing the size of the datasets in the current state-of-the-art by several orders of magnitude, we also aim to complement such datasets with a diverse set of motions and poses encountered as part of typical human activities (taking photos, talking on the phone, posing, greeting, eating, etc.), with additional synchronized image, human motion capture, and time of flight (depth) data, and with accurate 3D body scans of all the subject actors involved. We also provide controlled mixed reality evaluation scenarios where 3D human models are animated using motion capture and inserted using correct 3D geometry, in complex real environments, viewed with moving cameras, and under occlusion. Finally, we provide a set of large-scale statistical models and detailed evaluation baselines for the dataset illustrating its diversity and the scope for improvement by future work in the research community. Our experiments show that our best large-scale model can leverage our full training set to obtain a 20% improvement in performance compared to a training set of the scale of the largest existing public dataset for this problem. Yet the potential for improvement by leveraging higher capacity, more complex models with our large dataset, is substantially vaster and should stimulate future research. The dataset together with code for the associated large-scale learning models, features, visualization tools, as well as the evaluation server, is available online at http://vision.imar.ro/human3.6m. |
|---|---|
| AbstractList | We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and algorithms. Besides increasing the size of the datasets in the current state-of-the-art by several orders of magnitude, we also aim to complement such datasets with a diverse set of motions and poses encountered as part of typical human activities (taking photos, talking on the phone, posing, greeting, eating, etc.), with additional synchronized image, human motion capture, and time of flight (depth) data, and with accurate 3D body scans of all the subject actors involved. We also provide controlled mixed reality evaluation scenarios where 3D human models are animated using motion capture and inserted using correct 3D geometry, in complex real environments, viewed with moving cameras, and under occlusion. Finally, we provide a set of large-scale statistical models and detailed evaluation baselines for the dataset illustrating its diversity and the scope for improvement by future work in the research community. Our experiments show that our best large-scale model can leverage our full training set to obtain a 20% improvement in performance compared to a training set of the scale of the largest existing public dataset for this problem. Yet the potential for improvement by leveraging higher capacity, more complex models with our large dataset, is substantially vaster and should stimulate future research. The dataset together with code for the associated large-scale learning models, features, visualization tools, as well as the evaluation server, is available online at http://vision.imar.ro/human3.6m. We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and algorithms. Besides increasing the size of the datasets in the current state-of-the-art by several orders of magnitude, we also aim to complement such datasets with a diverse set of motions and poses encountered as part of typical human activities (taking photos, talking on the phone, posing, greeting, eating, etc.), with additional synchronized image, human motion capture, and time of flight (depth) data, and with accurate 3D body scans of all the subject actors involved. We also provide controlled mixed reality evaluation scenarios where 3D human models are animated using motion capture and inserted using correct 3D geometry, in complex real environments, viewed with moving cameras, and under occlusion. Finally, we provide a set of large-scale statistical models and detailed evaluation baselines for the dataset illustrating its diversity and the scope for improvement by future work in the research community. Our experiments show that our best large-scale model can leverage our full training set to obtain a 20% improvement in performance compared to a training set of the scale of the largest existing public dataset for this problem. Yet the potential for improvement by leveraging higher capacity, more complex models with our large dataset, is substantially vaster and should stimulate future research. The dataset together with code for the associated large-scale learning models, features, visualization tools, as well as the evaluation server, is available online at http://vision.imar.ro/human3.6m.We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and algorithms. Besides increasing the size of the datasets in the current state-of-the-art by several orders of magnitude, we also aim to complement such datasets with a diverse set of motions and poses encountered as part of typical human activities (taking photos, talking on the phone, posing, greeting, eating, etc.), with additional synchronized image, human motion capture, and time of flight (depth) data, and with accurate 3D body scans of all the subject actors involved. We also provide controlled mixed reality evaluation scenarios where 3D human models are animated using motion capture and inserted using correct 3D geometry, in complex real environments, viewed with moving cameras, and under occlusion. Finally, we provide a set of large-scale statistical models and detailed evaluation baselines for the dataset illustrating its diversity and the scope for improvement by future work in the research community. Our experiments show that our best large-scale model can leverage our full training set to obtain a 20% improvement in performance compared to a training set of the scale of the largest existing public dataset for this problem. Yet the potential for improvement by leveraging higher capacity, more complex models with our large dataset, is substantially vaster and should stimulate future research. The dataset together with code for the associated large-scale learning models, features, visualization tools, as well as the evaluation server, is available online at http://vision.imar.ro/human3.6m. We introduce a new dataset, Human3.6M, of 3.6 Million 3D Human poses, acquired by recording the performance of 11 subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next generation of human pose estimation models. Besides increasing the size the current state of the art datasets by several orders of magnitude, we aim to complement such datasets with a diverse set of poses encountered in typical human activities (taking photos, posing, greeting, eating, etc.), with synchronized image, motion capture and depth data, and with accurate 3D body scans of all subjects involved. We also provide mixed reality videos where 3D human models are animated using motion capture data and inserted using correct 3D geometry, in complex real environments, viewed with moving cameras, and under occlusion. Finally, we provide large scale statistical models and detailed evaluation baselines for the dataset illustrating its diversity and the scope for improvement by future workin the research community. The dataset and code for the associated large-scale learning models, features, visualization tools, as well as the evaluation server, are available online at http://vision.imar.ro/human3.6m. |
| Author | Olaru, Vlad Ionescu, Catalin Papava, Dragos Sminchisescu, Cristian |
| Author_xml | – sequence: 1 givenname: Catalin surname: Ionescu fullname: Ionescu, Catalin email: catalin.ionescu@ins.uni-bonn.de organization: Inst. of Math., Bucharest, Romania – sequence: 2 givenname: Dragos surname: Papava fullname: Papava, Dragos email: dragos.papava@imar.ro organization: Inst. of Math., Bucharest, Romania – sequence: 3 givenname: Vlad surname: Olaru fullname: Olaru, Vlad email: vlad.olaru@imar.ro organization: Inst. of Math., Bucharest, Romania – sequence: 4 givenname: Cristian surname: Sminchisescu fullname: Sminchisescu, Cristian email: cristian.sminchisescu@math.lth.se organization: Dept. of Math., Lund Univ., Lund, Sweden |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28603589$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/26353306$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks9rFDEUxwep2B969SJIQAQvuyaTTCbxVtpqC7taaD2Hl8ybNmU2syaZiv-96e62QsFLcvl830ve-xxWe2EMWFVvGZ0zRvXn68vj5cW8pozPa6FeVAc1k3Sma13vVQeUyXqmVK32q8OU7ihloqH8VbVfS95wTuVB5c6nFQQ-l8svZAHxBsmVgwHJKWRImBOB0JHLiJ132d8jWWK-HbtE-jESfko2aXKFIflwQ3wg3yFPEQZyFu59HMMKQ06vq5c9DAnf7O6j6ufXs-uT89nix7eLk-PFzDW1zjNupZRaABeWWWU57bWSSitAYXvaUt13PbiWWc007xS1wgqnJC0M6q5j_KiCbd30G9eTNevoVxD_mBG8WY8xw2AiJoTobs0wmYSmUIN3kP0YkpHQ1lpTbZi2jRGq1UbTcjAmKOWasdby0uPTtsc6jr8mTNmsfHI4DBBwnJJhLWMNl5rRgn54ht6NUwxlAoY1UrRc1q0o1PsdNdkVdk-PflxRAT7uAEhlNX2E4Hz6x5UJ8Ebpwokt5-KYUsTeOJ83X8sR_GAYNQ_GmI0x5sEYU4wpsfmz2GPl_wbebQMeEZ9gKYtmWvO_NLbHwQ |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2021_11_021 crossref_primary_10_1016_j_jfranklin_2025_107648 crossref_primary_10_1007_s00371_023_03088_2 crossref_primary_10_1007_s11042_022_12802_6 crossref_primary_10_1109_TVCG_2023_3308753 crossref_primary_10_1109_LRA_2020_3010742 crossref_primary_10_3390_s24144467 crossref_primary_10_3390_s24237772 crossref_primary_10_1007_s00521_020_04941_4 crossref_primary_10_1631_FITEE_2200529 crossref_primary_10_3390_app15020906 crossref_primary_10_1109_TIP_2015_2487860 crossref_primary_10_1109_TPAMI_2016_2526002 crossref_primary_10_1145_3716137 crossref_primary_10_1109_TPAMI_2021_3051173 crossref_primary_10_1109_TIP_2023_3334954 crossref_primary_10_1109_LRA_2024_3374188 crossref_primary_10_1109_TIP_2021_3108708 crossref_primary_10_1109_ACCESS_2024_3488038 crossref_primary_10_1109_TPAMI_2024_3407570 crossref_primary_10_1007_s00371_025_04010_8 crossref_primary_10_1109_TVCG_2023_3277918 crossref_primary_10_1007_s00521_020_05086_0 crossref_primary_10_1109_JSEN_2025_3577772 crossref_primary_10_1109_ACCESS_2024_3423765 crossref_primary_10_1109_LSP_2025_3584020 crossref_primary_10_1007_s00371_021_02339_4 crossref_primary_10_1038_s41467_023_44141_x crossref_primary_10_3390_electronics14122362 crossref_primary_10_1016_j_neucom_2024_128153 crossref_primary_10_1145_3663759 crossref_primary_10_1002_cpe_6927 crossref_primary_10_1007_s00521_023_08844_y crossref_primary_10_1016_j_eswa_2017_05_067 crossref_primary_10_1145_3716387 crossref_primary_10_1007_s00530_021_00808_3 crossref_primary_10_1007_s11263_016_0888_3 crossref_primary_10_1242_jeb_245122 crossref_primary_10_1111_cgf_14150 crossref_primary_10_20965_jrm_2021_p0537 crossref_primary_10_1109_ACCESS_2024_3375365 crossref_primary_10_1111_cgf_14151 crossref_primary_10_1016_j_aej_2025_05_067 crossref_primary_10_1162_jocn_a_02233 crossref_primary_10_1109_TSMC_2024_3525021 crossref_primary_10_1016_j_neucom_2021_11_007 crossref_primary_10_1109_TPAMI_2021_3139918 crossref_primary_10_1007_s11263_020_01328_9 crossref_primary_10_1109_TNSRE_2022_3219085 crossref_primary_10_1016_j_autcon_2024_105452 crossref_primary_10_1109_TIM_2025_3569914 crossref_primary_10_1145_3687962 crossref_primary_10_1016_j_jsv_2025_118931 crossref_primary_10_1109_JBHI_2024_3384453 crossref_primary_10_1177_14727978251380798 crossref_primary_10_1002_rob_21931 crossref_primary_10_1016_j_engappai_2023_107565 crossref_primary_10_1109_TVCG_2021_3085407 crossref_primary_10_1016_j_aei_2025_103203 crossref_primary_10_1016_j_rcim_2023_102691 crossref_primary_10_1109_ACCESS_2020_2995383 crossref_primary_10_54097_28jqyv71 crossref_primary_10_1109_ACCESS_2024_3491655 crossref_primary_10_1109_TPAMI_2021_3055560 crossref_primary_10_3390_electronics12204273 crossref_primary_10_1145_3687772 crossref_primary_10_1007_s00530_025_01691_y crossref_primary_10_1111_mice_13129 crossref_primary_10_3390_jimaging9120275 crossref_primary_10_1109_ACCESS_2020_3040418 crossref_primary_10_1109_TIP_2014_2364113 crossref_primary_10_1016_j_neucom_2021_10_011 crossref_primary_10_1016_j_patcog_2023_109908 crossref_primary_10_1109_ACCESS_2021_3132148 crossref_primary_10_1016_j_neucom_2018_10_009 crossref_primary_10_1007_s00371_023_03184_3 crossref_primary_10_1016_j_rcim_2025_103089 crossref_primary_10_3390_jimaging9120262 crossref_primary_10_1080_00140139_2024_2308705 crossref_primary_10_1145_3272127_3275108 crossref_primary_10_1016_j_knosys_2022_109691 crossref_primary_10_1038_s41598_025_91426_w crossref_primary_10_1111_mice_13139 crossref_primary_10_1007_s00371_025_04041_1 crossref_primary_10_3233_THC_240639 crossref_primary_10_1109_JBHI_2018_2872834 crossref_primary_10_1016_j_smhl_2025_100610 crossref_primary_10_1109_TCSVT_2024_3415348 crossref_primary_10_1109_TPAMI_2024_3361472 crossref_primary_10_1109_TPAMI_2022_3163709 crossref_primary_10_1007_s13042_024_02254_9 crossref_primary_10_1007_s11760_024_03589_0 crossref_primary_10_3390_s20185224 crossref_primary_10_1016_j_jvcir_2024_104174 crossref_primary_10_1109_ACCESS_2025_3538332 crossref_primary_10_1016_j_patcog_2025_111562 crossref_primary_10_1007_s10462_022_10365_4 crossref_primary_10_3390_jimaging9100204 crossref_primary_10_1109_ACCESS_2025_3596651 crossref_primary_10_1109_TMM_2024_3521780 crossref_primary_10_3390_app13042460 crossref_primary_10_1038_s41598_025_16381_y crossref_primary_10_1007_s11548_022_02691_3 crossref_primary_10_1016_j_gmod_2020_101072 crossref_primary_10_1145_3637060 crossref_primary_10_1186_s41074_019_0057_z crossref_primary_10_1007_s00371_019_01692_9 crossref_primary_10_1109_LSP_2021_3134136 crossref_primary_10_1016_j_dsp_2024_104936 crossref_primary_10_1007_s00530_022_00980_0 crossref_primary_10_1038_s41467_023_41565_3 crossref_primary_10_1109_TCSVT_2023_3310525 crossref_primary_10_1016_j_knosys_2023_110948 crossref_primary_10_1002_ail2_63 crossref_primary_10_1002_cav_1958 crossref_primary_10_3390_s21165613 crossref_primary_10_3390_s24134422 crossref_primary_10_1016_j_eswa_2025_127415 crossref_primary_10_1016_j_cviu_2024_104149 crossref_primary_10_1016_j_neucom_2017_07_029 crossref_primary_10_1109_TPAMI_2024_3355414 crossref_primary_10_1016_j_cviu_2024_104147 crossref_primary_10_1109_TPAMI_2021_3050918 crossref_primary_10_1007_s00530_023_01085_y crossref_primary_10_3389_fnbot_2025_1531894 crossref_primary_10_3390_app10186188 crossref_primary_10_1007_s10845_023_02318_7 crossref_primary_10_1016_j_cag_2022_07_021 crossref_primary_10_1109_ACCESS_2020_3013917 crossref_primary_10_1007_s11044_024_10021_5 crossref_primary_10_1109_TCSVT_2023_3239322 crossref_primary_10_1145_3743138 crossref_primary_10_3390_s22134987 crossref_primary_10_1145_3476576_3476640 crossref_primary_10_32604_cmes_2023_027676 crossref_primary_10_1016_j_patrec_2025_01_016 crossref_primary_10_1007_s10489_025_06532_z crossref_primary_10_1016_j_neuron_2020_11_016 crossref_primary_10_1109_TCDS_2023_3334302 crossref_primary_10_1016_j_patcog_2020_107534 crossref_primary_10_1007_s00371_023_03193_2 crossref_primary_10_1109_JIOT_2024_3502653 crossref_primary_10_1049_ipr2_13201 crossref_primary_10_1007_s13735_022_00261_6 crossref_primary_10_1109_ACCESS_2024_3375767 crossref_primary_10_1109_TITS_2023_3276345 crossref_primary_10_1016_j_eswa_2025_128768 crossref_primary_10_1016_j_media_2024_103208 crossref_primary_10_1007_s11042_017_4847_y crossref_primary_10_1016_j_patcog_2024_111206 crossref_primary_10_1007_s10489_023_05143_w crossref_primary_10_1007_s00530_024_01441_6 crossref_primary_10_1109_TVCG_2023_3284402 crossref_primary_10_1109_TVCG_2024_3391764 crossref_primary_10_3390_e22080806 crossref_primary_10_1016_j_knosys_2025_113391 crossref_primary_10_1109_TCSVT_2021_3057267 crossref_primary_10_1007_s41095_021_0234_8 crossref_primary_10_1007_s11548_019_02044_7 crossref_primary_10_1145_3460199 crossref_primary_10_1016_j_engappai_2023_106639 crossref_primary_10_1145_3487891 crossref_primary_10_1007_s11042_022_14156_5 crossref_primary_10_1145_3709001 crossref_primary_10_1016_j_iot_2024_101134 crossref_primary_10_1109_TVCG_2019_2898650 crossref_primary_10_3390_s19122809 crossref_primary_10_7717_peerj_cs_1401 crossref_primary_10_1177_10711813251366294 crossref_primary_10_1016_j_cag_2025_104244 crossref_primary_10_3390_s22145419 crossref_primary_10_1016_j_eswa_2023_120213 crossref_primary_10_1109_ACCESS_2025_3542240 crossref_primary_10_3390_s20040976 crossref_primary_10_1080_21681163_2023_2292067 crossref_primary_10_1111_cgf_15063 crossref_primary_10_1109_ACCESS_2021_3076595 crossref_primary_10_1016_j_jvcir_2025_104432 crossref_primary_10_1007_s00138_024_01530_6 crossref_primary_10_1109_TIP_2020_2972104 crossref_primary_10_1109_TCSVT_2021_3081591 crossref_primary_10_1145_3658137 crossref_primary_10_1016_j_isatra_2023_04_022 crossref_primary_10_1109_TKDE_2024_3466301 crossref_primary_10_3390_s23249749 crossref_primary_10_1109_TCSVT_2024_3518054 crossref_primary_10_1109_TPAMI_2019_2894422 crossref_primary_10_3390_s20154257 crossref_primary_10_1109_TIP_2021_3116786 crossref_primary_10_1109_TCE_2024_3363616 crossref_primary_10_1145_2980179_2980240 crossref_primary_10_1109_TCE_2023_3303309 crossref_primary_10_1002_cav_2187 crossref_primary_10_1007_s11263_020_01306_1 crossref_primary_10_1109_TCSVT_2023_3298978 crossref_primary_10_1109_TVCG_2023_3247088 crossref_primary_10_1007_s11263_021_01436_0 crossref_primary_10_1109_TPAMI_2015_2420563 crossref_primary_10_3390_app11094143 crossref_primary_10_1109_TMM_2023_3330075 crossref_primary_10_1109_TPAMI_2020_3042341 crossref_primary_10_1145_3757733 crossref_primary_10_3390_s24030829 crossref_primary_10_3390_s25051613 crossref_primary_10_1109_TVCG_2019_2936810 crossref_primary_10_14293_NSM_25_1_0007 crossref_primary_10_1007_s00521_024_09817_5 crossref_primary_10_1109_JSTARS_2025_3601739 crossref_primary_10_1109_LSP_2024_3358111 crossref_primary_10_3390_make6020040 crossref_primary_10_1109_ACCESS_2024_3434695 crossref_primary_10_1007_s00138_020_01131_z crossref_primary_10_1016_j_apergo_2023_104176 crossref_primary_10_1016_j_daai_2025_100007 crossref_primary_10_1145_3478513_3480504 crossref_primary_10_1145_3580874 crossref_primary_10_1016_j_patcog_2025_111964 crossref_primary_10_1016_j_ins_2020_08_123 crossref_primary_10_1016_j_cviu_2018_03_007 crossref_primary_10_1109_TMM_2023_3240455 crossref_primary_10_1109_ACCESS_2020_2985318 crossref_primary_10_3390_app11094153 crossref_primary_10_1016_j_autcon_2025_106372 crossref_primary_10_1051_itmconf_20257002019 crossref_primary_10_1145_3432701 crossref_primary_10_1109_TCSVT_2020_2987141 crossref_primary_10_1016_j_patcog_2024_110316 crossref_primary_10_1016_j_neunet_2022_07_005 crossref_primary_10_7717_peerj_cs_2304 crossref_primary_10_1007_s00138_020_01120_2 crossref_primary_10_1038_s44172_024_00272_7 crossref_primary_10_1016_j_neunet_2024_106153 crossref_primary_10_1016_j_artmed_2025_103194 crossref_primary_10_3390_app122010591 crossref_primary_10_1016_j_knosys_2025_114046 crossref_primary_10_1109_ACCESS_2023_3341418 crossref_primary_10_3389_fnbot_2024_1371385 crossref_primary_10_1109_TPAMI_2021_3098052 crossref_primary_10_1007_s10489_023_04666_6 crossref_primary_10_1016_j_jer_2025_07_007 crossref_primary_10_1016_j_eswa_2024_124914 crossref_primary_10_3389_fnhum_2022_768575 crossref_primary_10_1016_j_jvcir_2025_104409 crossref_primary_10_1109_TPAMI_2015_2496166 crossref_primary_10_1016_j_apergo_2025_104513 crossref_primary_10_1109_ACCESS_2023_3258417 crossref_primary_10_1109_TPAMI_2019_2892452 crossref_primary_10_1371_journal_pone_0253157 crossref_primary_10_1109_TNNLS_2022_3170642 crossref_primary_10_3390_s24082567 crossref_primary_10_1109_TPAMI_2022_3155712 crossref_primary_10_1016_j_knosys_2024_112717 crossref_primary_10_1007_s11042_023_17736_1 crossref_primary_10_1016_j_dsp_2025_105539 crossref_primary_10_1016_j_patrec_2019_05_020 crossref_primary_10_1109_TCSVT_2023_3279291 crossref_primary_10_1007_s11263_021_01525_0 crossref_primary_10_1016_j_patcog_2023_109380 crossref_primary_10_1109_TMM_2022_3167887 crossref_primary_10_1007_s11760_025_04366_3 crossref_primary_10_1109_ACCESS_2021_3062545 crossref_primary_10_1016_j_sigpro_2024_109551 crossref_primary_10_1109_TNNLS_2023_3277476 crossref_primary_10_1016_j_imavis_2025_105437 crossref_primary_10_1007_s11042_017_5133_8 crossref_primary_10_1109_TMI_2020_2991954 crossref_primary_10_1016_j_jobe_2021_102220 crossref_primary_10_1007_s11432_023_4284_x crossref_primary_10_1007_s11042_020_09733_5 crossref_primary_10_1049_ipr2_12847 crossref_primary_10_1109_TPAMI_2020_3019139 crossref_primary_10_1007_s11263_023_01749_2 crossref_primary_10_1007_s00371_021_02135_0 crossref_primary_10_2478_jaiscr_2022_0019 crossref_primary_10_3390_s22197264 crossref_primary_10_1016_j_jvcir_2023_103890 crossref_primary_10_7717_peerj_12995 crossref_primary_10_1109_LRA_2019_2896705 crossref_primary_10_1109_TCSVT_2024_3461960 crossref_primary_10_1007_s11227_025_07486_2 crossref_primary_10_1007_s11801_025_4119_4 crossref_primary_10_1016_j_neucom_2019_01_104 crossref_primary_10_3724_SP_J_1089_2022_19196 crossref_primary_10_1109_TETCI_2024_3386840 crossref_primary_10_1109_TIP_2021_3108023 crossref_primary_10_1007_s13198_024_02640_0 crossref_primary_10_3724_SP_J_1089_2022_19194 crossref_primary_10_1016_j_cag_2023_07_011 crossref_primary_10_1109_TASE_2023_3301657 crossref_primary_10_1109_ACCESS_2024_3392356 crossref_primary_10_1007_s11263_020_01398_9 crossref_primary_10_1109_TCSVT_2020_3021409 crossref_primary_10_1016_j_cviu_2023_103836 crossref_primary_10_1016_j_imavis_2024_105142 crossref_primary_10_32604_cmc_2024_059284 crossref_primary_10_1016_j_imavis_2024_105144 crossref_primary_10_1016_j_cviu_2021_103278 crossref_primary_10_1109_ACCESS_2020_3034594 crossref_primary_10_3390_app15010409 crossref_primary_10_1016_j_jbiomech_2024_111959 crossref_primary_10_3390_app9173613 crossref_primary_10_1007_s00530_024_01460_3 crossref_primary_10_1016_j_patcog_2023_110116 crossref_primary_10_1109_LSP_2020_3033462 crossref_primary_10_3390_electronics10080929 crossref_primary_10_3390_s22072481 crossref_primary_10_1016_j_cviu_2021_103275 crossref_primary_10_3390_app14145981 crossref_primary_10_1038_s41597_023_02663_5 crossref_primary_10_1038_s41597_025_04560_5 crossref_primary_10_1016_j_cag_2023_07_001 crossref_primary_10_1016_j_neucom_2023_126388 crossref_primary_10_1016_j_cviu_2025_104297 crossref_primary_10_3390_inventions4010009 crossref_primary_10_1109_JSEN_2025_3542078 crossref_primary_10_3390_electronics12234793 crossref_primary_10_1049_ipr2_12400 crossref_primary_10_1016_j_knosys_2024_111613 crossref_primary_10_1016_j_patcog_2023_109358 crossref_primary_10_1016_j_patcog_2020_107472 crossref_primary_10_1109_TCSVT_2024_3423411 crossref_primary_10_1111_cgf_14961 crossref_primary_10_1016_j_neucom_2024_128605 crossref_primary_10_1109_TCSVT_2022_3199201 crossref_primary_10_3390_s24175530 crossref_primary_10_1145_3737647 crossref_primary_10_3390_s23031555 crossref_primary_10_1016_j_neucom_2022_02_076 crossref_primary_10_1145_3528223_3530106 crossref_primary_10_3390_s23020876 crossref_primary_10_3390_app11209724 crossref_primary_10_2478_amns_2023_1_00149 crossref_primary_10_1109_ACCESS_2024_3484660 crossref_primary_10_1007_s11263_024_02095_7 crossref_primary_10_1109_ACCESS_2024_3355137 crossref_primary_10_1109_TPAMI_2021_3123902 crossref_primary_10_3390_electronics14132636 crossref_primary_10_1038_s44182_025_00048_x crossref_primary_10_1007_s11263_019_01245_6 crossref_primary_10_1007_s13735_024_00341_9 crossref_primary_10_1016_j_patcog_2022_108934 crossref_primary_10_1016_j_sigpro_2024_109598 crossref_primary_10_1109_TPAMI_2024_3443922 crossref_primary_10_1016_j_tics_2021_11_008 crossref_primary_10_1007_s12369_024_01136_y crossref_primary_10_1109_TPAMI_2020_2976014 crossref_primary_10_3390_s25030627 crossref_primary_10_1109_TNNLS_2021_3053591 crossref_primary_10_1016_j_cviu_2022_103548 crossref_primary_10_1109_JIOT_2024_3507072 crossref_primary_10_3390_app13169475 crossref_primary_10_1109_LRA_2025_3536222 crossref_primary_10_1016_j_cviu_2024_104190 crossref_primary_10_1109_TMM_2022_3141231 crossref_primary_10_1109_TPAMI_2025_3535538 crossref_primary_10_1007_s00371_025_04101_6 crossref_primary_10_1007_s10489_022_03714_x crossref_primary_10_20965_jrm_2023_p0586 crossref_primary_10_1016_j_cviu_2022_103539 crossref_primary_10_1007_s00530_024_01351_7 crossref_primary_10_3390_electronics12153305 crossref_primary_10_1016_j_eswa_2025_127189 crossref_primary_10_1016_j_cviu_2019_03_004 crossref_primary_10_1109_TASE_2023_3279928 crossref_primary_10_1109_TPAMI_2024_3388042 crossref_primary_10_1007_s10489_021_02764_x crossref_primary_10_1016_j_cviu_2023_103830 crossref_primary_10_1109_ACCESS_2025_3567337 crossref_primary_10_1002_tee_22902 crossref_primary_10_1109_TPAMI_2016_2646685 crossref_primary_10_1111_cgf_70018 crossref_primary_10_3390_app11041826 crossref_primary_10_1109_TPAMI_2020_3045007 crossref_primary_10_1109_TPAMI_2023_3298850 crossref_primary_10_1145_3618336 crossref_primary_10_1080_14763141_2022_2137425 crossref_primary_10_1109_TPAMI_2022_3199449 crossref_primary_10_1016_j_patcog_2021_108439 crossref_primary_10_1016_j_asoc_2025_113688 crossref_primary_10_1007_s11042_023_17923_0 crossref_primary_10_1007_s11263_020_01389_w crossref_primary_10_1007_s11801_022_2015_8 crossref_primary_10_1038_s41597_023_02554_9 crossref_primary_10_3390_s21134572 crossref_primary_10_1016_j_neucom_2022_02_045 crossref_primary_10_1109_ACCESS_2020_3037829 crossref_primary_10_3390_rs15040953 crossref_primary_10_1016_j_cviu_2022_103505 crossref_primary_10_1016_j_patcog_2025_112096 crossref_primary_10_1109_TMM_2018_2885235 crossref_primary_10_1109_TPAMI_2016_2522398 crossref_primary_10_1016_j_eswa_2024_123545 crossref_primary_10_1109_TIP_2024_3490401 crossref_primary_10_1016_j_cviu_2021_103225 crossref_primary_10_1111_cgf_70025 crossref_primary_10_1145_3447239 crossref_primary_10_1109_ACCESS_2025_3554254 crossref_primary_10_1145_3372207 crossref_primary_10_1123_jmld_2025_0002 crossref_primary_10_1145_3747871 crossref_primary_10_1016_j_knosys_2021_107992 crossref_primary_10_1109_TPAMI_2022_3215307 crossref_primary_10_1016_j_patcog_2022_108965 crossref_primary_10_1016_j_patcog_2021_108424 crossref_primary_10_1016_j_inffus_2025_103647 crossref_primary_10_1007_s00530_025_01905_3 crossref_primary_10_1007_s11263_021_01529_w crossref_primary_10_1109_TMC_2024_3438155 crossref_primary_10_1007_s00530_024_01569_5 crossref_primary_10_1109_ACCESS_2022_3163269 crossref_primary_10_1109_TMM_2023_3269219 crossref_primary_10_1109_TITS_2021_3135251 crossref_primary_10_1007_s11554_021_01095_x crossref_primary_10_3390_s24010206 crossref_primary_10_26599_TST_2021_9010068 crossref_primary_10_1007_s11263_023_01832_8 crossref_primary_10_1109_JIOT_2024_3470751 crossref_primary_10_1109_TVCG_2019_2938746 crossref_primary_10_3389_fnins_2024_1353257 crossref_primary_10_1016_j_neucom_2024_128663 crossref_primary_10_1016_j_neunet_2019_08_004 crossref_primary_10_1109_TRO_2016_2572685 crossref_primary_10_1145_3272127_3275014 crossref_primary_10_3390_s22114109 crossref_primary_10_1016_j_imavis_2023_104863 crossref_primary_10_1007_s11263_022_01596_7 crossref_primary_10_1109_TMM_2023_3268376 crossref_primary_10_1016_j_jvcir_2019_01_033 crossref_primary_10_1016_j_neucom_2025_130210 crossref_primary_10_1109_TIP_2021_3109517 crossref_primary_10_20965_jaciii_2023_p0445 crossref_primary_10_1109_ACCESS_2019_2934863 crossref_primary_10_1109_LSP_2025_3543317 crossref_primary_10_1016_j_asoc_2025_113676 crossref_primary_10_1145_3181973 crossref_primary_10_1007_s11263_023_01756_3 crossref_primary_10_3390_s24248017 crossref_primary_10_1109_JBHI_2024_3424869 crossref_primary_10_3390_s22239376 crossref_primary_10_1007_s10489_024_05435_9 crossref_primary_10_1145_3524497 crossref_primary_10_1016_j_cviu_2024_103992 crossref_primary_10_1109_LRA_2024_3506220 crossref_primary_10_3390_jimaging11060205 crossref_primary_10_1007_s00138_024_01634_z crossref_primary_10_1007_s00371_023_02936_5 crossref_primary_10_1109_TIP_2019_2899782 crossref_primary_10_1038_s41592_021_01106_6 crossref_primary_10_1007_s00371_024_03752_1 crossref_primary_10_1016_j_imavis_2023_104841 crossref_primary_10_1109_TCSVT_2020_2995122 crossref_primary_10_1109_TIE_2017_2739691 crossref_primary_10_1145_3514248 crossref_primary_10_1587_transinf_2019MVP0007 crossref_primary_10_1109_ACCESS_2022_3218659 crossref_primary_10_1038_s41597_022_01841_1 crossref_primary_10_3233_JPD_223351 crossref_primary_10_1109_THMS_2025_3539187 crossref_primary_10_3390_s20236940 crossref_primary_10_1016_j_patcog_2023_109998 crossref_primary_10_1145_3575656 crossref_primary_10_1016_j_neucom_2024_128694 crossref_primary_10_3390_electronics13244980 crossref_primary_10_3389_fphy_2021_629288 crossref_primary_10_3390_s24227354 crossref_primary_10_1016_j_patcog_2025_112239 crossref_primary_10_1016_j_dsp_2024_104764 crossref_primary_10_1145_3694905 crossref_primary_10_1134_S1064562423701624 crossref_primary_10_3390_s23125653 crossref_primary_10_1007_s00530_021_00846_x crossref_primary_10_1007_s11042_024_20365_x crossref_primary_10_1016_j_jvcir_2020_102923 crossref_primary_10_1109_JSAC_2022_3221995 crossref_primary_10_1007_s11370_021_00403_5 crossref_primary_10_3390_s22052011 crossref_primary_10_1016_j_jvcir_2021_103055 crossref_primary_10_1109_JSEN_2024_3510728 crossref_primary_10_1109_TNNLS_2023_3310985 crossref_primary_10_1007_s10462_024_11060_2 crossref_primary_10_1007_s11760_024_03670_8 crossref_primary_10_1016_j_cviu_2024_103943 crossref_primary_10_1109_TMM_2022_3158068 crossref_primary_10_3390_electronics10182267 crossref_primary_10_1016_j_imavis_2024_104926 crossref_primary_10_1038_s41598_023_41142_0 crossref_primary_10_1109_ACCESS_2021_3049548 crossref_primary_10_1007_s10489_021_02760_1 crossref_primary_10_3390_s20071825 crossref_primary_10_3390_electronics12224705 crossref_primary_10_1016_j_neucom_2025_130400 crossref_primary_10_1016_j_jbiomech_2021_110860 crossref_primary_10_1016_j_aej_2025_02_058 crossref_primary_10_3390_app14114351 crossref_primary_10_1007_s11263_024_01984_1 crossref_primary_10_1007_s11263_022_01713_6 crossref_primary_10_3390_s23042005 crossref_primary_10_1016_j_dib_2025_112044 crossref_primary_10_1016_j_inffus_2024_102651 crossref_primary_10_1109_ACCESS_2025_3593428 crossref_primary_10_1007_s40031_024_01050_x crossref_primary_10_1016_j_jvcir_2023_103881 crossref_primary_10_1109_ACCESS_2020_3041926 crossref_primary_10_1016_j_cosrev_2025_100780 crossref_primary_10_1109_ACCESS_2022_3219934 crossref_primary_10_1109_TMM_2024_3384062 crossref_primary_10_1007_s00138_024_01514_6 crossref_primary_10_1109_TASE_2025_3548846 crossref_primary_10_1007_s41095_022_0307_3 crossref_primary_10_1016_j_imavis_2021_104282 crossref_primary_10_1007_s13042_024_02262_9 crossref_primary_10_1016_j_engappai_2025_112068 crossref_primary_10_1016_j_autcon_2018_05_033 crossref_primary_10_3390_jimaging8110308 crossref_primary_10_1016_j_media_2023_102871 crossref_primary_10_3390_s22062091 crossref_primary_10_1016_j_imavis_2023_104649 crossref_primary_10_1016_j_media_2023_102887 crossref_primary_10_1016_j_cag_2021_01_010 crossref_primary_10_1109_TMM_2024_3521821 crossref_primary_10_1109_TCYB_2020_2964992 crossref_primary_10_1016_j_gmod_2023_101207 crossref_primary_10_1111_cgf_14768 crossref_primary_10_1038_s41598_025_11073_z crossref_primary_10_1016_j_patcog_2023_109714 crossref_primary_10_1109_TMM_2022_3222681 crossref_primary_10_1109_TSMC_2017_2664891 crossref_primary_10_1016_j_knosys_2022_109549 crossref_primary_10_1016_j_jbiomech_2020_110086 crossref_primary_10_1016_j_cviu_2016_09_002 crossref_primary_10_1007_s00521_023_08362_x crossref_primary_10_1007_s11263_021_01540_1 crossref_primary_10_1109_LRA_2025_3586011 crossref_primary_10_1109_TMM_2022_3171102 crossref_primary_10_1016_j_aiopen_2025_08_002 crossref_primary_10_1007_s10459_024_10369_5 crossref_primary_10_1007_s11263_016_0941_2 crossref_primary_10_1145_3533384 crossref_primary_10_1016_j_neucom_2024_128023 crossref_primary_10_1016_j_neucom_2023_01_090 crossref_primary_10_1007_s13042_025_02646_5 crossref_primary_10_1007_s00371_023_03152_x crossref_primary_10_1109_ACCESS_2021_3126629 crossref_primary_10_1109_JSEN_2023_3308920 crossref_primary_10_1016_j_jvcir_2024_104247 crossref_primary_10_1109_TIP_2021_3080177 crossref_primary_10_1186_s42492_024_00176_5 crossref_primary_10_1109_TMM_2023_3294820 crossref_primary_10_1016_j_apor_2024_104358 crossref_primary_10_1109_THMS_2022_3219242 crossref_primary_10_1109_TMM_2022_3227472 crossref_primary_10_1109_ACCESS_2020_3026276 crossref_primary_10_1007_s00530_025_01790_w crossref_primary_10_1109_TNNLS_2022_3152251 crossref_primary_10_1016_j_displa_2024_102805 crossref_primary_10_3390_s20216330 crossref_primary_10_1016_j_autcon_2024_105561 crossref_primary_10_1049_el_2017_3830 crossref_primary_10_3390_s25082409 crossref_primary_10_1016_j_knosys_2020_105643 crossref_primary_10_1109_TMM_2024_3410514 crossref_primary_10_1007_s11042_022_13079_5 crossref_primary_10_1007_s11432_022_3859_8 crossref_primary_10_3390_electronics11101604 crossref_primary_10_1007_s10489_025_06328_1 crossref_primary_10_1007_s11390_017_1742_y crossref_primary_10_1109_TIM_2025_3551025 crossref_primary_10_1109_TCSVT_2024_3440488 crossref_primary_10_1016_j_neucom_2024_128049 crossref_primary_10_1177_1420326X231155112 crossref_primary_10_1016_j_neucom_2019_05_034 crossref_primary_10_1109_TCYB_2019_2904901 crossref_primary_10_1177_0018720821995000 crossref_primary_10_1016_j_patcog_2023_109806 crossref_primary_10_1109_ACCESS_2023_3326343 crossref_primary_10_3390_robotics9020033 crossref_primary_10_1016_j_net_2025_103631 crossref_primary_10_1007_s44336_024_00002_9 crossref_primary_10_1016_j_cag_2024_103894 crossref_primary_10_1016_j_patcog_2017_04_017 crossref_primary_10_1016_j_displa_2022_102225 crossref_primary_10_1109_TPAMI_2023_3330935 crossref_primary_10_1145_3665869 crossref_primary_10_1145_3377552 crossref_primary_10_1016_j_jvcir_2023_103908 crossref_primary_10_1007_s00371_022_02453_x crossref_primary_10_1109_TPAMI_2023_3234212 crossref_primary_10_3390_s22207975 crossref_primary_10_1016_j_asoc_2025_113909 crossref_primary_10_3390_electronics11203403 crossref_primary_10_1016_j_gaitpost_2021_03_003 crossref_primary_10_1016_j_eswa_2024_126114 crossref_primary_10_7554_eLife_48571 crossref_primary_10_1109_TITS_2023_3306314 crossref_primary_10_1145_3579359 crossref_primary_10_1109_TCSVT_2019_2928813 crossref_primary_10_1016_j_neucom_2023_126827 crossref_primary_10_1111_cgf_14028 crossref_primary_10_3390_s24206729 crossref_primary_10_1088_1742_6596_2562_1_012067 crossref_primary_10_1109_LRA_2019_2895266 crossref_primary_10_1109_TPAMI_2022_3170353 crossref_primary_10_1016_j_neucom_2022_06_033 crossref_primary_10_1109_LRA_2024_3401116 crossref_primary_10_1109_TCSVT_2023_3287329 crossref_primary_10_1016_j_procs_2019_11_073 crossref_primary_10_1109_ACCESS_2024_3399222 crossref_primary_10_1007_s44443_025_00023_4 crossref_primary_10_3390_sym15010025 crossref_primary_10_1007_s10489_022_03312_x crossref_primary_10_1049_ccs_2020_0008 crossref_primary_10_1007_s00371_024_03641_7 crossref_primary_10_1109_ACCESS_2025_3563898 crossref_primary_10_1007_s11263_019_01270_5 crossref_primary_10_1109_LRA_2022_3192629 crossref_primary_10_1007_s00371_023_02957_0 crossref_primary_10_1117_1_JEI_32_2_020701 crossref_primary_10_1109_TIP_2024_3393716 crossref_primary_10_1109_TETCI_2023_3257262 crossref_primary_10_1145_3414685_3417838 crossref_primary_10_1016_j_gmod_2024_101235 crossref_primary_10_1186_s13640_023_00612_1 crossref_primary_10_3390_s22124642 crossref_primary_10_1007_s00371_025_04175_2 crossref_primary_10_1109_ACCESS_2023_3305638 crossref_primary_10_2174_1574893618666230508105440 crossref_primary_10_1007_s11042_022_13921_w crossref_primary_10_1109_TPAMI_2021_3087695 crossref_primary_10_1007_s00371_024_03763_y crossref_primary_10_1109_ACCESS_2024_3444790 crossref_primary_10_1145_3180420 crossref_primary_10_1016_j_gmod_2024_101222 crossref_primary_10_1109_TCDS_2022_3185146 crossref_primary_10_1109_TPAMI_2021_3138762 crossref_primary_10_1109_LRA_2024_3354628 crossref_primary_10_1038_s41597_022_01802_8 crossref_primary_10_1109_TCSVT_2024_3410400 crossref_primary_10_3390_s21072415 crossref_primary_10_3390_fi12070111 crossref_primary_10_1016_j_dib_2025_111579 crossref_primary_10_3390_app14167234 crossref_primary_10_1109_TNSRE_2025_3589765 crossref_primary_10_1016_j_imavis_2024_105311 crossref_primary_10_1145_3570731 crossref_primary_10_1109_TMM_2023_3321438 crossref_primary_10_1109_TPAMI_2023_3341630 crossref_primary_10_1007_s00138_023_01447_6 crossref_primary_10_1007_s11042_023_14440_y crossref_primary_10_1109_TIP_2023_3275914 crossref_primary_10_1089_big_2016_0028 crossref_primary_10_1002_cav_2266 crossref_primary_10_1109_TMM_2023_3323874 crossref_primary_10_1109_TITS_2024_3486214 crossref_primary_10_1109_TIP_2020_3018224 crossref_primary_10_3390_data7060079 crossref_primary_10_1109_ACCESS_2023_3307620 crossref_primary_10_1007_s00530_024_01451_4 crossref_primary_10_1109_TCSVT_2024_3408332 crossref_primary_10_1007_s10489_022_04419_x crossref_primary_10_3390_s21248208 crossref_primary_10_1007_s00530_023_01216_5 crossref_primary_10_1007_s12652_023_04629_2 crossref_primary_10_1016_j_patcog_2020_107416 crossref_primary_10_3390_s25133944 crossref_primary_10_1038_s41597_024_04077_3 crossref_primary_10_1109_TIP_2021_3089380 crossref_primary_10_1007_s00530_021_00880_9 crossref_primary_10_1109_ACCESS_2023_3269848 crossref_primary_10_1016_j_patrec_2025_08_014 crossref_primary_10_1016_j_patcog_2025_111885 crossref_primary_10_1016_j_conb_2022_02_002 crossref_primary_10_1109_TVCG_2024_3386923 crossref_primary_10_1109_TNSRE_2022_3150392 crossref_primary_10_1109_TPAMI_2023_3271691 crossref_primary_10_1016_j_patcog_2025_111407 crossref_primary_10_1145_3592788 crossref_primary_10_1007_s11263_023_01839_1 crossref_primary_10_1016_j_ergon_2021_103218 crossref_primary_10_1061_JCEMD4_COENG_14266 crossref_primary_10_1007_s11263_018_1066_6 crossref_primary_10_1109_TMM_2023_3310330 crossref_primary_10_3390_app112411938 crossref_primary_10_1038_s41598_024_79373_4 crossref_primary_10_3390_app13042700 crossref_primary_10_1016_j_knosys_2025_113272 crossref_primary_10_3390_app15073737 crossref_primary_10_1109_TAI_2022_3164065 crossref_primary_10_1145_3414685_3417877 crossref_primary_10_1016_j_neunet_2024_106237 crossref_primary_10_1007_s00371_021_02120_7 crossref_primary_10_3390_s19010056 crossref_primary_10_1109_TPAMI_2022_3164344 crossref_primary_10_1007_s00371_025_04040_2 crossref_primary_10_1016_j_imavis_2017_02_002 crossref_primary_10_1109_TMM_2022_3180218 crossref_primary_10_1016_j_cviu_2024_104051 crossref_primary_10_1007_s11263_023_01770_5 crossref_primary_10_3390_s25030834 crossref_primary_10_1145_3386569_3392410 crossref_primary_10_1186_s13019_024_02558_5 crossref_primary_10_1016_j_fmre_2023_02_006 crossref_primary_10_1007_s00530_023_01105_x crossref_primary_10_1109_TMM_2025_3535349 crossref_primary_10_1007_s00530_021_00807_4 crossref_primary_10_1007_s11042_016_3312_7 crossref_primary_10_1016_j_patcog_2023_110175 crossref_primary_10_1109_TVCG_2020_2988476 crossref_primary_10_1016_j_cviu_2017_01_011 crossref_primary_10_1109_LRA_2022_3151614 crossref_primary_10_1109_TDSC_2024_3376437 crossref_primary_10_1109_TPAMI_2025_3566420 crossref_primary_10_1016_j_displa_2025_102972 crossref_primary_10_1016_j_imavis_2025_105636 crossref_primary_10_1007_s10489_023_04908_7 crossref_primary_10_1186_s42492_022_00112_5 crossref_primary_10_3390_fractalfract9090603 crossref_primary_10_1016_j_engappai_2025_110305 crossref_primary_10_3390_ai5040139 crossref_primary_10_1145_3130800_3130883 crossref_primary_10_3390_s21072464 crossref_primary_10_1007_s11760_025_04145_0 crossref_primary_10_1109_TPAMI_2021_3136136 crossref_primary_10_1016_j_dib_2024_110157 crossref_primary_10_1080_21681163_2022_2072394 crossref_primary_10_2196_55476 crossref_primary_10_1109_TIP_2022_3154606 crossref_primary_10_1016_j_cviu_2024_104233 crossref_primary_10_1109_TVCG_2023_3326932 crossref_primary_10_1109_TPAMI_2022_3188716 crossref_primary_10_1109_TNSRE_2023_3324960 crossref_primary_10_1016_j_aej_2024_12_097 crossref_primary_10_1016_j_patcog_2015_11_019 crossref_primary_10_1016_j_cmpb_2022_107057 crossref_primary_10_1007_s11263_019_01241_w crossref_primary_10_1016_j_neucom_2022_04_047 crossref_primary_10_1109_TCSVT_2022_3180737 crossref_primary_10_3390_s24072314 crossref_primary_10_1016_j_diin_2019_03_006 crossref_primary_10_1145_3626240 crossref_primary_10_1109_ACCESS_2019_2904117 crossref_primary_10_1007_s10462_024_10741_2 crossref_primary_10_1049_ipr2_12277 crossref_primary_10_1371_journal_pone_0293917 crossref_primary_10_1109_JIOT_2025_3535156 crossref_primary_10_1145_3528223_3530090 crossref_primary_10_1109_TMM_2020_3029941 crossref_primary_10_1016_j_autcon_2025_106015 crossref_primary_10_1109_LRA_2023_3312035 crossref_primary_10_1007_s42979_019_0025_9 crossref_primary_10_1109_TMM_2025_3535370 crossref_primary_10_3390_electronics12214382 crossref_primary_10_1109_TCSVT_2023_3286402 crossref_primary_10_1007_s10489_022_03341_6 crossref_primary_10_1080_02640414_2022_2117474 crossref_primary_10_1109_TIP_2017_2757280 crossref_primary_10_3390_app12125967 crossref_primary_10_3390_sym12071116 crossref_primary_10_1016_j_patcog_2024_110446 crossref_primary_10_3390_s23073639 crossref_primary_10_1002_cav_2084 crossref_primary_10_1016_j_cviu_2024_104258 crossref_primary_10_1016_j_knosys_2024_111810 crossref_primary_10_1109_TPAMI_2022_3205910 crossref_primary_10_1109_ACCESS_2023_3325291 crossref_primary_10_3390_s19204603 crossref_primary_10_1080_0952813X_2023_2241575 crossref_primary_10_1016_j_imavis_2025_105425 crossref_primary_10_1002_adma_202206638 crossref_primary_10_1109_TPAMI_2022_3194167 crossref_primary_10_1007_s00138_023_01410_5 crossref_primary_10_1145_3407659 crossref_primary_10_3390_systems11040175 crossref_primary_10_3390_app13020966 crossref_primary_10_1109_ACCESS_2021_3062426 crossref_primary_10_1016_j_ssci_2023_106150 crossref_primary_10_3390_s22062300 crossref_primary_10_1109_TPAMI_2019_2901875 crossref_primary_10_1109_TPAMI_2024_3450537 crossref_primary_10_1016_j_autcon_2025_106476 crossref_primary_10_1016_j_patrec_2021_03_028 crossref_primary_10_1007_s40747_023_01174_5 crossref_primary_10_1007_s00371_024_03298_2 crossref_primary_10_1109_TIM_2023_3292957 crossref_primary_10_3390_s23063290 crossref_primary_10_3390_app14041646 crossref_primary_10_1016_j_ergon_2022_103354 crossref_primary_10_1007_s11263_016_0903_8 crossref_primary_10_1007_s12065_023_00827_1 crossref_primary_10_1016_j_patcog_2023_109497 crossref_primary_10_1145_3749514 crossref_primary_10_3390_electronics13152926 crossref_primary_10_3390_s22197144 crossref_primary_10_1109_TCYB_2020_3013136 crossref_primary_10_3390_s22072573 crossref_primary_10_1038_s41598_024_75782_7 crossref_primary_10_1145_3657632 crossref_primary_10_1016_j_neucom_2024_128947 crossref_primary_10_1007_s00371_023_02798_x crossref_primary_10_1109_TIP_2022_3182269 crossref_primary_10_3390_s23063057 crossref_primary_10_1109_ACCESS_2023_3344658 crossref_primary_10_1038_s41593_020_00734_z crossref_primary_10_1016_j_dsp_2022_103628 crossref_primary_10_1007_s11042_015_2608_3 crossref_primary_10_1109_TIM_2024_3440376 crossref_primary_10_1016_j_cviu_2018_10_006 crossref_primary_10_1007_s11263_021_01526_z crossref_primary_10_1109_TPAMI_2021_3070002 crossref_primary_10_1007_s11760_024_03491_9 crossref_primary_10_1007_s42979_023_02195_0 crossref_primary_10_1016_j_cviu_2023_103715 crossref_primary_10_4018_IJSWIS_368221 crossref_primary_10_1007_s11263_025_02574_5 crossref_primary_10_3390_app11104689 crossref_primary_10_1016_j_robot_2024_104677 crossref_primary_10_1109_LRA_2025_3537860 crossref_primary_10_1109_TCSVT_2023_3255186 crossref_primary_10_1007_s11263_024_02074_y crossref_primary_10_1016_j_jmsy_2025_02_018 crossref_primary_10_1109_ACCESS_2024_3394209 crossref_primary_10_1109_JIOT_2024_3476350 crossref_primary_10_1109_TPAMI_2018_2828427 crossref_primary_10_3390_machines13080672 crossref_primary_10_1109_TPAMI_2017_2772922 crossref_primary_10_1016_j_neucom_2025_131247 crossref_primary_10_1145_3450626_3459825 crossref_primary_10_1007_s11263_022_01599_4 crossref_primary_10_1109_TIP_2021_3136613 crossref_primary_10_1109_TPAMI_2020_2983935 crossref_primary_10_1145_3548555_3548560 crossref_primary_10_1016_j_neucom_2022_11_097 crossref_primary_10_1016_j_knosys_2024_112823 crossref_primary_10_1016_j_physa_2024_129600 crossref_primary_10_1109_LSP_2023_3339060 crossref_primary_10_1016_j_eswa_2024_123625 crossref_primary_10_1109_TMM_2022_3233251 crossref_primary_10_12677_AIRR_2023_122017 crossref_primary_10_1177_1071181319631174 crossref_primary_10_1109_TCSVT_2018_2871660 crossref_primary_10_3390_s23052597 crossref_primary_10_1016_j_cviu_2018_02_004 crossref_primary_10_1016_j_heliyon_2024_e27596 crossref_primary_10_1007_s11042_023_17955_6 crossref_primary_10_7717_peerj_cs_2456 crossref_primary_10_1007_s11044_025_10071_3 crossref_primary_10_1080_02640414_2025_2489868 crossref_primary_10_1007_s11042_023_15775_2 crossref_primary_10_1109_JBHI_2019_2934342 crossref_primary_10_1109_TNSRE_2023_3282675 crossref_primary_10_3390_s21113769 crossref_primary_10_1007_s11263_025_02478_4 crossref_primary_10_1109_ACCESS_2025_3566109 crossref_primary_10_1109_LSP_2024_3392686 crossref_primary_10_1016_j_pmr_2020_12_007 crossref_primary_10_1109_TPAMI_2021_3102128 crossref_primary_10_1016_j_cmpb_2023_107620 crossref_primary_10_1016_j_imavis_2025_105598 crossref_primary_10_1016_j_cag_2025_104350 crossref_primary_10_1016_j_neucom_2024_128743 crossref_primary_10_1145_3522618 crossref_primary_10_1016_j_neucom_2023_126284 crossref_primary_10_1109_TPAMI_2024_3364185 crossref_primary_10_1109_TVCG_2021_3092877 crossref_primary_10_1007_s11042_023_16170_7 crossref_primary_10_1016_j_asoc_2025_113362 crossref_primary_10_1016_j_cviu_2019_102897 crossref_primary_10_32604_cmes_2022_020857 crossref_primary_10_1016_j_cviu_2024_104070 crossref_primary_10_1109_TPAMI_2024_3355287 crossref_primary_10_1038_s41598_024_79707_2 crossref_primary_10_1007_s11263_023_01804_y crossref_primary_10_1007_s42979_024_02784_7 crossref_primary_10_1016_j_neucom_2019_09_101 crossref_primary_10_1109_TETCI_2024_3418828 crossref_primary_10_1186_s40648_024_00280_4 crossref_primary_10_1016_j_robot_2023_104556 crossref_primary_10_1109_TIP_2020_3038362 crossref_primary_10_1109_LRA_2025_3557235 crossref_primary_10_1007_s11263_021_01483_7 crossref_primary_10_1016_j_cag_2025_104339 crossref_primary_10_3389_fnins_2023_1201088 crossref_primary_10_1016_j_inffus_2023_102090 crossref_primary_10_1016_j_patcog_2024_110955 crossref_primary_10_1145_3306346_3322978 crossref_primary_10_1109_TCSVT_2019_2953678 crossref_primary_10_1111_cgf_13947 crossref_primary_10_1109_TPAMI_2019_2892985 crossref_primary_10_3390_electronics14071307 crossref_primary_10_3390_electronics9091368 crossref_primary_10_3389_fbioe_2025_1658222 crossref_primary_10_1016_j_autcon_2019_04_004 crossref_primary_10_1126_sciadv_adp4422 crossref_primary_10_1007_s00138_022_01334_6 crossref_primary_10_1186_s40798_018_0139_y crossref_primary_10_3390_s25144446 crossref_primary_10_1177_27723577251320237 crossref_primary_10_1016_j_cviu_2025_104381 crossref_primary_10_1007_s00371_019_01740_4 crossref_primary_10_1007_s11263_019_01279_w crossref_primary_10_1016_j_asoc_2023_110267 crossref_primary_10_1007_s11704_024_40497_5 crossref_primary_10_1145_3368066 crossref_primary_10_1007_s00371_024_03724_5 crossref_primary_10_1109_ACCESS_2020_3045794 crossref_primary_10_1109_TBIOM_2024_3485990 crossref_primary_10_1109_TCYB_2022_3184977 crossref_primary_10_1145_3072959_3073596 crossref_primary_10_1016_j_neucom_2024_127683 crossref_primary_10_1007_s00371_024_03604_y crossref_primary_10_3390_s24061923 crossref_primary_10_1007_s10489_024_05665_x crossref_primary_10_1016_j_visres_2020_09_005 crossref_primary_10_1080_00140139_2024_2306315 crossref_primary_10_1109_TPAMI_2023_3243400 crossref_primary_10_1007_s11042_024_20179_x crossref_primary_10_1134_S1064230723030061 crossref_primary_10_1109_TMM_2024_3521755 crossref_primary_10_1002_cav_70046 crossref_primary_10_1016_j_is_2025_102579 crossref_primary_10_3390_app13031466 crossref_primary_10_1007_s11263_024_02070_2 crossref_primary_10_1109_ACCESS_2024_3509447 crossref_primary_10_1007_s11263_021_01570_9 crossref_primary_10_32604_cmc_2024_047336 crossref_primary_10_1016_j_patcog_2023_109427 crossref_primary_10_1109_ACCESS_2023_3324659 crossref_primary_10_1109_LRA_2019_2953663 crossref_primary_10_1109_TIP_2025_3559788 crossref_primary_10_1016_j_apergo_2020_103138 crossref_primary_10_1109_TMM_2023_3272736 crossref_primary_10_1007_s11554_024_01528_3 crossref_primary_10_1109_TPAMI_2021_3053765 crossref_primary_10_3390_ijerph19169803 crossref_primary_10_1111_cgf_13131 crossref_primary_10_1016_j_neucom_2022_08_075 crossref_primary_10_1109_TMM_2022_3162469 crossref_primary_10_1109_TPAMI_2023_3245815 crossref_primary_10_1177_02783649241227559 crossref_primary_10_1109_TCSVT_2023_3328371 crossref_primary_10_1117_1_JEI_31_6_063044 crossref_primary_10_3390_a17100434 crossref_primary_10_3390_app13085093 crossref_primary_10_1007_s11263_018_1071_9 crossref_primary_10_3233_AIC_210250 crossref_primary_10_3390_info15080472 crossref_primary_10_3390_s22218335 crossref_primary_10_1016_j_imavis_2021_104196 crossref_primary_10_1016_j_imavis_2022_104452 crossref_primary_10_1109_JSEN_2020_2999849 crossref_primary_10_1109_TIM_2024_3373058 crossref_primary_10_3389_frai_2020_00070 crossref_primary_10_1016_j_cviu_2020_103072 crossref_primary_10_1016_j_engappai_2022_105813 crossref_primary_10_3389_fncom_2023_1145209 crossref_primary_10_1007_s11042_019_08269_7 crossref_primary_10_1109_TPAMI_2020_3025327 crossref_primary_10_1109_JSEN_2021_3115105 crossref_primary_10_1016_j_autcon_2020_103538 crossref_primary_10_1016_j_engappai_2025_111905 crossref_primary_10_1016_j_patcog_2023_109631 crossref_primary_10_1038_s41597_024_03312_1 crossref_primary_10_1177_20539517211013569 crossref_primary_10_1109_TII_2018_2864824 crossref_primary_10_1109_JBHI_2022_3144917 crossref_primary_10_1007_s10462_023_10687_x crossref_primary_10_1016_j_eswa_2020_113794 crossref_primary_10_1016_j_patcog_2024_110925 crossref_primary_10_1016_j_jvcir_2023_103955 crossref_primary_10_1145_3653455 crossref_primary_10_1109_TCSVT_2023_3318557 crossref_primary_10_3390_electronics12234830 crossref_primary_10_1109_LRA_2020_3043167 crossref_primary_10_1038_s41592_024_02319_1 crossref_primary_10_1109_TPAMI_2018_2816031 crossref_primary_10_1016_j_icte_2024_09_015 crossref_primary_10_1109_JIOT_2024_3425483 crossref_primary_10_12688_digitaltwin_17404_2 crossref_primary_10_1007_s00371_021_02238_8 crossref_primary_10_1109_TIP_2024_3515872 crossref_primary_10_1016_j_neucom_2025_130306 crossref_primary_10_11922_11_6035_csd_2024_0125_zh crossref_primary_10_1016_j_rcim_2025_103012 crossref_primary_10_1007_s11263_022_01714_5 crossref_primary_10_1109_JIOT_2020_3014930 crossref_primary_10_1109_TPAMI_2020_3029700 crossref_primary_10_1088_1742_6596_2283_1_012007 crossref_primary_10_1109_TNNLS_2022_3166861 crossref_primary_10_1007_s10462_024_11019_3 crossref_primary_10_1016_j_mechatronics_2022_102833 crossref_primary_10_1109_ACCESS_2019_2933221 crossref_primary_10_1016_j_gaitpost_2022_03_008 crossref_primary_10_1016_j_neunet_2023_10_038 crossref_primary_10_1016_j_neucom_2022_07_002 crossref_primary_10_1016_j_media_2021_102179 crossref_primary_10_1109_TCSVT_2020_3038145 crossref_primary_10_1016_j_procs_2023_08_177 crossref_primary_10_1109_ACCESS_2022_3191644 crossref_primary_10_1109_TCSVT_2022_3163782 crossref_primary_10_3389_fspor_2021_809898 crossref_primary_10_1109_ACCESS_2023_3271285 crossref_primary_10_1109_TIM_2024_3381701 crossref_primary_10_1016_j_asoc_2024_112126 crossref_primary_10_1111_cgf_14426 crossref_primary_10_3390_electronics10091118 crossref_primary_10_3390_technologies12070096 crossref_primary_10_1109_ACCESS_2023_3283495 crossref_primary_10_1007_s00371_024_03744_1 crossref_primary_10_1109_TAI_2024_3432028 crossref_primary_10_1016_j_neucom_2021_12_007 crossref_primary_10_1109_TPAMI_2024_3511393 crossref_primary_10_1038_s41597_022_01722_7 crossref_primary_10_1007_s00371_023_03142_z crossref_primary_10_1088_1742_6596_2833_1_012002 crossref_primary_10_1109_TPAMI_2021_3124736 crossref_primary_10_1371_journal_pone_0214499 crossref_primary_10_1111_mice_13500 crossref_primary_10_3390_electronics12194120 crossref_primary_10_3390_s23104899 crossref_primary_10_1109_TITS_2020_2988504 crossref_primary_10_1109_TMM_2023_3347095 crossref_primary_10_1111_cgf_14634 crossref_primary_10_1109_TPAMI_2025_3552604 crossref_primary_10_1109_TPAMI_2025_3528979 crossref_primary_10_1109_TETCI_2023_3318985 crossref_primary_10_1109_TVCG_2024_3363457 crossref_primary_10_1016_j_engappai_2024_109981 crossref_primary_10_1007_s11760_025_04741_0 crossref_primary_10_1007_s11263_016_0962_x crossref_primary_10_1007_s11263_018_1118_y crossref_primary_10_1016_j_neucom_2024_127272 crossref_primary_10_1109_JBHI_2023_3257662 crossref_primary_10_1109_TIP_2022_3187294 crossref_primary_10_1109_TCAD_2024_3453188 crossref_primary_10_1016_j_cviu_2022_103489 crossref_primary_10_1016_j_cviu_2022_103483 crossref_primary_10_1016_j_cviu_2023_103780 crossref_primary_10_1111_mice_13515 crossref_primary_10_3390_electronics14091773 crossref_primary_10_1007_s11042_023_14556_1 crossref_primary_10_1109_LRA_2022_3188892 crossref_primary_10_1109_TPAMI_2025_3574845 |
| Cites_doi | 10.1109/ICCV.2009.5459303 10.7551/mitpress/4908.001.0001 10.1007/s11263-009-0273-6 10.1007/978-1-4020-6693-1 10.1145/1186822.1073207 10.1109/ICCV.2011.6126375 10.1109/CVPR.2011.5995316 10.1109/ICCV.2013.163 10.1214/009053607000000677 10.1007/978-3-642-33765-9_48 10.1109/CVPR.2012.6248052 10.1109/ICCV.2003.1238424 10.1145/1102351.1102371 10.1109/CVPR.2007.383341 10.1109/CVPR.2006.315 10.1109/CVPR.2003.1211339 10.1007/s11263-008-0204-y 10.1109/MCG.2007.68 10.1109/CVPR.2004.1315258 10.1109/TPAMI.2007.1111 10.1109/ICCV.2011.6126500 10.1145/1964921.1964926 10.1109/CVPR.2006.169 10.1109/TPAMI.2013.47 10.1561/0600000005 10.1145/1143844.1143857 10.1109/ICCV.2005.193 10.1007/978-0-85729-997-0 10.1162/089976698300017467 10.1007/s11263-008-0173-1 10.1023/B:VISI.0000042935.43630.46 10.1145/2185520.2185531 10.1109/TPAMI.2006.21 10.1109/CVPR.2001.990509 10.1145/1275808.1276421 10.1109/ICCV.2001.937545 10.1109/CVPR.2004.1315220 10.1109/CVPR.2000.854758 10.1007/978-1-4020-6693-1_8 10.1109/CVPR.2004.1315063 10.1109/CVPR.2010.5540141 10.1109/CVPR.2011.5995519 10.1109/CVPR.2008.4587546 10.1109/CVPR.2010.5540156 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014 |
| CorporateAuthor | Matematik LTH Lunds universitet Naturvetenskapliga fakulteten Profile areas and other strong research environments Faculty of Science Lund University ELLIIT: the Linköping-Lund initiative on IT and mobile communication Strategiska forskningsområden (SFO) Centre for Mathematical Sciences Strategic research areas (SRA) Mathematics (Faculty of Engineering) Matematikcentrum eSSENCE: The e-Science Collaboration Profilområden och andra starka forskningsmiljöer |
| CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: ELLIIT: the Linköping-Lund initiative on IT and mobile communication – name: Strategiska forskningsområden (SFO) – name: Mathematics (Faculty of Engineering) – name: Strategic research areas (SRA) – name: Faculty of Science – name: Lunds universitet – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Matematik LTH – name: Centre for Mathematical Sciences – name: Profile areas and other strong research environments – name: eSSENCE: The e-Science Collaboration – name: Matematikcentrum |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 ADTPV AOWAS D95 |
| DOI | 10.1109/TPAMI.2013.248 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic SwePub SwePub Articles SWEPUB Lunds universitet |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 1339 |
| ExternalDocumentID | oai_portal_research_lu_se_publications_6a729909_19b5_4879_9079_1140039117b3 3442183991 26353306 28603589 10_1109_TPAMI_2013_248 6682899 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION AAYOK IQODW RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 ADTPV AOWAS D95 |
| ID | FETCH-LOGICAL-c529t-3b66694a34b1b8b30f986898ae4bf0709fdfac71b9193d80b4b4c860689e9dd13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2493 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338209900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Fri Dec 05 01:30:38 EST 2025 Thu Oct 02 14:35:14 EDT 2025 Sun Nov 09 07:52:56 EST 2025 Mon Jul 21 05:51:17 EDT 2025 Wed Apr 02 07:15:03 EDT 2025 Tue Nov 18 22:34:45 EST 2025 Sat Nov 29 05:15:56 EST 2025 Tue Aug 26 16:49:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | large-scale learning structured prediction articulated body modeling optimization human motion capture data 3D human pose estimation Fourier kernel approximations Occlusion Very large databases Modeling Optimization Posture Natural environment Scientific research Classification Internal structure Data structure Learning algorithm Computer vision Statistical analysis Motion estimation Viewing angle Computer animation Augmented reality Educational software program Human activity Time of flight method Mixed reality Data visualization Body movement Large scale Occultation Structural analysis |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c529t-3b66694a34b1b8b30f986898ae4bf0709fdfac71b9193d80b4b4c860689e9dd13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 26353306 |
| PQID | 1564736274 |
| PQPubID | 85458 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TPAMI_2013_248 pascalfrancis_primary_28603589 ieee_primary_6682899 swepub_primary_oai_portal_research_lu_se_publications_6a729909_19b5_4879_9079_1140039117b3 proquest_journals_1564736274 crossref_primary_10_1109_TPAMI_2013_248 pubmed_primary_26353306 proquest_miscellaneous_1711536910 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-07-01 |
| PublicationDateYYYYMMDD | 2014-07-01 |
| PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2014 |
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref12 ref15 ref58 ref14 ref53 ref55 ref11 forsyth (ref59) 2006; 1 bo (ref13) 0 ref17 ref19 ref18 shakhnarovich (ref49) 2006 rosales (ref10) 0 sidenbladh (ref16) 0 ref51 liu (ref25) 2013; 35 ref50 ref46 ref42 ref41 ref44 rahimi (ref47) 0 ref7 ref4 rosenhahn (ref2) 2008; 36 ref6 ref5 li (ref48) 0 ref40 ref37 ref36 ref31 ref30 ref32 bakir (ref54) 0 ref1 ref39 ref38 ferrari (ref33) 0 (ref28) 0 hartley (ref45) 2000 ref23 ref20 sigal (ref24) 0 sapp (ref34) 0 ref22 eichner (ref35) 0 weston (ref52) 0 (ref8) 0 ref27 ref29 li (ref21) 0 sminchisescu (ref3) 2008 ref60 sminchisescu (ref9) 2011 ref61 guan (ref26) 2012; 31 agarwal (ref43) 0 |
| References_xml | – ident: ref31 doi: 10.1109/ICCV.2009.5459303 – start-page: 50 year: 0 ident: ref43 article-title: A local basis representation for estimating human pose from cluttered images publication-title: Proc ACCV – year: 2006 ident: ref49 publication-title: Nearest-Neighbors methods in Learning and Vision Theory and Practice doi: 10.7551/mitpress/4908.001.0001 – start-page: 406 year: 0 ident: ref34 article-title: Cascaded models for articulated pose estimation publication-title: Proc European Conf Computer Vision – ident: ref4 doi: 10.1007/s11263-009-0273-6 – volume: 36 year: 2008 ident: ref2 publication-title: Human Motion - Understanding, Modeling, Capture and Animation doi: 10.1007/978-1-4020-6693-1 – ident: ref27 doi: 10.1145/1186822.1073207 – ident: ref7 doi: 10.1109/ICCV.2011.6126375 – year: 2011 ident: ref9 publication-title: Feature-based Human Pose Estimation in Guide to Visual Analysis of Humans Looking at People – ident: ref40 doi: 10.1109/CVPR.2011.5995316 – ident: ref55 doi: 10.1109/ICCV.2013.163 – ident: ref51 doi: 10.1214/009053607000000677 – ident: ref5 doi: 10.1007/978-3-642-33765-9_48 – ident: ref44 doi: 10.1109/CVPR.2012.6248052 – ident: ref29 doi: 10.1109/ICCV.2003.1238424 – year: 0 ident: ref28 publication-title: INRIA 4D – ident: ref46 doi: 10.1145/1102351.1102371 – ident: ref42 doi: 10.1109/CVPR.2007.383341 – ident: ref32 doi: 10.1109/CVPR.2006.315 – year: 0 ident: ref21 article-title: Monocular tracking of 3D human motion with a coordianted mixture of factor analyzers publication-title: Proc Eur Conf Computer Vision – ident: ref18 doi: 10.1109/CVPR.2003.1211339 – year: 0 ident: ref33 article-title: Pose seach: Retrieving people using their pose publication-title: Proc IEEE Int Conf Computer Vision Pattern Recognition – year: 0 ident: ref16 article-title: Stochastic tracking of 3D human figures using 2D image motion publication-title: Proc European Conf Computer Vision – ident: ref14 doi: 10.1007/s11263-008-0204-y – ident: ref61 doi: 10.1109/MCG.2007.68 – ident: ref30 doi: 10.1109/CVPR.2004.1315258 – ident: ref12 doi: 10.1109/TPAMI.2007.1111 – ident: ref38 doi: 10.1109/ICCV.2011.6126500 – year: 0 ident: ref13 article-title: Structured output-associative regression publication-title: Proc IEEE Int Conf Computer Vision Pattern Recognition – ident: ref37 doi: 10.1145/1964921.1964926 – year: 2000 ident: ref45 publication-title: Multiple View Geometry in Computer Vision – ident: ref41 doi: 10.1109/CVPR.2006.169 – volume: 35 start-page: 2720 year: 2013 ident: ref25 article-title: Markerless motion capture of multiple characters using multi-view image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.47 – volume: 1 start-page: 77 year: 2006 ident: ref59 article-title: Computational studies of human motion: Part 1, tracking and motion synthesis publication-title: Found Trends Comput Graph Vis doi: 10.1561/0600000005 – ident: ref50 doi: 10.1145/1143844.1143857 – start-page: 2424 year: 0 ident: ref48 article-title: Chebyshev approximations to the histogram \(\chi ^2\) kernel publication-title: Proc IEEE Int Conf Computer Vision Pattern Recognition – ident: ref58 doi: 10.1109/ICCV.2005.193 – start-page: 1177 year: 0 ident: ref47 article-title: Random features for large-scale kernel machines publication-title: Proc NIPS – ident: ref1 doi: 10.1007/978-0-85729-997-0 – ident: ref53 doi: 10.1162/089976698300017467 – ident: ref23 doi: 10.1007/s11263-008-0173-1 – ident: ref19 doi: 10.1023/B:VISI.0000042935.43630.46 – volume: 31 start-page: 35:10 year: 2012 ident: ref26 article-title: Drape: Dressing any person publication-title: ACM Trans Graphics doi: 10.1145/2185520.2185531 – year: 0 ident: ref8 publication-title: CMU HMC – ident: ref11 doi: 10.1109/TPAMI.2006.21 – ident: ref17 doi: 10.1109/CVPR.2001.990509 – ident: ref6 doi: 10.1145/1275808.1276421 – ident: ref60 doi: 10.1109/ICCV.2001.937545 – ident: ref56 doi: 10.1109/CVPR.2004.1315220 – year: 0 ident: ref54 article-title: Learning to find pre-images publication-title: Proc NIPS – start-page: 228 year: 0 ident: ref35 article-title: We are family: Joint pose estimation of multiple persons publication-title: Proc European Conf Computer Vision – start-page: 1337 year: 0 ident: ref24 article-title: Combined discriminative and generative articulated pose and non-rigid shape estimation publication-title: Proc NIPS – ident: ref15 doi: 10.1109/CVPR.2000.854758 – year: 2008 ident: ref3 article-title: 3D human motion analysis in monocular video: Techniques and challenges publication-title: Human Motion doi: 10.1007/978-1-4020-6693-1_8 – ident: ref20 doi: 10.1109/CVPR.2004.1315063 – ident: ref39 doi: 10.1109/CVPR.2010.5540141 – ident: ref36 doi: 10.1109/CVPR.2011.5995519 – ident: ref57 doi: 10.1109/CVPR.2008.4587546 – ident: ref22 doi: 10.1109/CVPR.2010.5540156 – start-page: 873 year: 0 ident: ref52 article-title: Kernel dependency estimation publication-title: Proc NIPS – year: 0 ident: ref10 article-title: Learning body pose via specialized maps publication-title: Proc NIPS |
| SSID | ssj0014503 |
| Score | 2.6695495 |
| Snippet | We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4... We introduce a new dataset, Human3.6M, of 3.6 Million 3D Human poses, acquired by recording the performance of 11 subjects, under 4 different viewpoints, for... |
| SourceID | swepub proquest pubmed pascalfrancis crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1325 |
| SubjectTerms | Algorithms Applied sciences Artificial intelligence Biometry - methods Cameras Computer science; control theory; systems Computer systems and distributed systems. User interface Databases, Factual Ecosystem Estimation Exact sciences and technology Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Information Storage and Retrieval - methods Information systems. Data bases Joints Learning and adaptive systems Matematik Mathematical Sciences Memory organisation. Data processing Modeling and recovery of physical attributes Motion Natural Sciences Naturvetenskap Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Photography - methods Posture Reproducibility of Results Sensitivity and Specificity Sensors Software Solid modeling Subtraction Technique Three-dimensional displays Training Whole Body Imaging - methods |
| Title | Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments |
| URI | https://ieeexplore.ieee.org/document/6682899 https://www.ncbi.nlm.nih.gov/pubmed/26353306 https://www.proquest.com/docview/1564736274 https://www.proquest.com/docview/1711536910 |
| Volume | 36 |
| WOSCitedRecordID | wos000338209900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_asoftYd3afXjtggaDvcypbcmW1LfSDzZoQmAdhL0ISZa7QnFK7PTv30l2vHS0D3sJAZ1D5LvT3Umn3w_gM2MO42ZpYw_-FTNnZaxt6WJucfHTJrPchIvCl3w6FfO5nG3B1-EujHMuNJ-5sf8azvLLhV35rbKjogj1wTZsc867u1rDiQHLAwsyZjDo4SjWAzSmiTy6mp1MvvsuLjrOmCfo8wAsWMcXD2JRIFfxrZG6wbdTdbQWj-Wd_4CKhkB0sft_U3gFL_uEk5x0FvIatly9B7trMgfS-_YevNhAJtwHGzb36biYHJNL3yyOghhKyJluMey1DdF1SWZLf8rj10syCUTUDcEUmNAzEp4mP3xzfH1Nbmoy1QHfg5xv3Kt7Az8vzq9Ov8U9H0Ns80y2MTVY60imKTOpEYYmlRSFkEI7ZipcOmRVVtry1EjMCkuRGGaYFVghCelkWab0LezUi9q9B2I0pj4ZLWQuc5YarUXJMFc01llcUbiJIF5rRtkerNxzZtyqULQkUgWlKq9UhUqN4Msgf9fBdDwpue-1Mkj1Colg9EDxw3iGE6C5QIHDtSWo3s0b5ZF2OPX0RRF8GobRQf2pi67dYoUyHJNunGmaRPCus6C_P94bYgS_OpMaRjzqd1eAqR716be6XakG__jGdq4qNPf5hFSpNLnC4lMqmeAHVrkB-z_lhn54fMYH8BzfCetajw9hp12u3Ed4Zu_bm2Y5Qhebi1FwsT95PiAI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6NgcR4YLDBCIxhJCReSJfETmLzNrFNm2irShRp4sWyHQcmTSlqUn4_Z8cNHRoPvFSVfKnq3J3vzj5_H8A7xizGzcrEDvwrZtaIWJnKxqXBxU_pzJTaXxQel9Mpv7oSsy34MNyFsdb65jM7cl_9WX61MCu3VXZcFL4-uAf3c8aytL-tNZwZsNzzIGMOgz6OggGiMU3E8Xx2Mrl0fVx0lDFH0ecgWLCSL25FI0-v4pojVYvvp-6JLe7KPP-CFfWh6Hz3_ybxBB6HlJOc9DbyFLZsswe7azoHErx7Dx5tYBPug_Hb-3RUTD6SsWsXR0EMJuRUdRj4upaopiKzpTvncSsmmXgq6pZgEkzoKfFPky-uPb75Tq4bMlUe4YOcbdysewZfz8_mny7iwMgQmzwTXUw1VjuCKcp0qrmmSS14wQVXlukaFw9RV7UyZaoF5oUVTzTTzHCskbiwoqpS-hy2m0VjXwDRCpOfjBYiFzlLtVK8YpgtamMNrimljiBea0aaAFfuWDNupC9bEiG9UqVTqkSlRvB-kP_ZA3X8U3LfaWWQCgqJ4OiW4ofxDCdAc44Ch2tLkMHRW-mwdkrqCIwieDsMo4u6cxfV2MUKZUpMu3GmaRLBQW9Bf348GGIE33qTGkYc7ndfgsmA-_RD3qxki398Y0NXFqp0GYWQqdC5xPJTSJHgB9a5Hv0_LTV9efeM38DDi_lkLMeX08-vYAffD-sbkQ9hu1uu7Gt4YH511-3yyDvab8aUImc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human3.6M%3A+Large+Scale+Datasets+and+Predictive+Methods+for+3D+Human+Sensing+in+Natural+Environments&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Ionescu%2C+Catalin&rft.au=Papava%2C+Dragos&rft.au=Olaru%2C+Vlad&rft.au=Sminchisescu%2C+Cristian&rft.date=2014-07-01&rft.issn=1939-3539&rft.volume=36&rft.issue=7&rft.spage=1325&rft_id=info:doi/10.1109%2FTPAMI.2013.248&rft.externalDocID=oai_portal_research_lu_se_publications_6a729909_19b5_4879_9079_1140039117b3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |