Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries
Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical...
Uložené v:
| Vydané v: | Advanced science Ročník 7; číslo 5; s. 1903088 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
John Wiley & Sons, Inc
01.03.2020
John Wiley and Sons Inc Wiley |
| Predmet: | |
| ISSN: | 2198-3844, 2198-3844 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all‐solid‐state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10−3 S cm−1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all‐solid‐state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all‐solid‐state lithium batteries.
Herein, the advantages and ionic transport mechanisms of solid composite electrolyte (SCE) as well as the relationship between morphology of ceramic fillers and ionic conductivity of SCE are reviewed. Recent progress and strategies to settle interfacial issues for high‐performance all‐solid‐state lithium metal batteries with SCE are also concluded and future research directions of SCEs are proposed. |
|---|---|
| AbstractList | Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all-solid-state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10-3 S cm-1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all-solid-state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all-solid-state lithium batteries.Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all-solid-state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10-3 S cm-1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all-solid-state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all-solid-state lithium batteries. Abstract Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all‐solid‐state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10−3 S cm−1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all‐solid‐state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all‐solid‐state lithium batteries. Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all‐solid‐state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10 −3 S cm −1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all‐solid‐state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all‐solid‐state lithium batteries. Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all‐solid‐state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10−3 S cm−1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all‐solid‐state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all‐solid‐state lithium batteries. Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all‐solid‐state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10−3 S cm−1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all‐solid‐state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all‐solid‐state lithium batteries. Herein, the advantages and ionic transport mechanisms of solid composite electrolyte (SCE) as well as the relationship between morphology of ceramic fillers and ionic conductivity of SCE are reviewed. Recent progress and strategies to settle interfacial issues for high‐performance all‐solid‐state lithium metal batteries with SCE are also concluded and future research directions of SCEs are proposed. Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all-solid-state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10 S cm at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all-solid-state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all-solid-state lithium batteries. Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all‐solid‐state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10−3 S cm−1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all‐solid‐state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all‐solid‐state lithium batteries. Herein, the advantages and ionic transport mechanisms of solid composite electrolyte (SCE) as well as the relationship between morphology of ceramic fillers and ionic conductivity of SCE are reviewed. Recent progress and strategies to settle interfacial issues for high‐performance all‐solid‐state lithium metal batteries with SCE are also concluded and future research directions of SCEs are proposed. |
| Author | Yang, Quan‐Hong Li, Song He, Yan‐Bing Ma, Jia‐Bin Lv, Wei Zhang, Shi‐Qi Shen, Lu Liu, Qi |
| AuthorAffiliation | 1 Shenzhen Geim Graphene Center Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 P. R. China 2 Laboratory of Advanced Materials School of Materials Science and Engineering Tsinghua University Beijing 100084 P. R. China 3 Nanoyang Group School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China |
| AuthorAffiliation_xml | – name: 3 Nanoyang Group School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China – name: 1 Shenzhen Geim Graphene Center Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 P. R. China – name: 2 Laboratory of Advanced Materials School of Materials Science and Engineering Tsinghua University Beijing 100084 P. R. China |
| Author_xml | – sequence: 1 givenname: Song surname: Li fullname: Li, Song organization: Tsinghua University – sequence: 2 givenname: Shi‐Qi surname: Zhang fullname: Zhang, Shi‐Qi organization: Tsinghua University – sequence: 3 givenname: Lu surname: Shen fullname: Shen, Lu organization: Tsinghua University – sequence: 4 givenname: Qi surname: Liu fullname: Liu, Qi organization: Tsinghua University – sequence: 5 givenname: Jia‐Bin surname: Ma fullname: Ma, Jia‐Bin organization: Tsinghua University – sequence: 6 givenname: Wei surname: Lv fullname: Lv, Wei organization: Tsinghua University – sequence: 7 givenname: Yan‐Bing orcidid: 0000-0001-5787-5498 surname: He fullname: He, Yan‐Bing email: he.yanbing@sz.tsinghua.edu.cn organization: Tsinghua University – sequence: 8 givenname: Quan‐Hong surname: Yang fullname: Yang, Quan‐Hong organization: Tianjin University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32154083$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFksFv0zAUxiM0xMbYlSOKxIVLu-fYrp0L0igDJlWi0oAj1ovz0rlK4mK7RfvvSWg3bZMQJz_5fd_Pn-33MjvqfU9Z9prBlAEU51jv4rQAVgIHrZ9lJwUr9YRrIY4e1MfZWYxrAGCSK8H0i-yYF0wK0Pwk-7kMfhUoxhz7Ol9SiBuyye0o900-p4Cds-dL3952FPK57zY-ukT5tW9dnV-2gzYMzUQxb3zIFy7duG2Xf8CUKDiKr7LnDbaRzg7rafb90-W3-ZfJ4uvnq_nFYmJlUaoJQ2qktoqXBdR2ViFXmguwimRhq-F2DRJAJcqSSSVEpRFRaMlrEKzSdsZPs6s9t_a4NpvgOgy3xqMzfzd8WBkMydmWDOPKCgRRWqxERc1QAsqChG1YU6iR9X7P2myrjmpLfQrYPoI-7vTuxqz8ziiQUs70AHh3AAT_a0sxmc5FS22LPfltNAVXUs9mwEbp2yfStd-GfniqUQVCaV2Oid48THQf5e4bB4HYC2zwMQZqjHUJk_NjQNcaBmYcGDMOjLkfmME2fWK7I__TcDjnt2vp9j9qc_HxxzWToPgfoD7Syg |
| CitedBy_id | crossref_primary_10_1002_adfm_202419182 crossref_primary_10_1016_j_matdes_2023_112425 crossref_primary_10_1002_eem2_12860 crossref_primary_10_1002_eom2_12317 crossref_primary_10_1002_aenm_202000904 crossref_primary_10_1002_batt_202200097 crossref_primary_10_3390_batteries9090471 crossref_primary_10_1016_j_jiec_2024_01_065 crossref_primary_10_1088_0256_307X_38_9_098401 crossref_primary_10_1007_s11581_024_05589_z crossref_primary_10_1515_revic_2023_0030 crossref_primary_10_1002_adfm_202412548 crossref_primary_10_1007_s11581_023_05318_y crossref_primary_10_1002_adfm_202210916 crossref_primary_10_1007_s44373_025_00040_y crossref_primary_10_1016_j_jechem_2021_05_055 crossref_primary_10_1002_aenm_202404044 crossref_primary_10_1002_bte2_20240022 crossref_primary_10_1002_adma_202406368 crossref_primary_10_1016_j_est_2023_107917 crossref_primary_10_1002_aenm_202200368 crossref_primary_10_1016_j_est_2024_113899 crossref_primary_10_1002_smll_202401200 crossref_primary_10_1002_adma_202110423 crossref_primary_10_1002_ange_202302767 crossref_primary_10_1002_adfm_202311952 crossref_primary_10_3390_nano12111912 crossref_primary_10_3390_polym14245538 crossref_primary_10_1002_adfm_202200096 crossref_primary_10_1016_j_cej_2024_153847 crossref_primary_10_1002_adfm_202505988 crossref_primary_10_1002_anie_202418783 crossref_primary_10_1088_2752_5724_ac9e6b crossref_primary_10_1002_adma_202110333 crossref_primary_10_1111_jace_19712 crossref_primary_10_1038_s41578_021_00320_0 crossref_primary_10_1016_j_cej_2023_141329 crossref_primary_10_1002_adfm_202306484 crossref_primary_10_1111_jace_18506 crossref_primary_10_1002_aesr_202000101 crossref_primary_10_1002_adfm_202113235 crossref_primary_10_1007_s10965_025_04309_z crossref_primary_10_1002_adfm_202101380 crossref_primary_10_1007_s10853_024_09753_8 crossref_primary_10_1002_chem_202200543 crossref_primary_10_1016_j_nanoen_2024_109623 crossref_primary_10_1002_bte2_20230010 crossref_primary_10_1002_adfm_202422461 crossref_primary_10_1002_smll_202308550 crossref_primary_10_1051_matecconf_202338603001 crossref_primary_10_1002_ese3_1163 crossref_primary_10_1007_s10008_023_05535_5 crossref_primary_10_1002_adfm_202305383 crossref_primary_10_1002_advs_202003241 crossref_primary_10_1002_aenm_202400933 crossref_primary_10_1016_j_clay_2021_106363 crossref_primary_10_1007_s40843_021_1940_2 crossref_primary_10_1002_cssc_202200504 crossref_primary_10_1016_j_cej_2022_135418 crossref_primary_10_1002_aenm_202003154 crossref_primary_10_1016_j_ssi_2025_116989 crossref_primary_10_1016_j_chempr_2022_09_027 crossref_primary_10_1002_cphc_202200296 crossref_primary_10_1016_j_enchem_2025_100169 crossref_primary_10_1002_anie_202302767 crossref_primary_10_1002_batt_202100319 crossref_primary_10_1002_batt_202200057 crossref_primary_10_1039_D5EB00017C crossref_primary_10_3390_batteries9090432 crossref_primary_10_1021_acs_nanolett_5c00509 crossref_primary_10_1016_j_jechem_2020_09_033 crossref_primary_10_1002_smtd_202300228 crossref_primary_10_1002_adfm_202210845 crossref_primary_10_1002_adma_202307768 crossref_primary_10_1007_s40820_023_01051_3 crossref_primary_10_1007_s12598_021_01891_1 crossref_primary_10_1016_j_cej_2024_158136 crossref_primary_10_1016_j_ensm_2025_104471 crossref_primary_10_1007_s10118_023_2970_y crossref_primary_10_1002_adfm_202008586 crossref_primary_10_1002_adfm_202209828 crossref_primary_10_1039_D2NR01143C crossref_primary_10_1080_17518253_2024_2321247 crossref_primary_10_1002_smll_202501226 crossref_primary_10_1002_adfm_202306320 crossref_primary_10_1016_j_cej_2022_137740 crossref_primary_10_1007_s11581_021_04291_8 crossref_primary_10_1016_j_indcrop_2023_116426 crossref_primary_10_1002_anie_202302505 crossref_primary_10_3390_batteries8110214 crossref_primary_10_1016_j_cej_2022_136418 crossref_primary_10_1039_D4EE00798K crossref_primary_10_1002_sstr_202400139 crossref_primary_10_1002_adma_202314063 crossref_primary_10_1360_TB_2025_0198 crossref_primary_10_1039_D1SE00061F crossref_primary_10_1016_j_est_2024_111573 crossref_primary_10_1002_aenm_202203663 crossref_primary_10_1039_D2SE01329K crossref_primary_10_1002_adma_202416342 crossref_primary_10_1002_admi_202100790 crossref_primary_10_1002_ange_202302505 crossref_primary_10_1039_D4EE03097D crossref_primary_10_6023_A23070335 crossref_primary_10_1002_adfm_202413966 crossref_primary_10_1002_adfm_202008208 crossref_primary_10_1002_adfm_202401377 crossref_primary_10_1016_j_jpowsour_2021_230739 crossref_primary_10_1039_D5EB00133A crossref_primary_10_1002_smll_202503865 crossref_primary_10_1007_s41918_022_00167_1 crossref_primary_10_1039_D4TA08724K crossref_primary_10_1016_j_cap_2024_03_013 crossref_primary_10_1016_j_cej_2024_156722 crossref_primary_10_1002_sus2_67 crossref_primary_10_1002_inf2_12627 crossref_primary_10_1016_j_jallcom_2023_171158 crossref_primary_10_1021_acs_jpcc_5c00830 crossref_primary_10_1002_celc_202001527 crossref_primary_10_1016_j_cej_2021_132343 crossref_primary_10_1016_j_recm_2024_12_001 crossref_primary_10_1021_acsami_5c05910 crossref_primary_10_3390_polym14173443 crossref_primary_10_1016_j_mattod_2024_05_001 crossref_primary_10_1007_s11581_021_04351_z crossref_primary_10_1002_advs_202404307 crossref_primary_10_1002_marc_202100279 crossref_primary_10_1016_j_jpowsour_2021_230718 crossref_primary_10_3389_fchem_2021_751476 crossref_primary_10_1002_aenm_202000049 crossref_primary_10_1016_j_jallcom_2025_181405 crossref_primary_10_1016_j_est_2024_110799 crossref_primary_10_3390_gels11080573 crossref_primary_10_1007_s10008_024_05961_z crossref_primary_10_1007_s10853_023_08691_1 crossref_primary_10_1016_j_ceramint_2022_10_303 crossref_primary_10_1016_j_jeurceramsoc_2022_04_010 crossref_primary_10_1021_acssuschemeng_5c03777 crossref_primary_10_1111_ijac_14267 crossref_primary_10_1002_adfm_202203551 crossref_primary_10_1002_ange_202418783 crossref_primary_10_1002_adfm_202201496 crossref_primary_10_1016_j_cej_2022_140151 crossref_primary_10_1039_D0EE02241A crossref_primary_10_1016_j_jechem_2022_07_006 crossref_primary_10_1039_D4SM01297F crossref_primary_10_1007_s40843_021_1748_7 crossref_primary_10_1007_s10653_024_01917_4 crossref_primary_10_1016_j_ceramint_2025_02_020 crossref_primary_10_1039_D5TA05081B crossref_primary_10_1038_s41467_024_45372_2 crossref_primary_10_1002_aenm_202002580 crossref_primary_10_1002_cjoc_202300232 crossref_primary_10_1016_j_cej_2025_168098 crossref_primary_10_1002_er_8416 crossref_primary_10_1016_j_jechem_2022_07_014 crossref_primary_10_1007_s11706_024_0685_9 crossref_primary_10_3390_technologies10020045 crossref_primary_10_1038_s41427_024_00563_7 crossref_primary_10_1002_adfm_202306060 crossref_primary_10_1002_adma_202107183 crossref_primary_10_59761_RCR5126 crossref_primary_10_1002_smll_202402041 crossref_primary_10_1002_bte2_20230037 crossref_primary_10_1002_aenm_202302596 crossref_primary_10_1016_j_etran_2023_100264 crossref_primary_10_1002_aenm_202003663 crossref_primary_10_1002_adfm_202419095 crossref_primary_10_1093_mam_ozaf048_669 crossref_primary_10_1002_open_202400041 crossref_primary_10_1088_2752_5724_accdf3 crossref_primary_10_1002_eom2_12181 crossref_primary_10_1007_s12274_023_5658_2 crossref_primary_10_1007_s00289_024_05540_2 crossref_primary_10_3390_en17174412 crossref_primary_10_1002_aenm_202401802 crossref_primary_10_1016_j_cej_2021_133352 crossref_primary_10_1002_celc_202000591 crossref_primary_10_1016_j_jcis_2023_03_182 crossref_primary_10_1002_advs_202303985 crossref_primary_10_1039_D1EE00049G crossref_primary_10_1002_adfm_202300973 crossref_primary_10_1016_j_ssi_2024_116607 crossref_primary_10_1016_j_est_2025_117314 crossref_primary_10_1002_adma_202401482 crossref_primary_10_1007_s40145_022_0580_8 crossref_primary_10_1039_D3NR00683B crossref_primary_10_1002_adma_202206402 crossref_primary_10_1007_s11664_024_11446_6 crossref_primary_10_1002_adsu_202100389 crossref_primary_10_1002_inf2_12551 crossref_primary_10_1002_aenm_202400985 crossref_primary_10_1016_j_nanoen_2022_107726 crossref_primary_10_1002_advs_202300226 crossref_primary_10_1002_advs_202103786 crossref_primary_10_1002_advs_202105723 crossref_primary_10_1016_j_cej_2023_143530 crossref_primary_10_1016_j_est_2025_117200 crossref_primary_10_3390_batteries11030106 crossref_primary_10_1002_anie_202014265 crossref_primary_10_3390_inorganics10060081 crossref_primary_10_1016_j_jcis_2022_01_031 crossref_primary_10_1007_s12598_020_01501_6 crossref_primary_10_1002_advs_202104506 crossref_primary_10_1016_j_jallcom_2020_157340 crossref_primary_10_1007_s11581_024_05745_5 crossref_primary_10_1002_ange_202302586 crossref_primary_10_1007_s41779_023_00877_9 crossref_primary_10_1002_adma_202415864 crossref_primary_10_1007_s40843_025_3318_9 crossref_primary_10_1002_advs_202207627 crossref_primary_10_6023_A24020061 crossref_primary_10_1016_j_ssi_2023_116308 crossref_primary_10_1016_j_cej_2024_157772 crossref_primary_10_1002_advs_202207744 crossref_primary_10_3390_app14073115 crossref_primary_10_1002_inf2_12214 crossref_primary_10_1088_1402_4896_ad25b7 crossref_primary_10_1021_acsami_5c07021 crossref_primary_10_1002_aenm_202302711 crossref_primary_10_1007_s40820_024_01632_w crossref_primary_10_1007_s40843_022_2259_3 crossref_primary_10_1002_aenm_202301746 crossref_primary_10_1016_j_jcis_2024_12_109 crossref_primary_10_1016_j_cej_2023_147558 crossref_primary_10_1039_D4TA08557D crossref_primary_10_1002_cnma_202300202 crossref_primary_10_1039_D3QM00736G crossref_primary_10_1002_advs_202413875 crossref_primary_10_1016_j_jpowsour_2024_236027 crossref_primary_10_1002_adfm_202403154 crossref_primary_10_3390_nano12122023 crossref_primary_10_1002_anie_202410463 crossref_primary_10_1002_cssc_202500347 crossref_primary_10_1039_D1EE03345J crossref_primary_10_1002_aenm_202002869 crossref_primary_10_1002_advs_202205108 crossref_primary_10_1039_D1EE03466A crossref_primary_10_1016_j_nxmate_2024_100307 crossref_primary_10_1002_aenm_202204028 crossref_primary_10_1016_j_partic_2023_04_002 crossref_primary_10_1016_j_cej_2021_132659 crossref_primary_10_1002_ange_202305004 crossref_primary_10_1007_s41918_022_00131_z crossref_primary_10_1002_aenm_202003700 crossref_primary_10_1002_aenm_202301886 crossref_primary_10_1021_acsaem_5c01901 crossref_primary_10_1016_j_cej_2022_135092 crossref_primary_10_1002_smll_202302691 crossref_primary_10_1016_j_mtener_2021_100939 crossref_primary_10_3390_en18030466 crossref_primary_10_3390_pr13030756 crossref_primary_10_1002_batt_202300263 crossref_primary_10_1016_j_jcis_2024_05_139 crossref_primary_10_1021_acs_chemrev_4c01012 crossref_primary_10_1002_smll_202406357 crossref_primary_10_1002_inf2_12248 crossref_primary_10_1016_j_memsci_2021_119432 crossref_primary_10_3390_ma13225232 crossref_primary_10_1039_D4EE03134B crossref_primary_10_1002_anie_202305004 crossref_primary_10_1016_j_jcis_2023_03_116 crossref_primary_10_1007_s11581_021_04340_2 crossref_primary_10_1002_smll_202406007 crossref_primary_10_1007_s11431_021_2027_3 crossref_primary_10_1007_s12274_023_6354_y crossref_primary_10_1002_ange_202304339 crossref_primary_10_1039_D2QM01071B crossref_primary_10_1016_j_cej_2022_139348 crossref_primary_10_1002_aesr_202300074 crossref_primary_10_1002_smtd_202501397 crossref_primary_10_1002_ange_202410463 crossref_primary_10_1007_s42114_021_00412_z crossref_primary_10_1016_j_memsci_2021_119840 crossref_primary_10_1002_inf2_70012 crossref_primary_10_1002_adma_202301540 crossref_primary_10_1016_j_jpowsour_2025_236771 crossref_primary_10_1002_tcr_202200116 crossref_primary_10_1002_adts_202501125 crossref_primary_10_1016_j_chempr_2022_03_002 crossref_primary_10_1002_smll_202108026 crossref_primary_10_3390_en16237695 crossref_primary_10_1002_adem_202201390 crossref_primary_10_3390_ma16072655 crossref_primary_10_1016_j_jechem_2022_03_010 crossref_primary_10_1039_D4QI01831A crossref_primary_10_1021_acsami_5c01991 crossref_primary_10_1002_macp_202100234 crossref_primary_10_1016_j_cej_2021_131236 crossref_primary_10_1002_adfm_202105253 crossref_primary_10_1039_D3EE02705H crossref_primary_10_1007_s41918_023_00204_7 crossref_primary_10_1002_idm2_12109 crossref_primary_10_3390_batteries9110543 crossref_primary_10_1002_idm2_12108 crossref_primary_10_1002_smll_202305772 crossref_primary_10_1016_j_est_2023_109644 crossref_primary_10_1016_j_mtnano_2021_100128 crossref_primary_10_3390_polym14030363 crossref_primary_10_1002_smll_202407476 crossref_primary_10_3390_nano12193390 crossref_primary_10_1016_j_mtener_2022_101052 crossref_primary_10_1002_sus2_93 crossref_primary_10_1016_j_energy_2022_126058 crossref_primary_10_1002_smll_202006578 crossref_primary_10_35534_spe_2023_10004 crossref_primary_10_1002_cey2_108 crossref_primary_10_1016_j_cej_2024_149509 crossref_primary_10_1039_D3EE02020G crossref_primary_10_1002_cssc_202201554 crossref_primary_10_1021_acsnano_4c10091 crossref_primary_10_1007_s41918_023_00200_x crossref_primary_10_1002_adfm_202405060 crossref_primary_10_1007_s40684_023_00541_4 crossref_primary_10_1002_advs_202100899 crossref_primary_10_1007_s41918_025_00242_3 crossref_primary_10_1002_adfm_202421670 crossref_primary_10_1016_j_coelec_2021_100828 crossref_primary_10_1039_D1RA01312B crossref_primary_10_1002_smsc_202100055 crossref_primary_10_1016_j_apmt_2022_101447 crossref_primary_10_1016_j_est_2024_112287 crossref_primary_10_1002_advs_202002212 crossref_primary_10_3390_en17174295 crossref_primary_10_1002_anie_202304339 crossref_primary_10_1002_smll_202504166 crossref_primary_10_1002_adfm_202513625 crossref_primary_10_1002_advs_202001207 crossref_primary_10_1007_s40843_021_1908_x crossref_primary_10_1002_aenm_202000845 crossref_primary_10_1002_adma_202502653 crossref_primary_10_1016_j_ssi_2021_115710 crossref_primary_10_3390_gels11050317 crossref_primary_10_1039_D2CC02203F crossref_primary_10_1039_D3QM00840A crossref_primary_10_1007_s11581_024_05451_2 crossref_primary_10_1063_5_0206377 crossref_primary_10_1016_j_cej_2024_148995 crossref_primary_10_1038_s41524_025_01764_6 crossref_primary_10_1002_wene_544 crossref_primary_10_1016_j_cej_2021_130632 crossref_primary_10_1002_smll_202310912 crossref_primary_10_1016_j_ssi_2021_115840 crossref_primary_10_1016_j_ensm_2025_104492 crossref_primary_10_1016_j_apsusc_2025_162723 crossref_primary_10_1002_elsa_202100167 crossref_primary_10_1002_ente_202201372 crossref_primary_10_1016_S1003_6326_24_66587_8 crossref_primary_10_1007_s12274_024_6902_4 crossref_primary_10_1002_adfm_202212806 crossref_primary_10_1007_s40820_022_00996_1 crossref_primary_10_1002_smll_202304234 crossref_primary_10_3390_batteries7040075 crossref_primary_10_1002_smll_202307505 crossref_primary_10_1016_j_est_2023_109712 crossref_primary_10_1002_adfm_202213702 crossref_primary_10_1002_aenm_201904230 crossref_primary_10_1016_j_cej_2024_156000 crossref_primary_10_1007_s12274_023_6142_8 crossref_primary_10_3390_batteries10120454 crossref_primary_10_1002_batt_202100288 crossref_primary_10_1016_j_cej_2022_136479 crossref_primary_10_1002_rpm2_70021 crossref_primary_10_1002_smll_202006627 crossref_primary_10_1016_j_jpowsour_2025_237205 crossref_primary_10_1016_j_jpowsour_2023_233806 crossref_primary_10_1002_sstr_202000042 crossref_primary_10_3390_batteries9050270 crossref_primary_10_1002_adfm_202511014 crossref_primary_10_1002_app_57372 crossref_primary_10_1002_aenm_202204377 crossref_primary_10_1021_acsami_5c08547 crossref_primary_10_1002_celc_202300759 crossref_primary_10_1007_s11814_025_00395_3 crossref_primary_10_1016_j_nanoen_2022_107499 crossref_primary_10_1002_aenm_202504095 crossref_primary_10_1016_j_jpowsour_2023_232849 crossref_primary_10_1039_D5TA01193K crossref_primary_10_1007_s10800_025_02322_0 crossref_primary_10_1016_j_nanoen_2023_108890 crossref_primary_10_1016_j_jpowsour_2024_235091 crossref_primary_10_1007_s11426_024_2491_9 crossref_primary_10_1002_aenm_202000802 crossref_primary_10_1002_tcr_202300155 crossref_primary_10_3390_membranes13020155 crossref_primary_10_1007_s10008_020_04783_z crossref_primary_10_3390_nano10081606 crossref_primary_10_1002_ange_202014265 crossref_primary_10_1016_j_ceramint_2020_12_239 crossref_primary_10_1016_j_jcis_2023_08_075 crossref_primary_10_1007_s11581_022_04461_2 crossref_primary_10_1088_1361_6528_ad27ad crossref_primary_10_1007_s11426_022_1525_3 crossref_primary_10_1007_s40820_023_01055_z crossref_primary_10_1002_advs_202414714 crossref_primary_10_1002_anie_202302586 crossref_primary_10_1039_D3SE00421J crossref_primary_10_1039_D4RA06863G crossref_primary_10_1002_advs_202505530 crossref_primary_10_1016_j_colsurfa_2023_131487 crossref_primary_10_1007_s41918_022_00170_6 crossref_primary_10_1002_smll_202408045 crossref_primary_10_1002_adma_202311195 crossref_primary_10_1016_j_cej_2024_154151 crossref_primary_10_3390_en16124549 crossref_primary_10_1007_s42765_024_00402_y crossref_primary_10_1002_pc_28391 crossref_primary_10_1002_admi_202101486 crossref_primary_10_1002_adfm_202315777 crossref_primary_10_1002_est2_506 crossref_primary_10_1002_smll_202412301 |
| Cites_doi | 10.1016/j.electacta.2018.07.191 10.1016/j.materresbull.2018.02.051 10.1039/C7EE02723K 10.1039/C7EE02555F 10.1039/C6TA02621D 10.1016/j.electacta.2017.08.162 10.1002/anie.201710841 10.1002/aenm.201500408 10.1021/acsami.8b02240 10.1021/acsami.7b17301 10.1021/acsami.7b03887 10.1021/acsmaterialslett.9b00189 10.1021/acsenergylett.7b00175 10.1016/j.ssi.2016.04.014 10.1038/nmat3066 10.1016/j.mser.2018.10.004 10.1039/C7TA10517G 10.1016/j.ssi.2009.03.022 10.1016/j.ensm.2018.07.004 10.1002/adfm.201707570 10.1002/adma.201701169 10.1021/acsaem.8b02185 10.1149/2.1321902jes 10.1021/acsami.9b07830 10.1016/j.jpowsour.2005.10.104 10.1021/acsami.6b16304 10.1016/j.jpowsour.2017.10.059 10.1021/acs.nanolett.7b00715 10.1016/j.jpowsour.2014.10.078 10.1088/1361-6528/ab0fb2 10.1557/mrs.2018.212 10.1149/2.0381712jes 10.1002/anie.201608924 10.1002/adem.201900055 10.1021/acsami.8b17279 10.1016/j.ssi.2018.12.008 10.1016/j.jpowsour.2007.01.028 10.1016/j.nanoen.2018.07.036 10.1016/j.cej.2019.121922 10.1002/aenm.201602920 10.1039/C6QM00098C 10.1039/C6EE03499C 10.1021/acsenergylett.7b00204 10.1021/acsenergylett.7b00849 10.1016/j.jpowsour.2018.02.026 10.1021/acs.chemrev.6b00586 10.1016/j.electacta.2015.03.038 10.1016/j.nanoen.2016.11.045 10.1021/acsenergylett.8b01564 10.1016/j.nanoen.2017.12.037 10.1021/acsami.7b12092 10.1016/j.electacta.2017.11.164 10.1002/chem.201703464 10.1002/adma.201502059 10.1021/acsami.7b18123 10.1021/acssuschemeng.9b00143 10.1016/j.nanoen.2019.03.051 10.1021/jacs.7b10864 10.1016/j.ssi.2017.12.007 10.1002/aenm.201800933 10.1002/anie.201204983 10.1021/acs.nanolett.7b00221 10.1039/c0cs00081g 10.1073/pnas.1708489114 10.1007/s11581-014-1176-2 10.1002/aenm.201702657 10.1039/C6TA01826B 10.1002/aenm.201701437 10.1002/aenm.201701602 10.1021/acs.nanolett.5b04117 10.1002/adma.201303070 10.1002/aenm.201500117 10.1016/j.ssi.2017.12.018 10.1021/acsaem.8b01850 10.1021/acsami.8b19237 10.1073/pnas.1600422113 10.1002/adma.201606823 10.1016/j.ensm.2018.03.016 10.1016/j.compscitech.2019.02.030 10.1016/j.coelec.2018.03.033 10.1021/acsami.8b01003 10.1007/s10853-018-03188-8 10.1016/j.chempr.2018.12.002 10.1039/C7EE01095H 10.1002/anie.201607539 10.1016/j.jpowsour.2018.04.099 10.1016/j.joule.2018.06.021 10.1016/j.ensm.2018.11.009 10.1039/C7TA04320A 10.1007/s41918-018-0011-2 10.1002/admi.201701097 10.1016/j.joule.2018.07.009 10.1016/j.nanoen.2016.09.002 10.1039/C4EE01432D 10.1016/j.matlet.2016.02.128 10.1002/aenm.201500212 10.1039/C7CS00255F 10.1021/acs.nanolett.5b00600 10.1016/j.cej.2019.02.148 10.1002/chem.201803616 10.1021/jacs.9b03517 10.1016/j.mtnano.2018.12.003 10.1021/acssuschemeng.8b04076 10.1016/j.jpowsour.2018.07.005 10.1021/acs.jpcc.6b11136 10.1021/acs.nanolett.8b05019 10.1038/nenergy.2016.141 10.1149/2.0731504jes 10.1021/acs.chemrev.5b00563 10.1016/j.ensm.2016.07.003 10.1007/s11426-017-9164-2 10.1021/acsami.8b06658 10.1002/aenm.201401408 10.1016/j.electacta.2017.02.021 10.1021/acsami.8b21770 10.1016/j.electacta.2018.10.005 10.1021/jacs.6b05341 10.1002/admi.201900200 10.1149/1.3356988 10.1038/nenergy.2017.35 10.1016/j.jpowsour.2015.09.111 10.1039/C7TA00290D 10.1039/C6TA10066J 10.1002/adma.201807789 10.1021/acsami.7b00336 10.1039/C9DT00074G 10.1038/natrevmats.2016.103 10.1002/adfm.201805301 10.1021/acs.jpcc.8b02693 10.1016/j.jpowsour.2017.04.014 10.1002/aenm.201901604 10.1039/C8TA11449H 10.1002/aenm.201804004 10.1016/j.jpowsour.2018.03.016 10.1021/acsami.8b01631 10.1002/adma.201700007 10.1016/j.chempr.2019.05.009 10.1007/s10853-019-03535-3 10.1039/C8TA03358G 10.1016/j.ssi.2016.07.013 10.1002/adma.201705702 10.1021/acs.jpcc.8b02556 10.1038/nenergy.2016.42 10.1016/j.nanoen.2017.01.028 10.1016/j.ssi.2018.08.010 10.1002/aenm.201502214 10.1016/j.jpowsour.2013.05.030 10.1016/j.ensm.2019.04.043 10.1039/C7TA05832B 10.1021/jacs.7b06364 10.1007/s11581-016-1908-6 10.3144/expresspolymlett.2017.5 10.1016/j.mattod.2018.01.001 10.1002/admi.201800899 10.1021/acsenergylett.7b00292 10.1038/nnano.2017.16 10.1021/acs.jpclett.7b01321 10.1002/aenm.201703474 10.1002/aenm.201700260 10.1002/aenm.201803854 10.1021/acsenergylett.6b00609 10.1038/nenergy.2017.125 10.1039/C7TA08741A 10.1007/s11581-019-02852-6 10.1039/C6CE00171H 10.1038/srep45390 10.1016/j.nanoen.2018.01.028 10.1021/acsami.9b02675 10.1016/j.ensm.2017.08.015 10.1021/acs.accounts.7b00460 10.1021/acsami.7b03806 10.1039/C6MH00218H 10.1002/aenm.201500118 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1002/advs.201903088 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC PROQUEST ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_137c4a049cab4befa040a52e4cf1f276 PMC7055568 32154083 10_1002_advs_201903088 ADVS1507 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Guangdong Province Technical Plan funderid: 2017B010119001; 2017B090907005 – fundername: National Natural Science Foundation of China funderid: 51672156 – fundername: Guangdong Pearl River Talents funderid: 2017BT01N111 – fundername: Shenzhen Technical Plan funderid: JCYJ20180508152210821; JCYJ20170817161221958; JCYJ20170412170706047 – fundername: Guangdong Pearl River Talents grantid: 2017BT01N111 – fundername: Shenzhen Technical Plan grantid: JCYJ20180508152210821; JCYJ20170817161221958; JCYJ20170412170706047 – fundername: Guangdong Province Technical Plan grantid: 2017B010119001; 2017B090907005 – fundername: ; grantid: 51672156 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION EJD IAO IGS ITC PHGZM PHGZT NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c5297-1aef58c73920dc6ba378340c7e52cb030fae00b49915744b8aaa4853d041b8c63 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 700 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508284700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Fri Oct 03 12:50:36 EDT 2025 Tue Nov 04 01:57:41 EST 2025 Fri Sep 05 08:03:38 EDT 2025 Fri Jul 25 05:56:37 EDT 2025 Wed Feb 19 02:29:05 EST 2025 Sat Nov 29 07:23:50 EST 2025 Tue Nov 18 22:20:41 EST 2025 Wed Jan 22 16:34:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | interfaces solid composite electrolytes ionic conductivity lithium batteries |
| Language | English |
| License | Attribution 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5297-1aef58c73920dc6ba378340c7e52cb030fae00b49915744b8aaa4853d041b8c63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-5787-5498 |
| OpenAccessLink | https://www.proquest.com/docview/2370478896?pq-origsite=%requestingapplication% |
| PMID | 32154083 |
| PQID | 2370478896 |
| PQPubID | 4365299 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_137c4a049cab4befa040a52e4cf1f276 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7055568 proquest_miscellaneous_2375866018 proquest_journals_2370478896 pubmed_primary_32154083 crossref_citationtrail_10_1002_advs_201903088 crossref_primary_10_1002_advs_201903088 wiley_primary_10_1002_advs_201903088_ADVS1507 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationTitleAlternate | Adv Sci (Weinh) |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 2019; 11 2017 2019; 10 6 2019; 17 2014; 26 2013; 240 2016; 301 2018; 45 2018; 43 2017 2017; 11 1 2018; 46 2018; 6 2019 2018 2019 2018 2016; 367 325 25 10 291 2016 2017; 1 2 2018; 9 2018; 8 2018; 292 2018; 3 2018; 2 2018; 4 2018; 1 2019; 21 2019; 23 2019; 29 2018; 30 2018 2015; 6 5 2017; 164 2019; 7 2019; 9 2018; 28 2019; 6 2019; 5 2019; 31 2019; 30 2019; 2 2019; 1 2012 2017; 51 46 2018; 102 2007; 166 2017; 372 2017; 253 2016; 18 2018; 21 2017; 258 2017; 139 2018; 24 2016; 4 2016; 5 2016; 6 2016; 1 2016; 3 2015 2011; 3 40 2017; 56 2016; 28 2018; 11 2018; 10 2016; 295 2018; 15 2019; 330 2019 2018 2018; 136 24 392 2006 2016; 159 172 2017; 5 2017; 7 2018; 122 2017; 8 2017; 2 2017 2011; 2 10 2019; 54 2018 2019 2019; 2 9 2015 2015; 5 5 2015 2019; 175 5 2017; 353 2017; 114 2017; 9 2017; 31 2019; 60 2017 2018; 5 316 2017 2019 2015; 230 48 162 2017 2016; 7 4 2017; 33 2010; 157 2016; 113 2019 2019 2019 2019; 2 175 54 166 2017; 121 2017 2017 2017; 7 50 60 2018; 383 2015; 15 2019 2019; 17 19 2015; 5 2018; 140 2015 2016; 27 16 2018; 387 2017; 23 2018 2018; 5 11 2017; 29 2019; 141 2016; 55 2017 2017 2018; 12 29 284 2014 2017 2015; 7 117 5 2018; 397 2018; 315 2017; 17 2017; 10 2015; 21 2015; 274 2009 2016; 180 116 2018; 52 2016; 138 2019; 375 2018; 57 e_1_2_8_49_2 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_34_2 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_19_3 e_1_2_8_19_4 e_1_2_8_19_5 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_95_2 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_124_2 e_1_2_8_29_1 e_1_2_8_21_4 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_2 e_1_2_8_110_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_63_2 e_1_2_8_21_3 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_14_3 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_90_3 e_1_2_8_90_2 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 Liu Q. (e_1_2_8_95_3) 2019 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_106_2 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_24_3 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_130_2 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_126_3 e_1_2_8_126_2 e_1_2_8_107_1 e_1_2_8_32_2 e_1_2_8_107_2 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_27_2 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Xue Z. (e_1_2_8_7_1) 2015; 3 e_1_2_8_80_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_4_3 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_58_2 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
| References_xml | – volume: 367 325 25 10 291 start-page: 230 112 907 8 year: 2019 2018 2019 2018 2016 publication-title: Chem. Eng. J. Solid State Ionics Ionics ACS Appl. Mater. Interfaces Solid State Ionics – volume: 274 start-page: 458 year: 2015 publication-title: J. Power Sources – volume: 15 start-page: 46 year: 2018 publication-title: Energy Storage Mater. – volume: 157 start-page: A611 year: 2010 publication-title: J. Electrochem. Soc. – volume: 11 1 start-page: 35 269 year: 2017 2017 publication-title: eXPRESS Polym. Lett. Mater. Chem. Front. – volume: 2 start-page: 1734 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 24 year: 2018 publication-title: Chem. ‐ Eur. J. – volume: 5 start-page: 4940 year: 2017 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1991 year: 2018 publication-title: Joule – volume: 159 172 start-page: 690 1 year: 2006 2016 publication-title: J. Power Sources Mater. Lett. – volume: 375 year: 2019 publication-title: Chem. Eng. J. – volume: 21 start-page: 594 year: 2018 publication-title: Mater. Today – volume: 27 16 start-page: 5995 459 year: 2015 2016 publication-title: Adv. Mater. Nano Lett. – volume: 17 19 start-page: 309 2343 year: 2019 2019 publication-title: Energy Storage Mater. Nano Lett. – volume: 136 24 392 start-page: 27 206 year: 2019 2018 2018 publication-title: Mater. Sci. Eng., R Chem. ‐ Eur. J. J. Power Sources – volume: 2 start-page: 1130 year: 2017 publication-title: ACS Energy Lett. – volume: 43 start-page: 759 year: 2018 publication-title: MRS Bull. – volume: 17 start-page: 2967 year: 2017 publication-title: Nano Lett. – volume: 10 start-page: 7069 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 258 start-page: 1106 year: 2017 publication-title: Electrochim. Acta – volume: 10 6 start-page: 1911 year: 2017 2019 publication-title: Energy Environ. Sci. Adv. Mater. Interfaces – volume: 30 year: 2019 publication-title: Nanotechnology – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 138 start-page: 9385 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 253 start-page: 430 year: 2017 publication-title: Electrochim. Acta – volume: 9 start-page: 9654 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 2 start-page: 1385 year: 2017 publication-title: ACS Energy Lett. – volume: 23 start-page: 497 year: 2017 publication-title: Ionics – volume: 57 start-page: 2096 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 860 year: 2017 publication-title: Energy Environ. Sci. – volume: 7 50 60 start-page: 2653 1508 year: 2017 2017 2017 publication-title: Adv. Energy Mater. Acc. Chem. Res. Sci. China: Chem. – volume: 121 start-page: 2563 year: 2017 publication-title: J. Phys. Chem. C – volume: 330 start-page: 54 year: 2019 publication-title: Solid State Ionics – volume: 5 start-page: 74 year: 2019 publication-title: Chem – volume: 372 start-page: 1 year: 2017 publication-title: J. Power Sources – volume: 56 start-page: 753 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 21 start-page: 381 year: 2015 publication-title: Ionics – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 21 year: 2019 publication-title: Adv. Eng. Mater. – volume: 23 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 3 start-page: 2775 year: 2018 publication-title: ACS Energy Lett. – volume: 383 start-page: 150 year: 2018 publication-title: J. Power Sources – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 180 116 start-page: 911 140 year: 2009 2016 publication-title: Solid State Ionics Chem. Rev. – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 11 start-page: 784 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 176 year: 2018 publication-title: Nano Energy – volume: 52 start-page: 279 year: 2018 publication-title: Nano Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 23 start-page: 306 year: 2019 publication-title: Energy Storage Mater. – volume: 122 start-page: 9852 year: 2018 publication-title: J. Phys. Chem. C – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 387 start-page: 72 year: 2018 publication-title: J. Power Sources – volume: 240 start-page: 653 year: 2013 publication-title: J. Power Sources – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 141 start-page: 9165 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 56 year: 2018 publication-title: Curr. Opin. Electrochem. – volume: 114 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 2 175 54 166 start-page: 1600 28 9603 A416 year: 2019 2019 2019 2019 publication-title: ACS Appl. Energy Mater. Compos. Sci. Technol. J. Mater. Sci. J. Electrochem. Soc. – volume: 7 start-page: 4675 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 54 start-page: 4874 year: 2019 publication-title: J. Mater. Sci. – volume: 10 start-page: 139 year: 2018 publication-title: Energy Storage Mater. – volume: 5 316 start-page: 29 year: 2017 2018 publication-title: J. Mater. Chem. A Solid State Ionics – volume: 7 start-page: 7163 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 2 start-page: 134 year: 2017 publication-title: ACS Energy Lett. – volume: 28 start-page: 447 year: 2016 publication-title: Nano Energy – volume: 102 start-page: 412 year: 2018 publication-title: Mater. Res. Bull. – volume: 140 start-page: 82 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 230 48 162 start-page: 342 3263 A704 year: 2017 2019 2015 publication-title: Electrochim. Acta Dalton Trans. J. Electrochem. Soc. – volume: 1 start-page: 354 year: 2019 publication-title: ACS Mater. Lett. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 11 start-page: 185 year: 2018 publication-title: Energy Environ. Sci. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 7 117 5 start-page: 3857 4759 year: 2014 2017 2015 publication-title: Energy Environ. Sci. Chem. Rev. Adv. Energy Mater. – volume: 4 start-page: 1 year: 2018 publication-title: Mater. Today Nano – volume: 45 start-page: 413 year: 2018 publication-title: Nano Energy – volume: 295 start-page: 65 year: 2016 publication-title: Solid State Ionics – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 175 5 start-page: 18 2326 year: 2015 2019 publication-title: Electrochim. Acta Chem – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 113 start-page: 7094 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 33 start-page: 363 year: 2017 publication-title: Nano Energy – volume: 8 start-page: 3473 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 4113 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 12 29 284 start-page: 194 177 year: 2017 2017 2018 publication-title: Nat. Nanotechnol. Adv. Mater. Electrochim. Acta – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 139 year: 2016 publication-title: Energy Storage Mater. – volume: 2 start-page: 1378 year: 2017 publication-title: ACS Energy Lett. – volume: 6 5 year: 2018 2015 publication-title: J. Mater. Chem. A Adv. Energy Mater. – volume: 60 start-page: 205 year: 2019 publication-title: Nano Energy – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1496 year: 2018 publication-title: J. Mater. Chem. A – volume: 15 start-page: 2740 year: 2015 publication-title: Nano Lett. – volume: 2 9 start-page: 1674 year: 2018 2019 2019 publication-title: Joule Adv. Energy Mater. Energy Storage Mater. – volume: 315 start-page: 65 year: 2018 publication-title: Solid State Ionics – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 1 2 year: 2016 2017 publication-title: Nat. Energy Nat. Rev. Mater. – volume: 18 start-page: 4236 year: 2016 publication-title: CrystEngComm – volume: 5 11 start-page: 527 year: 2018 2018 publication-title: Adv. Mater. Interfaces Energy Environ. Sci. – volume: 26 start-page: 201 year: 2014 publication-title: Adv. Mater. – volume: 17 start-page: 3182 year: 2017 publication-title: Nano Lett. – volume: 301 start-page: 47 year: 2016 publication-title: J. Power Sources – volume: 7 4 start-page: 7135 year: 2017 2016 publication-title: Adv. Energy Mater. J. Mater. Chem. A – volume: 5 start-page: 5222 year: 2017 publication-title: J. Mater. Chem. A – volume: 292 start-page: 718 year: 2018 publication-title: Electrochim. Acta – volume: 1 start-page: 113 year: 2018 publication-title: Electrochem. Energy Rev. – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 397 start-page: 87 year: 2018 publication-title: J. Power Sources – volume: 7 start-page: 3391 year: 2019 publication-title: J. Mater. Chem. A – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 353 start-page: 287 year: 2017 publication-title: J. Power Sources – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 2 10 start-page: 2734 682 year: 2017 2011 publication-title: ACS Energy Lett. Nat. Mater. – volume: 166 start-page: 226 year: 2007 publication-title: J. Power Sources – volume: 3 40 start-page: 2525 year: 2015 2011 publication-title: Chem. A Chem. Soc. Rev. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 5 5 year: 2015 2015 publication-title: Adv. Energy Mater. Adv. Energy Mater. – volume: 6 start-page: 4279 year: 2018 publication-title: J. Mater. Chem. A – volume: 51 46 start-page: 6046 year: 2012 2017 publication-title: Angew. Chem., Int. Ed. Chem. Soc. Rev. – volume: 17 start-page: 220 year: 2019 publication-title: Energy Storage Mater. – volume: 31 start-page: 478 year: 2017 publication-title: Nano Energy – volume: 3 start-page: 487 year: 2016 publication-title: Mater. Horiz. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_90_3 doi: 10.1016/j.electacta.2018.07.191 – ident: e_1_2_8_136_1 doi: 10.1016/j.materresbull.2018.02.051 – ident: e_1_2_8_80_1 doi: 10.1039/C7EE02723K – ident: e_1_2_8_107_2 doi: 10.1039/C7EE02555F – ident: e_1_2_8_18_1 doi: 10.1039/C6TA02621D – ident: e_1_2_8_54_1 doi: 10.1016/j.electacta.2017.08.162 – ident: e_1_2_8_55_1 doi: 10.1002/anie.201710841 – ident: e_1_2_8_124_1 doi: 10.1002/aenm.201500408 – ident: e_1_2_8_19_4 doi: 10.1021/acsami.8b02240 – ident: e_1_2_8_64_1 doi: 10.1021/acsami.7b17301 – ident: e_1_2_8_111_1 doi: 10.1021/acsami.7b03887 – ident: e_1_2_8_79_1 doi: 10.1021/acsmaterialslett.9b00189 – ident: e_1_2_8_94_1 doi: 10.1021/acsenergylett.7b00175 – ident: e_1_2_8_19_5 doi: 10.1016/j.ssi.2016.04.014 – ident: e_1_2_8_13_2 doi: 10.1038/nmat3066 – ident: e_1_2_8_14_1 doi: 10.1016/j.mser.2018.10.004 – ident: e_1_2_8_72_1 doi: 10.1039/C7TA10517G – ident: e_1_2_8_34_1 doi: 10.1016/j.ssi.2009.03.022 – ident: e_1_2_8_110_1 doi: 10.1016/j.ensm.2018.07.004 – ident: e_1_2_8_129_1 doi: 10.1002/adfm.201707570 – ident: e_1_2_8_1_1 doi: 10.1002/adma.201701169 – ident: e_1_2_8_21_1 doi: 10.1021/acsaem.8b02185 – ident: e_1_2_8_21_4 doi: 10.1149/2.1321902jes – ident: e_1_2_8_88_1 doi: 10.1021/acsami.9b07830 – ident: e_1_2_8_49_1 doi: 10.1016/j.jpowsour.2005.10.104 – ident: e_1_2_8_100_1 doi: 10.1021/acsami.6b16304 – ident: e_1_2_8_117_1 doi: 10.1016/j.jpowsour.2017.10.059 – ident: e_1_2_8_60_1 doi: 10.1021/acs.nanolett.7b00715 – ident: e_1_2_8_46_1 doi: 10.1016/j.jpowsour.2014.10.078 – ident: e_1_2_8_3_1 doi: 10.1088/1361-6528/ab0fb2 – ident: e_1_2_8_16_1 doi: 10.1557/mrs.2018.212 – ident: e_1_2_8_118_1 doi: 10.1149/2.0381712jes – ident: e_1_2_8_140_1 doi: 10.1002/anie.201608924 – ident: e_1_2_8_85_1 doi: 10.1002/adem.201900055 – ident: e_1_2_8_65_1 doi: 10.1021/acsami.8b17279 – ident: e_1_2_8_101_1 doi: 10.1016/j.ssi.2018.12.008 – ident: e_1_2_8_75_1 doi: 10.1016/j.jpowsour.2007.01.028 – ident: e_1_2_8_105_1 doi: 10.1016/j.nanoen.2018.07.036 – ident: e_1_2_8_73_1 doi: 10.1016/j.cej.2019.121922 – ident: e_1_2_8_28_1 doi: 10.1002/aenm.201602920 – ident: e_1_2_8_32_2 doi: 10.1039/C6QM00098C – ident: e_1_2_8_131_1 doi: 10.1039/C6EE03499C – ident: e_1_2_8_134_1 doi: 10.1021/acsenergylett.7b00204 – ident: e_1_2_8_13_1 doi: 10.1021/acsenergylett.7b00849 – ident: e_1_2_8_121_1 doi: 10.1016/j.jpowsour.2018.02.026 – ident: e_1_2_8_4_2 doi: 10.1021/acs.chemrev.6b00586 – ident: e_1_2_8_8_1 doi: 10.1016/j.electacta.2015.03.038 – ident: e_1_2_8_31_1 doi: 10.1016/j.nanoen.2016.11.045 – ident: e_1_2_8_93_1 doi: 10.1021/acsenergylett.8b01564 – ident: e_1_2_8_44_1 doi: 10.1016/j.nanoen.2017.12.037 – ident: e_1_2_8_20_1 doi: 10.1021/acsami.7b12092 – ident: e_1_2_8_42_1 doi: 10.1016/j.electacta.2017.11.164 – ident: e_1_2_8_141_1 doi: 10.1002/chem.201703464 – ident: e_1_2_8_27_1 doi: 10.1002/adma.201502059 – ident: e_1_2_8_97_1 doi: 10.1021/acsami.7b18123 – ident: e_1_2_8_74_1 doi: 10.1021/acssuschemeng.9b00143 – ident: e_1_2_8_77_1 doi: 10.1016/j.nanoen.2019.03.051 – ident: e_1_2_8_113_1 doi: 10.1021/jacs.7b10864 – ident: e_1_2_8_45_1 doi: 10.1016/j.ssi.2017.12.007 – ident: e_1_2_8_102_1 doi: 10.1002/aenm.201800933 – ident: e_1_2_8_130_1 doi: 10.1002/anie.201204983 – year: 2019 ident: e_1_2_8_95_3 publication-title: Energy Storage Mater. – ident: e_1_2_8_48_1 doi: 10.1021/acs.nanolett.7b00221 – ident: e_1_2_8_7_2 doi: 10.1039/c0cs00081g – ident: e_1_2_8_50_1 doi: 10.1073/pnas.1708489114 – ident: e_1_2_8_30_1 doi: 10.1007/s11581-014-1176-2 – ident: e_1_2_8_89_1 doi: 10.1002/aenm.201702657 – ident: e_1_2_8_28_2 doi: 10.1039/C6TA01826B – ident: e_1_2_8_39_1 doi: 10.1002/aenm.201701437 – ident: e_1_2_8_127_1 doi: 10.1002/aenm.201701602 – ident: e_1_2_8_27_2 doi: 10.1021/acs.nanolett.5b04117 – ident: e_1_2_8_37_1 doi: 10.1002/adma.201303070 – ident: e_1_2_8_4_3 doi: 10.1002/aenm.201500117 – ident: e_1_2_8_63_2 doi: 10.1016/j.ssi.2017.12.018 – ident: e_1_2_8_67_1 doi: 10.1021/acsaem.8b01850 – ident: e_1_2_8_119_1 doi: 10.1021/acsami.8b19237 – ident: e_1_2_8_41_1 doi: 10.1073/pnas.1600422113 – ident: e_1_2_8_125_1 doi: 10.1002/adma.201606823 – ident: e_1_2_8_56_1 doi: 10.1016/j.ensm.2018.03.016 – ident: e_1_2_8_21_2 doi: 10.1016/j.compscitech.2019.02.030 – ident: e_1_2_8_61_1 doi: 10.1016/j.coelec.2018.03.033 – ident: e_1_2_8_112_1 doi: 10.1021/acsami.8b01003 – ident: e_1_2_8_122_1 doi: 10.1007/s10853-018-03188-8 – ident: e_1_2_8_15_1 doi: 10.1016/j.chempr.2018.12.002 – ident: e_1_2_8_58_1 doi: 10.1039/C7EE01095H – ident: e_1_2_8_62_1 doi: 10.1002/anie.201607539 – ident: e_1_2_8_14_3 doi: 10.1016/j.jpowsour.2018.04.099 – ident: e_1_2_8_95_1 doi: 10.1016/j.joule.2018.06.021 – ident: e_1_2_8_103_1 doi: 10.1016/j.ensm.2018.11.009 – ident: e_1_2_8_98_1 doi: 10.1039/C7TA04320A – ident: e_1_2_8_84_1 doi: 10.1007/s41918-018-0011-2 – ident: e_1_2_8_107_1 doi: 10.1002/admi.201701097 – ident: e_1_2_8_91_1 doi: 10.1016/j.joule.2018.07.009 – ident: e_1_2_8_47_1 doi: 10.1016/j.nanoen.2016.09.002 – ident: e_1_2_8_4_1 doi: 10.1039/C4EE01432D – ident: e_1_2_8_49_2 doi: 10.1016/j.matlet.2016.02.128 – ident: e_1_2_8_123_1 doi: 10.1002/aenm.201500212 – ident: e_1_2_8_130_2 doi: 10.1039/C7CS00255F – ident: e_1_2_8_40_1 doi: 10.1021/acs.nanolett.5b00600 – ident: e_1_2_8_19_1 doi: 10.1016/j.cej.2019.02.148 – ident: e_1_2_8_14_2 doi: 10.1002/chem.201803616 – ident: e_1_2_8_115_1 doi: 10.1021/jacs.9b03517 – ident: e_1_2_8_83_1 doi: 10.1016/j.mtnano.2018.12.003 – ident: e_1_2_8_86_1 doi: 10.1021/acssuschemeng.8b04076 – ident: e_1_2_8_139_1 doi: 10.1016/j.jpowsour.2018.07.005 – ident: e_1_2_8_66_1 doi: 10.1021/acs.jpcc.6b11136 – ident: e_1_2_8_110_2 doi: 10.1021/acs.nanolett.8b05019 – ident: e_1_2_8_5_1 doi: 10.1038/nenergy.2016.141 – ident: e_1_2_8_24_3 doi: 10.1149/2.0731504jes – ident: e_1_2_8_34_2 doi: 10.1021/acs.chemrev.5b00563 – ident: e_1_2_8_9_1 doi: 10.1016/j.ensm.2016.07.003 – ident: e_1_2_8_126_3 doi: 10.1007/s11426-017-9164-2 – ident: e_1_2_8_70_1 doi: 10.1021/acsami.8b06658 – ident: e_1_2_8_106_2 doi: 10.1002/aenm.201401408 – ident: e_1_2_8_24_1 doi: 10.1016/j.electacta.2017.02.021 – ident: e_1_2_8_69_1 doi: 10.1021/acsami.8b21770 – ident: e_1_2_8_71_1 doi: 10.1016/j.electacta.2018.10.005 – ident: e_1_2_8_108_1 doi: 10.1021/jacs.6b05341 – ident: e_1_2_8_22_1 doi: 10.1002/admi.201900200 – ident: e_1_2_8_132_1 doi: 10.1149/1.3356988 – ident: e_1_2_8_59_1 doi: 10.1038/nenergy.2017.35 – ident: e_1_2_8_43_1 doi: 10.1016/j.jpowsour.2015.09.111 – ident: e_1_2_8_128_1 doi: 10.1039/C7TA00290D – ident: e_1_2_8_68_1 doi: 10.1002/chem.201803616 – ident: e_1_2_8_96_1 doi: 10.1039/C6TA10066J – ident: e_1_2_8_114_1 doi: 10.1002/adma.201807789 – ident: e_1_2_8_99_1 doi: 10.1021/acsami.7b00336 – ident: e_1_2_8_24_2 doi: 10.1039/C9DT00074G – ident: e_1_2_8_6_2 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_8_57_1 doi: 10.1002/adfm.201805301 – ident: e_1_2_8_137_1 doi: 10.1021/acs.jpcc.8b02693 – ident: e_1_2_8_53_1 doi: 10.1016/j.jpowsour.2017.04.014 – ident: e_1_2_8_95_2 doi: 10.1002/aenm.201901604 – ident: e_1_2_8_87_1 doi: 10.1039/C8TA11449H – ident: e_1_2_8_109_1 doi: 10.1002/aenm.201804004 – ident: e_1_2_8_138_1 doi: 10.1016/j.jpowsour.2018.03.016 – ident: e_1_2_8_76_1 doi: 10.1021/acsami.8b01631 – ident: e_1_2_8_90_2 doi: 10.1002/adma.201700007 – ident: e_1_2_8_8_2 doi: 10.1016/j.chempr.2019.05.009 – ident: e_1_2_8_21_3 doi: 10.1007/s10853-019-03535-3 – ident: e_1_2_8_106_1 doi: 10.1039/C8TA03358G – ident: e_1_2_8_38_1 doi: 10.1016/j.ssi.2016.07.013 – ident: e_1_2_8_12_1 doi: 10.1002/adma.201705702 – ident: e_1_2_8_104_1 doi: 10.1021/acs.jpcc.8b02556 – ident: e_1_2_8_6_1 doi: 10.1038/nenergy.2016.42 – ident: e_1_2_8_10_1 doi: 10.1016/j.nanoen.2017.01.028 – ident: e_1_2_8_19_2 doi: 10.1016/j.ssi.2018.08.010 – ident: e_1_2_8_26_1 doi: 10.1002/aenm.201502214 – ident: e_1_2_8_33_1 doi: 10.1016/j.jpowsour.2013.05.030 – ident: e_1_2_8_81_1 doi: 10.1016/j.ensm.2019.04.043 – ident: e_1_2_8_63_1 doi: 10.1039/C7TA05832B – ident: e_1_2_8_51_1 doi: 10.1021/jacs.7b06364 – ident: e_1_2_8_17_1 doi: 10.1007/s11581-016-1908-6 – ident: e_1_2_8_32_1 doi: 10.3144/expresspolymlett.2017.5 – ident: e_1_2_8_82_1 doi: 10.1016/j.mattod.2018.01.001 – ident: e_1_2_8_58_2 doi: 10.1002/admi.201800899 – ident: e_1_2_8_133_1 doi: 10.1021/acsenergylett.7b00292 – ident: e_1_2_8_90_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_8_23_1 doi: 10.1021/acs.jpclett.7b01321 – ident: e_1_2_8_78_1 doi: 10.1002/aenm.201703474 – ident: e_1_2_8_126_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_8_116_1 doi: 10.1002/aenm.201803854 – volume: 3 start-page: 19218 year: 2015 ident: e_1_2_8_7_1 publication-title: Chem. A – ident: e_1_2_8_120_1 doi: 10.1021/acsenergylett.6b00609 – ident: e_1_2_8_2_1 doi: 10.1038/nenergy.2017.125 – ident: e_1_2_8_11_1 doi: 10.1039/C7TA08741A – ident: e_1_2_8_19_3 doi: 10.1007/s11581-019-02852-6 – ident: e_1_2_8_25_1 doi: 10.1039/C6CE00171H – ident: e_1_2_8_29_1 doi: 10.1038/srep45390 – ident: e_1_2_8_135_1 doi: 10.1016/j.nanoen.2018.01.028 – ident: e_1_2_8_92_1 doi: 10.1021/acsami.9b02675 – ident: e_1_2_8_35_1 doi: 10.1016/j.ensm.2017.08.015 – ident: e_1_2_8_126_2 doi: 10.1021/acs.accounts.7b00460 – ident: e_1_2_8_52_1 doi: 10.1021/acsami.7b03806 – ident: e_1_2_8_36_1 doi: 10.1039/C6MH00218H – ident: e_1_2_8_124_2 doi: 10.1002/aenm.201500118 |
| SSID | ssj0001537418 |
| Score | 2.6465173 |
| SecondaryResourceType | review_article |
| Snippet | Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present... Abstract Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present... |
| SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1903088 |
| SubjectTerms | Ceramics Electrodes Electrolytes Energy Fluorides interfaces ionic conductivity Ions Lithium lithium batteries Nanoparticles Polymers Polymethyl methacrylate Renewable resources Review Reviews solid composite electrolytes |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUl9NBLafq5bVoUCLQ9mJUtyZKPbUjIIYSFtJBTjSRLxLBrh81uIP--M5LX2aUtufRmrMGWZ0aeN_boDSFHuvENMrllFtBxhhEiq7h1Gbel4TJ4zoKLzSbUxYW-uqpmW62-sCYs0QMnxU1zrpwwgGOdscL6AIfMyMILF_JQqEi2DahnK5lK-4M50rJsWBpZMTXNHbJzQ_zjLLZZeYhCkaz_bwjzz0LJbQAbI9DpC_J8gI70W5ryPnniu5dkf1ict_TLwCD99RX5NcOqK3iHUdM1dPawn5L2gR6D0KJ101k_v1_4JcU3AlZueXrZz9uGnqTGOPN7AKEUIC09b1fX7XpBExUnZNavyc_Tkx_HZ9nQSCFzsqhUlhsfpHYKsBBrXGkNx_YazCkvC2dBIcF4xiwkP7lUQlhtjBEQx8GKudWu5G_IXtd3_h2hvglMucKCoBYSLJMHLmwluQElOc0nJNsotnYDyzg2u5jXiR-5qNEQ9WiICfk8yt8kfo1_Sn5HO41SyIsdT4C31IO31I95y4QcbKxcD4sVbsEVchTpCoYPx2FYZvjvxHS-X0cZqUvIXmEeb5NTjDPhAJsEw2dXO-6yM9Xdka69jlTeyGUkS7hmFh3rERXUAFUuEcG__x-6-ECeFfjxIBbUHZC91XLtP5Kn7m7V3i4_xfX0G5tVJTQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBSKI-yUJCRkICDtUlsx84RqlYcULVSQeqJyHZsGmk3Qfuo1H_fGSebbQQIIW5RPHL8mLG_ccbfEPJWV75CJjdmAR0z3CFYwa1j3OaGy-B5ElxMNqHOzvTFRTG7dYu_44cYDtzQMuJ6jQZu7Gq6Iw011RXSbcOGxsFS7pJ7aco1Jm_IxGx3yiI50rNghjnwrhnXQmyZG5NsOq5itDNFAv_foc5fgydvg9q4K50-_P_-PCL7PSKlHzsVOiB3fPOYHPQ2v6Lve2LqD0_I9xkGc8HSSE1T0dnumiZtAz0GoUXtprN2fr3wS4oLDQaEeXrezuuKnnT5dubXgG0pIGX6pV5f1psF7Rg-wWF_Sr6dnnw9_sz6_AzMyaxQLDU-SO0UQKykcrk1HLN2JE55mTkL3QjGJ4kFnyqVSgirjTEC4AEoR2q1y_kzste0jX9OqK9ColxmQVAL6YRJAxe2kNzAODvNJ4Rt56Z0PXk55tCYlx3tclbi8JXD8E3Iu0H-Z0fb8UfJTzjVgxTSbccX7fJH2VtvmXIFbQJnyhkrrA_wmBiZeeFCGjKVT8jRVlHKfg2AT3CF1Ee6gOI3QzFYL_6SMY1vN1FG6hycYmjHYadXQ0s4oDGRYN_VSONGTR2XNPVlZAhHiiSZQ50satxfhqAEBHSOjsGLf5R_SR5kePwQQ_KOyN56ufGvyH13ta5Xy9fREm8A3mE1gw priority: 102 providerName: Wiley-Blackwell |
| Title | Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201903088 https://www.ncbi.nlm.nih.gov/pubmed/32154083 https://www.proquest.com/docview/2370478896 https://www.proquest.com/docview/2375866018 https://pubmed.ncbi.nlm.nih.gov/PMC7055568 https://doaj.org/article/137c4a049cab4befa040a52e4cf1f276 |
| Volume | 7 |
| WOSCitedRecordID | wos000508284700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest One Academic customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Science Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYlgMXYHkshaUyEhJwiJr4EScnxK66YiW2RCyIciGyHYeN1CZLHyvtv2fsuCkVrwMXq61Hre0Z299Mpt8g9DwpTGGZ3AIF6DiwN0SQUqUDqmJJeWloWGpXbEJMJsl0mmY-4Lb0aZWbM9Ed1EWjbYx8RKiwRDJJGr--_B7YqlH26aovobGH-papjPVQ_2g8yT5soyycWnqWDVtjSEayuLIs3XAP0tCVW9neRo60_3dI89eEyZ-BrLuJTu787xzuotseg-I3rdHsoxumvof2_S5f4peeivrVffQ1s-lbcBhiWRc42_4xEzclPgaheaVHWTO7npsFtkeLTQEz-LyZVQUetxV2ZteAZjFgY_yuWl1U6zluOT3BRX-APp2MPx6_DXxFhkBzkoogkqbkiRYAqsJCx0pSW6cj1MJwohWsaClNGCrwoiIuGFOJlJIBIABziFSiY_oQ9eqmNo8QNkUZCk0UCCaMayajkjKVciphlXVCByjYaCbXnq7cVs2Y5S3RMsmtJvNOkwP0opO_bIk6_ih5ZBXdSVmCbfdBs_iW-_2aR1TAmMB90lIxZUp4GUpODNNlVBIRD9DhRsW53_XwE51-B-hZ1w371T6EkbVp1k6GJzG4wTCOg9aqupFQwF8stHMXO_a2M9Tdnrq6cJzglhSJx_CdgbPMfyxBDpjn3LoCj_8-jSfoFrHxBZdzd4h6q8XaPEU39dWqWi6GaI-wDFoxTYZ-4w1dTAPaM_LetdDfz07Psi_w7vPp5AcdZjto |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFAkuQHkGCiwSCDhYsXe99uaAEJRWjZpGllqk9oLZXa-ppcQueRTlT_EbmfErRLxOPXCL7JGza3878816_A0hz2ViE1RyczSwYwcjhNPn2jhcB4qL1HI3NWWziXA0kicn_WiDfG--hcGyysYnlo46KQzukfcYD1FIRvaDt-dfHewahW9XmxYaFSwO7PIbpGyzN4MP8HxfMLa3e7yz79RdBRwjWD90PGVTIU0IxMBNTKAVx14TrgmtYEYD5lNlXVdDJuCJ0Pe1VEr5ENRgSp6WJuBw3Stk0wewyw7ZjAaH0elqV0dwlINp1CFd1lPJBaqCQ9zlbtneZRX9yiYBv2O2vxZo_kycy8i3d_N_u2e3yI2aY9N31aLYIhs2v022ai82o69qqe3Xd8inCMvTwNlTlSc0Wn14SouU7oDRJDO9qBgvJ3ZK0XViiZulR8U4S-hu1UFovAS2ToH702E2P8sWE1pplmZ2dpd8vJR53iOdvMjtA0JtkrqhYRoMpS-Mr7yU-7ovuIKnaiTvEqdBQmxqOXbsCjKOKyFpFiNy4hY5XfKytT-vhEj-aPkegdVaoYB4eaCYfolrfxR7PIQxQXpolPa1TeGnqwSzvkm9lIVBl2w3kIprrwZ_0eKpS561p8Ef4UsmldtiUdoIGUCaD-O4X6G4HQkHfum7OPdwDd9rQ10_k2dnpeY5ij6JAK7plCvhH7cgBk53hKnOw79P4ym5tn98OIyHg9HBI3Kd4V5KWV-4TTrz6cI-JlfNxTybTZ_UC52Sz5e9Tn4AWOqPZg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKQYgLUNaBAkYCAYdoEjvOckAI2o6oWg0jFaSeGmzHppFmkjJL0fw1fh3vOcswYjv1wC1KnhI7-d5mv3yPkGdJbnJkcvMURMceeggv5Up7XEWSC2u4b7VrNhEPh8nxcTraIN_bf2GwrLK1ic5Q55XGNfI-4zESySRp1LdNWcRod_Dm7KuHHaRwp7Vtp1FD5MAsv0H6Nnu9vwvf-jljg72PO--9psOApwVLYy-QxopExxAk-LmOlOTYd8LXsRFMK8C_lcb3FWQFgYjDUCVSyhAcHEwvUImOONz3Erkch-CUsWyQfVit7wiOxDAtT6TP-jI_R35w8MDcd41eVn7QtQv4XYz7a6nmzyG084GDG__z27tJrjeRN31bq8oW2TDlLbLV2LYZfdkQcL-6TU5GWLQGLoDKMqej1e-otLJ0B4Qmhe6PqvFyYqYUDSoWvhl6VI2LnO7VfYXGS4jhKWQE9LCYnxaLCa2ZTAszu0M-Xcg875LNsirNfUJNbv1YMwWCSSh0KAPLQ5UKLuEL64T3iNeiItMNSTv2ChlnNb00yxBFWYeiHnnRyZ_V9CR_lHyHIOukkFbcnaimX7LGSmUBj2FMkDRqqUJlLBz6UjATahtYFkc9st3CK2tsHTyiw1aPPO0ug5XCrSdZmmrhZEQSQfIP47hXI7obCYeoM_Rx7vEa1teGun6lLE4dEzpSQYkI7uk5rfjHK8gg0jvCBOjB36fxhFwF5cgO94cHD8k1hgssruhwm2zOpwvziFzR5_NiNn3sNJ6SzxetJD8AgjeWoA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+and+Perspective+of+Ceramic%2FPolymer+Composite+Solid+Electrolytes+for+Lithium+Batteries&rft.jtitle=Advanced+science&rft.au=Li%2C+Song&rft.au=Zhang%2C+Shi-Qi&rft.au=Shen%2C+Lu&rft.au=Liu%2C+Qi&rft.date=2020-03-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=7&rft.issue=5&rft.spage=1903088&rft_id=info:doi/10.1002%2Fadvs.201903088&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |