The PD-1 Pathway Regulates Development and Function of Memory CD8+ T Cells following Respiratory Viral Infection

The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory follo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cell reports (Cambridge) Ročník 31; číslo 13; s. 107827
Hlavní autori: Pauken, Kristen E., Godec, Jernej, Odorizzi, Pamela M., Brown, Keturah E., Yates, Kathleen B., Ngiow, Shin Foong, Burke, Kelly P., Maleri, Seth, Grande, Shannon M., Francisco, Loise M., Ali, Mohammed-Alkhatim, Imam, Sabrina, Freeman, Gordon J., Haining, W. Nicholas, Wherry, E. John, Sharpe, Arlene H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 30.06.2020
Elsevier
Predmet:
ISSN:2211-1247, 2211-1247
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients. [Display omitted] •Early loss of PD-1 leads to overactivation of CD8+ T cells during acute infection•Mice constitutively lacking PD-1 or PD-L develop impaired CD8+ T cell memory•Cell-intrinsic PD-1 signals suppress effector cell expansion and promote memory•Timing of PD-1 blockade determines impact on memory generation The role of PD-1 in memory development is poorly understood. Here, Pauken et al. show that constitutive loss of PD-1 during acute infection causes overactivation of CD8+ T cells during the effector phase and impairs memory and recall responses. These data indicate PD-1 is required for optimal memory.
AbstractList The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients.
The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients.The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients.
The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into nonlymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients. The role of PD-1 in memory development is poorly understood. Here, Pauken et al. show that constitutive loss of PD-1 during acute infection causes overactivation of CD8+ T cells during the effector phase and impairs memory and recall responses. These data indicate PD-1 is required for optimal memory.
The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients. [Display omitted] •Early loss of PD-1 leads to overactivation of CD8+ T cells during acute infection•Mice constitutively lacking PD-1 or PD-L develop impaired CD8+ T cell memory•Cell-intrinsic PD-1 signals suppress effector cell expansion and promote memory•Timing of PD-1 blockade determines impact on memory generation The role of PD-1 in memory development is poorly understood. Here, Pauken et al. show that constitutive loss of PD-1 during acute infection causes overactivation of CD8+ T cells during the effector phase and impairs memory and recall responses. These data indicate PD-1 is required for optimal memory.
The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8 T cell memory following acute influenza infection, including reduced virus-specific CD8 T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8 T cell signals that promotes CD8 T cell memory formation and suggest PD-1 continues to fine-tune CD8 T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients.
ArticleNumber 107827
Author Godec, Jernej
Imam, Sabrina
Sharpe, Arlene H.
Freeman, Gordon J.
Wherry, E. John
Odorizzi, Pamela M.
Brown, Keturah E.
Ali, Mohammed-Alkhatim
Francisco, Loise M.
Yates, Kathleen B.
Ngiow, Shin Foong
Pauken, Kristen E.
Haining, W. Nicholas
Grande, Shannon M.
Maleri, Seth
Burke, Kelly P.
AuthorAffiliation 6 Division of Hematology/Oncology, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
7 Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
9 These authors contributed equally
3 Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
2 Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
5 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
1 Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
4 Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
8 These authors contributed equally
10 Lead Contact
AuthorAffiliation_xml – name: 9 These authors contributed equally
– name: 3 Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
– name: 8 These authors contributed equally
– name: 1 Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
– name: 7 Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
– name: 4 Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
– name: 6 Division of Hematology/Oncology, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
– name: 10 Lead Contact
– name: 2 Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
– name: 5 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
Author_xml – sequence: 1
  givenname: Kristen E.
  surname: Pauken
  fullname: Pauken, Kristen E.
  organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
– sequence: 2
  givenname: Jernej
  surname: Godec
  fullname: Godec, Jernej
  organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
– sequence: 3
  givenname: Pamela M.
  surname: Odorizzi
  fullname: Odorizzi, Pamela M.
  organization: Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
– sequence: 4
  givenname: Keturah E.
  surname: Brown
  fullname: Brown, Keturah E.
  organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
– sequence: 5
  givenname: Kathleen B.
  surname: Yates
  fullname: Yates, Kathleen B.
  organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
– sequence: 6
  givenname: Shin Foong
  surname: Ngiow
  fullname: Ngiow, Shin Foong
  organization: Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
– sequence: 7
  givenname: Kelly P.
  surname: Burke
  fullname: Burke, Kelly P.
  organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
– sequence: 8
  givenname: Seth
  surname: Maleri
  fullname: Maleri, Seth
  organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
– sequence: 9
  givenname: Shannon M.
  surname: Grande
  fullname: Grande, Shannon M.
  organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
– sequence: 10
  givenname: Loise M.
  surname: Francisco
  fullname: Francisco, Loise M.
  organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
– sequence: 11
  givenname: Mohammed-Alkhatim
  surname: Ali
  fullname: Ali, Mohammed-Alkhatim
  organization: Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
– sequence: 12
  givenname: Sabrina
  surname: Imam
  fullname: Imam, Sabrina
  organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
– sequence: 13
  givenname: Gordon J.
  surname: Freeman
  fullname: Freeman, Gordon J.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
– sequence: 14
  givenname: W. Nicholas
  surname: Haining
  fullname: Haining, W. Nicholas
  organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
– sequence: 15
  givenname: E. John
  surname: Wherry
  fullname: Wherry, E. John
  email: wherry@pennmedicine.upenn.edu
  organization: Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
– sequence: 16
  givenname: Arlene H.
  surname: Sharpe
  fullname: Sharpe, Arlene H.
  email: arlene_sharpe@hms.harvard.edu
  organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32610128$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhleoiJbSf4CQj0goweP95oCEEloiFVGhwNXyeseJI6-9tTep8u_rbULVcgBfbI3fecaed14nJ9ZZTJK3QKdAofi4mUo0Hvspo2wMlRUrXyRnjAFMgGXlyZPzaXIRwobGVVCAOnuVnKasiBhWnSX9co3kZj4BciOG9Z3Yk5-42hoxYCBz3KFxfYd2IMK25HJr5aCdJU6R79g5vyezefWBLMkMjQlEOWPcnbaryAi99mIYJb_jwZCFVfiQ_CZ5qYQJeHHcz5Nfl1-Xs2-T6x9Xi9mX64nMWT1MIFdlgUrlDUjI07RNc0TJFNSpqmlJFW3anCpQsk3TRoiygaKSChhklaxj8DxZHLitExvee90Jv-dOaP4QcH7FhR-0NMgr1TZKKlmDyrKGNg2yWIEhCKhYJprI-nxg9dumw1bGhsQ_PYM-v7F6zVdux8u0LLOcRcD7I8C72y2GgXc6RAeNsOi2gbMM6hIyllZR-u5prccifyyLguwgkN6F4FE9SoDycTj4hh-Gg4_DwQ_DEdM-_ZUm9SBGR-KLtflf8rEBGB3bafQ8SI1WYqt9tDW2VP8bcA9qldhC
CitedBy_id crossref_primary_10_1177_17588359241284946
crossref_primary_10_1002_advs_202403438
crossref_primary_10_1002_adbi_202100758
crossref_primary_10_1016_j_isci_2024_110131
crossref_primary_10_1038_s41590_025_02201_y
crossref_primary_10_1016_j_ymthe_2021_10_001
crossref_primary_10_1136_jitc_2022_004766
crossref_primary_10_1016_j_mucimm_2023_12_004
crossref_primary_10_3389_fimmu_2023_1267774
crossref_primary_10_3389_fimmu_2023_1187850
crossref_primary_10_1038_s41467_023_37368_1
crossref_primary_10_1016_j_immuni_2023_01_022
crossref_primary_10_1016_j_smim_2025_101975
crossref_primary_10_1038_s41416_023_02363_2
crossref_primary_10_1007_s00592_021_01711_z
crossref_primary_10_1016_j_jri_2023_104184
crossref_primary_10_1038_s41598_021_92311_y
crossref_primary_10_3389_fimmu_2022_869768
crossref_primary_10_1158_1078_0432_CCR_21_1535
crossref_primary_10_1182_bloodadvances_2023012073
crossref_primary_10_3389_fimmu_2021_677824
crossref_primary_10_1073_pnas_2200626120
crossref_primary_10_1016_j_isci_2023_108387
crossref_primary_10_1038_s41591_020_01206_4
crossref_primary_10_3389_fonc_2022_871085
crossref_primary_10_1038_s41590_024_01961_3
crossref_primary_10_3389_fphar_2020_590344
crossref_primary_10_1038_s41467_024_49041_2
crossref_primary_10_1186_s40001_024_01689_8
crossref_primary_10_1186_s12948_021_00161_w
crossref_primary_10_1016_j_cell_2022_06_035
crossref_primary_10_1136_jitc_2021_002835
crossref_primary_10_1038_s41422_024_00945_0
crossref_primary_10_1038_s41423_023_01064_3
crossref_primary_10_1126_sciimmunol_adf2223
crossref_primary_10_3389_fimmu_2024_1426064
crossref_primary_10_1007_s11892_021_01384_6
crossref_primary_10_1038_s43018_021_00275_9
crossref_primary_10_1016_j_jri_2023_104130
crossref_primary_10_1038_s41586_024_08507_5
crossref_primary_10_1136_jitc_2024_010026
crossref_primary_10_1371_journal_ppat_1009892
crossref_primary_10_3389_fimmu_2022_945980
crossref_primary_10_3390_cancers13010134
crossref_primary_10_1016_j_omto_2022_07_009
crossref_primary_10_1038_s41590_024_01847_4
crossref_primary_10_1038_s41577_023_00867_9
crossref_primary_10_1158_2159_8290_CD_25_0300
crossref_primary_10_1016_j_immuni_2022_02_004
crossref_primary_10_3389_fimmu_2024_1343450
crossref_primary_10_1038_s41571_020_00455_z
crossref_primary_10_1126_scitranslmed_aba6006
crossref_primary_10_1084_jem_20230542
crossref_primary_10_1158_2326_6066_CIR_20_0526
crossref_primary_10_1038_s41571_022_00689_z
crossref_primary_10_1016_j_jaci_2023_07_015
crossref_primary_10_1002_art_43144
crossref_primary_10_1111_imm_13755
crossref_primary_10_3390_vaccines12040419
crossref_primary_10_3390_vaccines9121431
crossref_primary_10_1038_s41467_025_57562_7
crossref_primary_10_1093_jimmun_vkae059
crossref_primary_10_1016_j_celrep_2023_112876
crossref_primary_10_1016_j_tranon_2024_102138
crossref_primary_10_1038_s41568_021_00431_4
crossref_primary_10_1186_s13045_025_01732_z
crossref_primary_10_4049_jimmunol_2400295
crossref_primary_10_1038_s41584_021_00741_9
crossref_primary_10_4049_jimmunol_2300401
crossref_primary_10_1128_jvi_00797_24
crossref_primary_10_1158_1078_0432_CCR_22_0832
crossref_primary_10_3389_fimmu_2022_866120
crossref_primary_10_1002_cyto_a_24528
crossref_primary_10_1126_sciimmunol_abe3702
crossref_primary_10_1016_j_immuni_2024_01_013
crossref_primary_10_1093_neuonc_noab271
crossref_primary_10_1111_vco_12788
crossref_primary_10_1038_s41590_021_00949_7
crossref_primary_10_3389_fimmu_2024_1354710
crossref_primary_10_1038_s41540_023_00297_2
crossref_primary_10_1093_jimmun_vkaf076
crossref_primary_10_1016_j_smim_2021_101480
crossref_primary_10_1172_JCI192731
crossref_primary_10_1186_s12863_022_01081_7
Cites_doi 10.1126/scisignal.2002796
10.1038/nri.2017.108
10.1371/journal.ppat.1003207
10.1084/jem.20121416
10.1128/JVI.72.6.5174-5181.1998
10.1084/jem.20092017
10.1073/pnas.0506580102
10.1038/75556
10.1038/nrc3239
10.1128/MCB.25.21.9543-9553.2005
10.1038/nri3405
10.1038/nature21349
10.4049/jimmunol.180.11.7553
10.1084/jem.20142237
10.1371/journal.pone.0056539
10.1038/342559a0
10.1038/nature05115
10.1146/annurev-med-092012-112807
10.1189/jlb.0313180
10.1182/blood-2009-02-203141
10.4049/jimmunol.0802041
10.4049/jimmunol.152.4.1653
10.1128/JVI.02167-06
10.1016/j.immuni.2014.06.007
10.1172/JCI62860
10.1016/S1074-7613(00)80573-7
10.1111/j.1600-065X.2010.00923.x
10.1016/j.immuni.2006.01.015
10.4049/jimmunol.1001142
10.1016/j.ccell.2015.03.001
10.1126/science.1235454
10.1038/85330
10.4049/jimmunol.1003870
10.1084/jem.20112741
10.1084/jem.192.7.1027
10.1038/nature04444
10.1056/NEJMoa1200690
10.1038/ni.3031
10.1056/NEJMoa1200694
10.1126/science.1235487
10.1016/j.immuni.2007.04.013
10.1038/ni889
10.1128/JVI.02493-10
10.1073/pnas.0801497105
10.1126/science.aaf0683
10.4049/jimmunol.179.8.5064
10.1016/j.vaccine.2006.08.036
10.1084/jem.20121015
10.1084/jem.20090283
10.1016/j.immuni.2014.09.007
10.4049/jimmunol.162.6.3256
10.4049/jimmunol.179.10.6704
10.1016/j.immuni.2007.05.016
10.1073/pnas.0813367106
10.1038/s41385-018-0003-x
10.1126/science.aaf1292
10.1073/pnas.1718217115
10.4049/jimmunol.181.3.1859
10.1084/jem.20050227
10.1084/jem.20051776
10.1016/j.celrep.2013.07.008
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2020.107827
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 107827
ExternalDocumentID oai_doaj_org_article_8fdbfcfc91f44b0bbe20702e1a1824ab
PMC7377452
32610128
10_1016_j_celrep_2020_107827
S2211124720308081
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: P01 AI078897
– fundername: NIAID NIH HHS
  grantid: P01 AI108545
– fundername: NIAID NIH HHS
  grantid: P01 AI112521
– fundername: NIAID NIH HHS
  grantid: U19 AI082630
– fundername: NIAID NIH HHS
  grantid: P01 AI039671
– fundername: NIAID NIH HHS
  grantid: R01 AI105343
– fundername: NIAID NIH HHS
  grantid: P01 AI056299
– fundername: NCI NIH HHS
  grantid: R01 CA229851
– fundername: NIAID NIH HHS
  grantid: HHSN266200500030C
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-15f76eff5b1c1533d35eec2f193f9070f0bd50f1fcd33baa7b168cf12148c9cd3
IEDL.DBID DOA
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546045900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Fri Oct 03 12:38:46 EDT 2025
Tue Sep 30 15:49:43 EDT 2025
Thu Jul 10 18:26:12 EDT 2025
Mon Jul 21 05:59:28 EDT 2025
Wed Nov 05 20:44:14 EST 2025
Tue Nov 18 22:00:30 EST 2025
Tue Jul 25 21:03:47 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords influenza
checkpoint blockade
memory
acute infection
PD-L1
PD-L2
effector
PD-1
CD8+ T cell
CD8(+) T cell
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-15f76eff5b1c1533d35eec2f193f9070f0bd50f1fcd33baa7b168cf12148c9cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
K.E.P., J.G., P.M.O., K.E.B., E.J.W., and A.H.S. conceived the studies. K.E.P., J.G., P.M.O., K.E.B., M.-A.A., S.F.N., K.P.B., and S.M. performed experiments and generated primary data, including developing methodology, validation, and data curation. K.E.P., J.G., P.M.O., and K.E.B. performed formal analysis and visualization. S.M.G., L.M.F., and M.-A.A. assisted in animal colony maintenance and performing some mouse experiments. K.B.Y., S.I., and W.N.H. performed and analyzed transcriptional profiling data. K.E.P., J.G., P.M.O., K.E.B., G.J.F., E.J.W., and A.H.S. contributed to writing the manuscript. All authors contributed to reviewing and editing the final manuscript. E.J.W. and A.H.S. were responsible for project supervision, administration, and funding acquisition.
OpenAccessLink https://doaj.org/article/8fdbfcfc91f44b0bbe20702e1a1824ab
PMID 32610128
PQID 2419714238
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_8fdbfcfc91f44b0bbe20702e1a1824ab
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7377452
proquest_miscellaneous_2419714238
pubmed_primary_32610128
crossref_primary_10_1016_j_celrep_2020_107827
crossref_citationtrail_10_1016_j_celrep_2020_107827
elsevier_sciencedirect_doi_10_1016_j_celrep_2020_107827
PublicationCentury 2000
PublicationDate 2020-06-30
PublicationDateYYYYMMDD 2020-06-30
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Parry, Chemnitz, Frauwirth, Lanfranco, Braunstein, Kobayashi, Linsley, Thompson, Riley (bib42) 2005; 25
Wu, Hu, Lee, Bouchard, Benechet, Khanna, Cauley (bib56) 2014; 95
Pircher, Bürki, Lang, Hengartner, Zinkernagel (bib44) 1989; 342
Hui, Cheung, Zhu, Su, Taylor, Wallweber, Sasmal, Huang, Kim, Mellman, Vale (bib24) 2017; 355
Allie, Zhang, Fuse, Usherwood (bib2) 2011; 186
Knudson, Goplen, Cunningham, Daniels, Teixeiro (bib30) 2013; 4
Butte, Keir, Phamduy, Sharpe, Freeman (bib10) 2007; 27
Patsoukis, Brown, Petkova, Liu, Li, Boussiotis (bib43) 2012; 5
Laidlaw, Decman, Ali, Abt, Wolf, Monticelli, Mozdzanowska, Angelosanto, Artis, Erikson, Wherry (bib32) 2013; 9
Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette, Paulovich, Pomeroy, Golub, Lander, Mesirov (bib49) 2005; 102
Badovinac, Haring, Harty (bib4) 2007; 26
Lee, Suarez-Ramirez, Wu, Redman, Bouchard, Hadley, Cauley (bib35) 2011; 85
Liang, Mozdzanowska, Palladino, Gerhard (bib36) 1994; 152
Zinselmeyer, Heydari, Sacristán, Nayak, Cammer, Herz, Cheng, Davis, Dustin, McGavern (bib61) 2013; 210
Flynn, Belz, Altman, Ahmed, Woodland, Doherty (bib17) 1998; 8
Pardoll (bib41) 2012; 12
Topalian, Hodi, Brahmer, Gettinger, Smith, McDermott, Powderly, Carvajal, Sosman, Atkins (bib52) 2012; 366
Haining, Ebert, Subrmanian, Wherry, Eichbaum, Evans, Mak, Rivoli, Pretz, Angelosanto (bib23) 2008; 181
Mueller, Langley, Li, García-Sastre, Webby, Ahmed (bib38) 2010; 185
Gerlach, Rohr, Perié, van Rooij, van Heijst, Velds, Urbanus, Naik, Jacobs, Beltman (bib22) 2013; 340
Buchholz, Flossdorf, Hensel, Kretschmer, Weissbrich, Gräf, Verschoor, Schiemann, Höfer, Busch (bib9) 2013; 340
Chang, Wherry, Goldrath (bib11) 2014; 15
Page, Postow, Callahan, Allison, Wolchok (bib40) 2014; 65
Yokosuka, Takamatsu, Kobayashi-Imanishi, Hashimoto-Tane, Azuma, Saito (bib59) 2012; 209
Yao, Wang, Zhu, Luo, Zhu, Flies, Xu, Ruff, Broadwater, Choi (bib58) 2009; 113
Turner, Cauley, Khanna, Lefrançois (bib54) 2007; 81
Laidlaw, Zhang, Marshall, Staron, Guan, Hu, Cauley, Craft, Kaech (bib33) 2014; 41
McMaster, Wein, Dunbar, Hayward, Cartwright, Denning, Kohlmeier (bib37) 2018; 11
Sharpe, Pauken (bib48) 2018; 18
Kamphorst, Wieland, Nasti, Yang, Zhang, Barber, Konieczny, Daugherty, Koenig, Yu (bib26) 2017; 355
Takamura, Roberts, Jelley-Gibbs, Wittmer, Kohlmeier, Woodland (bib50) 2010; 207
Chen, Mellman (bib13) 2017; 541
Frebel, Nindl, Schuepbach, Braunschweiler, Richter, Vogel, Wagner, Loffing-Cueni, Kurrer, Ludewig, Oxenius (bib19) 2012; 209
Topalian, Drake, Pardoll (bib53) 2015; 27
Keir, Freeman, Sharpe (bib28) 2007; 179
Day, Kaufmann, Kiepiela, Brown, Moodley, Reddy, Mackey, Miller, Leslie, DePierres (bib15) 2006; 443
Zammit, Turner, Klonowski, Lefrançois, Cauley (bib60) 2006; 24
Wherry, Teichgräber, Becker, Masopust, Kaech, Antia, von Andrian, Ahmed (bib55) 2003; 4
Rowe, Johanns, Ertelt, Way (bib46) 2008; 180
Ballesteros-Tato, León, Lee, Lund, Randall (bib5) 2014; 41
Francisco, Sage, Sharpe (bib18) 2010; 236
Kim, Hufford, Sun, Fu, Braciale (bib29) 2010; 207
Latchman, Wood, Chernova, Chaudhary, Borde, Chernova, Iwai, Long, Brown, Nunes (bib34) 2001; 2
Ashburner, Ball, Blake, Botstein, Butler, Cherry, Davis, Dolinski, Dwight, Eppig (bib3) 2000; 25
Jelley-Gibbs, Brown, Dibble, Haynes, Eaton, Swain (bib25) 2005; 202
Erickson, Gilchuk, Hastings, Tollefson, Johnson, Downing, Boyd, Johnson, Kim, Joyce, Williams (bib16) 2012; 122
Kreijtz, Bodewes, van Amerongen, Kuiken, Fouchier, Osterhaus, Rimmelzwaan (bib31) 2007; 25
Fuse, Tsai, Molloy, Allie, Zhang, Yagita, Usherwood (bib21) 2009; 182
Keir, Liang, Guleria, Latchman, Qipo, Albacker, Koulmanda, Freeman, Sayegh, Sharpe (bib27) 2006; 203
Brahmer, Tykodi, Chow, Hwu, Topalian, Hwu, Drake, Camacho, Kauh, Odunsi (bib8) 2012; 366
Chen, Flies (bib12) 2013; 13
Barber, Wherry, Masopust, Zhu, Allison, Sharpe, Freeman, Ahmed (bib6) 2006; 439
Curtsinger, Schmidt, Mondino, Lins, Kedl, Jenkins, Mescher (bib14) 1999; 162
Blackburn, Shin, Freeman, Wherry (bib7) 2008; 105
Talay, Shen, Chen, Chen (bib51) 2009; 106
Ahn, Araki, Hashimoto, Li, Riley, Cheung, Sharpe, Freeman, Irving, Ahmed (bib1) 2018; 115
Sarkar, Teichgräber, Kalia, Polley, Masopust, Harrington, Ahmed, Wherry (bib47) 2007; 179
Xu, Fu, Obar, Park, Tamada, Yagita, Lefrançois (bib57) 2013; 8
Rodriguez, An, Harkins, Zhang, Yokoyama, Widera, Fuller, Kincaid, Campbell, Whitton (bib45) 1998; 72
Odorizzi, Pauken, Paley, Sharpe, Wherry (bib39) 2015; 212
Freeman, Long, Iwai, Bourque, Chernova, Nishimura, Fitz, Malenkovich, Okazaki, Byrne (bib20) 2000; 192
Ballesteros-Tato (10.1016/j.celrep.2020.107827_bib5) 2014; 41
Lee (10.1016/j.celrep.2020.107827_bib35) 2011; 85
Badovinac (10.1016/j.celrep.2020.107827_bib4) 2007; 26
Takamura (10.1016/j.celrep.2020.107827_bib50) 2010; 207
Mueller (10.1016/j.celrep.2020.107827_bib38) 2010; 185
Haining (10.1016/j.celrep.2020.107827_bib23) 2008; 181
Wherry (10.1016/j.celrep.2020.107827_bib55) 2003; 4
Kamphorst (10.1016/j.celrep.2020.107827_bib26) 2017; 355
Talay (10.1016/j.celrep.2020.107827_bib51) 2009; 106
Kreijtz (10.1016/j.celrep.2020.107827_bib31) 2007; 25
McMaster (10.1016/j.celrep.2020.107827_bib37) 2018; 11
Wu (10.1016/j.celrep.2020.107827_bib56) 2014; 95
Laidlaw (10.1016/j.celrep.2020.107827_bib33) 2014; 41
Zinselmeyer (10.1016/j.celrep.2020.107827_bib61) 2013; 210
Ahn (10.1016/j.celrep.2020.107827_bib1) 2018; 115
Flynn (10.1016/j.celrep.2020.107827_bib17) 1998; 8
Curtsinger (10.1016/j.celrep.2020.107827_bib14) 1999; 162
Keir (10.1016/j.celrep.2020.107827_bib28) 2007; 179
Allie (10.1016/j.celrep.2020.107827_bib2) 2011; 186
Chang (10.1016/j.celrep.2020.107827_bib11) 2014; 15
Odorizzi (10.1016/j.celrep.2020.107827_bib39) 2015; 212
Topalian (10.1016/j.celrep.2020.107827_bib52) 2012; 366
Latchman (10.1016/j.celrep.2020.107827_bib34) 2001; 2
Blackburn (10.1016/j.celrep.2020.107827_bib7) 2008; 105
Page (10.1016/j.celrep.2020.107827_bib40) 2014; 65
Rowe (10.1016/j.celrep.2020.107827_bib46) 2008; 180
Erickson (10.1016/j.celrep.2020.107827_bib16) 2012; 122
Fuse (10.1016/j.celrep.2020.107827_bib21) 2009; 182
Chen (10.1016/j.celrep.2020.107827_bib13) 2017; 541
Pircher (10.1016/j.celrep.2020.107827_bib44) 1989; 342
Yokosuka (10.1016/j.celrep.2020.107827_bib59) 2012; 209
Buchholz (10.1016/j.celrep.2020.107827_bib9) 2013; 340
Hui (10.1016/j.celrep.2020.107827_bib24) 2017; 355
Brahmer (10.1016/j.celrep.2020.107827_bib8) 2012; 366
Freeman (10.1016/j.celrep.2020.107827_bib20) 2000; 192
Patsoukis (10.1016/j.celrep.2020.107827_bib43) 2012; 5
Barber (10.1016/j.celrep.2020.107827_bib6) 2006; 439
Topalian (10.1016/j.celrep.2020.107827_bib53) 2015; 27
Yao (10.1016/j.celrep.2020.107827_bib58) 2009; 113
Keir (10.1016/j.celrep.2020.107827_bib27) 2006; 203
Butte (10.1016/j.celrep.2020.107827_bib10) 2007; 27
Knudson (10.1016/j.celrep.2020.107827_bib30) 2013; 4
Sarkar (10.1016/j.celrep.2020.107827_bib47) 2007; 179
Subramanian (10.1016/j.celrep.2020.107827_bib49) 2005; 102
Liang (10.1016/j.celrep.2020.107827_bib36) 1994; 152
Day (10.1016/j.celrep.2020.107827_bib15) 2006; 443
Turner (10.1016/j.celrep.2020.107827_bib54) 2007; 81
Frebel (10.1016/j.celrep.2020.107827_bib19) 2012; 209
Laidlaw (10.1016/j.celrep.2020.107827_bib32) 2013; 9
Pardoll (10.1016/j.celrep.2020.107827_bib41) 2012; 12
Chen (10.1016/j.celrep.2020.107827_bib12) 2013; 13
Xu (10.1016/j.celrep.2020.107827_bib57) 2013; 8
Parry (10.1016/j.celrep.2020.107827_bib42) 2005; 25
Rodriguez (10.1016/j.celrep.2020.107827_bib45) 1998; 72
Sharpe (10.1016/j.celrep.2020.107827_bib48) 2018; 18
Kim (10.1016/j.celrep.2020.107827_bib29) 2010; 207
Ashburner (10.1016/j.celrep.2020.107827_bib3) 2000; 25
Zammit (10.1016/j.celrep.2020.107827_bib60) 2006; 24
Jelley-Gibbs (10.1016/j.celrep.2020.107827_bib25) 2005; 202
Francisco (10.1016/j.celrep.2020.107827_bib18) 2010; 236
Gerlach (10.1016/j.celrep.2020.107827_bib22) 2013; 340
References_xml – volume: 12
  start-page: 252
  year: 2012
  end-page: 264
  ident: bib41
  article-title: The blockade of immune checkpoints in cancer immunotherapy
  publication-title: Nat. Rev. Cancer
– volume: 340
  start-page: 635
  year: 2013
  end-page: 639
  ident: bib22
  article-title: Heterogeneous differentiation patterns of individual CD8+ T cells
  publication-title: Science
– volume: 13
  start-page: 227
  year: 2013
  end-page: 242
  ident: bib12
  article-title: Molecular mechanisms of T cell co-stimulation and co-inhibition
  publication-title: Nat. Rev. Immunol.
– volume: 366
  start-page: 2443
  year: 2012
  end-page: 2454
  ident: bib52
  article-title: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer
  publication-title: N. Engl. J. Med.
– volume: 209
  start-page: 1201
  year: 2012
  end-page: 1217
  ident: bib59
  article-title: Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2
  publication-title: J. Exp. Med.
– volume: 27
  start-page: 450
  year: 2015
  end-page: 461
  ident: bib53
  article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy
  publication-title: Cancer Cell
– volume: 105
  start-page: 15016
  year: 2008
  end-page: 15021
  ident: bib7
  article-title: Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 179
  start-page: 6704
  year: 2007
  end-page: 6714
  ident: bib47
  article-title: Strength of stimulus and clonal competition impact the rate of memory CD8 T cell differentiation
  publication-title: J. Immunol.
– volume: 203
  start-page: 883
  year: 2006
  end-page: 895
  ident: bib27
  article-title: Tissue expression of PD-L1 mediates peripheral T cell tolerance
  publication-title: J. Exp. Med.
– volume: 8
  start-page: 683
  year: 1998
  end-page: 691
  ident: bib17
  article-title: Virus-specific CD8+ T cells in primary and secondary influenza pneumonia
  publication-title: Immunity
– volume: 2
  start-page: 261
  year: 2001
  end-page: 268
  ident: bib34
  article-title: PD-L2 is a second ligand for PD-1 and inhibits T cell activation
  publication-title: Nat. Immunol.
– volume: 9
  start-page: e1003207
  year: 2013
  ident: bib32
  article-title: Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity
  publication-title: PLoS Pathog.
– volume: 8
  start-page: e56539
  year: 2013
  ident: bib57
  article-title: A potential new pathway for PD-L1 costimulation of the CD8-T cell response to
  publication-title: PLoS ONE
– volume: 210
  start-page: 757
  year: 2013
  end-page: 774
  ident: bib61
  article-title: PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis
  publication-title: J. Exp. Med.
– volume: 355
  start-page: 1428
  year: 2017
  end-page: 1433
  ident: bib24
  article-title: T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition
  publication-title: Science
– volume: 26
  start-page: 827
  year: 2007
  end-page: 841
  ident: bib4
  article-title: Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection
  publication-title: Immunity
– volume: 115
  start-page: 4749
  year: 2018
  end-page: 4754
  ident: bib1
  article-title: Role of PD-1 during effector CD8 T cell differentiation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 24
  start-page: 439
  year: 2006
  end-page: 449
  ident: bib60
  article-title: Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration
  publication-title: Immunity
– volume: 41
  start-page: 127
  year: 2014
  end-page: 140
  ident: bib5
  article-title: Epitope-specific regulation of memory programming by differential duration of antigen presentation to influenza-specific CD8(+) T cells
  publication-title: Immunity
– volume: 72
  start-page: 5174
  year: 1998
  end-page: 5181
  ident: bib45
  article-title: DNA immunization with minigenes: low frequency of memory cytotoxic T lymphocytes and inefficient antiviral protection are rectified by ubiquitination
  publication-title: J. Virol.
– volume: 11
  start-page: 1071
  year: 2018
  end-page: 1078
  ident: bib37
  article-title: Pulmonary antigen encounter regulates the establishment of tissue-resident CD8 memory T cells in the lung airways and parenchyma
  publication-title: Mucosal Immunol.
– volume: 25
  start-page: 612
  year: 2007
  end-page: 620
  ident: bib31
  article-title: Primary influenza A virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice
  publication-title: Vaccine
– volume: 122
  start-page: 2967
  year: 2012
  end-page: 2982
  ident: bib16
  article-title: Viral acute lower respiratory infections impair CD8+ T cells through PD-1
  publication-title: J. Clin. Invest.
– volume: 209
  start-page: 2485
  year: 2012
  end-page: 2499
  ident: bib19
  article-title: Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice
  publication-title: J. Exp. Med.
– volume: 15
  start-page: 1104
  year: 2014
  end-page: 1115
  ident: bib11
  article-title: Molecular regulation of effector and memory T cell differentiation
  publication-title: Nat. Immunol.
– volume: 65
  start-page: 185
  year: 2014
  end-page: 202
  ident: bib40
  article-title: Immune modulation in cancer with antibodies
  publication-title: Annu. Rev. Med.
– volume: 25
  start-page: 25
  year: 2000
  end-page: 29
  ident: bib3
  article-title: Gene Ontology: tool for the unification of biology
  publication-title: Nat. Genet.
– volume: 18
  start-page: 153
  year: 2018
  end-page: 167
  ident: bib48
  article-title: The diverse functions of the PD1 inhibitory pathway
  publication-title: Nat. Rev. Immunol.
– volume: 541
  start-page: 321
  year: 2017
  end-page: 330
  ident: bib13
  article-title: Elements of cancer immunity and the cancer-immune set point
  publication-title: Nature
– volume: 41
  start-page: 633
  year: 2014
  end-page: 645
  ident: bib33
  article-title: CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection
  publication-title: Immunity
– volume: 212
  start-page: 1125
  year: 2015
  end-page: 1137
  ident: bib39
  article-title: Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells
  publication-title: J. Exp. Med.
– volume: 85
  start-page: 4085
  year: 2011
  end-page: 4094
  ident: bib35
  article-title: Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes
  publication-title: J. Virol.
– volume: 443
  start-page: 350
  year: 2006
  end-page: 354
  ident: bib15
  article-title: PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression
  publication-title: Nature
– volume: 182
  start-page: 4244
  year: 2009
  end-page: 4254
  ident: bib21
  article-title: Recall responses by helpless memory CD8+ T cells are restricted by the up-regulation of PD-1
  publication-title: J. Immunol.
– volume: 152
  start-page: 1653
  year: 1994
  end-page: 1661
  ident: bib36
  article-title: Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity
  publication-title: J. Immunol.
– volume: 4
  start-page: 554
  year: 2013
  end-page: 565
  ident: bib30
  article-title: Low-affinity T cells are programmed to maintain normal primary responses but are impaired in their recall to low-affinity ligands
  publication-title: Cell Rep.
– volume: 27
  start-page: 111
  year: 2007
  end-page: 122
  ident: bib10
  article-title: Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses
  publication-title: Immunity
– volume: 81
  start-page: 2039
  year: 2007
  end-page: 2046
  ident: bib54
  article-title: Persistent antigen presentation after acute vesicular stomatitis virus infection
  publication-title: J. Virol.
– volume: 236
  start-page: 219
  year: 2010
  end-page: 242
  ident: bib18
  article-title: The PD-1 pathway in tolerance and autoimmunity
  publication-title: Immunol. Rev.
– volume: 202
  start-page: 697
  year: 2005
  end-page: 706
  ident: bib25
  article-title: Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation
  publication-title: J. Exp. Med.
– volume: 207
  start-page: 1161
  year: 2010
  end-page: 1172
  ident: bib29
  article-title: Antigen persistence and the control of local T cell memory by migrant respiratory dendritic cells after acute virus infection
  publication-title: J. Exp. Med.
– volume: 180
  start-page: 7553
  year: 2008
  end-page: 7557
  ident: bib46
  article-title: PDL-1 blockade impedes T cell expansion and protective immunity primed by attenuated
  publication-title: J. Immunol.
– volume: 439
  start-page: 682
  year: 2006
  end-page: 687
  ident: bib6
  article-title: Restoring function in exhausted CD8 T cells during chronic viral infection
  publication-title: Nature
– volume: 181
  start-page: 1859
  year: 2008
  end-page: 1868
  ident: bib23
  article-title: Identification of an evolutionarily conserved transcriptional signature of CD8 memory differentiation that is shared by T and B cells
  publication-title: J. Immunol.
– volume: 5
  start-page: ra46
  year: 2012
  ident: bib43
  article-title: Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation
  publication-title: Sci. Signal.
– volume: 340
  start-page: 630
  year: 2013
  end-page: 635
  ident: bib9
  article-title: Disparate individual fates compose robust CD8+ T cell immunity
  publication-title: Science
– volume: 95
  start-page: 215
  year: 2014
  end-page: 224
  ident: bib56
  article-title: Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection
  publication-title: J. Leukoc. Biol.
– volume: 355
  start-page: 1423
  year: 2017
  end-page: 1427
  ident: bib26
  article-title: Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent
  publication-title: Science
– volume: 102
  start-page: 15545
  year: 2005
  end-page: 15550
  ident: bib49
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 179
  start-page: 5064
  year: 2007
  end-page: 5070
  ident: bib28
  article-title: PD-1 regulates self-reactive CD8+ T cell responses to antigen in lymph nodes and tissues
  publication-title: J. Immunol.
– volume: 4
  start-page: 225
  year: 2003
  end-page: 234
  ident: bib55
  article-title: Lineage relationship and protective immunity of memory CD8 T cell subsets
  publication-title: Nat. Immunol.
– volume: 186
  start-page: 6280
  year: 2011
  end-page: 6286
  ident: bib2
  article-title: Programmed death 1 regulates development of central memory CD8 T cells after acute viral infection
  publication-title: J. Immunol.
– volume: 162
  start-page: 3256
  year: 1999
  end-page: 3262
  ident: bib14
  article-title: Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells
  publication-title: J. Immunol.
– volume: 25
  start-page: 9543
  year: 2005
  end-page: 9553
  ident: bib42
  article-title: CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms
  publication-title: Mol. Cell. Biol.
– volume: 113
  start-page: 5811
  year: 2009
  end-page: 5818
  ident: bib58
  article-title: PD-1 on dendritic cells impedes innate immunity against bacterial infection
  publication-title: Blood
– volume: 192
  start-page: 1027
  year: 2000
  end-page: 1034
  ident: bib20
  article-title: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation
  publication-title: J. Exp. Med.
– volume: 207
  start-page: 1153
  year: 2010
  end-page: 1160
  ident: bib50
  article-title: The route of priming influences the ability of respiratory virus-specific memory CD8+ T cells to be activated by residual antigen
  publication-title: J. Exp. Med.
– volume: 106
  start-page: 2741
  year: 2009
  end-page: 2746
  ident: bib51
  article-title: B7-H1 (PD-L1) on T cells is required for T-cell-mediated conditioning of dendritic cell maturation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 185
  start-page: 2182
  year: 2010
  end-page: 2190
  ident: bib38
  article-title: Qualitatively different memory CD8+ T cells are generated after lymphocytic choriomeningitis virus and influenza virus infections
  publication-title: J. Immunol.
– volume: 366
  start-page: 2455
  year: 2012
  end-page: 2465
  ident: bib8
  article-title: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer
  publication-title: N. Engl. J. Med.
– volume: 342
  start-page: 559
  year: 1989
  end-page: 561
  ident: bib44
  article-title: Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen
  publication-title: Nature
– volume: 5
  start-page: ra46
  year: 2012
  ident: 10.1016/j.celrep.2020.107827_bib43
  article-title: Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2002796
– volume: 18
  start-page: 153
  year: 2018
  ident: 10.1016/j.celrep.2020.107827_bib48
  article-title: The diverse functions of the PD1 inhibitory pathway
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.108
– volume: 9
  start-page: e1003207
  year: 2013
  ident: 10.1016/j.celrep.2020.107827_bib32
  article-title: Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003207
– volume: 210
  start-page: 757
  year: 2013
  ident: 10.1016/j.celrep.2020.107827_bib61
  article-title: PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20121416
– volume: 72
  start-page: 5174
  year: 1998
  ident: 10.1016/j.celrep.2020.107827_bib45
  article-title: DNA immunization with minigenes: low frequency of memory cytotoxic T lymphocytes and inefficient antiviral protection are rectified by ubiquitination
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.6.5174-5181.1998
– volume: 207
  start-page: 1161
  year: 2010
  ident: 10.1016/j.celrep.2020.107827_bib29
  article-title: Antigen persistence and the control of local T cell memory by migrant respiratory dendritic cells after acute virus infection
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20092017
– volume: 102
  start-page: 15545
  year: 2005
  ident: 10.1016/j.celrep.2020.107827_bib49
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 25
  start-page: 25
  year: 2000
  ident: 10.1016/j.celrep.2020.107827_bib3
  article-title: Gene Ontology: tool for the unification of biology
  publication-title: Nat. Genet.
  doi: 10.1038/75556
– volume: 12
  start-page: 252
  year: 2012
  ident: 10.1016/j.celrep.2020.107827_bib41
  article-title: The blockade of immune checkpoints in cancer immunotherapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3239
– volume: 25
  start-page: 9543
  year: 2005
  ident: 10.1016/j.celrep.2020.107827_bib42
  article-title: CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.21.9543-9553.2005
– volume: 13
  start-page: 227
  year: 2013
  ident: 10.1016/j.celrep.2020.107827_bib12
  article-title: Molecular mechanisms of T cell co-stimulation and co-inhibition
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3405
– volume: 541
  start-page: 321
  year: 2017
  ident: 10.1016/j.celrep.2020.107827_bib13
  article-title: Elements of cancer immunity and the cancer-immune set point
  publication-title: Nature
  doi: 10.1038/nature21349
– volume: 180
  start-page: 7553
  year: 2008
  ident: 10.1016/j.celrep.2020.107827_bib46
  article-title: PDL-1 blockade impedes T cell expansion and protective immunity primed by attenuated Listeria monocytogenes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.180.11.7553
– volume: 212
  start-page: 1125
  year: 2015
  ident: 10.1016/j.celrep.2020.107827_bib39
  article-title: Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20142237
– volume: 8
  start-page: e56539
  year: 2013
  ident: 10.1016/j.celrep.2020.107827_bib57
  article-title: A potential new pathway for PD-L1 costimulation of the CD8-T cell response to Listeria monocytogenes infection
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0056539
– volume: 342
  start-page: 559
  year: 1989
  ident: 10.1016/j.celrep.2020.107827_bib44
  article-title: Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen
  publication-title: Nature
  doi: 10.1038/342559a0
– volume: 443
  start-page: 350
  year: 2006
  ident: 10.1016/j.celrep.2020.107827_bib15
  article-title: PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression
  publication-title: Nature
  doi: 10.1038/nature05115
– volume: 65
  start-page: 185
  year: 2014
  ident: 10.1016/j.celrep.2020.107827_bib40
  article-title: Immune modulation in cancer with antibodies
  publication-title: Annu. Rev. Med.
  doi: 10.1146/annurev-med-092012-112807
– volume: 95
  start-page: 215
  year: 2014
  ident: 10.1016/j.celrep.2020.107827_bib56
  article-title: Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0313180
– volume: 113
  start-page: 5811
  year: 2009
  ident: 10.1016/j.celrep.2020.107827_bib58
  article-title: PD-1 on dendritic cells impedes innate immunity against bacterial infection
  publication-title: Blood
  doi: 10.1182/blood-2009-02-203141
– volume: 182
  start-page: 4244
  year: 2009
  ident: 10.1016/j.celrep.2020.107827_bib21
  article-title: Recall responses by helpless memory CD8+ T cells are restricted by the up-regulation of PD-1
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0802041
– volume: 152
  start-page: 1653
  year: 1994
  ident: 10.1016/j.celrep.2020.107827_bib36
  article-title: Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.152.4.1653
– volume: 81
  start-page: 2039
  year: 2007
  ident: 10.1016/j.celrep.2020.107827_bib54
  article-title: Persistent antigen presentation after acute vesicular stomatitis virus infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.02167-06
– volume: 41
  start-page: 127
  year: 2014
  ident: 10.1016/j.celrep.2020.107827_bib5
  article-title: Epitope-specific regulation of memory programming by differential duration of antigen presentation to influenza-specific CD8(+) T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.06.007
– volume: 122
  start-page: 2967
  year: 2012
  ident: 10.1016/j.celrep.2020.107827_bib16
  article-title: Viral acute lower respiratory infections impair CD8+ T cells through PD-1
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI62860
– volume: 8
  start-page: 683
  year: 1998
  ident: 10.1016/j.celrep.2020.107827_bib17
  article-title: Virus-specific CD8+ T cells in primary and secondary influenza pneumonia
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80573-7
– volume: 236
  start-page: 219
  year: 2010
  ident: 10.1016/j.celrep.2020.107827_bib18
  article-title: The PD-1 pathway in tolerance and autoimmunity
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2010.00923.x
– volume: 24
  start-page: 439
  year: 2006
  ident: 10.1016/j.celrep.2020.107827_bib60
  article-title: Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.01.015
– volume: 185
  start-page: 2182
  year: 2010
  ident: 10.1016/j.celrep.2020.107827_bib38
  article-title: Qualitatively different memory CD8+ T cells are generated after lymphocytic choriomeningitis virus and influenza virus infections
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1001142
– volume: 27
  start-page: 450
  year: 2015
  ident: 10.1016/j.celrep.2020.107827_bib53
  article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.03.001
– volume: 340
  start-page: 630
  year: 2013
  ident: 10.1016/j.celrep.2020.107827_bib9
  article-title: Disparate individual fates compose robust CD8+ T cell immunity
  publication-title: Science
  doi: 10.1126/science.1235454
– volume: 2
  start-page: 261
  year: 2001
  ident: 10.1016/j.celrep.2020.107827_bib34
  article-title: PD-L2 is a second ligand for PD-1 and inhibits T cell activation
  publication-title: Nat. Immunol.
  doi: 10.1038/85330
– volume: 186
  start-page: 6280
  year: 2011
  ident: 10.1016/j.celrep.2020.107827_bib2
  article-title: Programmed death 1 regulates development of central memory CD8 T cells after acute viral infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1003870
– volume: 209
  start-page: 1201
  year: 2012
  ident: 10.1016/j.celrep.2020.107827_bib59
  article-title: Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20112741
– volume: 192
  start-page: 1027
  year: 2000
  ident: 10.1016/j.celrep.2020.107827_bib20
  article-title: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.192.7.1027
– volume: 439
  start-page: 682
  year: 2006
  ident: 10.1016/j.celrep.2020.107827_bib6
  article-title: Restoring function in exhausted CD8 T cells during chronic viral infection
  publication-title: Nature
  doi: 10.1038/nature04444
– volume: 366
  start-page: 2443
  year: 2012
  ident: 10.1016/j.celrep.2020.107827_bib52
  article-title: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1200690
– volume: 15
  start-page: 1104
  year: 2014
  ident: 10.1016/j.celrep.2020.107827_bib11
  article-title: Molecular regulation of effector and memory T cell differentiation
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3031
– volume: 366
  start-page: 2455
  year: 2012
  ident: 10.1016/j.celrep.2020.107827_bib8
  article-title: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1200694
– volume: 340
  start-page: 635
  year: 2013
  ident: 10.1016/j.celrep.2020.107827_bib22
  article-title: Heterogeneous differentiation patterns of individual CD8+ T cells
  publication-title: Science
  doi: 10.1126/science.1235487
– volume: 26
  start-page: 827
  year: 2007
  ident: 10.1016/j.celrep.2020.107827_bib4
  article-title: Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.04.013
– volume: 4
  start-page: 225
  year: 2003
  ident: 10.1016/j.celrep.2020.107827_bib55
  article-title: Lineage relationship and protective immunity of memory CD8 T cell subsets
  publication-title: Nat. Immunol.
  doi: 10.1038/ni889
– volume: 85
  start-page: 4085
  year: 2011
  ident: 10.1016/j.celrep.2020.107827_bib35
  article-title: Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes
  publication-title: J. Virol.
  doi: 10.1128/JVI.02493-10
– volume: 105
  start-page: 15016
  year: 2008
  ident: 10.1016/j.celrep.2020.107827_bib7
  article-title: Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0801497105
– volume: 355
  start-page: 1423
  year: 2017
  ident: 10.1016/j.celrep.2020.107827_bib26
  article-title: Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent
  publication-title: Science
  doi: 10.1126/science.aaf0683
– volume: 179
  start-page: 5064
  year: 2007
  ident: 10.1016/j.celrep.2020.107827_bib28
  article-title: PD-1 regulates self-reactive CD8+ T cell responses to antigen in lymph nodes and tissues
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.8.5064
– volume: 25
  start-page: 612
  year: 2007
  ident: 10.1016/j.celrep.2020.107827_bib31
  article-title: Primary influenza A virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2006.08.036
– volume: 209
  start-page: 2485
  year: 2012
  ident: 10.1016/j.celrep.2020.107827_bib19
  article-title: Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20121015
– volume: 207
  start-page: 1153
  year: 2010
  ident: 10.1016/j.celrep.2020.107827_bib50
  article-title: The route of priming influences the ability of respiratory virus-specific memory CD8+ T cells to be activated by residual antigen
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20090283
– volume: 41
  start-page: 633
  year: 2014
  ident: 10.1016/j.celrep.2020.107827_bib33
  article-title: CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.09.007
– volume: 162
  start-page: 3256
  year: 1999
  ident: 10.1016/j.celrep.2020.107827_bib14
  article-title: Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.162.6.3256
– volume: 179
  start-page: 6704
  year: 2007
  ident: 10.1016/j.celrep.2020.107827_bib47
  article-title: Strength of stimulus and clonal competition impact the rate of memory CD8 T cell differentiation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.10.6704
– volume: 27
  start-page: 111
  year: 2007
  ident: 10.1016/j.celrep.2020.107827_bib10
  article-title: Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.05.016
– volume: 106
  start-page: 2741
  year: 2009
  ident: 10.1016/j.celrep.2020.107827_bib51
  article-title: B7-H1 (PD-L1) on T cells is required for T-cell-mediated conditioning of dendritic cell maturation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0813367106
– volume: 11
  start-page: 1071
  year: 2018
  ident: 10.1016/j.celrep.2020.107827_bib37
  article-title: Pulmonary antigen encounter regulates the establishment of tissue-resident CD8 memory T cells in the lung airways and parenchyma
  publication-title: Mucosal Immunol.
  doi: 10.1038/s41385-018-0003-x
– volume: 355
  start-page: 1428
  year: 2017
  ident: 10.1016/j.celrep.2020.107827_bib24
  article-title: T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition
  publication-title: Science
  doi: 10.1126/science.aaf1292
– volume: 115
  start-page: 4749
  year: 2018
  ident: 10.1016/j.celrep.2020.107827_bib1
  article-title: Role of PD-1 during effector CD8 T cell differentiation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1718217115
– volume: 181
  start-page: 1859
  year: 2008
  ident: 10.1016/j.celrep.2020.107827_bib23
  article-title: Identification of an evolutionarily conserved transcriptional signature of CD8 memory differentiation that is shared by T and B cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.3.1859
– volume: 202
  start-page: 697
  year: 2005
  ident: 10.1016/j.celrep.2020.107827_bib25
  article-title: Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050227
– volume: 203
  start-page: 883
  year: 2006
  ident: 10.1016/j.celrep.2020.107827_bib27
  article-title: Tissue expression of PD-L1 mediates peripheral T cell tolerance
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20051776
– volume: 4
  start-page: 554
  year: 2013
  ident: 10.1016/j.celrep.2020.107827_bib30
  article-title: Low-affinity T cells are programmed to maintain normal primary responses but are impaired in their recall to low-affinity ligands
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.07.008
SSID ssj0000601194
Score 2.5576358
Snippet The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here,...
The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107827
SubjectTerms acute infection
Administration, Intranasal
Animals
CD8+ T cell
CD8-Positive T-Lymphocytes - immunology
Cell Death - immunology
Cell Differentiation - immunology
Cell Proliferation
checkpoint blockade
effector
Immunologic Memory
influenza
Influenza A Virus, H3N2 Subtype - physiology
memory
Mice, Inbred C57BL
Orthomyxoviridae Infections - immunology
Orthomyxoviridae Infections - pathology
Orthomyxoviridae Infections - virology
PD-1
PD-L1
PD-L2
Programmed Cell Death 1 Receptor - metabolism
Signal Transduction
Species Specificity
Title The PD-1 Pathway Regulates Development and Function of Memory CD8+ T Cells following Respiratory Viral Infection
URI https://dx.doi.org/10.1016/j.celrep.2020.107827
https://www.ncbi.nlm.nih.gov/pubmed/32610128
https://www.proquest.com/docview/2419714238
https://pubmed.ncbi.nlm.nih.gov/PMC7377452
https://doaj.org/article/8fdbfcfc91f44b0bbe20702e1a1824ab
Volume 31
WOSCitedRecordID wos000546045900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgBRIXxDflY2Ukbsgiduo6PkKXCiRYVWhBvVnxxBZdRemq7bLqv2cmTqoGDr1wi5w0qTMvmTfyyxvG3mqLSMggCsxuILDesMJ7kwmorAY9CZW17YfCX835ebFY2PlBqy_ShCV74HTj3hex8hEiWBnHY595HxSiVAVZIjMel57evsh6Doqp9A4mLzNaUlaKNFtqbPrv5lpxF4R6HciuUtEQZkkzyEutff8gPf1LP_9WUR6kpdkDdr_jk_xDmsdDdis0j9jd1GFy95hdIQz4_ExIPkeqd1Pu-PfUfD5s-IFeiJdNxWeY4ihMfBX5NxLg7vj0rHjHL_g01PWGR4TM6gZTHZ5jvz7Pf-JGzb90mq7mCfsx-3Qx_Sy6JgsCtLJbIXU0kxCj9hKI-1W5DgFURGIXsXDOYuYrnUUZocpzX5bGy0kBUSqso8Di4FN20qya8JxxyMscsNQGWm7NJlAE5I5IAQKSjqwszIjl_S120DmQUyOM2vVSs0uXAuMoMC4FZsTE_ldXyYHjyPEfKXr7Y8k_ux1AVLkOVe4YqkbM9LF3HRVJFANPtTxy-Tc9VBw-qbT8UjZhdb1xyJWskUhfixF7lqCz_5NIosloDfeYAagGsxjuaZa_WjdwkyOD1-rF_5j2S3aPppL0kK_YyXZ9HV6zO_B7u9ysT9ltsyhO2wftD1p0LG4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+PD-1+Pathway+Regulates+Development+and+Function+of+Memory+CD8%2B+T+Cells+following+Respiratory+Viral+Infection&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Pauken%2C+Kristen+E.&rft.au=Godec%2C+Jernej&rft.au=Odorizzi%2C+Pamela+M.&rft.au=Brown%2C+Keturah+E.&rft.date=2020-06-30&rft.eissn=2211-1247&rft.volume=31&rft.issue=13&rft.spage=107827&rft.epage=107827&rft_id=info:doi/10.1016%2Fj.celrep.2020.107827&rft_id=info%3Apmid%2F32610128&rft.externalDocID=PMC7377452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon