Global Cancer Transcriptome Quantifies Repeat Element Polarization between Immunotherapy Responsive and T Cell Suppressive Classes

It has been posited that anti-tumoral innate activation is driven by derepression of endogenous repeats. We compared RNA sequencing protocols to assess repeat transcriptomes in The Cancer Genome Atlas (TCGA). Although poly(A) selection efficiently detects coding genes, most non-coding genes, and lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) Jg. 23; H. 2; S. 512 - 521
Hauptverfasser: Solovyov, Alexander, Vabret, Nicolas, Arora, Kshitij S., Snyder, Alexandra, Funt, Samuel A., Bajorin, Dean F., Rosenberg, Jonathan E., Bhardwaj, Nina, Ting, David T., Greenbaum, Benjamin D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 10.04.2018
Elsevier
Schlagworte:
ISSN:2211-1247, 2211-1247
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract It has been posited that anti-tumoral innate activation is driven by derepression of endogenous repeats. We compared RNA sequencing protocols to assess repeat transcriptomes in The Cancer Genome Atlas (TCGA). Although poly(A) selection efficiently detects coding genes, most non-coding genes, and limited subsets of repeats, it fails to capture overall repeat expression and co-expression. Alternatively, total RNA expression reveals distinct repeat co-expression subgroups and delivers greater dynamic changes, implying they may serve as better biomarkers of clinical outcomes. We show that endogenous retrovirus expression predicts immunotherapy response better than conventional immune signatures in one cohort yet is not predictive in another. Moreover, we find that global repeat derepression, including the HSATII satellite repeat, correlates with an immunosuppressive phenotype in colorectal and pancreatic tumors and validate in situ. In conclusion, we stress the importance of analyzing the full spectrum of repeat transcription to decode their role in tumor immunity. [Display omitted] •RNA repeats are not properly detected in poly(A)-selected libraries•Expression of specific RNA repeat classes correlates with immune infiltrates in tumors•Quantifying nucleic acid repeats in tumors can serve as immunotherapy biomarkers Solovyov et al. compare protocols used in tumor transcriptional profiling. They show the most widely used poly(A) protocol fails to detect several classes of repeat RNAs. In contrast, repeat expression in total RNA sequencing can correlate with the cancer-immune phenotypes and patient responses to immunotherapy.
AbstractList It has been posited that anti-tumoral innate activation is driven by derepression of endogenous repeats. We compared RNA sequencing protocols to assess repeat transcriptomes in The Cancer Genome Atlas (TCGA). Although poly(A) selection efficiently detects coding genes, most non-coding genes, and limited subsets of repeats, it fails to capture overall repeat expression and co-expression. Alternatively, total RNA expression reveals distinct repeat co-expression subgroups and delivers greater dynamic changes, implying they may serve as better biomarkers of clinical outcomes. We show that endogenous retrovirus expression predicts immunotherapy response better than conventional immune signatures in one cohort yet is not predictive in another. Moreover, we find that global repeat derepression, including the HSATII satellite repeat, correlates with an immunosuppressive phenotype in colorectal and pancreatic tumors and validate in situ. In conclusion, we stress the importance of analyzing the full spectrum of repeat transcription to decode their role in tumor immunity. Solovyov et al. compare protocols used in tumor transcriptional profiling. They show the most widely used poly(A) protocol fails to detect several classes of repeat RNAs. In contrast, repeat expression in total RNA sequencing can correlate with the cancer-immune phenotypes and patient responses to immunotherapy.
It has been posited that anti-tumoral innate activation is driven by derepression of endogenous repeats. We compared RNA sequencing protocols to assess repeat transcriptomes in The Cancer Genome Atlas (TCGA). Although poly(A) selection efficiently detects coding genes, most non-coding genes, and limited subsets of repeats, it fails to capture overall repeat expression and co-expression. Alternatively, total RNA expression reveals distinct repeat co-expression subgroups and delivers greater dynamic changes, implying they may serve as better biomarkers of clinical outcomes. We show that endogenous retrovirus expression predicts immunotherapy response better than conventional immune signatures in one cohort yet is not predictive in another. Moreover, we find that global repeat derepression, including the HSATII satellite repeat, correlates with an immunosuppressive phenotype in colorectal and pancreatic tumors and validate in situ. In conclusion, we stress the importance of analyzing the full spectrum of repeat transcription to decode their role in tumor immunity.It has been posited that anti-tumoral innate activation is driven by derepression of endogenous repeats. We compared RNA sequencing protocols to assess repeat transcriptomes in The Cancer Genome Atlas (TCGA). Although poly(A) selection efficiently detects coding genes, most non-coding genes, and limited subsets of repeats, it fails to capture overall repeat expression and co-expression. Alternatively, total RNA expression reveals distinct repeat co-expression subgroups and delivers greater dynamic changes, implying they may serve as better biomarkers of clinical outcomes. We show that endogenous retrovirus expression predicts immunotherapy response better than conventional immune signatures in one cohort yet is not predictive in another. Moreover, we find that global repeat derepression, including the HSATII satellite repeat, correlates with an immunosuppressive phenotype in colorectal and pancreatic tumors and validate in situ. In conclusion, we stress the importance of analyzing the full spectrum of repeat transcription to decode their role in tumor immunity.
It has been posited that anti-tumoral innate activation is driven by derepression of endogenous repeats. We compared RNA sequencing protocols to assess repeat transcriptomes in The Cancer Genome Atlas (TCGA). Although poly(A) selection efficiently detects coding genes, most non-coding genes, and limited subsets of repeats, it fails to capture overall repeat expression and co-expression. Alternatively, total RNA expression reveals distinct repeat co-expression subgroups and delivers greater dynamic changes, implying they may serve as better biomarkers of clinical outcomes. We show that endogenous retrovirus expression predicts immunotherapy response better than conventional immune signatures in one cohort yet is not predictive in another. Moreover, we find that global repeat derepression, including the HSATII satellite repeat, correlates with an immunosuppressive phenotype in colorectal and pancreatic tumors and validate in situ. In conclusion, we stress the importance of analyzing the full spectrum of repeat transcription to decode their role in tumor immunity.
It has been posited that anti-tumoral innate activation is driven by derepression of endogenous repeats. We compared RNA sequencing protocols to assess repeat transcriptomes in The Cancer Genome Atlas (TCGA). Although poly(A) selection efficiently detects coding genes, most non-coding genes, and limited subsets of repeats, it fails to capture overall repeat expression and co-expression. Alternatively, total RNA expression reveals distinct repeat co-expression subgroups and delivers greater dynamic changes, implying they may serve as better biomarkers of clinical outcomes. We show that endogenous retrovirus expression predicts immunotherapy response better than conventional immune signatures in one cohort yet is not predictive in another. Moreover, we find that global repeat derepression, including the HSATII satellite repeat, correlates with an immunosuppressive phenotype in colorectal and pancreatic tumors and validate in situ. In conclusion, we stress the importance of analyzing the full spectrum of repeat transcription to decode their role in tumor immunity. [Display omitted] •RNA repeats are not properly detected in poly(A)-selected libraries•Expression of specific RNA repeat classes correlates with immune infiltrates in tumors•Quantifying nucleic acid repeats in tumors can serve as immunotherapy biomarkers Solovyov et al. compare protocols used in tumor transcriptional profiling. They show the most widely used poly(A) protocol fails to detect several classes of repeat RNAs. In contrast, repeat expression in total RNA sequencing can correlate with the cancer-immune phenotypes and patient responses to immunotherapy.
It has been posited that anti-tumoral innate activation is driven by derepression of endogenous repeats. We compared RNA sequencing protocols to assess repeat transcriptomes in The Cancer Genome Atlas (TCGA). Although poly(A) selection efficiently detects coding genes, most non-coding genes, and limited subsets of repeats, it fails to capture overall repeat expression and co-expression. Alternatively, total RNA expression reveals distinct repeat co-expression subgroups and delivers greater dynamic changes, implying they may serve as better biomarkers of clinical outcomes. We show that endogenous retrovirus expression predicts immunotherapy response better than conventional immune signatures in one cohort yet is not predictive in another. Moreover, we find that global repeat derepression, including the HSATII satellite repeat, correlates with an immunosuppressive phenotype in colorectal and pancreatic tumors and validate in situ. In conclusion, we stress the importance of analyzing the full spectrum of repeat transcription to decode their role in tumor immunity. : Solovyov et al. compare protocols used in tumor transcriptional profiling. They show the most widely used poly(A) protocol fails to detect several classes of repeat RNAs. In contrast, repeat expression in total RNA sequencing can correlate with the cancer-immune phenotypes and patient responses to immunotherapy. Keywords: RNA-seq, ERV, HSATII, innate immunity, microenvironment, repetitive elements, immunotherapy, cancer immunity
Author Greenbaum, Benjamin D.
Funt, Samuel A.
Arora, Kshitij S.
Rosenberg, Jonathan E.
Bhardwaj, Nina
Snyder, Alexandra
Solovyov, Alexander
Bajorin, Dean F.
Vabret, Nicolas
Ting, David T.
AuthorAffiliation 2 Department of Oncological Sciences and Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
7 Department of Medicine, Weill Cornell Medical College, New York, NY, USA
1 Tisch Cancer Institute, Departments of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
5 Department of Pathology and Department of Surgery, Harvard Medical School, Charlestown, MA, USA
3 Precision Immunology Institute at the Icahn School of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
9 Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
6 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
4 Massachusetts General Hospital Cancer Center, Boston, MA, USA
8 Department of Medicine, Harvard Medical School, Boston, MA, USA
AuthorAffiliation_xml – name: 3 Precision Immunology Institute at the Icahn School of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
– name: 7 Department of Medicine, Weill Cornell Medical College, New York, NY, USA
– name: 2 Department of Oncological Sciences and Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
– name: 1 Tisch Cancer Institute, Departments of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
– name: 9 Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
– name: 6 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– name: 4 Massachusetts General Hospital Cancer Center, Boston, MA, USA
– name: 5 Department of Pathology and Department of Surgery, Harvard Medical School, Charlestown, MA, USA
– name: 8 Department of Medicine, Harvard Medical School, Boston, MA, USA
Author_xml – sequence: 1
  givenname: Alexander
  surname: Solovyov
  fullname: Solovyov, Alexander
  organization: Tisch Cancer Institute, Departments of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
– sequence: 2
  givenname: Nicolas
  surname: Vabret
  fullname: Vabret, Nicolas
  organization: Tisch Cancer Institute, Departments of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
– sequence: 3
  givenname: Kshitij S.
  surname: Arora
  fullname: Arora, Kshitij S.
  organization: Massachusetts General Hospital Cancer Center, Boston, MA, USA
– sequence: 4
  givenname: Alexandra
  surname: Snyder
  fullname: Snyder, Alexandra
  organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– sequence: 5
  givenname: Samuel A.
  surname: Funt
  fullname: Funt, Samuel A.
  organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– sequence: 6
  givenname: Dean F.
  surname: Bajorin
  fullname: Bajorin, Dean F.
  organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– sequence: 7
  givenname: Jonathan E.
  surname: Rosenberg
  fullname: Rosenberg, Jonathan E.
  organization: Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– sequence: 8
  givenname: Nina
  surname: Bhardwaj
  fullname: Bhardwaj, Nina
  organization: Tisch Cancer Institute, Departments of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
– sequence: 9
  givenname: David T.
  surname: Ting
  fullname: Ting, David T.
  organization: Massachusetts General Hospital Cancer Center, Boston, MA, USA
– sequence: 10
  givenname: Benjamin D.
  surname: Greenbaum
  fullname: Greenbaum, Benjamin D.
  email: benjamin.greenbaum@mssm.edu
  organization: Tisch Cancer Institute, Departments of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29642008$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNUREvpP0AoRy672I6TjTkgoVUpK1Xiq5ytiT1pvXLsYDtblSO_HO9HUcsBfLE1nnlead73eXHkvMOieEnJnBLavFnPFdqA45wR2s5JNSecPSlOGKN0RhlfHD14HxdnMa5JPg2hVPBnxTETDWeEtCfFrwvrO7DlEpzCUF4FcFEFMyY_YPllApdMbzCWX3FESOW5xQFdKj97C8H8hGS8KztMt4iuXA3D5Hy6wQDjXZ6Io3fRbLAEp8urconWlt-mcQwYd-WlhRgxviie9mAjnh3u0-L7h_Or5cfZ5aeL1fL95UzVTKQZVYqIRijaEkFr3S80ZR3RCNhSDY0iWuiOAAWAfsEReC8UKsZFW9WtFrQ6LVZ7rvawlmMwA4Q76cHIXcGHawkhGWVRqlrXXdtVXa973vOmq1q6qEW_qHvQfbPIrHd71jh1A2qVdxLAPoI-_nHmRl77jcwWNG1dZcDrAyD4HxPGJAcTs6cWHPopSkYY500t2Fbr1UOtPyL3JuaGt_sGFXyMAXupTNpZk6WNlZTIbWjkWu5DI7ehkaSSOTR5mP81fM__z9hhAZgd2xgMMiqDOUPaBFQpr9T8G_Ab8t7h-w
CitedBy_id crossref_primary_10_1111_nyas_14526
crossref_primary_10_1080_15384101_2018_1502576
crossref_primary_10_1186_s13100_023_00306_5
crossref_primary_10_1038_s41598_019_43591_y
crossref_primary_10_2217_epi_2020_0440
crossref_primary_10_7717_peerj_8192
crossref_primary_10_3390_ijms23063359
crossref_primary_10_1111_cas_15771
crossref_primary_10_1007_s10517_022_05530_2
crossref_primary_10_3390_cancers13143408
crossref_primary_10_3390_cancers15112969
crossref_primary_10_3390_cancers15143664
crossref_primary_10_3390_ijms23031330
crossref_primary_10_1146_annurev_genom_111522_014017
crossref_primary_10_1016_j_ccell_2019_04_004
crossref_primary_10_1016_j_cell_2024_09_024
crossref_primary_10_1002_cncr_33172
crossref_primary_10_1038_s41581_023_00700_5
crossref_primary_10_1038_s41422_023_00909_w
crossref_primary_10_1016_j_isci_2024_111011
crossref_primary_10_1101_gr_248922_119
crossref_primary_10_3390_jcm9010286
crossref_primary_10_1038_s41467_025_57271_1
crossref_primary_10_1016_j_jtocrr_2022_100430
crossref_primary_10_1002_ggn2_202200024
crossref_primary_10_1136_jitc_2024_010386
crossref_primary_10_1016_j_canlet_2021_03_004
crossref_primary_10_1016_j_immuni_2024_10_015
crossref_primary_10_1038_s41467_018_07944_x
crossref_primary_10_1016_j_gene_2022_146344
crossref_primary_10_1016_j_ebiom_2025_105727
crossref_primary_10_3389_fimmu_2022_886683
crossref_primary_10_1038_s41568_019_0109_9
crossref_primary_10_3389_fonc_2021_637981
crossref_primary_10_3390_biomedicines11030936
crossref_primary_10_3390_ijms21093201
crossref_primary_10_1016_j_heliyon_2021_e06388
crossref_primary_10_1172_JCI161981
crossref_primary_10_1136_jitc_2022_004669
crossref_primary_10_1172_JCI155931
crossref_primary_10_1073_pnas_2213146119
crossref_primary_10_1038_s43018_021_00269_7
crossref_primary_10_1172_JCI169470
crossref_primary_10_1038_s41419_023_05553_1
crossref_primary_10_1016_j_ceb_2020_02_015
crossref_primary_10_1038_s41391_022_00537_2
crossref_primary_10_1016_j_jbc_2024_105742
crossref_primary_10_1158_2159_8290_CD_21_1117
crossref_primary_10_3389_fimmu_2020_00538
crossref_primary_10_3390_v13061019
crossref_primary_10_1002_ajh_27501
crossref_primary_10_15252_embj_2023114331
crossref_primary_10_3389_fgene_2019_00735
crossref_primary_10_1146_annurev_cancerbio_030419_033604
crossref_primary_10_1038_s41467_020_19464_8
crossref_primary_10_3390_biomedicines10030650
crossref_primary_10_1186_s12864_019_5803_1
crossref_primary_10_3389_fonc_2023_1088534
crossref_primary_10_3390_biomedicines10123101
crossref_primary_10_1016_j_cancergen_2019_09_002
crossref_primary_10_1186_s13100_019_0180_5
crossref_primary_10_3390_ijms24086918
Cites_doi 10.1172/jci.insight.91078
10.1093/bioinformatics/btl117
10.1186/gb-2014-15-2-r29
10.1146/annurev-immunol-032414-112043
10.1097/PPO.0000000000000045
10.1016/j.cell.2014.12.033
10.1172/jci.insight.92102
10.1016/j.cell.2016.02.065
10.1002/bies.201600031
10.1073/pnas.1518008112
10.1093/bioinformatics/btp616
10.1146/annurev-cancerbio-050216-034443
10.1172/JCI63606
10.1186/gb-2010-11-3-r25
10.1371/journal.pmed.1002309
10.1073/pnas.1517584112
10.1073/pnas.1402285111
10.1073/pnas.1216922110
10.1186/1471-2164-15-419
10.1016/j.cell.2015.07.011
10.1038/nature24039
10.1126/science.1200801
10.1101/gad.266098.115
10.1038/nature14404
10.1016/j.semcancer.2012.06.008
10.1016/j.coisb.2016.12.008
10.1016/j.it.2016.10.006
10.1016/j.cell.2015.07.056
10.1186/s13100-015-0041-9
10.1038/nature21349
10.1093/nar/gkv007
10.1186/1471-2164-15-583
10.2202/1544-6115.1027
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2018.03.042
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 521
ExternalDocumentID oai_doaj_org_article_c5d5b8b3bfdf4f46b381759f75fadf67
PMC6016853
29642008
10_1016_j_celrep_2018_03_042
S221112471830384X
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI081848
– fundername: NCI NIH HHS
  grantid: R01 CA201189
– fundername: NCI NIH HHS
  grantid: P01 CA087497
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: K12 CA184746
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-1cc0969c180915df7d12b0deae81da6c0d9db0a1aaaf74ea4f9cec2498358d913
IEDL.DBID DOA
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429866600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Fri Oct 03 12:52:20 EDT 2025
Tue Sep 30 16:14:37 EDT 2025
Fri Sep 05 14:52:37 EDT 2025
Thu Apr 03 07:02:26 EDT 2025
Wed Nov 05 20:46:04 EST 2025
Tue Nov 18 22:00:30 EST 2025
Wed May 17 02:14:14 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords microenvironment
HSATII
RNA-seq
innate immunity
immunotherapy
ERV
repetitive elements
cancer immunity
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-1cc0969c180915df7d12b0deae81da6c0d9db0a1aaaf74ea4f9cec2498358d913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
Senior author
OpenAccessLink https://doaj.org/article/c5d5b8b3bfdf4f46b381759f75fadf67
PMID 29642008
PQID 2024465927
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_c5d5b8b3bfdf4f46b381759f75fadf67
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6016853
proquest_miscellaneous_2024465927
pubmed_primary_29642008
crossref_citationtrail_10_1016_j_celrep_2018_03_042
crossref_primary_10_1016_j_celrep_2018_03_042
elsevier_sciencedirect_doi_10_1016_j_celrep_2018_03_042
PublicationCentury 2000
PublicationDate 2018-04-10
PublicationDateYYYYMMDD 2018-04-10
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Smyth (bib23) 2004; 3
Chiappinelli, Strissel, Desrichard, Li, Henke, Akman, Hein, Rote, Cope, Snyder (bib7) 2015; 162
Robinson, Oshlack (bib19) 2010; 11
Zambirinis, Pushalkar, Saxena, Miller (bib33) 2014; 20
Ochi, Graffeo, Zambirinis, Rehman, Hackman, Fallon, Barilla, Henning, Jamal, Rao (bib17) 2012; 122
Takata, Gonçalves-Carneiro, Zang, Soll, York, Blanco-Melo, Bieniasz (bib27) 2017; 550
Badal, Solovyov, Di Cecilia, Chan, Chang, Iqbal, Aydin, Rajan, Chen, Abbate (bib1) 2017; 2
Zhao, He, Hoadley, Parker, Hayes, Perou (bib34) 2014; 15
Woo, Corrales, Gajewski (bib31) 2015; 33
Levine, Ting, Greenbaum (bib15) 2016; 38
Carone, Lawrence (bib4) 2013; 23
Hugo, Zaretsky, Sun, Song, Moreno, Hu-Lieskovan, Berent-Maoz, Pang, Chmielowski, Cherry (bib12) 2016; 165
Spranger, Bao, Gajewski (bib25) 2015; 523
Chatenay, Cocco, Greenbaum, Monasson, Netter (bib5) 2017
Ting, Lipson, Paul, Brannigan, Akhavanfard, Coffman, Contino, Deshpande, Iafrate, Letovsky (bib29) 2011; 331
Greenbaum, Cocco, Levine, Monasson (bib11) 2014; 111
Chen, Mellman (bib6) 2017; 541
Tanne, Muniz, Puzio-Kuter, Leonova, Gudkov, Ting, Monasson, Cocco, Levine, Bhardwaj, Greenbaum (bib28) 2015; 112
Rooney, Shukla, Wu, Getz, Hacohen (bib21) 2015; 160
Bao, Kojima, Kohany (bib2) 2015; 6
Leonova, Brodsky, Lipchick, Pal, Novototskaya, Chenchik, Sen, Komarova, Gudkov (bib14) 2013; 110
Ritchie, Phipson, Wu, Hu, Law, Shi, Smyth (bib18) 2015; 43
Robinson, McCarthy, Smyth (bib20) 2010; 26
Desai, Sajed, Arora, Solovyov, Rajurkar, Bledsoe, Sil, Amri, Tai, MacKenzie (bib9) 2017; 2
Law, Chen, Shi, Smyth (bib13) 2014; 15
Roulois, Loo Yau, Singhania, Wang, Danesh, Shen, Han, Liang, Jones, Pugh (bib22) 2015; 162
Suzuki, Shimodaira (bib26) 2006; 22
Criscione, Zhang, Thompson, Sedivy, Neretti (bib8) 2014; 15
Snyder, Nathanson, Funt, Ahuja, Buros Novik, Hellmann, Chang, Aksoy, Al-Ahmadie, Yusko (bib24) 2017; 14
Vabret, Bhardwaj, Greenbaum (bib30) 2017; 38
Wylie, Jones, D’Brot, Lu, Kurtz, Moran, Rakheja, Chen, Hammer, Comerford (bib32) 2016; 30
Lin, He (bib16) 2017; 1
Bersani, Lee, Kharchenko, Xu, Liu, Xega, MacKenzie, Brannigan, Wittner, Jung (bib3) 2015; 112
Greenbaum (bib10) 2017; 1
Carone (10.1016/j.celrep.2018.03.042_bib4) 2013; 23
Leonova (10.1016/j.celrep.2018.03.042_bib14) 2013; 110
Badal (10.1016/j.celrep.2018.03.042_bib1) 2017; 2
Roulois (10.1016/j.celrep.2018.03.042_bib22) 2015; 162
Smyth (10.1016/j.celrep.2018.03.042_bib23) 2004; 3
Tanne (10.1016/j.celrep.2018.03.042_bib28) 2015; 112
Ting (10.1016/j.celrep.2018.03.042_bib29) 2011; 331
Vabret (10.1016/j.celrep.2018.03.042_bib30) 2017; 38
Wylie (10.1016/j.celrep.2018.03.042_bib32) 2016; 30
Robinson (10.1016/j.celrep.2018.03.042_bib19) 2010; 11
Greenbaum (10.1016/j.celrep.2018.03.042_bib10) 2017; 1
Greenbaum (10.1016/j.celrep.2018.03.042_bib11) 2014; 111
Woo (10.1016/j.celrep.2018.03.042_bib31) 2015; 33
Desai (10.1016/j.celrep.2018.03.042_bib9) 2017; 2
Suzuki (10.1016/j.celrep.2018.03.042_bib26) 2006; 22
Rooney (10.1016/j.celrep.2018.03.042_bib21) 2015; 160
Takata (10.1016/j.celrep.2018.03.042_bib27) 2017; 550
Law (10.1016/j.celrep.2018.03.042_bib13) 2014; 15
Chatenay (10.1016/j.celrep.2018.03.042_bib5) 2017
Zambirinis (10.1016/j.celrep.2018.03.042_bib33) 2014; 20
Bersani (10.1016/j.celrep.2018.03.042_bib3) 2015; 112
Lin (10.1016/j.celrep.2018.03.042_bib16) 2017; 1
Ritchie (10.1016/j.celrep.2018.03.042_bib18) 2015; 43
Levine (10.1016/j.celrep.2018.03.042_bib15) 2016; 38
Chen (10.1016/j.celrep.2018.03.042_bib6) 2017; 541
Robinson (10.1016/j.celrep.2018.03.042_bib20) 2010; 26
Snyder (10.1016/j.celrep.2018.03.042_bib24) 2017; 14
Criscione (10.1016/j.celrep.2018.03.042_bib8) 2014; 15
Zhao (10.1016/j.celrep.2018.03.042_bib34) 2014; 15
Hugo (10.1016/j.celrep.2018.03.042_bib12) 2016; 165
Chiappinelli (10.1016/j.celrep.2018.03.042_bib7) 2015; 162
Ochi (10.1016/j.celrep.2018.03.042_bib17) 2012; 122
Spranger (10.1016/j.celrep.2018.03.042_bib25) 2015; 523
Bao (10.1016/j.celrep.2018.03.042_bib2) 2015; 6
References_xml – volume: 33
  start-page: 445
  year: 2015
  end-page: 474
  ident: bib31
  article-title: Innate immune recognition of cancer
  publication-title: Annu. Rev. Immunol.
– volume: 523
  start-page: 231
  year: 2015
  end-page: 235
  ident: bib25
  article-title: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity
  publication-title: Nature
– volume: 2
  start-page: e92102
  year: 2017
  ident: bib1
  article-title: Transcriptional dissection of melanoma identifies a high-risk subtype underlying TP53 family genes and epigenome deregulation
  publication-title: JCI Insight
– volume: 11
  start-page: R25
  year: 2010
  ident: bib19
  article-title: A scaling normalization method for differential expression analysis of RNA-seq data
  publication-title: Genome Biol.
– volume: 6
  start-page: 11
  year: 2015
  ident: bib2
  article-title: Repbase Update, a database of repetitive elements in eukaryotic genomes
  publication-title: Mob. DNA
– volume: 15
  start-page: 419
  year: 2014
  ident: bib34
  article-title: Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling
  publication-title: BMC Genomics
– volume: 112
  start-page: 15148
  year: 2015
  end-page: 15153
  ident: bib3
  article-title: Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 23
  start-page: 99
  year: 2013
  end-page: 108
  ident: bib4
  article-title: Heterochromatin instability in cancer: from the Barr body to satellites and the nuclear periphery
  publication-title: Semin. Cancer Biol.
– volume: 160
  start-page: 48
  year: 2015
  end-page: 61
  ident: bib21
  article-title: Molecular and genetic properties of tumors associated with local immune cytolytic activity
  publication-title: Cell
– volume: 3
  start-page: e3
  year: 2004
  ident: bib23
  article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat. Appl. Genet. Mol. Biol.
– volume: 14
  start-page: e1002309
  year: 2017
  ident: bib24
  article-title: Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis
  publication-title: PLoS Med.
– volume: 43
  start-page: e47
  year: 2015
  ident: bib18
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
– volume: 112
  start-page: 15154
  year: 2015
  end-page: 15159
  ident: bib28
  article-title: Distinguishing the immunostimulatory properties of noncoding RNAs expressed in cancer cells
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 111
  start-page: 5054
  year: 2014
  end-page: 5059
  ident: bib11
  article-title: Quantitative theory of entropic forces acting on constrained nucleotide sequences applied to viruses
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 30
  start-page: 64
  year: 2016
  end-page: 77
  ident: bib32
  article-title: p53 genes function to restrain mobile elements
  publication-title: Genes Dev.
– volume: 110
  start-page: E89
  year: 2013
  end-page: E98
  ident: bib14
  article-title: p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 331
  start-page: 593
  year: 2011
  end-page: 596
  ident: bib29
  article-title: Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers
  publication-title: Science
– volume: 15
  start-page: R29
  year: 2014
  ident: bib13
  article-title: voom: precision weights unlock linear model analysis tools for RNA-seq read counts
  publication-title: Genome Biol.
– year: 2017
  ident: bib5
  article-title: Evolutionary constraints on coding sequences at the nucleotidic level: a statistical physics approach
  publication-title: Proceedings of the XXth Evolutionary Biology Meeting, Marseilles
– volume: 1
  start-page: 163
  year: 2017
  end-page: 184
  ident: bib16
  article-title: Noncoding RNAs in cancer development
  publication-title: Annu. Rev. Cancer Biol.
– volume: 38
  start-page: 53
  year: 2017
  end-page: 65
  ident: bib30
  article-title: Sequence-specific sensing of nucleic acids
  publication-title: Trends Immunol.
– volume: 162
  start-page: 974
  year: 2015
  end-page: 986
  ident: bib7
  article-title: Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses
  publication-title: Cell
– volume: 165
  start-page: 35
  year: 2016
  end-page: 44
  ident: bib12
  article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma
  publication-title: Cell
– volume: 2
  start-page: e91078
  year: 2017
  ident: bib9
  article-title: Diverse repetitive element RNA expression defines epigenetic and immunologic features of colon cancer
  publication-title: JCI Insight
– volume: 20
  start-page: 195
  year: 2014
  end-page: 202
  ident: bib33
  article-title: Pancreatic cancer, inflammation, and microbiome
  publication-title: Cancer J.
– volume: 22
  start-page: 1540
  year: 2006
  end-page: 1542
  ident: bib26
  article-title: Pvclust: an R package for assessing the uncertainty in hierarchical clustering
  publication-title: Bioinformatics
– volume: 38
  start-page: 508
  year: 2016
  end-page: 513
  ident: bib15
  article-title: P53 and the defenses against genome instability caused by transposons and repetitive elements
  publication-title: BioEssays
– volume: 541
  start-page: 321
  year: 2017
  end-page: 330
  ident: bib6
  article-title: Elements of cancer immunity and the cancer-immune set point
  publication-title: Nature
– volume: 122
  start-page: 4118
  year: 2012
  end-page: 4129
  ident: bib17
  article-title: Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans
  publication-title: J. Clin. Invest.
– volume: 550
  start-page: 124
  year: 2017
  end-page: 127
  ident: bib27
  article-title: CG dinucleotide suppression enables antiviral defence targeting non-self RNA
  publication-title: Nature
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: bib20
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 15
  start-page: 583
  year: 2014
  ident: bib8
  article-title: Transcriptional landscape of repetitive elements in normal and cancer human cells
  publication-title: BMC Genomics
– volume: 162
  start-page: 961
  year: 2015
  end-page: 973
  ident: bib22
  article-title: DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts
  publication-title: Cell
– volume: 1
  start-page: 137
  year: 2017
  end-page: 142
  ident: bib10
  article-title: Innate immune driven evolution via immunostimulatory RNA: viruses that mimic hosts, tumors that mimic viruses
  publication-title: Curr. Opin. Syst. Biol.
– volume: 2
  start-page: e91078
  year: 2017
  ident: 10.1016/j.celrep.2018.03.042_bib9
  article-title: Diverse repetitive element RNA expression defines epigenetic and immunologic features of colon cancer
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.91078
– volume: 22
  start-page: 1540
  year: 2006
  ident: 10.1016/j.celrep.2018.03.042_bib26
  article-title: Pvclust: an R package for assessing the uncertainty in hierarchical clustering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl117
– volume: 15
  start-page: R29
  year: 2014
  ident: 10.1016/j.celrep.2018.03.042_bib13
  article-title: voom: precision weights unlock linear model analysis tools for RNA-seq read counts
  publication-title: Genome Biol.
  doi: 10.1186/gb-2014-15-2-r29
– volume: 33
  start-page: 445
  year: 2015
  ident: 10.1016/j.celrep.2018.03.042_bib31
  article-title: Innate immune recognition of cancer
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032414-112043
– volume: 20
  start-page: 195
  year: 2014
  ident: 10.1016/j.celrep.2018.03.042_bib33
  article-title: Pancreatic cancer, inflammation, and microbiome
  publication-title: Cancer J.
  doi: 10.1097/PPO.0000000000000045
– year: 2017
  ident: 10.1016/j.celrep.2018.03.042_bib5
  article-title: Evolutionary constraints on coding sequences at the nucleotidic level: a statistical physics approach
  publication-title: Proceedings of the XXth Evolutionary Biology Meeting, Marseilles
– volume: 160
  start-page: 48
  year: 2015
  ident: 10.1016/j.celrep.2018.03.042_bib21
  article-title: Molecular and genetic properties of tumors associated with local immune cytolytic activity
  publication-title: Cell
  doi: 10.1016/j.cell.2014.12.033
– volume: 2
  start-page: e92102
  year: 2017
  ident: 10.1016/j.celrep.2018.03.042_bib1
  article-title: Transcriptional dissection of melanoma identifies a high-risk subtype underlying TP53 family genes and epigenome deregulation
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.92102
– volume: 165
  start-page: 35
  year: 2016
  ident: 10.1016/j.celrep.2018.03.042_bib12
  article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.065
– volume: 38
  start-page: 508
  year: 2016
  ident: 10.1016/j.celrep.2018.03.042_bib15
  article-title: P53 and the defenses against genome instability caused by transposons and repetitive elements
  publication-title: BioEssays
  doi: 10.1002/bies.201600031
– volume: 112
  start-page: 15148
  year: 2015
  ident: 10.1016/j.celrep.2018.03.042_bib3
  article-title: Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1518008112
– volume: 26
  start-page: 139
  year: 2010
  ident: 10.1016/j.celrep.2018.03.042_bib20
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 1
  start-page: 163
  year: 2017
  ident: 10.1016/j.celrep.2018.03.042_bib16
  article-title: Noncoding RNAs in cancer development
  publication-title: Annu. Rev. Cancer Biol.
  doi: 10.1146/annurev-cancerbio-050216-034443
– volume: 122
  start-page: 4118
  year: 2012
  ident: 10.1016/j.celrep.2018.03.042_bib17
  article-title: Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI63606
– volume: 11
  start-page: R25
  year: 2010
  ident: 10.1016/j.celrep.2018.03.042_bib19
  article-title: A scaling normalization method for differential expression analysis of RNA-seq data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-3-r25
– volume: 14
  start-page: e1002309
  year: 2017
  ident: 10.1016/j.celrep.2018.03.042_bib24
  article-title: Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002309
– volume: 112
  start-page: 15154
  year: 2015
  ident: 10.1016/j.celrep.2018.03.042_bib28
  article-title: Distinguishing the immunostimulatory properties of noncoding RNAs expressed in cancer cells
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1517584112
– volume: 111
  start-page: 5054
  year: 2014
  ident: 10.1016/j.celrep.2018.03.042_bib11
  article-title: Quantitative theory of entropic forces acting on constrained nucleotide sequences applied to viruses
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1402285111
– volume: 110
  start-page: E89
  year: 2013
  ident: 10.1016/j.celrep.2018.03.042_bib14
  article-title: p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1216922110
– volume: 15
  start-page: 419
  year: 2014
  ident: 10.1016/j.celrep.2018.03.042_bib34
  article-title: Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-419
– volume: 162
  start-page: 974
  year: 2015
  ident: 10.1016/j.celrep.2018.03.042_bib7
  article-title: Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.011
– volume: 550
  start-page: 124
  year: 2017
  ident: 10.1016/j.celrep.2018.03.042_bib27
  article-title: CG dinucleotide suppression enables antiviral defence targeting non-self RNA
  publication-title: Nature
  doi: 10.1038/nature24039
– volume: 331
  start-page: 593
  year: 2011
  ident: 10.1016/j.celrep.2018.03.042_bib29
  article-title: Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers
  publication-title: Science
  doi: 10.1126/science.1200801
– volume: 30
  start-page: 64
  year: 2016
  ident: 10.1016/j.celrep.2018.03.042_bib32
  article-title: p53 genes function to restrain mobile elements
  publication-title: Genes Dev.
  doi: 10.1101/gad.266098.115
– volume: 523
  start-page: 231
  year: 2015
  ident: 10.1016/j.celrep.2018.03.042_bib25
  article-title: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity
  publication-title: Nature
  doi: 10.1038/nature14404
– volume: 23
  start-page: 99
  year: 2013
  ident: 10.1016/j.celrep.2018.03.042_bib4
  article-title: Heterochromatin instability in cancer: from the Barr body to satellites and the nuclear periphery
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2012.06.008
– volume: 1
  start-page: 137
  year: 2017
  ident: 10.1016/j.celrep.2018.03.042_bib10
  article-title: Innate immune driven evolution via immunostimulatory RNA: viruses that mimic hosts, tumors that mimic viruses
  publication-title: Curr. Opin. Syst. Biol.
  doi: 10.1016/j.coisb.2016.12.008
– volume: 38
  start-page: 53
  year: 2017
  ident: 10.1016/j.celrep.2018.03.042_bib30
  article-title: Sequence-specific sensing of nucleic acids
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2016.10.006
– volume: 162
  start-page: 961
  year: 2015
  ident: 10.1016/j.celrep.2018.03.042_bib22
  article-title: DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.056
– volume: 6
  start-page: 11
  year: 2015
  ident: 10.1016/j.celrep.2018.03.042_bib2
  article-title: Repbase Update, a database of repetitive elements in eukaryotic genomes
  publication-title: Mob. DNA
  doi: 10.1186/s13100-015-0041-9
– volume: 541
  start-page: 321
  year: 2017
  ident: 10.1016/j.celrep.2018.03.042_bib6
  article-title: Elements of cancer immunity and the cancer-immune set point
  publication-title: Nature
  doi: 10.1038/nature21349
– volume: 43
  start-page: e47
  year: 2015
  ident: 10.1016/j.celrep.2018.03.042_bib18
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
– volume: 15
  start-page: 583
  year: 2014
  ident: 10.1016/j.celrep.2018.03.042_bib8
  article-title: Transcriptional landscape of repetitive elements in normal and cancer human cells
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-583
– volume: 3
  start-page: e3
  year: 2004
  ident: 10.1016/j.celrep.2018.03.042_bib23
  article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1027
SSID ssj0000601194
Score 2.470382
Snippet It has been posited that anti-tumoral innate activation is driven by derepression of endogenous repeats. We compared RNA sequencing protocols to assess repeat...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 512
SubjectTerms Antibodies, Monoclonal - therapeutic use
cancer immunity
Cluster Analysis
Endogenous Retroviruses - metabolism
ERV
HSATII
Humans
Immunotherapy
innate immunity
Kaplan-Meier Estimate
Long Interspersed Nucleotide Elements - genetics
microenvironment
Neoplasms - genetics
Neoplasms - mortality
Neoplasms - therapy
repetitive elements
Repetitive Sequences, Nucleic Acid - genetics
RNA-seq
Sequence Analysis, RNA
T-Lymphocyte Subsets - cytology
T-Lymphocyte Subsets - metabolism
Transcriptome
Title Global Cancer Transcriptome Quantifies Repeat Element Polarization between Immunotherapy Responsive and T Cell Suppressive Classes
URI https://dx.doi.org/10.1016/j.celrep.2018.03.042
https://www.ncbi.nlm.nih.gov/pubmed/29642008
https://www.proquest.com/docview/2024465927
https://pubmed.ncbi.nlm.nih.gov/PMC6016853
https://doaj.org/article/c5d5b8b3bfdf4f46b381759f75fadf67
Volume 23
WOSCitedRecordID wos000429866600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA66KHgR1-eou0Tw2thJP3PUYZcVZFlhhbmFPCo4MvYs81jYq7_cqqR7mHYPc_Hak05PuqqTr6ivvmLsY9HkUINUmVRWZqUJTWYA8kyEGjBs9tYmndlvzeVlO5upq71WX8QJS_LA6cV9cpWvbGsLG3woQ1lbkpSrVGiqYHyoYx05op69YCrtwaRlRillKYmzJctmqJuL5C4HixWQXKVoo8ZpKUfnUpTvHx1P9-HnvyzKvWPp_Bl72uNJ_jmt45g9gO45e5w6TN69YH-Spj-fknFXPJ5McZ9Y_gb-fWsiVQjWHHE4bsr8LJHJ-RUFvH2FJu-pXPwrlZL0BVt3eEci194CN53n13wKiwWnJqGRWYuXY79NWL9kP87PrqcXWd92IXOVVJtMOIdxjXKk7CUqHxovpM09GEBsa2qXe-VtboQxaNkSTBmUA4dhHIK51itRvGJH3bKDN4x7h_EKzhNAmBK3XSsrBAQtZRuhLqyasGJ46dr1muTUGmOhB_LZL51MpclUOi80mmrCst1dN0mT48D4L2TP3VhS1I4X0M9072f6kJ9NWDN4g-7BSQIdONX8wOM_DM6j8dulhIzpYLld4yBJenVK4uyvkzPt_iSlw4mbgs8dudloFeNfuvnPqA9OCjuIwt7-j2W_Y09oKZQ_E_l7drRZbeGEPXK3m_l6dcoeNrP2NH56fwG3GjaI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Cancer+Transcriptome+Quantifies+Repeat+Element+Polarization+between+Immunotherapy+Responsive+and+T+Cell+Suppressive+Classes&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Solovyov%2C+Alexander&rft.au=Vabret%2C+Nicolas&rft.au=Arora%2C+Kshitij+S&rft.au=Snyder%2C+Alexandra&rft.date=2018-04-10&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=23&rft.issue=2&rft.spage=512&rft_id=info:doi/10.1016%2Fj.celrep.2018.03.042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon