Identification of a Dynamic Core Transcriptional Network in t(8;21) AML that Regulates Differentiation Block and Self-Renewal
Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21), subvert normal blood cell development by impairing differentiation and driving malignant self-renewal. Here, we use digital footprinting and chromatin immunoprecipitation sequencing (ChIP-...
Uložené v:
| Vydané v: | Cell reports (Cambridge) Ročník 8; číslo 6; s. 1974 - 1988 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
25.09.2014
Cell Press Elsevier |
| Predmet: | |
| ISSN: | 2211-1247, 2211-1247 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21), subvert normal blood cell development by impairing differentiation and driving malignant self-renewal. Here, we use digital footprinting and chromatin immunoprecipitation sequencing (ChIP-seq) to identify the core RUNX1/ETO-responsive transcriptional network of t(8;21) cells. We show that the transcriptional program underlying leukemic propagation is regulated by a dynamic equilibrium between RUNX1/ETO and RUNX1 complexes, which bind to identical DNA sites in a mutually exclusive fashion. Perturbation of this equilibrium in t(8;21) cells by RUNX1/ETO depletion leads to a global redistribution of transcription factor complexes within preexisting open chromatin, resulting in the formation of a transcriptional network that drives myeloid differentiation. Our work demonstrates on a genome-wide level that the extent of impaired myeloid differentiation in t(8;21) is controlled by the dynamic balance between RUNX1/ETO and RUNX1 activities through the repression of transcription factors that drive differentiation.
[Display omitted]
•RUNX1/ETO drives a t(8;21)-specific transcriptional network•RUNX1/ETO and RUNX1 dynamically compete for the same genomic sites•RUNX1/ETO targets transcription factor complexes that control differentiation•RUNX1/ETO depletion activates a transcriptional network dominated by C/EBPα
Chromosomal rearrangements generate cancer-specific fusion genes that interfere with cell differentiation. Ptasinska et al. show that the most frequent fusion protein in acute myeloid leukemia (RUNX1/ETO) controls a cancer-propagating transcriptional network by binding to genomic sites in a dynamic equilibrium with wild-type RUNX1. Depletion of RUNX1/ETO installs a differentiation-promoting transcriptional network. Our findings demonstrate that the differentiation block in AML has a dynamic component as its core feature, which might provide a target for cancer-specific differentiation therapy. |
|---|---|
| AbstractList | Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21), subvert normal blood cell development by impairing differentiation and driving malignant self-renewal. Here, we use digital footprinting and chromatin immunoprecipitation sequencing (ChIP-seq) to identify the core RUNX1/ETO-responsive transcriptional network of t(8;21) cells. We show that the transcriptional program underlying leukemic propagation is regulated by a dynamic equilibrium between RUNX1/ETO and RUNX1 complexes, which bind to identical DNA sites in a mutually exclusive fashion. Perturbation of this equilibrium in t(8;21) cells by RUNX1/ETO depletion leads to a global redistribution of transcription factor complexes within preexisting open chromatin, resulting in the formation of a transcriptional network that drives myeloid differentiation. Our work demonstrates on a genome-wide level that the extent of impaired myeloid differentiation in t(8;21) is controlled by the dynamic balance between RUNX1/ETO and RUNX1 activities through the repression of transcription factors that drive differentiation.
•
RUNX1/ETO drives a t(8;21)-specific transcriptional network
•
RUNX1/ETO and RUNX1 dynamically compete for the same genomic sites
•
RUNX1/ETO targets transcription factor complexes that control differentiation
•
RUNX1/ETO depletion activates a transcriptional network dominated by C/EBPα
Chromosomal rearrangements generate cancer-specific fusion genes that interfere with cell differentiation. Ptasinska et al. show that the most frequent fusion protein in acute myeloid leukemia (RUNX1/ETO) controls a cancer-propagating transcriptional network by binding to genomic sites in a dynamic equilibrium with wild-type RUNX1. Depletion of RUNX1/ETO installs a differentiation-promoting transcriptional network. Our findings demonstrate that the differentiation block in AML has a dynamic component as its core feature, which might provide a target for cancer-specific differentiation therapy. Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21), subvert normal blood cell development by impairing differentiation and driving malignant self-renewal. Here, we use digital footprinting and chromatin immunoprecipitation sequencing (ChIP-seq) to identify the core RUNX1/ETO-responsive transcriptional network of t(8;21) cells. We show that the transcriptional program underlying leukemic propagation is regulated by a dynamic equilibrium between RUNX1/ETO and RUNX1 complexes, which bind to identical DNA sites in a mutually exclusive fashion. Perturbation of this equilibrium in t(8;21) cells by RUNX1/ETO depletion leads to a global redistribution of transcription factor complexes within preexisting open chromatin, resulting in the formation of a transcriptional network that drives myeloid differentiation. Our work demonstrates on a genome-wide level that the extent of impaired myeloid differentiation in t(8;21) is controlled by the dynamic balance between RUNX1/ETO and RUNX1 activities through the repression of transcription factors that drive differentiation. Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21), subvert normal blood cell development by impairing differentiation and driving malignant self-renewal. Here, we use digital footprinting and chromatin immunoprecipitation sequencing (ChIP-seq) to identify the core RUNX1/ETO-responsive transcriptional network of t(8;21) cells. We show that the transcriptional program underlying leukemic propagation is regulated by a dynamic equilibrium between RUNX1/ETO and RUNX1 complexes, which bind to identical DNA sites in a mutually exclusive fashion. Perturbation of this equilibrium in t(8;21) cells by RUNX1/ETO depletion leads to a global redistribution of transcription factor complexes within preexisting open chromatin, resulting in the formation of a transcriptional network that drives myeloid differentiation. Our work demonstrates on a genome-wide level that the extent of impaired myeloid differentiation in t(8;21) is controlled by the dynamic balance between RUNX1/ETO and RUNX1 activities through the repression of transcription factors that drive differentiation.Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21), subvert normal blood cell development by impairing differentiation and driving malignant self-renewal. Here, we use digital footprinting and chromatin immunoprecipitation sequencing (ChIP-seq) to identify the core RUNX1/ETO-responsive transcriptional network of t(8;21) cells. We show that the transcriptional program underlying leukemic propagation is regulated by a dynamic equilibrium between RUNX1/ETO and RUNX1 complexes, which bind to identical DNA sites in a mutually exclusive fashion. Perturbation of this equilibrium in t(8;21) cells by RUNX1/ETO depletion leads to a global redistribution of transcription factor complexes within preexisting open chromatin, resulting in the formation of a transcriptional network that drives myeloid differentiation. Our work demonstrates on a genome-wide level that the extent of impaired myeloid differentiation in t(8;21) is controlled by the dynamic balance between RUNX1/ETO and RUNX1 activities through the repression of transcription factors that drive differentiation. Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21), subvert normal blood cell development by impairing differentiation and driving malignant self-renewal. Here, we use digital footprinting and chromatin immunoprecipitation sequencing (ChIP-seq) to identify the core RUNX1/ETO-responsive transcriptional network of t(8;21) cells. We show that the transcriptional program underlying leukemic propagation is regulated by a dynamic equilibrium between RUNX1/ETO and RUNX1 complexes, which bind to identical DNA sites in a mutually exclusive fashion. Perturbation of this equilibrium in t(8;21) cells by RUNX1/ETO depletion leads to a global redistribution of transcription factor complexes within preexisting open chromatin, resulting in the formation of a transcriptional network that drives myeloid differentiation. Our work demonstrates on a genome-wide level that the extent of impaired myeloid differentiation in t(8;21) is controlled by the dynamic balance between RUNX1/ETO and RUNX1 activities through the repression of transcription factors that drive differentiation. [Display omitted] •RUNX1/ETO drives a t(8;21)-specific transcriptional network•RUNX1/ETO and RUNX1 dynamically compete for the same genomic sites•RUNX1/ETO targets transcription factor complexes that control differentiation•RUNX1/ETO depletion activates a transcriptional network dominated by C/EBPα Chromosomal rearrangements generate cancer-specific fusion genes that interfere with cell differentiation. Ptasinska et al. show that the most frequent fusion protein in acute myeloid leukemia (RUNX1/ETO) controls a cancer-propagating transcriptional network by binding to genomic sites in a dynamic equilibrium with wild-type RUNX1. Depletion of RUNX1/ETO installs a differentiation-promoting transcriptional network. Our findings demonstrate that the differentiation block in AML has a dynamic component as its core feature, which might provide a target for cancer-specific differentiation therapy. |
| Author | Westhead, David R. Bonifer, Constanze Wu, Mengchu Piper, Jason Heidenreich, Olaf Pickin, Anna Cockerill, Peter N. Ptasinska, Anetta Martinez-Soria, Natalia Imperato, Maria Rosaria Hoogenkamp, Maarten Tenen, Daniel G. Assi, Salam A. Ott, Sascha Cauchy, Pierre James, Sally R. Williamson, Dan |
| AuthorAffiliation | 4 Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK 6 Section of Experimental Haematology, Leeds Institute for Molecular Medicine, University of Leeds, Leeds LS2 9JT, UK 3 School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK 2 Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK 1 School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK 5 Cancer Science Institute, National University of Singapore, Republic of Singapore, Singapore 117456, Singapore |
| AuthorAffiliation_xml | – name: 6 Section of Experimental Haematology, Leeds Institute for Molecular Medicine, University of Leeds, Leeds LS2 9JT, UK – name: 3 School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK – name: 2 Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK – name: 4 Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK – name: 5 Cancer Science Institute, National University of Singapore, Republic of Singapore, Singapore 117456, Singapore – name: 1 School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK |
| Author_xml | – sequence: 1 givenname: Anetta surname: Ptasinska fullname: Ptasinska, Anetta organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK – sequence: 2 givenname: Salam A. surname: Assi fullname: Assi, Salam A. organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK – sequence: 3 givenname: Natalia surname: Martinez-Soria fullname: Martinez-Soria, Natalia organization: Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK – sequence: 4 givenname: Maria Rosaria surname: Imperato fullname: Imperato, Maria Rosaria organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK – sequence: 5 givenname: Jason surname: Piper fullname: Piper, Jason organization: Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK – sequence: 6 givenname: Pierre surname: Cauchy fullname: Cauchy, Pierre organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK – sequence: 7 givenname: Anna surname: Pickin fullname: Pickin, Anna organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK – sequence: 8 givenname: Sally R. surname: James fullname: James, Sally R. organization: Section of Experimental Haematology, Leeds Institute for Molecular Medicine, University of Leeds, Leeds LS2 9JT, UK – sequence: 9 givenname: Maarten surname: Hoogenkamp fullname: Hoogenkamp, Maarten organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK – sequence: 10 givenname: Dan surname: Williamson fullname: Williamson, Dan organization: Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK – sequence: 11 givenname: Mengchu surname: Wu fullname: Wu, Mengchu organization: Cancer Science Institute, National University of Singapore, Republic of Singapore, Singapore 117456, Singapore – sequence: 12 givenname: Daniel G. surname: Tenen fullname: Tenen, Daniel G. organization: Cancer Science Institute, National University of Singapore, Republic of Singapore, Singapore 117456, Singapore – sequence: 13 givenname: Sascha surname: Ott fullname: Ott, Sascha organization: Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK – sequence: 14 givenname: David R. surname: Westhead fullname: Westhead, David R. organization: School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK – sequence: 15 givenname: Peter N. surname: Cockerill fullname: Cockerill, Peter N. organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK – sequence: 16 givenname: Olaf surname: Heidenreich fullname: Heidenreich, Olaf email: olaf.heidenreich@ncl.ac.uk organization: Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK – sequence: 17 givenname: Constanze surname: Bonifer fullname: Bonifer, Constanze email: c.bonifer@bham.ac.uk organization: School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25242324$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1vEzEQhleoiJbSf4CQj-WQYHu9Gy9IlUrKR6QAUilnyxmPU6cbO9hOqx747zhNqFoO4MtYnplnxvPO82rPB49V9ZLRIaOsfbMYAvYRV0NOmRhSOaRcPKkOOGdswLgY7T2471dHKS1oOS1lrBPPqn3ecMFrLg6qXxODPjvrQGcXPAmWaHJ26_XSARmHiOQiap8gutXGr3vyFfNNiFfEeZKP5TvOXpPTL1OSL3Um5zhf9zpjImfOWowb9Jb7vg9wRbQ35Dv2dnCOHm90_6J6anWf8GhnD6sfHz9cjD8Ppt8-Tcan0wE0vMsDbtuR5LQBo62shWUUwdgaWs2pxHZmgJoWupHRglrGW6hnKGRtrG0ESNnUh9VkyzVBL9QquqWOtypop-4eQpwrHbODHhWzKAytaW2gEcV0tik4Bh2X2HBKC-tky1qtZ0s0UP4Ydf8I-tjj3aWah2slhBxJxgrgeAeI4ecaU1ZLl4qcvfYY1kmxpm0Zo1296fvVw1r3Rf7oVwLENgBiSCmivQ9hVG02RS3UdlPUZlMUlYrepb39Kw1cvhOqdOz6_yXvBoBFsWuHUSVw6AGNiwi5jNT9G_Aba1LcOQ |
| CitedBy_id | crossref_primary_10_1007_s12032_023_02075_w crossref_primary_10_1038_s41408_020_0282_9 crossref_primary_10_1038_s41588_018_0270_1 crossref_primary_10_1182_blood_2015_03_626671 crossref_primary_10_3390_cells9122681 crossref_primary_10_1038_s41467_024_45691_4 crossref_primary_10_1093_nar_gkad918 crossref_primary_10_1073_pnas_2213718119 crossref_primary_10_1111_bjh_70077 crossref_primary_10_1182_blood_2021012778 crossref_primary_10_1186_s12864_015_1445_0 crossref_primary_10_1371_journal_pgen_1007362 crossref_primary_10_1111_febs_14751 crossref_primary_10_1182_blood_2022019306 crossref_primary_10_1016_j_devcel_2016_01_024 crossref_primary_10_1038_leu_2015_172 crossref_primary_10_3390_ijms25126639 crossref_primary_10_1177_1176935119859863 crossref_primary_10_1007_s12185_015_1762_8 crossref_primary_10_3390_cells12081106 crossref_primary_10_1182_bloodadvances_2017012781 crossref_primary_10_1371_journal_pgen_1005814 crossref_primary_10_1038_leu_2015_133 crossref_primary_10_3390_cancers17020211 crossref_primary_10_1074_jbc_RA119_010707 crossref_primary_10_1002_gcc_22794 crossref_primary_10_1371_journal_pone_0150450 crossref_primary_10_1038_s41568_021_00411_8 crossref_primary_10_1182_blood_2016_01_695759 crossref_primary_10_1038_s41375_019_0398_8 crossref_primary_10_1038_ncomms15429 crossref_primary_10_1016_j_ccell_2018_08_015 crossref_primary_10_1038_s41467_022_34653_3 crossref_primary_10_1016_j_gde_2016_02_002 crossref_primary_10_1007_s11515_016_1415_1 crossref_primary_10_3390_ijms20020350 crossref_primary_10_3390_cancers15061795 crossref_primary_10_1038_leu_2015_324 crossref_primary_10_1016_j_exphem_2020_10_005 crossref_primary_10_1038_s41375_023_01854_8 crossref_primary_10_1016_j_gene_2025_149750 crossref_primary_10_1007_s00018_023_04713_y crossref_primary_10_1038_s44318_024_00295_y crossref_primary_10_1016_j_biopha_2019_109113 crossref_primary_10_1038_s41401_023_01196_2 crossref_primary_10_1016_j_exphem_2020_11_005 crossref_primary_10_1038_oncsis_2015_6 crossref_primary_10_1038_s41388_021_01952_w crossref_primary_10_1182_blood_2019004261 crossref_primary_10_1002_jcb_28005 crossref_primary_10_1242_dev_149419 crossref_primary_10_1002_mco2_30 crossref_primary_10_1038_s41598_021_92448_w crossref_primary_10_1073_pnas_1904091116 crossref_primary_10_1186_s40164_021_00204_7 crossref_primary_10_1371_journal_pone_0131577 crossref_primary_10_1146_annurev_pathmechdis_051222_013421 crossref_primary_10_3390_cancers11030311 crossref_primary_10_1182_blood_2016_09_687822 crossref_primary_10_1042_BCJ20160632 crossref_primary_10_1038_leu_2015_275 crossref_primary_10_1038_s41419_023_06039_w crossref_primary_10_1101_gr_193649_115 crossref_primary_10_1002_jcp_26197 crossref_primary_10_1182_blood_2019004179 crossref_primary_10_1016_j_molcel_2020_12_005 crossref_primary_10_1038_s41375_022_01548_7 crossref_primary_10_1038_ncomms8203 crossref_primary_10_1093_nar_gky119 crossref_primary_10_1182_blood_2020008971 crossref_primary_10_1182_blood_2015_11_681080 crossref_primary_10_1093_nar_gkz127 crossref_primary_10_1182_blood_2016_10_687830 crossref_primary_10_1007_s11427_019_1574_x crossref_primary_10_1016_j_bbadva_2022_100047 crossref_primary_10_1182_blood_2016_11_750976 crossref_primary_10_1002_jcb_30570 crossref_primary_10_1016_j_ccell_2016_10_008 crossref_primary_10_1038_s41467_020_20848_z crossref_primary_10_1038_s41598_018_28506_7 crossref_primary_10_1080_10428194_2016_1272690 crossref_primary_10_1182_blood_2018886077 crossref_primary_10_1371_journal_pgen_1005946 crossref_primary_10_1038_s41375_025_02698_0 crossref_primary_10_1038_s41375_023_02063_z crossref_primary_10_1158_2159_8290_CD_23_1452 |
| Cites_doi | 10.1200/JCO.2010.30.7926 10.1073/pnas.94.2.569 10.1182/blood-2011-10-386086 10.1016/j.molcel.2013.01.007 10.1016/j.stem.2010.07.016 10.1172/JCI68557 10.1093/emboj/17.11.2994 10.1038/leu.2013.257 10.1101/gad.2009211 10.1038/sj.onc.1209638 10.1073/pnas.96.26.14882 10.1038/onc.2012.328 10.1182/blood-2002-05-1589 10.1182/blood-2012-05-429050 10.1182/blood-2008-05-158196 10.1073/pnas.95.18.10860 10.1126/science.8079170 10.1038/emboj.2012.275 10.1073/pnas.95.20.11590 10.1016/j.molcel.2010.05.004 10.1126/science.1201662 10.1038/leu.2012.49 10.1182/blood-2002-03-0990 10.1016/j.ccr.2006.03.012 10.1093/nar/gkt850 10.1182/blood-2010-08-302976 10.1002/j.1460-2075.1993.tb05933.x 10.1387/ijdb.093038jp 10.1128/MCB.05938-11 10.1038/emboj.2012.270 10.1038/86515 10.1038/nature12287 10.1038/sj.onc.1209591 10.1016/j.celrep.2013.08.020 10.1016/j.devcel.2011.04.008 10.1056/NEJMoa040465 10.1016/j.exphem.2014.05.004 10.1002/gcc.10185 10.1186/1471-2407-4-44 10.1128/MCB.21.19.6470-6483.2001 10.1093/emboj/cdg250 10.1002/jcb.24453 10.1182/blood-2002-04-1288 10.1182/blood.V99.4.1364 10.1182/blood-2011-06-362277 10.1038/leu.2008.157 10.1038/85820 10.1038/nature09645 10.1016/S0092-8674(02)01111-X 10.1128/MCB.00118-10 10.1182/blood-2012-07-446120 10.1016/j.ccr.2013.09.018 10.1101/gad.2018811 10.1016/j.immuni.2004.11.006 10.1128/MCB.23.12.4386-4400.2003 |
| ContentType | Journal Article |
| Copyright | 2014 The Authors Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved. 2014 The Authors 2014 |
| Copyright_xml | – notice: 2014 The Authors – notice: Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2014 The Authors 2014 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1016/j.celrep.2014.08.024 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2211-1247 |
| EndPage | 1988 |
| ExternalDocumentID | oai_doaj_org_article_1fe4d0303dc543039f5c3b1c928e5200 PMC4487811 25242324 10_1016_j_celrep_2014_08_024 S2211124714006871 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: G0901579 – fundername: NCI NIH HHS grantid: P01 CA066996 – fundername: NHLBI NIH HHS grantid: R01 HL112719 |
| GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IPNFZ IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c529t-2f678205cdaf834f10ecdf3c6a208e6bdc0d6c97da40f126c3be483dff54c8853 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 105 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343867400034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2211-1247 |
| IngestDate | Fri Oct 03 12:45:51 EDT 2025 Tue Sep 30 16:56:13 EDT 2025 Fri Jul 11 09:16:09 EDT 2025 Mon Jul 21 06:02:56 EDT 2025 Wed Nov 05 20:50:55 EST 2025 Tue Nov 18 22:42:21 EST 2025 Wed May 17 01:06:26 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/3.0 Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c529t-2f678205cdaf834f10ecdf3c6a208e6bdc0d6c97da40f126c3be483dff54c8853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-first author |
| OpenAccessLink | https://doaj.org/article/1fe4d0303dc543039f5c3b1c928e5200 |
| PMID | 25242324 |
| PQID | 1566110935 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1fe4d0303dc543039f5c3b1c928e5200 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4487811 proquest_miscellaneous_1566110935 pubmed_primary_25242324 crossref_primary_10_1016_j_celrep_2014_08_024 crossref_citationtrail_10_1016_j_celrep_2014_08_024 elsevier_sciencedirect_doi_10_1016_j_celrep_2014_08_024 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-25 |
| PublicationDateYYYYMMDD | 2014-09-25 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports (Cambridge) |
| PublicationTitleAlternate | Cell Rep |
| PublicationYear | 2014 |
| Publisher | Elsevier Inc Cell Press Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Cell Press – name: Elsevier |
| References | Kitabayashi, Yokoyama, Shimizu, Ohki (bib13) 1998; 17 Zhang, Zhang, Wang, Hetherington, Darlington, Tenen (bib54) 1997; 94 Martinez Soria, Tussiwand, Ziegler, Manz, Heidenreich (bib23) 2009; 23 Ben-Ami, Friedman, Leshkowitz, Goldenberg, Orlovsky, Pencovich, Lotem, Tanay, Groner (bib2) 2013; 4 Reed-Inderbitzin, Moreno-Miralles, Vanden-Eynden, Xie, Lutterbach, Durst-Goodwin, Luce, Irvin, Cleary, Brandt, Hiebert (bib34) 2006; 25 Amann, Nip, Strom, Lutterbach, Harada, Lenny, Downing, Meyers, Hiebert (bib1) 2001; 21 Wilson, Foster, Wang, Knezevic, Schütte, Kaimakis, Chilarska, Kinston, Ouwehand, Dzierzak (bib53) 2010; 7 Dunne, Cullmann, Ritter, Soria, Drescher, Debernardi, Skoulakis, Hartmann, Krause, Krauter (bib7) 2006; 25 Staber, Zhang, Ye, Welner, Nombela-Arrieta, Bach, Kerenyi, Bartholdy, Zhang, Alberich-Jordà (bib41) 2013; 49 Zhang, Alberich-Jorda, Amabile, Yang, Staber, Di Ruscio, Welner, Ebralidze, Zhang, Levantini (bib56) 2013; 11 Vangala, Heiss-Neumann, Rangatia, Singh, Schoch, Tenen, Hiddemann, Behre (bib50) 2003; 101 Pabst, Mueller, Harakawa, Schoch, Haferlach, Behre, Hiddemann, Zhang, Tenen (bib28) 2001; 7 Martens, Mandoli, Simmer, Wierenga, Saeed, Singh, Altucci, Vellenga, Stunnenberg (bib21) 2012; 120 Piper, Elze, Cauchy, Cockerill, Bonifer, Ott (bib31) 2013; 41 Schwieger, Schüler, Forster, Engelmann, Arnold, Delwel, Valk, Löhler, Slany, Olson, Stocking (bib38) 2009; 114 Leddin, Perrod, Hoogenkamp, Ghani, Assi, Heinz, Wilson, Follows, Schönheit, Vockentanz (bib15) 2011; 117 Levanon, Goldstein, Bernstein, Tang, Goldenberg, Stifani, Paroush, Groner (bib17) 1998; 95 Ptasinska, Assi, Mannari, James, Williamson, Dunne, Hoogenkamp, Wu, Care, McNeill (bib33) 2012; 26 Chimge, Frenkel (bib3) 2013; 32 DeVilbiss, Sanalkumar, Johnson, Keles, Bresnick (bib5) 2014; 42 Liu, Cheney, Gaudet, Chruszcz, Lukasik, Sugiyama, Lary, Cole, Dauter, Minor (bib19) 2006; 9 Sun, Wang, Wang, Jiang, Kost, Soong, Chen, Tang, Nakadai, Elemento (bib43) 2013; 500 Heidenreich, Krauter, Riehle, Hadwiger, John, Heil, Vornlocher, Nordheim (bib11) 2003; 101 Miyoshi, Kozu, Shimizu, Enomoto, Maseki, Kaneko, Kamada, Ohki (bib26) 1993; 12 Tijssen, Cvejic, Joshi, Hannah, Ferreira, Forrai, Bellissimo, Oram, Smethurst, Wilson (bib46) 2011; 20 Scheitz, Tumbar (bib36) 2013; 114 Snaddon, Smith, Neat, Cambal-Parrales, Dixon-McIver, Arch, Amess, Rohatiner, Lister, Fitzgibbon (bib40) 2003; 37 Tsuzuki, Seto (bib47) 2012; 119 Wang, Hoshino, Redner, Kajigaya, Liu (bib51) 1998; 95 Wang, Gural, Sun, Zhao, Perna, Huang, Hatlen, Vu, Liu, Xu (bib52) 2011; 333 Gaidzik, Bullinger, Schlenk, Zimmermann, Röck, Paschka, Corbacioglu, Krauter, Schlegelberger, Ganser (bib9) 2011; 29 van Riel, Pakozdi, Brouwer, Monteiro, Tuladhar, Franke, Bryne, Jorna, Rijkers, van Ijcken (bib49) 2012; 32 Lefevre, Melnik, Wilson, Riggs, Bonifer (bib16) 2003; 23 Mandoli, Singh, Jansen, Wierenga, Riahi, Franci, Prange, Saeed, Vellenga, Vermeulen (bib20) 2014; 28 Goyama, Schibler, Cunningham, Zhang, Rao, Nishimoto, Nakagawa, Olsson, Wunderlich, Link (bib10) 2013; 123 Heinz, Benner, Spann, Bertolino, Lin, Laslo, Cheng, Murre, Singh, Glass (bib12) 2010; 38 Taoudi, Bee, Hilton, Knezevic, Scott, Willson, Collin, Thomas, Voss, Kile (bib45) 2011; 25 Pimanda, Göttgens (bib30) 2010; 54 Davidson (bib4) 2010; 468 Preudhomme, Sagot, Boissel, Cayuela, Tigaud, de Botton, Thomas, Raffoux, Lamandin, Castaigne (bib32) 2002; 100 Saeed, Logie, Francoijs, Frigè, Romanenghi, Nielsen, Raats, Shahhoseini, Huynen, Altucci (bib35) 2012; 120 Pabst, Mueller, Zhang, Radomska, Narravula, Schnittger, Behre, Hiddemann, Tenen (bib29) 2001; 27 Martinez, Drescher, Riehle, Cullmann, Vornlocher, Ganser, Heil, Nordheim, Krauter, Heidenreich (bib22) 2004; 4 Taniuchi, Osato, Egawa, Sunshine, Bae, Komori, Ito, Littman (bib44) 2002; 111 Stender, Kim, Charn, Komm, Chang, Kraus, Benner, Glass, Katzenellenbogen (bib42) 2010; 30 Zhang, Iwasaki-Arai, Iwasaki, Fenyus, Dayaram, Owens, Shigematsu, Levantini, Huettner, Lekstrom-Himes (bib55) 2004; 21 Scott, Simon, Anastasi, Singh (bib39) 1994; 265 Valk, Verhaak, Beijen, Erpelinck, Barjesteh van Waalwijk van Doorn-Khosrovani, Boer, Beverloo, Moorhouse, van der Spek, Löwenberg, Delwel (bib48) 2004; 350 Michaud, Wu, Osato, Cottles, Yanagida, Asou, Shigesada, Ito, Benson, Raskind (bib25) 2002; 99 Natoli, Ghisletti, Barozzi (bib27) 2011; 25 Lichtinger, Ingram, Hannah, Müller, Clarke, Assi, Lie-A-Ling, Noailles, Vijayabaskar, Wu (bib18) 2012; 31 McNeil, Zeng, Harrington, Hiebert, Lian, Stein, van Wijnen, Stein (bib24) 1999; 96 Follows, Tagoh, Lefevre, Hodge, Morgan, Bonifer (bib8) 2003; 22 Scheitz, Lee, McDermitt, Tumbar (bib37) 2012; 31 Diffner, Beck, Gudgin, Thoms, Knezevic, Pridans, Foster, Goode, Lim, Boelen (bib6) 2013; 121 Heidenreich (10.1016/j.celrep.2014.08.024_bib11) 2003; 101 Schwieger (10.1016/j.celrep.2014.08.024_bib38) 2009; 114 Michaud (10.1016/j.celrep.2014.08.024_bib25) 2002; 99 Pabst (10.1016/j.celrep.2014.08.024_bib28) 2001; 7 Pimanda (10.1016/j.celrep.2014.08.024_bib30) 2010; 54 Snaddon (10.1016/j.celrep.2014.08.024_bib40) 2003; 37 Scheitz (10.1016/j.celrep.2014.08.024_bib37) 2012; 31 Ben-Ami (10.1016/j.celrep.2014.08.024_bib2) 2013; 4 Follows (10.1016/j.celrep.2014.08.024_bib8) 2003; 22 Scheitz (10.1016/j.celrep.2014.08.024_bib36) 2013; 114 Zhang (10.1016/j.celrep.2014.08.024_bib54) 1997; 94 Tsuzuki (10.1016/j.celrep.2014.08.024_bib47) 2012; 119 Liu (10.1016/j.celrep.2014.08.024_bib19) 2006; 9 McNeil (10.1016/j.celrep.2014.08.024_bib24) 1999; 96 Stender (10.1016/j.celrep.2014.08.024_bib42) 2010; 30 DeVilbiss (10.1016/j.celrep.2014.08.024_bib5) 2014; 42 Wang (10.1016/j.celrep.2014.08.024_bib52) 2011; 333 Kitabayashi (10.1016/j.celrep.2014.08.024_bib13) 1998; 17 Staber (10.1016/j.celrep.2014.08.024_bib41) 2013; 49 Martinez (10.1016/j.celrep.2014.08.024_bib22) 2004; 4 Sun (10.1016/j.celrep.2014.08.024_bib43) 2013; 500 Tijssen (10.1016/j.celrep.2014.08.024_bib46) 2011; 20 Martinez Soria (10.1016/j.celrep.2014.08.024_bib23) 2009; 23 Reed-Inderbitzin (10.1016/j.celrep.2014.08.024_bib34) 2006; 25 van Riel (10.1016/j.celrep.2014.08.024_bib49) 2012; 32 Lefevre (10.1016/j.celrep.2014.08.024_bib16) 2003; 23 Zhang (10.1016/j.celrep.2014.08.024_bib56) 2013; 11 Amann (10.1016/j.celrep.2014.08.024_bib1) 2001; 21 Piper (10.1016/j.celrep.2014.08.024_bib31) 2013; 41 Goyama (10.1016/j.celrep.2014.08.024_bib10) 2013; 123 Natoli (10.1016/j.celrep.2014.08.024_bib27) 2011; 25 Saeed (10.1016/j.celrep.2014.08.024_bib35) 2012; 120 Davidson (10.1016/j.celrep.2014.08.024_bib4) 2010; 468 Gaidzik (10.1016/j.celrep.2014.08.024_bib9) 2011; 29 Wilson (10.1016/j.celrep.2014.08.024_bib53) 2010; 7 Vangala (10.1016/j.celrep.2014.08.024_bib50) 2003; 101 Preudhomme (10.1016/j.celrep.2014.08.024_bib32) 2002; 100 Mandoli (10.1016/j.celrep.2014.08.024_bib20) 2014; 28 Pabst (10.1016/j.celrep.2014.08.024_bib29) 2001; 27 Scott (10.1016/j.celrep.2014.08.024_bib39) 1994; 265 Diffner (10.1016/j.celrep.2014.08.024_bib6) 2013; 121 Lichtinger (10.1016/j.celrep.2014.08.024_bib18) 2012; 31 Zhang (10.1016/j.celrep.2014.08.024_bib55) 2004; 21 Miyoshi (10.1016/j.celrep.2014.08.024_bib26) 1993; 12 Wang (10.1016/j.celrep.2014.08.024_bib51) 1998; 95 Martens (10.1016/j.celrep.2014.08.024_bib21) 2012; 120 Ptasinska (10.1016/j.celrep.2014.08.024_bib33) 2012; 26 Taoudi (10.1016/j.celrep.2014.08.024_bib45) 2011; 25 Dunne (10.1016/j.celrep.2014.08.024_bib7) 2006; 25 Levanon (10.1016/j.celrep.2014.08.024_bib17) 1998; 95 Taniuchi (10.1016/j.celrep.2014.08.024_bib44) 2002; 111 Chimge (10.1016/j.celrep.2014.08.024_bib3) 2013; 32 Leddin (10.1016/j.celrep.2014.08.024_bib15) 2011; 117 Valk (10.1016/j.celrep.2014.08.024_bib48) 2004; 350 Heinz (10.1016/j.celrep.2014.08.024_bib12) 2010; 38 |
| References_xml | – volume: 31 start-page: 4124 year: 2012 end-page: 4139 ident: bib37 article-title: Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer publication-title: EMBO J. – volume: 114 start-page: 2476 year: 2009 end-page: 2488 ident: bib38 article-title: Homing and invasiveness of MLL/ENL leukemic cells is regulated by MEF2C publication-title: Blood – volume: 25 start-page: 251 year: 2011 end-page: 262 ident: bib45 article-title: ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification publication-title: Genes Dev. – volume: 20 start-page: 597 year: 2011 end-page: 609 ident: bib46 article-title: Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators publication-title: Dev. Cell – volume: 30 start-page: 3943 year: 2010 end-page: 3955 ident: bib42 article-title: Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation publication-title: Mol. Cell. Biol. – volume: 111 start-page: 621 year: 2002 end-page: 633 ident: bib44 article-title: Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development publication-title: Cell – volume: 17 start-page: 2994 year: 1998 end-page: 3004 ident: bib13 article-title: Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation publication-title: EMBO J. – volume: 11 start-page: 575 year: 2013 end-page: 588 ident: bib56 article-title: Sox4 is a key oncogenic target in C/EBPα mutant acute myeloid leukemia publication-title: Cancer Cell – volume: 500 start-page: 93 year: 2013 end-page: 97 ident: bib43 article-title: A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis publication-title: Nature – volume: 4 start-page: 1131 year: 2013 end-page: 1143 ident: bib2 article-title: Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1 publication-title: Cell Rep – volume: 94 start-page: 569 year: 1997 end-page: 574 ident: bib54 article-title: Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 4318 year: 2012 end-page: 4333 ident: bib18 article-title: RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis publication-title: EMBO J. – volume: 28 start-page: 770 year: 2014 end-page: 778 ident: bib20 article-title: CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia publication-title: Leukemia – volume: 333 start-page: 765 year: 2011 end-page: 769 ident: bib52 article-title: The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation publication-title: Science – volume: 95 start-page: 11590 year: 1998 end-page: 11595 ident: bib17 article-title: Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors publication-title: Proc. Natl. Acad. Sci. USA – volume: 117 start-page: 2827 year: 2011 end-page: 2838 ident: bib15 article-title: Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells publication-title: Blood – volume: 4 start-page: 44 year: 2004 ident: bib22 article-title: The oncogenic fusion protein RUNX1-CBFA2T1 supports proliferation and inhibits senescence in t(8;21)-positive leukaemic cells publication-title: BMC Cancer – volume: 12 start-page: 2715 year: 1993 end-page: 2721 ident: bib26 article-title: The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript publication-title: EMBO J. – volume: 100 start-page: 2717 year: 2002 end-page: 2723 ident: bib32 article-title: Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA) publication-title: Blood – volume: 25 start-page: 5777 year: 2006 end-page: 5786 ident: bib34 article-title: RUNX1 associates with histone deacetylases and SUV39H1 to repress transcription publication-title: Oncogene – volume: 123 start-page: 3876 year: 2013 end-page: 3888 ident: bib10 article-title: Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells publication-title: J. Clin. Invest. – volume: 265 start-page: 1573 year: 1994 end-page: 1577 ident: bib39 article-title: Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages publication-title: Science – volume: 95 start-page: 10860 year: 1998 end-page: 10865 ident: bib51 article-title: ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 444 year: 2001 end-page: 451 ident: bib28 article-title: AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia publication-title: Nat. Med. – volume: 25 start-page: 6067 year: 2006 end-page: 6078 ident: bib7 article-title: siRNA-mediated AML1/MTG8 depletion affects differentiation and proliferation-associated gene expression in t(8;21)-positive cell lines and primary AML blasts publication-title: Oncogene – volume: 29 start-page: 1364 year: 2011 end-page: 1372 ident: bib9 article-title: RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group publication-title: J. Clin. Oncol. – volume: 42 start-page: 618 year: 2014 end-page: 629 ident: bib5 article-title: Hematopoietic transcriptional mechanisms: From locus-specific to genome-wide vantage points publication-title: Exp. Hematol. – volume: 101 start-page: 270 year: 2003 end-page: 277 ident: bib50 article-title: The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia publication-title: Blood – volume: 96 start-page: 14882 year: 1999 end-page: 14887 ident: bib24 article-title: The t(8;21) chromosomal translocation in acute myelogenous leukemia modifies intranuclear targeting of the AML1/CBFalpha2 transcription factor publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 263 year: 2001 end-page: 270 ident: bib29 article-title: Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia publication-title: Nat. Genet. – volume: 120 start-page: 3058 year: 2012 end-page: 3068 ident: bib35 article-title: Chromatin accessibility, p300, and histone acetylation define PML-RARα and AML1-ETO binding sites in acute myeloid leukemia publication-title: Blood – volume: 468 start-page: 911 year: 2010 end-page: 920 ident: bib4 article-title: Emerging properties of animal gene regulatory networks publication-title: Nature – volume: 21 start-page: 6470 year: 2001 end-page: 6483 ident: bib1 article-title: ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain publication-title: Mol. Cell. Biol. – volume: 22 start-page: 2798 year: 2003 end-page: 2809 ident: bib8 article-title: Epigenetic consequences of AML1-ETO action at the human c-FMS locus publication-title: EMBO J. – volume: 38 start-page: 576 year: 2010 end-page: 589 ident: bib12 article-title: Simple combinations of lineage-determining transcription factors primecis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell – volume: 120 start-page: 4038 year: 2012 end-page: 4048 ident: bib21 article-title: ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia publication-title: Blood – volume: 41 start-page: e201 year: 2013 ident: bib31 article-title: Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data publication-title: Nucleic Acids Res. – volume: 26 start-page: 1829 year: 2012 end-page: 1841 ident: bib33 article-title: Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding publication-title: Leukemia – volume: 114 start-page: 985 year: 2013 end-page: 993 ident: bib36 article-title: New insights into the role of Runx1 in epithelial stem cell biology and pathology publication-title: J. Cell. Biochem. – volume: 49 start-page: 934 year: 2013 end-page: 946 ident: bib41 article-title: Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells publication-title: Mol. Cell – volume: 37 start-page: 72 year: 2003 end-page: 78 ident: bib40 article-title: Mutations of CEBPA in acute myeloid leukemia FAB types M1 and M2 publication-title: Genes Chromosomes Cancer – volume: 101 start-page: 3157 year: 2003 end-page: 3163 ident: bib11 article-title: AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells publication-title: Blood – volume: 121 start-page: 2289 year: 2013 end-page: 2300 ident: bib6 article-title: Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia publication-title: Blood – volume: 23 start-page: 4386 year: 2003 end-page: 4400 ident: bib16 article-title: Developmentally regulated recruitment of transcription factors and chromatin modification activities to chicken lysozymecis-regulatory elements in vivo publication-title: Mol. Cell. Biol. – volume: 350 start-page: 1617 year: 2004 end-page: 1628 ident: bib48 article-title: Prognostically useful gene-expression profiles in acute myeloid leukemia publication-title: N. Engl. J. Med. – volume: 21 start-page: 853 year: 2004 end-page: 863 ident: bib55 article-title: Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha publication-title: Immunity – volume: 54 start-page: 1201 year: 2010 end-page: 1211 ident: bib30 article-title: Gene regulatory networks governing haematopoietic stem cell development and identity publication-title: Int. J. Dev. Biol. – volume: 7 start-page: 532 year: 2010 end-page: 544 ident: bib53 article-title: Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators publication-title: Cell Stem Cell – volume: 32 start-page: 3814 year: 2012 end-page: 3822 ident: bib49 article-title: A novel complex, RUNX1-MYEF2, represses hematopoietic genes in erythroid cells publication-title: Mol. Cell. Biol. – volume: 32 start-page: 2121 year: 2013 end-page: 2130 ident: bib3 article-title: The RUNX family in breast cancer: relationships with estrogen signaling publication-title: Oncogene – volume: 99 start-page: 1364 year: 2002 end-page: 1372 ident: bib25 article-title: In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis publication-title: Blood – volume: 9 start-page: 249 year: 2006 end-page: 260 ident: bib19 article-title: The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO’s activity publication-title: Cancer Cell – volume: 23 start-page: 188 year: 2009 end-page: 190 ident: bib23 article-title: Transient depletion of RUNX1/RUNX1T1 by RNA interference delays tumour formation in vivo publication-title: Leukemia – volume: 119 start-page: 727 year: 2012 end-page: 735 ident: bib47 article-title: Expansion of functionally defined mouse hematopoietic stem and progenitor cells by a short isoform of RUNX1/AML1 publication-title: Blood – volume: 25 start-page: 101 year: 2011 end-page: 106 ident: bib27 article-title: The genomic landscapes of inflammation publication-title: Genes Dev. – volume: 29 start-page: 1364 year: 2011 ident: 10.1016/j.celrep.2014.08.024_bib9 article-title: RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2010.30.7926 – volume: 94 start-page: 569 year: 1997 ident: 10.1016/j.celrep.2014.08.024_bib54 article-title: Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.2.569 – volume: 120 start-page: 3058 year: 2012 ident: 10.1016/j.celrep.2014.08.024_bib35 article-title: Chromatin accessibility, p300, and histone acetylation define PML-RARα and AML1-ETO binding sites in acute myeloid leukemia publication-title: Blood doi: 10.1182/blood-2011-10-386086 – volume: 49 start-page: 934 year: 2013 ident: 10.1016/j.celrep.2014.08.024_bib41 article-title: Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.01.007 – volume: 7 start-page: 532 year: 2010 ident: 10.1016/j.celrep.2014.08.024_bib53 article-title: Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.07.016 – volume: 123 start-page: 3876 year: 2013 ident: 10.1016/j.celrep.2014.08.024_bib10 article-title: Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells publication-title: J. Clin. Invest. doi: 10.1172/JCI68557 – volume: 17 start-page: 2994 year: 1998 ident: 10.1016/j.celrep.2014.08.024_bib13 article-title: Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation publication-title: EMBO J. doi: 10.1093/emboj/17.11.2994 – volume: 28 start-page: 770 year: 2014 ident: 10.1016/j.celrep.2014.08.024_bib20 article-title: CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia publication-title: Leukemia doi: 10.1038/leu.2013.257 – volume: 25 start-page: 251 year: 2011 ident: 10.1016/j.celrep.2014.08.024_bib45 article-title: ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification publication-title: Genes Dev. doi: 10.1101/gad.2009211 – volume: 25 start-page: 6067 year: 2006 ident: 10.1016/j.celrep.2014.08.024_bib7 article-title: siRNA-mediated AML1/MTG8 depletion affects differentiation and proliferation-associated gene expression in t(8;21)-positive cell lines and primary AML blasts publication-title: Oncogene doi: 10.1038/sj.onc.1209638 – volume: 96 start-page: 14882 year: 1999 ident: 10.1016/j.celrep.2014.08.024_bib24 article-title: The t(8;21) chromosomal translocation in acute myelogenous leukemia modifies intranuclear targeting of the AML1/CBFalpha2 transcription factor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.26.14882 – volume: 32 start-page: 2121 year: 2013 ident: 10.1016/j.celrep.2014.08.024_bib3 article-title: The RUNX family in breast cancer: relationships with estrogen signaling publication-title: Oncogene doi: 10.1038/onc.2012.328 – volume: 101 start-page: 3157 year: 2003 ident: 10.1016/j.celrep.2014.08.024_bib11 article-title: AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells publication-title: Blood doi: 10.1182/blood-2002-05-1589 – volume: 120 start-page: 4038 year: 2012 ident: 10.1016/j.celrep.2014.08.024_bib21 article-title: ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia publication-title: Blood doi: 10.1182/blood-2012-05-429050 – volume: 114 start-page: 2476 year: 2009 ident: 10.1016/j.celrep.2014.08.024_bib38 article-title: Homing and invasiveness of MLL/ENL leukemic cells is regulated by MEF2C publication-title: Blood doi: 10.1182/blood-2008-05-158196 – volume: 95 start-page: 10860 year: 1998 ident: 10.1016/j.celrep.2014.08.024_bib51 article-title: ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.18.10860 – volume: 265 start-page: 1573 year: 1994 ident: 10.1016/j.celrep.2014.08.024_bib39 article-title: Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages publication-title: Science doi: 10.1126/science.8079170 – volume: 31 start-page: 4318 year: 2012 ident: 10.1016/j.celrep.2014.08.024_bib18 article-title: RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis publication-title: EMBO J. doi: 10.1038/emboj.2012.275 – volume: 95 start-page: 11590 year: 1998 ident: 10.1016/j.celrep.2014.08.024_bib17 article-title: Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.20.11590 – volume: 38 start-page: 576 year: 2010 ident: 10.1016/j.celrep.2014.08.024_bib12 article-title: Simple combinations of lineage-determining transcription factors primecis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 333 start-page: 765 year: 2011 ident: 10.1016/j.celrep.2014.08.024_bib52 article-title: The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation publication-title: Science doi: 10.1126/science.1201662 – volume: 26 start-page: 1829 year: 2012 ident: 10.1016/j.celrep.2014.08.024_bib33 article-title: Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding publication-title: Leukemia doi: 10.1038/leu.2012.49 – volume: 100 start-page: 2717 year: 2002 ident: 10.1016/j.celrep.2014.08.024_bib32 article-title: Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA) publication-title: Blood doi: 10.1182/blood-2002-03-0990 – volume: 9 start-page: 249 year: 2006 ident: 10.1016/j.celrep.2014.08.024_bib19 article-title: The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO’s activity publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.03.012 – volume: 41 start-page: e201 year: 2013 ident: 10.1016/j.celrep.2014.08.024_bib31 article-title: Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt850 – volume: 117 start-page: 2827 year: 2011 ident: 10.1016/j.celrep.2014.08.024_bib15 article-title: Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells publication-title: Blood doi: 10.1182/blood-2010-08-302976 – volume: 12 start-page: 2715 year: 1993 ident: 10.1016/j.celrep.2014.08.024_bib26 article-title: The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript publication-title: EMBO J. doi: 10.1002/j.1460-2075.1993.tb05933.x – volume: 54 start-page: 1201 year: 2010 ident: 10.1016/j.celrep.2014.08.024_bib30 article-title: Gene regulatory networks governing haematopoietic stem cell development and identity publication-title: Int. J. Dev. Biol. doi: 10.1387/ijdb.093038jp – volume: 32 start-page: 3814 year: 2012 ident: 10.1016/j.celrep.2014.08.024_bib49 article-title: A novel complex, RUNX1-MYEF2, represses hematopoietic genes in erythroid cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.05938-11 – volume: 31 start-page: 4124 year: 2012 ident: 10.1016/j.celrep.2014.08.024_bib37 article-title: Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer publication-title: EMBO J. doi: 10.1038/emboj.2012.270 – volume: 7 start-page: 444 year: 2001 ident: 10.1016/j.celrep.2014.08.024_bib28 article-title: AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia publication-title: Nat. Med. doi: 10.1038/86515 – volume: 500 start-page: 93 year: 2013 ident: 10.1016/j.celrep.2014.08.024_bib43 article-title: A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis publication-title: Nature doi: 10.1038/nature12287 – volume: 25 start-page: 5777 year: 2006 ident: 10.1016/j.celrep.2014.08.024_bib34 article-title: RUNX1 associates with histone deacetylases and SUV39H1 to repress transcription publication-title: Oncogene doi: 10.1038/sj.onc.1209591 – volume: 4 start-page: 1131 year: 2013 ident: 10.1016/j.celrep.2014.08.024_bib2 article-title: Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1 publication-title: Cell Rep doi: 10.1016/j.celrep.2013.08.020 – volume: 20 start-page: 597 year: 2011 ident: 10.1016/j.celrep.2014.08.024_bib46 article-title: Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.04.008 – volume: 350 start-page: 1617 year: 2004 ident: 10.1016/j.celrep.2014.08.024_bib48 article-title: Prognostically useful gene-expression profiles in acute myeloid leukemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa040465 – volume: 42 start-page: 618 year: 2014 ident: 10.1016/j.celrep.2014.08.024_bib5 article-title: Hematopoietic transcriptional mechanisms: From locus-specific to genome-wide vantage points publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2014.05.004 – volume: 37 start-page: 72 year: 2003 ident: 10.1016/j.celrep.2014.08.024_bib40 article-title: Mutations of CEBPA in acute myeloid leukemia FAB types M1 and M2 publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.10185 – volume: 4 start-page: 44 year: 2004 ident: 10.1016/j.celrep.2014.08.024_bib22 article-title: The oncogenic fusion protein RUNX1-CBFA2T1 supports proliferation and inhibits senescence in t(8;21)-positive leukaemic cells publication-title: BMC Cancer doi: 10.1186/1471-2407-4-44 – volume: 21 start-page: 6470 year: 2001 ident: 10.1016/j.celrep.2014.08.024_bib1 article-title: ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.21.19.6470-6483.2001 – volume: 22 start-page: 2798 year: 2003 ident: 10.1016/j.celrep.2014.08.024_bib8 article-title: Epigenetic consequences of AML1-ETO action at the human c-FMS locus publication-title: EMBO J. doi: 10.1093/emboj/cdg250 – volume: 114 start-page: 985 year: 2013 ident: 10.1016/j.celrep.2014.08.024_bib36 article-title: New insights into the role of Runx1 in epithelial stem cell biology and pathology publication-title: J. Cell. Biochem. doi: 10.1002/jcb.24453 – volume: 101 start-page: 270 year: 2003 ident: 10.1016/j.celrep.2014.08.024_bib50 article-title: The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia publication-title: Blood doi: 10.1182/blood-2002-04-1288 – volume: 99 start-page: 1364 year: 2002 ident: 10.1016/j.celrep.2014.08.024_bib25 article-title: In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis publication-title: Blood doi: 10.1182/blood.V99.4.1364 – volume: 119 start-page: 727 year: 2012 ident: 10.1016/j.celrep.2014.08.024_bib47 article-title: Expansion of functionally defined mouse hematopoietic stem and progenitor cells by a short isoform of RUNX1/AML1 publication-title: Blood doi: 10.1182/blood-2011-06-362277 – volume: 23 start-page: 188 year: 2009 ident: 10.1016/j.celrep.2014.08.024_bib23 article-title: Transient depletion of RUNX1/RUNX1T1 by RNA interference delays tumour formation in vivo publication-title: Leukemia doi: 10.1038/leu.2008.157 – volume: 27 start-page: 263 year: 2001 ident: 10.1016/j.celrep.2014.08.024_bib29 article-title: Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia publication-title: Nat. Genet. doi: 10.1038/85820 – volume: 468 start-page: 911 year: 2010 ident: 10.1016/j.celrep.2014.08.024_bib4 article-title: Emerging properties of animal gene regulatory networks publication-title: Nature doi: 10.1038/nature09645 – volume: 111 start-page: 621 year: 2002 ident: 10.1016/j.celrep.2014.08.024_bib44 article-title: Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development publication-title: Cell doi: 10.1016/S0092-8674(02)01111-X – volume: 30 start-page: 3943 year: 2010 ident: 10.1016/j.celrep.2014.08.024_bib42 article-title: Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00118-10 – volume: 121 start-page: 2289 year: 2013 ident: 10.1016/j.celrep.2014.08.024_bib6 article-title: Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia publication-title: Blood doi: 10.1182/blood-2012-07-446120 – volume: 11 start-page: 575 year: 2013 ident: 10.1016/j.celrep.2014.08.024_bib56 article-title: Sox4 is a key oncogenic target in C/EBPα mutant acute myeloid leukemia publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.09.018 – volume: 25 start-page: 101 year: 2011 ident: 10.1016/j.celrep.2014.08.024_bib27 article-title: The genomic landscapes of inflammation publication-title: Genes Dev. doi: 10.1101/gad.2018811 – volume: 21 start-page: 853 year: 2004 ident: 10.1016/j.celrep.2014.08.024_bib55 article-title: Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha publication-title: Immunity doi: 10.1016/j.immuni.2004.11.006 – volume: 23 start-page: 4386 year: 2003 ident: 10.1016/j.celrep.2014.08.024_bib16 article-title: Developmentally regulated recruitment of transcription factors and chromatin modification activities to chicken lysozymecis-regulatory elements in vivo publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.12.4386-4400.2003 |
| SSID | ssj0000601194 |
| Score | 2.4207273 |
| Snippet | Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21), subvert normal blood cell development by... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1974 |
| SubjectTerms | Adaptor Proteins, Signal Transducing - metabolism CCAAT-Enhancer-Binding Protein-alpha - genetics CCAAT-Enhancer-Binding Protein-alpha - metabolism Cell Line, Tumor Chromatin Immunoprecipitation Chromosome Mapping Chromosomes, Human, Pair 21 Chromosomes, Human, Pair 8 Core Binding Factor Alpha 2 Subunit - metabolism Gene Regulatory Networks Humans Leukemia, Myeloid, Acute - metabolism Leukemia, Myeloid, Acute - pathology LIM Domain Proteins - metabolism Protein Binding Proto-Oncogene Proteins - metabolism RNA Interference RNA, Messenger - metabolism RNA, Small Interfering Sequence Analysis, RNA Trans-Activators - metabolism Translocation, Genetic |
| Title | Identification of a Dynamic Core Transcriptional Network in t(8;21) AML that Regulates Differentiation Block and Self-Renewal |
| URI | https://dx.doi.org/10.1016/j.celrep.2014.08.024 https://www.ncbi.nlm.nih.gov/pubmed/25242324 https://www.proquest.com/docview/1566110935 https://pubmed.ncbi.nlm.nih.gov/PMC4487811 https://doaj.org/article/1fe4d0303dc543039f5c3b1c928e5200 |
| Volume | 8 |
| WOSCitedRecordID | wos000343867400034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgBRIXxJvyWBmJAxwiGj8SR5z2wYoDVGgBqTfLscfaLlWK2iyIA_-dmTipGjj0wilRYiexZzwzjsffx9hLF8GEKYQMvT9NUPDMBaczwNCaiN7RZaqObKKczcx8Xn3aofqinLAED5w67k0eQQXURBm8Vnioovayzn0lDBBkEFlfjHp2JlPJBhOWGS0pC0E5W0KVw765LrnLw3INBFeZqw7BU6iRX-rg-0fu6d_w8-8syh23dHaH3e7jSX6U2nGXXYPmHruZGCZ_3We_00bc2P-Z46vIHT9NLPT8ZLUG3jmrwXTgk2YpL5wvGt6-Mm9F_pofffzA2wvX8vNEXA8bftrzqrRJsvwYfeI37prAP8MyZudoQX-65QP29ezdl5P3Wc-4kHktqjYTsSD8PO2Di0aqmE_Bhyh94bCPoaiDn4bCV2VwahpzUaAkQBkZYtTKG_T8D9lBs2rgMeO-JlTIulQuD8qI3NUyaFmijXAQlJMTJof-tr6HIydWjKUd8s4ubZKSJSlZIssUasKyba3vCY5jT_ljEuW2LIFpdxdQxWyvYnafik1YOSiC7eOSFG_goxZ7Xv9i0BuLw5bWYlwDq6uNpWkzgb1KPWGPkh5tP1JoCnKpdjnSsFErxneaxUUHDY6Tbdo6_OR_NPspu0VN6fbv62fsoF1fwXN2w_9oF5v1Ibtezs1hN-r-AAK6Lvw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+a+Dynamic+Core+Transcriptional+Network+in+t%288%3B21%29+AML+that+Regulates+Differentiation+Block+and+Self-Renewal&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Anetta+Ptasinska&rft.au=Salam%C2%A0A.+Assi&rft.au=Natalia+Martinez-Soria&rft.au=Maria%C2%A0Rosaria+Imperato&rft.date=2014-09-25&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=8&rft.issue=6&rft.spage=1974&rft.epage=1988&rft_id=info:doi/10.1016%2Fj.celrep.2014.08.024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1fe4d0303dc543039f5c3b1c928e5200 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |