The PD-1 Pathway Regulates Development and Function of Memory CD8+ T Cells following Respiratory Viral Infection
The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory follo...
Uložené v:
| Vydané v: | Cell reports (Cambridge) Ročník 31; číslo 13; s. 107827 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
30.06.2020
Elsevier |
| Predmet: | |
| ISSN: | 2211-1247, 2211-1247 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients.
[Display omitted]
•Early loss of PD-1 leads to overactivation of CD8+ T cells during acute infection•Mice constitutively lacking PD-1 or PD-L develop impaired CD8+ T cell memory•Cell-intrinsic PD-1 signals suppress effector cell expansion and promote memory•Timing of PD-1 blockade determines impact on memory generation
The role of PD-1 in memory development is poorly understood. Here, Pauken et al. show that constitutive loss of PD-1 during acute infection causes overactivation of CD8+ T cells during the effector phase and impairs memory and recall responses. These data indicate PD-1 is required for optimal memory. |
|---|---|
| AbstractList | The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients. The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients.The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients. The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into nonlymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients. The role of PD-1 in memory development is poorly understood. Here, Pauken et al. show that constitutive loss of PD-1 during acute infection causes overactivation of CD8+ T cells during the effector phase and impairs memory and recall responses. These data indicate PD-1 is required for optimal memory. The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients. [Display omitted] •Early loss of PD-1 leads to overactivation of CD8+ T cells during acute infection•Mice constitutively lacking PD-1 or PD-L develop impaired CD8+ T cell memory•Cell-intrinsic PD-1 signals suppress effector cell expansion and promote memory•Timing of PD-1 blockade determines impact on memory generation The role of PD-1 in memory development is poorly understood. Here, Pauken et al. show that constitutive loss of PD-1 during acute infection causes overactivation of CD8+ T cells during the effector phase and impairs memory and recall responses. These data indicate PD-1 is required for optimal memory. The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8 T cell memory following acute influenza infection, including reduced virus-specific CD8 T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8 T cell signals that promotes CD8 T cell memory formation and suggest PD-1 continues to fine-tune CD8 T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients. |
| ArticleNumber | 107827 |
| Author | Godec, Jernej Imam, Sabrina Sharpe, Arlene H. Freeman, Gordon J. Wherry, E. John Odorizzi, Pamela M. Brown, Keturah E. Ali, Mohammed-Alkhatim Francisco, Loise M. Yates, Kathleen B. Ngiow, Shin Foong Pauken, Kristen E. Haining, W. Nicholas Grande, Shannon M. Maleri, Seth Burke, Kelly P. |
| AuthorAffiliation | 6 Division of Hematology/Oncology, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA 7 Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA 9 These authors contributed equally 3 Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA 2 Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA 5 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 1 Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA 4 Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA 8 These authors contributed equally 10 Lead Contact |
| AuthorAffiliation_xml | – name: 9 These authors contributed equally – name: 3 Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA – name: 8 These authors contributed equally – name: 1 Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA – name: 7 Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA – name: 4 Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA – name: 6 Division of Hematology/Oncology, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA – name: 10 Lead Contact – name: 2 Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA – name: 5 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA |
| Author_xml | – sequence: 1 givenname: Kristen E. surname: Pauken fullname: Pauken, Kristen E. organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA – sequence: 2 givenname: Jernej surname: Godec fullname: Godec, Jernej organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA – sequence: 3 givenname: Pamela M. surname: Odorizzi fullname: Odorizzi, Pamela M. organization: Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA – sequence: 4 givenname: Keturah E. surname: Brown fullname: Brown, Keturah E. organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA – sequence: 5 givenname: Kathleen B. surname: Yates fullname: Yates, Kathleen B. organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA – sequence: 6 givenname: Shin Foong surname: Ngiow fullname: Ngiow, Shin Foong organization: Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA – sequence: 7 givenname: Kelly P. surname: Burke fullname: Burke, Kelly P. organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA – sequence: 8 givenname: Seth surname: Maleri fullname: Maleri, Seth organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA – sequence: 9 givenname: Shannon M. surname: Grande fullname: Grande, Shannon M. organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA – sequence: 10 givenname: Loise M. surname: Francisco fullname: Francisco, Loise M. organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA – sequence: 11 givenname: Mohammed-Alkhatim surname: Ali fullname: Ali, Mohammed-Alkhatim organization: Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA – sequence: 12 givenname: Sabrina surname: Imam fullname: Imam, Sabrina organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA – sequence: 13 givenname: Gordon J. surname: Freeman fullname: Freeman, Gordon J. organization: Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA – sequence: 14 givenname: W. Nicholas surname: Haining fullname: Haining, W. Nicholas organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA – sequence: 15 givenname: E. John surname: Wherry fullname: Wherry, E. John email: wherry@pennmedicine.upenn.edu organization: Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA – sequence: 16 givenname: Arlene H. surname: Sharpe fullname: Sharpe, Arlene H. email: arlene_sharpe@hms.harvard.edu organization: Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32610128$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1vEzEQhleoiJbSf4CQj0goweP95oCEEloiFVGhwNXyeseJI6-9tTep8u_rbULVcgBfbI3fecaed14nJ9ZZTJK3QKdAofi4mUo0Hvspo2wMlRUrXyRnjAFMgGXlyZPzaXIRwobGVVCAOnuVnKasiBhWnSX9co3kZj4BciOG9Z3Yk5-42hoxYCBz3KFxfYd2IMK25HJr5aCdJU6R79g5vyezefWBLMkMjQlEOWPcnbaryAi99mIYJb_jwZCFVfiQ_CZ5qYQJeHHcz5Nfl1-Xs2-T6x9Xi9mX64nMWT1MIFdlgUrlDUjI07RNc0TJFNSpqmlJFW3anCpQsk3TRoiygaKSChhklaxj8DxZHLitExvee90Jv-dOaP4QcH7FhR-0NMgr1TZKKlmDyrKGNg2yWIEhCKhYJprI-nxg9dumw1bGhsQ_PYM-v7F6zVdux8u0LLOcRcD7I8C72y2GgXc6RAeNsOi2gbMM6hIyllZR-u5prccifyyLguwgkN6F4FE9SoDycTj4hh-Gg4_DwQ_DEdM-_ZUm9SBGR-KLtflf8rEBGB3bafQ8SI1WYqt9tDW2VP8bcA9qldhC |
| CitedBy_id | crossref_primary_10_1177_17588359241284946 crossref_primary_10_1002_advs_202403438 crossref_primary_10_1002_adbi_202100758 crossref_primary_10_1016_j_isci_2024_110131 crossref_primary_10_1038_s41590_025_02201_y crossref_primary_10_1016_j_ymthe_2021_10_001 crossref_primary_10_1136_jitc_2022_004766 crossref_primary_10_1016_j_mucimm_2023_12_004 crossref_primary_10_3389_fimmu_2023_1267774 crossref_primary_10_3389_fimmu_2023_1187850 crossref_primary_10_1038_s41467_023_37368_1 crossref_primary_10_1016_j_immuni_2023_01_022 crossref_primary_10_1016_j_smim_2025_101975 crossref_primary_10_1038_s41416_023_02363_2 crossref_primary_10_1007_s00592_021_01711_z crossref_primary_10_1016_j_jri_2023_104184 crossref_primary_10_1038_s41598_021_92311_y crossref_primary_10_3389_fimmu_2022_869768 crossref_primary_10_1158_1078_0432_CCR_21_1535 crossref_primary_10_1182_bloodadvances_2023012073 crossref_primary_10_3389_fimmu_2021_677824 crossref_primary_10_1073_pnas_2200626120 crossref_primary_10_1016_j_isci_2023_108387 crossref_primary_10_1038_s41591_020_01206_4 crossref_primary_10_3389_fonc_2022_871085 crossref_primary_10_1038_s41590_024_01961_3 crossref_primary_10_3389_fphar_2020_590344 crossref_primary_10_1038_s41467_024_49041_2 crossref_primary_10_1186_s40001_024_01689_8 crossref_primary_10_1186_s12948_021_00161_w crossref_primary_10_1016_j_cell_2022_06_035 crossref_primary_10_1136_jitc_2021_002835 crossref_primary_10_1038_s41422_024_00945_0 crossref_primary_10_1038_s41423_023_01064_3 crossref_primary_10_1126_sciimmunol_adf2223 crossref_primary_10_3389_fimmu_2024_1426064 crossref_primary_10_1007_s11892_021_01384_6 crossref_primary_10_1038_s43018_021_00275_9 crossref_primary_10_1016_j_jri_2023_104130 crossref_primary_10_1038_s41586_024_08507_5 crossref_primary_10_1136_jitc_2024_010026 crossref_primary_10_1371_journal_ppat_1009892 crossref_primary_10_3389_fimmu_2022_945980 crossref_primary_10_3390_cancers13010134 crossref_primary_10_1016_j_omto_2022_07_009 crossref_primary_10_1038_s41590_024_01847_4 crossref_primary_10_1038_s41577_023_00867_9 crossref_primary_10_1158_2159_8290_CD_25_0300 crossref_primary_10_1016_j_immuni_2022_02_004 crossref_primary_10_3389_fimmu_2024_1343450 crossref_primary_10_1038_s41571_020_00455_z crossref_primary_10_1126_scitranslmed_aba6006 crossref_primary_10_1084_jem_20230542 crossref_primary_10_1158_2326_6066_CIR_20_0526 crossref_primary_10_1038_s41571_022_00689_z crossref_primary_10_1016_j_jaci_2023_07_015 crossref_primary_10_1002_art_43144 crossref_primary_10_1111_imm_13755 crossref_primary_10_3390_vaccines12040419 crossref_primary_10_3390_vaccines9121431 crossref_primary_10_1038_s41467_025_57562_7 crossref_primary_10_1093_jimmun_vkae059 crossref_primary_10_1016_j_celrep_2023_112876 crossref_primary_10_1016_j_tranon_2024_102138 crossref_primary_10_1038_s41568_021_00431_4 crossref_primary_10_1186_s13045_025_01732_z crossref_primary_10_4049_jimmunol_2400295 crossref_primary_10_1038_s41584_021_00741_9 crossref_primary_10_4049_jimmunol_2300401 crossref_primary_10_1128_jvi_00797_24 crossref_primary_10_1158_1078_0432_CCR_22_0832 crossref_primary_10_3389_fimmu_2022_866120 crossref_primary_10_1002_cyto_a_24528 crossref_primary_10_1126_sciimmunol_abe3702 crossref_primary_10_1016_j_immuni_2024_01_013 crossref_primary_10_1093_neuonc_noab271 crossref_primary_10_1111_vco_12788 crossref_primary_10_1038_s41590_021_00949_7 crossref_primary_10_3389_fimmu_2024_1354710 crossref_primary_10_1038_s41540_023_00297_2 crossref_primary_10_1093_jimmun_vkaf076 crossref_primary_10_1016_j_smim_2021_101480 crossref_primary_10_1172_JCI192731 crossref_primary_10_1186_s12863_022_01081_7 |
| Cites_doi | 10.1126/scisignal.2002796 10.1038/nri.2017.108 10.1371/journal.ppat.1003207 10.1084/jem.20121416 10.1128/JVI.72.6.5174-5181.1998 10.1084/jem.20092017 10.1073/pnas.0506580102 10.1038/75556 10.1038/nrc3239 10.1128/MCB.25.21.9543-9553.2005 10.1038/nri3405 10.1038/nature21349 10.4049/jimmunol.180.11.7553 10.1084/jem.20142237 10.1371/journal.pone.0056539 10.1038/342559a0 10.1038/nature05115 10.1146/annurev-med-092012-112807 10.1189/jlb.0313180 10.1182/blood-2009-02-203141 10.4049/jimmunol.0802041 10.4049/jimmunol.152.4.1653 10.1128/JVI.02167-06 10.1016/j.immuni.2014.06.007 10.1172/JCI62860 10.1016/S1074-7613(00)80573-7 10.1111/j.1600-065X.2010.00923.x 10.1016/j.immuni.2006.01.015 10.4049/jimmunol.1001142 10.1016/j.ccell.2015.03.001 10.1126/science.1235454 10.1038/85330 10.4049/jimmunol.1003870 10.1084/jem.20112741 10.1084/jem.192.7.1027 10.1038/nature04444 10.1056/NEJMoa1200690 10.1038/ni.3031 10.1056/NEJMoa1200694 10.1126/science.1235487 10.1016/j.immuni.2007.04.013 10.1038/ni889 10.1128/JVI.02493-10 10.1073/pnas.0801497105 10.1126/science.aaf0683 10.4049/jimmunol.179.8.5064 10.1016/j.vaccine.2006.08.036 10.1084/jem.20121015 10.1084/jem.20090283 10.1016/j.immuni.2014.09.007 10.4049/jimmunol.162.6.3256 10.4049/jimmunol.179.10.6704 10.1016/j.immuni.2007.05.016 10.1073/pnas.0813367106 10.1038/s41385-018-0003-x 10.1126/science.aaf1292 10.1073/pnas.1718217115 10.4049/jimmunol.181.3.1859 10.1084/jem.20050227 10.1084/jem.20051776 10.1016/j.celrep.2013.07.008 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1016/j.celrep.2020.107827 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2211-1247 |
| EndPage | 107827 |
| ExternalDocumentID | oai_doaj_org_article_8fdbfcfc91f44b0bbe20702e1a1824ab PMC7377452 32610128 10_1016_j_celrep_2020_107827 S2211124720308081 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P01 AI078897 – fundername: NIAID NIH HHS grantid: P01 AI108545 – fundername: NIAID NIH HHS grantid: P01 AI112521 – fundername: NIAID NIH HHS grantid: U19 AI082630 – fundername: NIAID NIH HHS grantid: P01 AI039671 – fundername: NIAID NIH HHS grantid: R01 AI105343 – fundername: NIAID NIH HHS grantid: P01 AI056299 – fundername: NCI NIH HHS grantid: R01 CA229851 – fundername: NIAID NIH HHS grantid: HHSN266200500030C |
| GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c529t-15f76eff5b1c1533d35eec2f193f9070f0bd50f1fcd33baa7b168cf12148c9cd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546045900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2211-1247 |
| IngestDate | Fri Oct 03 12:38:46 EDT 2025 Tue Sep 30 15:49:43 EDT 2025 Thu Jul 10 18:26:12 EDT 2025 Mon Jul 21 05:59:28 EDT 2025 Wed Nov 05 20:44:14 EST 2025 Tue Nov 18 22:00:30 EST 2025 Tue Jul 25 21:03:47 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | influenza checkpoint blockade memory acute infection PD-L1 PD-L2 effector PD-1 CD8+ T cell CD8(+) T cell |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c529t-15f76eff5b1c1533d35eec2f193f9070f0bd50f1fcd33baa7b168cf12148c9cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS K.E.P., J.G., P.M.O., K.E.B., E.J.W., and A.H.S. conceived the studies. K.E.P., J.G., P.M.O., K.E.B., M.-A.A., S.F.N., K.P.B., and S.M. performed experiments and generated primary data, including developing methodology, validation, and data curation. K.E.P., J.G., P.M.O., and K.E.B. performed formal analysis and visualization. S.M.G., L.M.F., and M.-A.A. assisted in animal colony maintenance and performing some mouse experiments. K.B.Y., S.I., and W.N.H. performed and analyzed transcriptional profiling data. K.E.P., J.G., P.M.O., K.E.B., G.J.F., E.J.W., and A.H.S. contributed to writing the manuscript. All authors contributed to reviewing and editing the final manuscript. E.J.W. and A.H.S. were responsible for project supervision, administration, and funding acquisition. |
| OpenAccessLink | https://doaj.org/article/8fdbfcfc91f44b0bbe20702e1a1824ab |
| PMID | 32610128 |
| PQID | 2419714238 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8fdbfcfc91f44b0bbe20702e1a1824ab pubmedcentral_primary_oai_pubmedcentral_nih_gov_7377452 proquest_miscellaneous_2419714238 pubmed_primary_32610128 crossref_primary_10_1016_j_celrep_2020_107827 crossref_citationtrail_10_1016_j_celrep_2020_107827 elsevier_sciencedirect_doi_10_1016_j_celrep_2020_107827 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-30 |
| PublicationDateYYYYMMDD | 2020-06-30 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports (Cambridge) |
| PublicationTitleAlternate | Cell Rep |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Parry, Chemnitz, Frauwirth, Lanfranco, Braunstein, Kobayashi, Linsley, Thompson, Riley (bib42) 2005; 25 Wu, Hu, Lee, Bouchard, Benechet, Khanna, Cauley (bib56) 2014; 95 Pircher, Bürki, Lang, Hengartner, Zinkernagel (bib44) 1989; 342 Hui, Cheung, Zhu, Su, Taylor, Wallweber, Sasmal, Huang, Kim, Mellman, Vale (bib24) 2017; 355 Allie, Zhang, Fuse, Usherwood (bib2) 2011; 186 Knudson, Goplen, Cunningham, Daniels, Teixeiro (bib30) 2013; 4 Butte, Keir, Phamduy, Sharpe, Freeman (bib10) 2007; 27 Patsoukis, Brown, Petkova, Liu, Li, Boussiotis (bib43) 2012; 5 Laidlaw, Decman, Ali, Abt, Wolf, Monticelli, Mozdzanowska, Angelosanto, Artis, Erikson, Wherry (bib32) 2013; 9 Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette, Paulovich, Pomeroy, Golub, Lander, Mesirov (bib49) 2005; 102 Badovinac, Haring, Harty (bib4) 2007; 26 Lee, Suarez-Ramirez, Wu, Redman, Bouchard, Hadley, Cauley (bib35) 2011; 85 Liang, Mozdzanowska, Palladino, Gerhard (bib36) 1994; 152 Zinselmeyer, Heydari, Sacristán, Nayak, Cammer, Herz, Cheng, Davis, Dustin, McGavern (bib61) 2013; 210 Flynn, Belz, Altman, Ahmed, Woodland, Doherty (bib17) 1998; 8 Pardoll (bib41) 2012; 12 Topalian, Hodi, Brahmer, Gettinger, Smith, McDermott, Powderly, Carvajal, Sosman, Atkins (bib52) 2012; 366 Haining, Ebert, Subrmanian, Wherry, Eichbaum, Evans, Mak, Rivoli, Pretz, Angelosanto (bib23) 2008; 181 Mueller, Langley, Li, García-Sastre, Webby, Ahmed (bib38) 2010; 185 Gerlach, Rohr, Perié, van Rooij, van Heijst, Velds, Urbanus, Naik, Jacobs, Beltman (bib22) 2013; 340 Buchholz, Flossdorf, Hensel, Kretschmer, Weissbrich, Gräf, Verschoor, Schiemann, Höfer, Busch (bib9) 2013; 340 Chang, Wherry, Goldrath (bib11) 2014; 15 Page, Postow, Callahan, Allison, Wolchok (bib40) 2014; 65 Yokosuka, Takamatsu, Kobayashi-Imanishi, Hashimoto-Tane, Azuma, Saito (bib59) 2012; 209 Yao, Wang, Zhu, Luo, Zhu, Flies, Xu, Ruff, Broadwater, Choi (bib58) 2009; 113 Turner, Cauley, Khanna, Lefrançois (bib54) 2007; 81 Laidlaw, Zhang, Marshall, Staron, Guan, Hu, Cauley, Craft, Kaech (bib33) 2014; 41 McMaster, Wein, Dunbar, Hayward, Cartwright, Denning, Kohlmeier (bib37) 2018; 11 Sharpe, Pauken (bib48) 2018; 18 Kamphorst, Wieland, Nasti, Yang, Zhang, Barber, Konieczny, Daugherty, Koenig, Yu (bib26) 2017; 355 Takamura, Roberts, Jelley-Gibbs, Wittmer, Kohlmeier, Woodland (bib50) 2010; 207 Chen, Mellman (bib13) 2017; 541 Frebel, Nindl, Schuepbach, Braunschweiler, Richter, Vogel, Wagner, Loffing-Cueni, Kurrer, Ludewig, Oxenius (bib19) 2012; 209 Topalian, Drake, Pardoll (bib53) 2015; 27 Keir, Freeman, Sharpe (bib28) 2007; 179 Day, Kaufmann, Kiepiela, Brown, Moodley, Reddy, Mackey, Miller, Leslie, DePierres (bib15) 2006; 443 Zammit, Turner, Klonowski, Lefrançois, Cauley (bib60) 2006; 24 Wherry, Teichgräber, Becker, Masopust, Kaech, Antia, von Andrian, Ahmed (bib55) 2003; 4 Rowe, Johanns, Ertelt, Way (bib46) 2008; 180 Ballesteros-Tato, León, Lee, Lund, Randall (bib5) 2014; 41 Francisco, Sage, Sharpe (bib18) 2010; 236 Kim, Hufford, Sun, Fu, Braciale (bib29) 2010; 207 Latchman, Wood, Chernova, Chaudhary, Borde, Chernova, Iwai, Long, Brown, Nunes (bib34) 2001; 2 Ashburner, Ball, Blake, Botstein, Butler, Cherry, Davis, Dolinski, Dwight, Eppig (bib3) 2000; 25 Jelley-Gibbs, Brown, Dibble, Haynes, Eaton, Swain (bib25) 2005; 202 Erickson, Gilchuk, Hastings, Tollefson, Johnson, Downing, Boyd, Johnson, Kim, Joyce, Williams (bib16) 2012; 122 Kreijtz, Bodewes, van Amerongen, Kuiken, Fouchier, Osterhaus, Rimmelzwaan (bib31) 2007; 25 Fuse, Tsai, Molloy, Allie, Zhang, Yagita, Usherwood (bib21) 2009; 182 Keir, Liang, Guleria, Latchman, Qipo, Albacker, Koulmanda, Freeman, Sayegh, Sharpe (bib27) 2006; 203 Brahmer, Tykodi, Chow, Hwu, Topalian, Hwu, Drake, Camacho, Kauh, Odunsi (bib8) 2012; 366 Chen, Flies (bib12) 2013; 13 Barber, Wherry, Masopust, Zhu, Allison, Sharpe, Freeman, Ahmed (bib6) 2006; 439 Curtsinger, Schmidt, Mondino, Lins, Kedl, Jenkins, Mescher (bib14) 1999; 162 Blackburn, Shin, Freeman, Wherry (bib7) 2008; 105 Talay, Shen, Chen, Chen (bib51) 2009; 106 Ahn, Araki, Hashimoto, Li, Riley, Cheung, Sharpe, Freeman, Irving, Ahmed (bib1) 2018; 115 Sarkar, Teichgräber, Kalia, Polley, Masopust, Harrington, Ahmed, Wherry (bib47) 2007; 179 Xu, Fu, Obar, Park, Tamada, Yagita, Lefrançois (bib57) 2013; 8 Rodriguez, An, Harkins, Zhang, Yokoyama, Widera, Fuller, Kincaid, Campbell, Whitton (bib45) 1998; 72 Odorizzi, Pauken, Paley, Sharpe, Wherry (bib39) 2015; 212 Freeman, Long, Iwai, Bourque, Chernova, Nishimura, Fitz, Malenkovich, Okazaki, Byrne (bib20) 2000; 192 Ballesteros-Tato (10.1016/j.celrep.2020.107827_bib5) 2014; 41 Lee (10.1016/j.celrep.2020.107827_bib35) 2011; 85 Badovinac (10.1016/j.celrep.2020.107827_bib4) 2007; 26 Takamura (10.1016/j.celrep.2020.107827_bib50) 2010; 207 Mueller (10.1016/j.celrep.2020.107827_bib38) 2010; 185 Haining (10.1016/j.celrep.2020.107827_bib23) 2008; 181 Wherry (10.1016/j.celrep.2020.107827_bib55) 2003; 4 Kamphorst (10.1016/j.celrep.2020.107827_bib26) 2017; 355 Talay (10.1016/j.celrep.2020.107827_bib51) 2009; 106 Kreijtz (10.1016/j.celrep.2020.107827_bib31) 2007; 25 McMaster (10.1016/j.celrep.2020.107827_bib37) 2018; 11 Wu (10.1016/j.celrep.2020.107827_bib56) 2014; 95 Laidlaw (10.1016/j.celrep.2020.107827_bib33) 2014; 41 Zinselmeyer (10.1016/j.celrep.2020.107827_bib61) 2013; 210 Ahn (10.1016/j.celrep.2020.107827_bib1) 2018; 115 Flynn (10.1016/j.celrep.2020.107827_bib17) 1998; 8 Curtsinger (10.1016/j.celrep.2020.107827_bib14) 1999; 162 Keir (10.1016/j.celrep.2020.107827_bib28) 2007; 179 Allie (10.1016/j.celrep.2020.107827_bib2) 2011; 186 Chang (10.1016/j.celrep.2020.107827_bib11) 2014; 15 Odorizzi (10.1016/j.celrep.2020.107827_bib39) 2015; 212 Topalian (10.1016/j.celrep.2020.107827_bib52) 2012; 366 Latchman (10.1016/j.celrep.2020.107827_bib34) 2001; 2 Blackburn (10.1016/j.celrep.2020.107827_bib7) 2008; 105 Page (10.1016/j.celrep.2020.107827_bib40) 2014; 65 Rowe (10.1016/j.celrep.2020.107827_bib46) 2008; 180 Erickson (10.1016/j.celrep.2020.107827_bib16) 2012; 122 Fuse (10.1016/j.celrep.2020.107827_bib21) 2009; 182 Chen (10.1016/j.celrep.2020.107827_bib13) 2017; 541 Pircher (10.1016/j.celrep.2020.107827_bib44) 1989; 342 Yokosuka (10.1016/j.celrep.2020.107827_bib59) 2012; 209 Buchholz (10.1016/j.celrep.2020.107827_bib9) 2013; 340 Hui (10.1016/j.celrep.2020.107827_bib24) 2017; 355 Brahmer (10.1016/j.celrep.2020.107827_bib8) 2012; 366 Freeman (10.1016/j.celrep.2020.107827_bib20) 2000; 192 Patsoukis (10.1016/j.celrep.2020.107827_bib43) 2012; 5 Barber (10.1016/j.celrep.2020.107827_bib6) 2006; 439 Topalian (10.1016/j.celrep.2020.107827_bib53) 2015; 27 Yao (10.1016/j.celrep.2020.107827_bib58) 2009; 113 Keir (10.1016/j.celrep.2020.107827_bib27) 2006; 203 Butte (10.1016/j.celrep.2020.107827_bib10) 2007; 27 Knudson (10.1016/j.celrep.2020.107827_bib30) 2013; 4 Sarkar (10.1016/j.celrep.2020.107827_bib47) 2007; 179 Subramanian (10.1016/j.celrep.2020.107827_bib49) 2005; 102 Liang (10.1016/j.celrep.2020.107827_bib36) 1994; 152 Day (10.1016/j.celrep.2020.107827_bib15) 2006; 443 Turner (10.1016/j.celrep.2020.107827_bib54) 2007; 81 Frebel (10.1016/j.celrep.2020.107827_bib19) 2012; 209 Laidlaw (10.1016/j.celrep.2020.107827_bib32) 2013; 9 Pardoll (10.1016/j.celrep.2020.107827_bib41) 2012; 12 Chen (10.1016/j.celrep.2020.107827_bib12) 2013; 13 Xu (10.1016/j.celrep.2020.107827_bib57) 2013; 8 Parry (10.1016/j.celrep.2020.107827_bib42) 2005; 25 Rodriguez (10.1016/j.celrep.2020.107827_bib45) 1998; 72 Sharpe (10.1016/j.celrep.2020.107827_bib48) 2018; 18 Kim (10.1016/j.celrep.2020.107827_bib29) 2010; 207 Ashburner (10.1016/j.celrep.2020.107827_bib3) 2000; 25 Zammit (10.1016/j.celrep.2020.107827_bib60) 2006; 24 Jelley-Gibbs (10.1016/j.celrep.2020.107827_bib25) 2005; 202 Francisco (10.1016/j.celrep.2020.107827_bib18) 2010; 236 Gerlach (10.1016/j.celrep.2020.107827_bib22) 2013; 340 |
| References_xml | – volume: 12 start-page: 252 year: 2012 end-page: 264 ident: bib41 article-title: The blockade of immune checkpoints in cancer immunotherapy publication-title: Nat. Rev. Cancer – volume: 340 start-page: 635 year: 2013 end-page: 639 ident: bib22 article-title: Heterogeneous differentiation patterns of individual CD8+ T cells publication-title: Science – volume: 13 start-page: 227 year: 2013 end-page: 242 ident: bib12 article-title: Molecular mechanisms of T cell co-stimulation and co-inhibition publication-title: Nat. Rev. Immunol. – volume: 366 start-page: 2443 year: 2012 end-page: 2454 ident: bib52 article-title: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer publication-title: N. Engl. J. Med. – volume: 209 start-page: 1201 year: 2012 end-page: 1217 ident: bib59 article-title: Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2 publication-title: J. Exp. Med. – volume: 27 start-page: 450 year: 2015 end-page: 461 ident: bib53 article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy publication-title: Cancer Cell – volume: 105 start-page: 15016 year: 2008 end-page: 15021 ident: bib7 article-title: Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade publication-title: Proc. Natl. Acad. Sci. USA – volume: 179 start-page: 6704 year: 2007 end-page: 6714 ident: bib47 article-title: Strength of stimulus and clonal competition impact the rate of memory CD8 T cell differentiation publication-title: J. Immunol. – volume: 203 start-page: 883 year: 2006 end-page: 895 ident: bib27 article-title: Tissue expression of PD-L1 mediates peripheral T cell tolerance publication-title: J. Exp. Med. – volume: 8 start-page: 683 year: 1998 end-page: 691 ident: bib17 article-title: Virus-specific CD8+ T cells in primary and secondary influenza pneumonia publication-title: Immunity – volume: 2 start-page: 261 year: 2001 end-page: 268 ident: bib34 article-title: PD-L2 is a second ligand for PD-1 and inhibits T cell activation publication-title: Nat. Immunol. – volume: 9 start-page: e1003207 year: 2013 ident: bib32 article-title: Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity publication-title: PLoS Pathog. – volume: 8 start-page: e56539 year: 2013 ident: bib57 article-title: A potential new pathway for PD-L1 costimulation of the CD8-T cell response to publication-title: PLoS ONE – volume: 210 start-page: 757 year: 2013 end-page: 774 ident: bib61 article-title: PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis publication-title: J. Exp. Med. – volume: 355 start-page: 1428 year: 2017 end-page: 1433 ident: bib24 article-title: T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition publication-title: Science – volume: 26 start-page: 827 year: 2007 end-page: 841 ident: bib4 article-title: Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection publication-title: Immunity – volume: 115 start-page: 4749 year: 2018 end-page: 4754 ident: bib1 article-title: Role of PD-1 during effector CD8 T cell differentiation publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 439 year: 2006 end-page: 449 ident: bib60 article-title: Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration publication-title: Immunity – volume: 41 start-page: 127 year: 2014 end-page: 140 ident: bib5 article-title: Epitope-specific regulation of memory programming by differential duration of antigen presentation to influenza-specific CD8(+) T cells publication-title: Immunity – volume: 72 start-page: 5174 year: 1998 end-page: 5181 ident: bib45 article-title: DNA immunization with minigenes: low frequency of memory cytotoxic T lymphocytes and inefficient antiviral protection are rectified by ubiquitination publication-title: J. Virol. – volume: 11 start-page: 1071 year: 2018 end-page: 1078 ident: bib37 article-title: Pulmonary antigen encounter regulates the establishment of tissue-resident CD8 memory T cells in the lung airways and parenchyma publication-title: Mucosal Immunol. – volume: 25 start-page: 612 year: 2007 end-page: 620 ident: bib31 article-title: Primary influenza A virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice publication-title: Vaccine – volume: 122 start-page: 2967 year: 2012 end-page: 2982 ident: bib16 article-title: Viral acute lower respiratory infections impair CD8+ T cells through PD-1 publication-title: J. Clin. Invest. – volume: 209 start-page: 2485 year: 2012 end-page: 2499 ident: bib19 article-title: Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice publication-title: J. Exp. Med. – volume: 15 start-page: 1104 year: 2014 end-page: 1115 ident: bib11 article-title: Molecular regulation of effector and memory T cell differentiation publication-title: Nat. Immunol. – volume: 65 start-page: 185 year: 2014 end-page: 202 ident: bib40 article-title: Immune modulation in cancer with antibodies publication-title: Annu. Rev. Med. – volume: 25 start-page: 25 year: 2000 end-page: 29 ident: bib3 article-title: Gene Ontology: tool for the unification of biology publication-title: Nat. Genet. – volume: 18 start-page: 153 year: 2018 end-page: 167 ident: bib48 article-title: The diverse functions of the PD1 inhibitory pathway publication-title: Nat. Rev. Immunol. – volume: 541 start-page: 321 year: 2017 end-page: 330 ident: bib13 article-title: Elements of cancer immunity and the cancer-immune set point publication-title: Nature – volume: 41 start-page: 633 year: 2014 end-page: 645 ident: bib33 article-title: CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection publication-title: Immunity – volume: 212 start-page: 1125 year: 2015 end-page: 1137 ident: bib39 article-title: Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells publication-title: J. Exp. Med. – volume: 85 start-page: 4085 year: 2011 end-page: 4094 ident: bib35 article-title: Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes publication-title: J. Virol. – volume: 443 start-page: 350 year: 2006 end-page: 354 ident: bib15 article-title: PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression publication-title: Nature – volume: 182 start-page: 4244 year: 2009 end-page: 4254 ident: bib21 article-title: Recall responses by helpless memory CD8+ T cells are restricted by the up-regulation of PD-1 publication-title: J. Immunol. – volume: 152 start-page: 1653 year: 1994 end-page: 1661 ident: bib36 article-title: Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity publication-title: J. Immunol. – volume: 4 start-page: 554 year: 2013 end-page: 565 ident: bib30 article-title: Low-affinity T cells are programmed to maintain normal primary responses but are impaired in their recall to low-affinity ligands publication-title: Cell Rep. – volume: 27 start-page: 111 year: 2007 end-page: 122 ident: bib10 article-title: Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses publication-title: Immunity – volume: 81 start-page: 2039 year: 2007 end-page: 2046 ident: bib54 article-title: Persistent antigen presentation after acute vesicular stomatitis virus infection publication-title: J. Virol. – volume: 236 start-page: 219 year: 2010 end-page: 242 ident: bib18 article-title: The PD-1 pathway in tolerance and autoimmunity publication-title: Immunol. Rev. – volume: 202 start-page: 697 year: 2005 end-page: 706 ident: bib25 article-title: Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation publication-title: J. Exp. Med. – volume: 207 start-page: 1161 year: 2010 end-page: 1172 ident: bib29 article-title: Antigen persistence and the control of local T cell memory by migrant respiratory dendritic cells after acute virus infection publication-title: J. Exp. Med. – volume: 180 start-page: 7553 year: 2008 end-page: 7557 ident: bib46 article-title: PDL-1 blockade impedes T cell expansion and protective immunity primed by attenuated publication-title: J. Immunol. – volume: 439 start-page: 682 year: 2006 end-page: 687 ident: bib6 article-title: Restoring function in exhausted CD8 T cells during chronic viral infection publication-title: Nature – volume: 181 start-page: 1859 year: 2008 end-page: 1868 ident: bib23 article-title: Identification of an evolutionarily conserved transcriptional signature of CD8 memory differentiation that is shared by T and B cells publication-title: J. Immunol. – volume: 5 start-page: ra46 year: 2012 ident: bib43 article-title: Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation publication-title: Sci. Signal. – volume: 340 start-page: 630 year: 2013 end-page: 635 ident: bib9 article-title: Disparate individual fates compose robust CD8+ T cell immunity publication-title: Science – volume: 95 start-page: 215 year: 2014 end-page: 224 ident: bib56 article-title: Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection publication-title: J. Leukoc. Biol. – volume: 355 start-page: 1423 year: 2017 end-page: 1427 ident: bib26 article-title: Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent publication-title: Science – volume: 102 start-page: 15545 year: 2005 end-page: 15550 ident: bib49 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA – volume: 179 start-page: 5064 year: 2007 end-page: 5070 ident: bib28 article-title: PD-1 regulates self-reactive CD8+ T cell responses to antigen in lymph nodes and tissues publication-title: J. Immunol. – volume: 4 start-page: 225 year: 2003 end-page: 234 ident: bib55 article-title: Lineage relationship and protective immunity of memory CD8 T cell subsets publication-title: Nat. Immunol. – volume: 186 start-page: 6280 year: 2011 end-page: 6286 ident: bib2 article-title: Programmed death 1 regulates development of central memory CD8 T cells after acute viral infection publication-title: J. Immunol. – volume: 162 start-page: 3256 year: 1999 end-page: 3262 ident: bib14 article-title: Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells publication-title: J. Immunol. – volume: 25 start-page: 9543 year: 2005 end-page: 9553 ident: bib42 article-title: CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms publication-title: Mol. Cell. Biol. – volume: 113 start-page: 5811 year: 2009 end-page: 5818 ident: bib58 article-title: PD-1 on dendritic cells impedes innate immunity against bacterial infection publication-title: Blood – volume: 192 start-page: 1027 year: 2000 end-page: 1034 ident: bib20 article-title: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation publication-title: J. Exp. Med. – volume: 207 start-page: 1153 year: 2010 end-page: 1160 ident: bib50 article-title: The route of priming influences the ability of respiratory virus-specific memory CD8+ T cells to be activated by residual antigen publication-title: J. Exp. Med. – volume: 106 start-page: 2741 year: 2009 end-page: 2746 ident: bib51 article-title: B7-H1 (PD-L1) on T cells is required for T-cell-mediated conditioning of dendritic cell maturation publication-title: Proc. Natl. Acad. Sci. USA – volume: 185 start-page: 2182 year: 2010 end-page: 2190 ident: bib38 article-title: Qualitatively different memory CD8+ T cells are generated after lymphocytic choriomeningitis virus and influenza virus infections publication-title: J. Immunol. – volume: 366 start-page: 2455 year: 2012 end-page: 2465 ident: bib8 article-title: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer publication-title: N. Engl. J. Med. – volume: 342 start-page: 559 year: 1989 end-page: 561 ident: bib44 article-title: Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen publication-title: Nature – volume: 5 start-page: ra46 year: 2012 ident: 10.1016/j.celrep.2020.107827_bib43 article-title: Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation publication-title: Sci. Signal. doi: 10.1126/scisignal.2002796 – volume: 18 start-page: 153 year: 2018 ident: 10.1016/j.celrep.2020.107827_bib48 article-title: The diverse functions of the PD1 inhibitory pathway publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.108 – volume: 9 start-page: e1003207 year: 2013 ident: 10.1016/j.celrep.2020.107827_bib32 article-title: Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003207 – volume: 210 start-page: 757 year: 2013 ident: 10.1016/j.celrep.2020.107827_bib61 article-title: PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis publication-title: J. Exp. Med. doi: 10.1084/jem.20121416 – volume: 72 start-page: 5174 year: 1998 ident: 10.1016/j.celrep.2020.107827_bib45 article-title: DNA immunization with minigenes: low frequency of memory cytotoxic T lymphocytes and inefficient antiviral protection are rectified by ubiquitination publication-title: J. Virol. doi: 10.1128/JVI.72.6.5174-5181.1998 – volume: 207 start-page: 1161 year: 2010 ident: 10.1016/j.celrep.2020.107827_bib29 article-title: Antigen persistence and the control of local T cell memory by migrant respiratory dendritic cells after acute virus infection publication-title: J. Exp. Med. doi: 10.1084/jem.20092017 – volume: 102 start-page: 15545 year: 2005 ident: 10.1016/j.celrep.2020.107827_bib49 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0506580102 – volume: 25 start-page: 25 year: 2000 ident: 10.1016/j.celrep.2020.107827_bib3 article-title: Gene Ontology: tool for the unification of biology publication-title: Nat. Genet. doi: 10.1038/75556 – volume: 12 start-page: 252 year: 2012 ident: 10.1016/j.celrep.2020.107827_bib41 article-title: The blockade of immune checkpoints in cancer immunotherapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3239 – volume: 25 start-page: 9543 year: 2005 ident: 10.1016/j.celrep.2020.107827_bib42 article-title: CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.21.9543-9553.2005 – volume: 13 start-page: 227 year: 2013 ident: 10.1016/j.celrep.2020.107827_bib12 article-title: Molecular mechanisms of T cell co-stimulation and co-inhibition publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3405 – volume: 541 start-page: 321 year: 2017 ident: 10.1016/j.celrep.2020.107827_bib13 article-title: Elements of cancer immunity and the cancer-immune set point publication-title: Nature doi: 10.1038/nature21349 – volume: 180 start-page: 7553 year: 2008 ident: 10.1016/j.celrep.2020.107827_bib46 article-title: PDL-1 blockade impedes T cell expansion and protective immunity primed by attenuated Listeria monocytogenes publication-title: J. Immunol. doi: 10.4049/jimmunol.180.11.7553 – volume: 212 start-page: 1125 year: 2015 ident: 10.1016/j.celrep.2020.107827_bib39 article-title: Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells publication-title: J. Exp. Med. doi: 10.1084/jem.20142237 – volume: 8 start-page: e56539 year: 2013 ident: 10.1016/j.celrep.2020.107827_bib57 article-title: A potential new pathway for PD-L1 costimulation of the CD8-T cell response to Listeria monocytogenes infection publication-title: PLoS ONE doi: 10.1371/journal.pone.0056539 – volume: 342 start-page: 559 year: 1989 ident: 10.1016/j.celrep.2020.107827_bib44 article-title: Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen publication-title: Nature doi: 10.1038/342559a0 – volume: 443 start-page: 350 year: 2006 ident: 10.1016/j.celrep.2020.107827_bib15 article-title: PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression publication-title: Nature doi: 10.1038/nature05115 – volume: 65 start-page: 185 year: 2014 ident: 10.1016/j.celrep.2020.107827_bib40 article-title: Immune modulation in cancer with antibodies publication-title: Annu. Rev. Med. doi: 10.1146/annurev-med-092012-112807 – volume: 95 start-page: 215 year: 2014 ident: 10.1016/j.celrep.2020.107827_bib56 article-title: Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0313180 – volume: 113 start-page: 5811 year: 2009 ident: 10.1016/j.celrep.2020.107827_bib58 article-title: PD-1 on dendritic cells impedes innate immunity against bacterial infection publication-title: Blood doi: 10.1182/blood-2009-02-203141 – volume: 182 start-page: 4244 year: 2009 ident: 10.1016/j.celrep.2020.107827_bib21 article-title: Recall responses by helpless memory CD8+ T cells are restricted by the up-regulation of PD-1 publication-title: J. Immunol. doi: 10.4049/jimmunol.0802041 – volume: 152 start-page: 1653 year: 1994 ident: 10.1016/j.celrep.2020.107827_bib36 article-title: Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity publication-title: J. Immunol. doi: 10.4049/jimmunol.152.4.1653 – volume: 81 start-page: 2039 year: 2007 ident: 10.1016/j.celrep.2020.107827_bib54 article-title: Persistent antigen presentation after acute vesicular stomatitis virus infection publication-title: J. Virol. doi: 10.1128/JVI.02167-06 – volume: 41 start-page: 127 year: 2014 ident: 10.1016/j.celrep.2020.107827_bib5 article-title: Epitope-specific regulation of memory programming by differential duration of antigen presentation to influenza-specific CD8(+) T cells publication-title: Immunity doi: 10.1016/j.immuni.2014.06.007 – volume: 122 start-page: 2967 year: 2012 ident: 10.1016/j.celrep.2020.107827_bib16 article-title: Viral acute lower respiratory infections impair CD8+ T cells through PD-1 publication-title: J. Clin. Invest. doi: 10.1172/JCI62860 – volume: 8 start-page: 683 year: 1998 ident: 10.1016/j.celrep.2020.107827_bib17 article-title: Virus-specific CD8+ T cells in primary and secondary influenza pneumonia publication-title: Immunity doi: 10.1016/S1074-7613(00)80573-7 – volume: 236 start-page: 219 year: 2010 ident: 10.1016/j.celrep.2020.107827_bib18 article-title: The PD-1 pathway in tolerance and autoimmunity publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2010.00923.x – volume: 24 start-page: 439 year: 2006 ident: 10.1016/j.celrep.2020.107827_bib60 article-title: Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration publication-title: Immunity doi: 10.1016/j.immuni.2006.01.015 – volume: 185 start-page: 2182 year: 2010 ident: 10.1016/j.celrep.2020.107827_bib38 article-title: Qualitatively different memory CD8+ T cells are generated after lymphocytic choriomeningitis virus and influenza virus infections publication-title: J. Immunol. doi: 10.4049/jimmunol.1001142 – volume: 27 start-page: 450 year: 2015 ident: 10.1016/j.celrep.2020.107827_bib53 article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.03.001 – volume: 340 start-page: 630 year: 2013 ident: 10.1016/j.celrep.2020.107827_bib9 article-title: Disparate individual fates compose robust CD8+ T cell immunity publication-title: Science doi: 10.1126/science.1235454 – volume: 2 start-page: 261 year: 2001 ident: 10.1016/j.celrep.2020.107827_bib34 article-title: PD-L2 is a second ligand for PD-1 and inhibits T cell activation publication-title: Nat. Immunol. doi: 10.1038/85330 – volume: 186 start-page: 6280 year: 2011 ident: 10.1016/j.celrep.2020.107827_bib2 article-title: Programmed death 1 regulates development of central memory CD8 T cells after acute viral infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1003870 – volume: 209 start-page: 1201 year: 2012 ident: 10.1016/j.celrep.2020.107827_bib59 article-title: Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2 publication-title: J. Exp. Med. doi: 10.1084/jem.20112741 – volume: 192 start-page: 1027 year: 2000 ident: 10.1016/j.celrep.2020.107827_bib20 article-title: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation publication-title: J. Exp. Med. doi: 10.1084/jem.192.7.1027 – volume: 439 start-page: 682 year: 2006 ident: 10.1016/j.celrep.2020.107827_bib6 article-title: Restoring function in exhausted CD8 T cells during chronic viral infection publication-title: Nature doi: 10.1038/nature04444 – volume: 366 start-page: 2443 year: 2012 ident: 10.1016/j.celrep.2020.107827_bib52 article-title: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1200690 – volume: 15 start-page: 1104 year: 2014 ident: 10.1016/j.celrep.2020.107827_bib11 article-title: Molecular regulation of effector and memory T cell differentiation publication-title: Nat. Immunol. doi: 10.1038/ni.3031 – volume: 366 start-page: 2455 year: 2012 ident: 10.1016/j.celrep.2020.107827_bib8 article-title: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1200694 – volume: 340 start-page: 635 year: 2013 ident: 10.1016/j.celrep.2020.107827_bib22 article-title: Heterogeneous differentiation patterns of individual CD8+ T cells publication-title: Science doi: 10.1126/science.1235487 – volume: 26 start-page: 827 year: 2007 ident: 10.1016/j.celrep.2020.107827_bib4 article-title: Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection publication-title: Immunity doi: 10.1016/j.immuni.2007.04.013 – volume: 4 start-page: 225 year: 2003 ident: 10.1016/j.celrep.2020.107827_bib55 article-title: Lineage relationship and protective immunity of memory CD8 T cell subsets publication-title: Nat. Immunol. doi: 10.1038/ni889 – volume: 85 start-page: 4085 year: 2011 ident: 10.1016/j.celrep.2020.107827_bib35 article-title: Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes publication-title: J. Virol. doi: 10.1128/JVI.02493-10 – volume: 105 start-page: 15016 year: 2008 ident: 10.1016/j.celrep.2020.107827_bib7 article-title: Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0801497105 – volume: 355 start-page: 1423 year: 2017 ident: 10.1016/j.celrep.2020.107827_bib26 article-title: Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent publication-title: Science doi: 10.1126/science.aaf0683 – volume: 179 start-page: 5064 year: 2007 ident: 10.1016/j.celrep.2020.107827_bib28 article-title: PD-1 regulates self-reactive CD8+ T cell responses to antigen in lymph nodes and tissues publication-title: J. Immunol. doi: 10.4049/jimmunol.179.8.5064 – volume: 25 start-page: 612 year: 2007 ident: 10.1016/j.celrep.2020.107827_bib31 article-title: Primary influenza A virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice publication-title: Vaccine doi: 10.1016/j.vaccine.2006.08.036 – volume: 209 start-page: 2485 year: 2012 ident: 10.1016/j.celrep.2020.107827_bib19 article-title: Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice publication-title: J. Exp. Med. doi: 10.1084/jem.20121015 – volume: 207 start-page: 1153 year: 2010 ident: 10.1016/j.celrep.2020.107827_bib50 article-title: The route of priming influences the ability of respiratory virus-specific memory CD8+ T cells to be activated by residual antigen publication-title: J. Exp. Med. doi: 10.1084/jem.20090283 – volume: 41 start-page: 633 year: 2014 ident: 10.1016/j.celrep.2020.107827_bib33 article-title: CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection publication-title: Immunity doi: 10.1016/j.immuni.2014.09.007 – volume: 162 start-page: 3256 year: 1999 ident: 10.1016/j.celrep.2020.107827_bib14 article-title: Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.162.6.3256 – volume: 179 start-page: 6704 year: 2007 ident: 10.1016/j.celrep.2020.107827_bib47 article-title: Strength of stimulus and clonal competition impact the rate of memory CD8 T cell differentiation publication-title: J. Immunol. doi: 10.4049/jimmunol.179.10.6704 – volume: 27 start-page: 111 year: 2007 ident: 10.1016/j.celrep.2020.107827_bib10 article-title: Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses publication-title: Immunity doi: 10.1016/j.immuni.2007.05.016 – volume: 106 start-page: 2741 year: 2009 ident: 10.1016/j.celrep.2020.107827_bib51 article-title: B7-H1 (PD-L1) on T cells is required for T-cell-mediated conditioning of dendritic cell maturation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0813367106 – volume: 11 start-page: 1071 year: 2018 ident: 10.1016/j.celrep.2020.107827_bib37 article-title: Pulmonary antigen encounter regulates the establishment of tissue-resident CD8 memory T cells in the lung airways and parenchyma publication-title: Mucosal Immunol. doi: 10.1038/s41385-018-0003-x – volume: 355 start-page: 1428 year: 2017 ident: 10.1016/j.celrep.2020.107827_bib24 article-title: T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition publication-title: Science doi: 10.1126/science.aaf1292 – volume: 115 start-page: 4749 year: 2018 ident: 10.1016/j.celrep.2020.107827_bib1 article-title: Role of PD-1 during effector CD8 T cell differentiation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1718217115 – volume: 181 start-page: 1859 year: 2008 ident: 10.1016/j.celrep.2020.107827_bib23 article-title: Identification of an evolutionarily conserved transcriptional signature of CD8 memory differentiation that is shared by T and B cells publication-title: J. Immunol. doi: 10.4049/jimmunol.181.3.1859 – volume: 202 start-page: 697 year: 2005 ident: 10.1016/j.celrep.2020.107827_bib25 article-title: Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation publication-title: J. Exp. Med. doi: 10.1084/jem.20050227 – volume: 203 start-page: 883 year: 2006 ident: 10.1016/j.celrep.2020.107827_bib27 article-title: Tissue expression of PD-L1 mediates peripheral T cell tolerance publication-title: J. Exp. Med. doi: 10.1084/jem.20051776 – volume: 4 start-page: 554 year: 2013 ident: 10.1016/j.celrep.2020.107827_bib30 article-title: Low-affinity T cells are programmed to maintain normal primary responses but are impaired in their recall to low-affinity ligands publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.07.008 |
| SSID | ssj0000601194 |
| Score | 2.5576358 |
| Snippet | The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here,... The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here,... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 107827 |
| SubjectTerms | acute infection Administration, Intranasal Animals CD8+ T cell CD8-Positive T-Lymphocytes - immunology Cell Death - immunology Cell Differentiation - immunology Cell Proliferation checkpoint blockade effector Immunologic Memory influenza Influenza A Virus, H3N2 Subtype - physiology memory Mice, Inbred C57BL Orthomyxoviridae Infections - immunology Orthomyxoviridae Infections - pathology Orthomyxoviridae Infections - virology PD-1 PD-L1 PD-L2 Programmed Cell Death 1 Receptor - metabolism Signal Transduction Species Specificity |
| Title | The PD-1 Pathway Regulates Development and Function of Memory CD8+ T Cells following Respiratory Viral Infection |
| URI | https://dx.doi.org/10.1016/j.celrep.2020.107827 https://www.ncbi.nlm.nih.gov/pubmed/32610128 https://www.proquest.com/docview/2419714238 https://pubmed.ncbi.nlm.nih.gov/PMC7377452 https://doaj.org/article/8fdbfcfc91f44b0bbe20702e1a1824ab |
| Volume | 31 |
| WOSCitedRecordID | wos000546045900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgBRIXxDflY2Ukbsgiduo6PkKXCiRYVWhBvVnxxBZdRemq7bLqv2cmTqoGDr1wi5w0qTMvmTfyyxvG3mqLSMggCsxuILDesMJ7kwmorAY9CZW17YfCX835ebFY2PlBqy_ShCV74HTj3hex8hEiWBnHY595HxSiVAVZIjMel57evsh6Doqp9A4mLzNaUlaKNFtqbPrv5lpxF4R6HciuUtEQZkkzyEutff8gPf1LP_9WUR6kpdkDdr_jk_xDmsdDdis0j9jd1GFy95hdIQz4_ExIPkeqd1Pu-PfUfD5s-IFeiJdNxWeY4ihMfBX5NxLg7vj0rHjHL_g01PWGR4TM6gZTHZ5jvz7Pf-JGzb90mq7mCfsx-3Qx_Sy6JgsCtLJbIXU0kxCj9hKI-1W5DgFURGIXsXDOYuYrnUUZocpzX5bGy0kBUSqso8Di4FN20qya8JxxyMscsNQGWm7NJlAE5I5IAQKSjqwszIjl_S120DmQUyOM2vVSs0uXAuMoMC4FZsTE_ldXyYHjyPEfKXr7Y8k_ux1AVLkOVe4YqkbM9LF3HRVJFANPtTxy-Tc9VBw-qbT8UjZhdb1xyJWskUhfixF7lqCz_5NIosloDfeYAagGsxjuaZa_WjdwkyOD1-rF_5j2S3aPppL0kK_YyXZ9HV6zO_B7u9ysT9ltsyhO2wftD1p0LG4 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+PD-1+Pathway+Regulates+Development+and+Function+of+Memory+CD8%2B+T+Cells+following+Respiratory+Viral+Infection&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Pauken%2C+Kristen+E.&rft.au=Godec%2C+Jernej&rft.au=Odorizzi%2C+Pamela+M.&rft.au=Brown%2C+Keturah+E.&rft.date=2020-06-30&rft.eissn=2211-1247&rft.volume=31&rft.issue=13&rft.spage=107827&rft.epage=107827&rft_id=info:doi/10.1016%2Fj.celrep.2020.107827&rft_id=info%3Apmid%2F32610128&rft.externalDocID=PMC7377452 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |