Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries

Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced science Ročník 7; číslo 5; s. 1903088 - n/a
Hlavní autori: Li, Song, Zhang, Shi‐Qi, Shen, Lu, Liu, Qi, Ma, Jia‐Bin, Lv, Wei, He, Yan‐Bing, Yang, Quan‐Hong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany John Wiley & Sons, Inc 01.03.2020
John Wiley and Sons Inc
Wiley
Predmet:
ISSN:2198-3844, 2198-3844
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all‐solid‐state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10−3 S cm−1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all‐solid‐state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all‐solid‐state lithium batteries. Herein, the advantages and ionic transport mechanisms of solid composite electrolyte (SCE) as well as the relationship between morphology of ceramic fillers and ionic conductivity of SCE are reviewed. Recent progress and strategies to settle interfacial issues for high‐performance all‐solid‐state lithium metal batteries with SCE are also concluded and future research directions of SCEs are proposed.
AbstractList Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all-solid-state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10-3 S cm-1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all-solid-state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all-solid-state lithium batteries.Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all-solid-state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10-3 S cm-1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all-solid-state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all-solid-state lithium batteries.
Abstract Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all‐solid‐state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10−3 S cm−1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all‐solid‐state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all‐solid‐state lithium batteries.
Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all‐solid‐state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10 −3 S cm −1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all‐solid‐state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all‐solid‐state lithium batteries.
Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all‐solid‐state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10−3 S cm−1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all‐solid‐state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all‐solid‐state lithium batteries.
Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all‐solid‐state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10−3 S cm−1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all‐solid‐state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all‐solid‐state lithium batteries. Herein, the advantages and ionic transport mechanisms of solid composite electrolyte (SCE) as well as the relationship between morphology of ceramic fillers and ionic conductivity of SCE are reviewed. Recent progress and strategies to settle interfacial issues for high‐performance all‐solid‐state lithium metal batteries with SCE are also concluded and future research directions of SCEs are proposed.
Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all-solid-state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10 S cm at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all-solid-state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all-solid-state lithium batteries.
Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present acceptable ionic conductivity, high mechanical strength, and favorable interfacial contact with electrodes, which greatly improve the electrochemical performance of all‐solid‐state batteries compared to single SPEs and ICEs. However, there are many challenges to overcome before the practical application of SCEs, including the low ionic conductivity less than 10−3 S cm−1 at ambient temperature, poor interfacial stability, and high interfacial resistance, which greatly restrict the room temperature performance. Herein, the advances of SCEs applied in all‐solid‐state lithium batteries are presented, including the Li ion migration mechanism of SCEs, the strategies to enhance the ionic conductivity of SCEs by various morphologies of ICEs, and construction methods of the low resistance and stable interfaces of SCEs with both cathode and anode. Finally, some typical applications of SCEs in lithium batteries are summarized and future development directions are prospected. This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all‐solid‐state lithium batteries. Herein, the advantages and ionic transport mechanisms of solid composite electrolyte (SCE) as well as the relationship between morphology of ceramic fillers and ionic conductivity of SCE are reviewed. Recent progress and strategies to settle interfacial issues for high‐performance all‐solid‐state lithium metal batteries with SCE are also concluded and future research directions of SCEs are proposed.
Author Yang, Quan‐Hong
Li, Song
He, Yan‐Bing
Ma, Jia‐Bin
Lv, Wei
Zhang, Shi‐Qi
Shen, Lu
Liu, Qi
AuthorAffiliation 1 Shenzhen Geim Graphene Center Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 P. R. China
2 Laboratory of Advanced Materials School of Materials Science and Engineering Tsinghua University Beijing 100084 P. R. China
3 Nanoyang Group School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
AuthorAffiliation_xml – name: 3 Nanoyang Group School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
– name: 1 Shenzhen Geim Graphene Center Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 P. R. China
– name: 2 Laboratory of Advanced Materials School of Materials Science and Engineering Tsinghua University Beijing 100084 P. R. China
Author_xml – sequence: 1
  givenname: Song
  surname: Li
  fullname: Li, Song
  organization: Tsinghua University
– sequence: 2
  givenname: Shi‐Qi
  surname: Zhang
  fullname: Zhang, Shi‐Qi
  organization: Tsinghua University
– sequence: 3
  givenname: Lu
  surname: Shen
  fullname: Shen, Lu
  organization: Tsinghua University
– sequence: 4
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
  organization: Tsinghua University
– sequence: 5
  givenname: Jia‐Bin
  surname: Ma
  fullname: Ma, Jia‐Bin
  organization: Tsinghua University
– sequence: 6
  givenname: Wei
  surname: Lv
  fullname: Lv, Wei
  organization: Tsinghua University
– sequence: 7
  givenname: Yan‐Bing
  orcidid: 0000-0001-5787-5498
  surname: He
  fullname: He, Yan‐Bing
  email: he.yanbing@sz.tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 8
  givenname: Quan‐Hong
  surname: Yang
  fullname: Yang, Quan‐Hong
  organization: Tianjin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32154083$$D View this record in MEDLINE/PubMed
BookMark eNqFksFv0zAUxiM0xMbYlSOKxIVLu-fYrp0L0igDJlWi0oAj1ovz0rlK4mK7RfvvSWg3bZMQJz_5fd_Pn-33MjvqfU9Z9prBlAEU51jv4rQAVgIHrZ9lJwUr9YRrIY4e1MfZWYxrAGCSK8H0i-yYF0wK0Pwk-7kMfhUoxhz7Ol9SiBuyye0o900-p4Cds-dL3952FPK57zY-ukT5tW9dnV-2gzYMzUQxb3zIFy7duG2Xf8CUKDiKr7LnDbaRzg7rafb90-W3-ZfJ4uvnq_nFYmJlUaoJQ2qktoqXBdR2ViFXmguwimRhq-F2DRJAJcqSSSVEpRFRaMlrEKzSdsZPs6s9t_a4NpvgOgy3xqMzfzd8WBkMydmWDOPKCgRRWqxERc1QAsqChG1YU6iR9X7P2myrjmpLfQrYPoI-7vTuxqz8ziiQUs70AHh3AAT_a0sxmc5FS22LPfltNAVXUs9mwEbp2yfStd-GfniqUQVCaV2Oid48THQf5e4bB4HYC2zwMQZqjHUJk_NjQNcaBmYcGDMOjLkfmME2fWK7I__TcDjnt2vp9j9qc_HxxzWToPgfoD7Syg
CitedBy_id crossref_primary_10_1002_adfm_202419182
crossref_primary_10_1016_j_matdes_2023_112425
crossref_primary_10_1002_eem2_12860
crossref_primary_10_1002_eom2_12317
crossref_primary_10_1002_aenm_202000904
crossref_primary_10_1002_batt_202200097
crossref_primary_10_3390_batteries9090471
crossref_primary_10_1016_j_jiec_2024_01_065
crossref_primary_10_1088_0256_307X_38_9_098401
crossref_primary_10_1007_s11581_024_05589_z
crossref_primary_10_1515_revic_2023_0030
crossref_primary_10_1002_adfm_202412548
crossref_primary_10_1007_s11581_023_05318_y
crossref_primary_10_1002_adfm_202210916
crossref_primary_10_1007_s44373_025_00040_y
crossref_primary_10_1016_j_jechem_2021_05_055
crossref_primary_10_1002_aenm_202404044
crossref_primary_10_1002_bte2_20240022
crossref_primary_10_1002_adma_202406368
crossref_primary_10_1016_j_est_2023_107917
crossref_primary_10_1002_aenm_202200368
crossref_primary_10_1016_j_est_2024_113899
crossref_primary_10_1002_smll_202401200
crossref_primary_10_1002_adma_202110423
crossref_primary_10_1002_ange_202302767
crossref_primary_10_1002_adfm_202311952
crossref_primary_10_3390_nano12111912
crossref_primary_10_3390_polym14245538
crossref_primary_10_1002_adfm_202200096
crossref_primary_10_1016_j_cej_2024_153847
crossref_primary_10_1002_adfm_202505988
crossref_primary_10_1002_anie_202418783
crossref_primary_10_1088_2752_5724_ac9e6b
crossref_primary_10_1002_adma_202110333
crossref_primary_10_1111_jace_19712
crossref_primary_10_1038_s41578_021_00320_0
crossref_primary_10_1016_j_cej_2023_141329
crossref_primary_10_1002_adfm_202306484
crossref_primary_10_1111_jace_18506
crossref_primary_10_1002_aesr_202000101
crossref_primary_10_1002_adfm_202113235
crossref_primary_10_1007_s10965_025_04309_z
crossref_primary_10_1002_adfm_202101380
crossref_primary_10_1007_s10853_024_09753_8
crossref_primary_10_1002_chem_202200543
crossref_primary_10_1016_j_nanoen_2024_109623
crossref_primary_10_1002_bte2_20230010
crossref_primary_10_1002_adfm_202422461
crossref_primary_10_1002_smll_202308550
crossref_primary_10_1051_matecconf_202338603001
crossref_primary_10_1002_ese3_1163
crossref_primary_10_1007_s10008_023_05535_5
crossref_primary_10_1002_adfm_202305383
crossref_primary_10_1002_advs_202003241
crossref_primary_10_1002_aenm_202400933
crossref_primary_10_1016_j_clay_2021_106363
crossref_primary_10_1007_s40843_021_1940_2
crossref_primary_10_1002_cssc_202200504
crossref_primary_10_1016_j_cej_2022_135418
crossref_primary_10_1002_aenm_202003154
crossref_primary_10_1016_j_ssi_2025_116989
crossref_primary_10_1016_j_chempr_2022_09_027
crossref_primary_10_1002_cphc_202200296
crossref_primary_10_1016_j_enchem_2025_100169
crossref_primary_10_1002_anie_202302767
crossref_primary_10_1002_batt_202100319
crossref_primary_10_1002_batt_202200057
crossref_primary_10_1039_D5EB00017C
crossref_primary_10_3390_batteries9090432
crossref_primary_10_1021_acs_nanolett_5c00509
crossref_primary_10_1016_j_jechem_2020_09_033
crossref_primary_10_1002_smtd_202300228
crossref_primary_10_1002_adfm_202210845
crossref_primary_10_1002_adma_202307768
crossref_primary_10_1007_s40820_023_01051_3
crossref_primary_10_1007_s12598_021_01891_1
crossref_primary_10_1016_j_cej_2024_158136
crossref_primary_10_1016_j_ensm_2025_104471
crossref_primary_10_1007_s10118_023_2970_y
crossref_primary_10_1002_adfm_202008586
crossref_primary_10_1002_adfm_202209828
crossref_primary_10_1039_D2NR01143C
crossref_primary_10_1080_17518253_2024_2321247
crossref_primary_10_1002_smll_202501226
crossref_primary_10_1002_adfm_202306320
crossref_primary_10_1016_j_cej_2022_137740
crossref_primary_10_1007_s11581_021_04291_8
crossref_primary_10_1016_j_indcrop_2023_116426
crossref_primary_10_1002_anie_202302505
crossref_primary_10_3390_batteries8110214
crossref_primary_10_1016_j_cej_2022_136418
crossref_primary_10_1039_D4EE00798K
crossref_primary_10_1002_sstr_202400139
crossref_primary_10_1002_adma_202314063
crossref_primary_10_1360_TB_2025_0198
crossref_primary_10_1039_D1SE00061F
crossref_primary_10_1016_j_est_2024_111573
crossref_primary_10_1002_aenm_202203663
crossref_primary_10_1039_D2SE01329K
crossref_primary_10_1002_adma_202416342
crossref_primary_10_1002_admi_202100790
crossref_primary_10_1002_ange_202302505
crossref_primary_10_1039_D4EE03097D
crossref_primary_10_6023_A23070335
crossref_primary_10_1002_adfm_202413966
crossref_primary_10_1002_adfm_202008208
crossref_primary_10_1002_adfm_202401377
crossref_primary_10_1016_j_jpowsour_2021_230739
crossref_primary_10_1039_D5EB00133A
crossref_primary_10_1002_smll_202503865
crossref_primary_10_1007_s41918_022_00167_1
crossref_primary_10_1039_D4TA08724K
crossref_primary_10_1016_j_cap_2024_03_013
crossref_primary_10_1016_j_cej_2024_156722
crossref_primary_10_1002_sus2_67
crossref_primary_10_1002_inf2_12627
crossref_primary_10_1016_j_jallcom_2023_171158
crossref_primary_10_1021_acs_jpcc_5c00830
crossref_primary_10_1002_celc_202001527
crossref_primary_10_1016_j_cej_2021_132343
crossref_primary_10_1016_j_recm_2024_12_001
crossref_primary_10_1021_acsami_5c05910
crossref_primary_10_3390_polym14173443
crossref_primary_10_1016_j_mattod_2024_05_001
crossref_primary_10_1007_s11581_021_04351_z
crossref_primary_10_1002_advs_202404307
crossref_primary_10_1002_marc_202100279
crossref_primary_10_1016_j_jpowsour_2021_230718
crossref_primary_10_3389_fchem_2021_751476
crossref_primary_10_1002_aenm_202000049
crossref_primary_10_1016_j_jallcom_2025_181405
crossref_primary_10_1016_j_est_2024_110799
crossref_primary_10_3390_gels11080573
crossref_primary_10_1007_s10008_024_05961_z
crossref_primary_10_1007_s10853_023_08691_1
crossref_primary_10_1016_j_ceramint_2022_10_303
crossref_primary_10_1016_j_jeurceramsoc_2022_04_010
crossref_primary_10_1021_acssuschemeng_5c03777
crossref_primary_10_1111_ijac_14267
crossref_primary_10_1002_adfm_202203551
crossref_primary_10_1002_ange_202418783
crossref_primary_10_1002_adfm_202201496
crossref_primary_10_1016_j_cej_2022_140151
crossref_primary_10_1039_D0EE02241A
crossref_primary_10_1016_j_jechem_2022_07_006
crossref_primary_10_1039_D4SM01297F
crossref_primary_10_1007_s40843_021_1748_7
crossref_primary_10_1007_s10653_024_01917_4
crossref_primary_10_1016_j_ceramint_2025_02_020
crossref_primary_10_1039_D5TA05081B
crossref_primary_10_1038_s41467_024_45372_2
crossref_primary_10_1002_aenm_202002580
crossref_primary_10_1002_cjoc_202300232
crossref_primary_10_1016_j_cej_2025_168098
crossref_primary_10_1002_er_8416
crossref_primary_10_1016_j_jechem_2022_07_014
crossref_primary_10_1007_s11706_024_0685_9
crossref_primary_10_3390_technologies10020045
crossref_primary_10_1038_s41427_024_00563_7
crossref_primary_10_1002_adfm_202306060
crossref_primary_10_1002_adma_202107183
crossref_primary_10_59761_RCR5126
crossref_primary_10_1002_smll_202402041
crossref_primary_10_1002_bte2_20230037
crossref_primary_10_1002_aenm_202302596
crossref_primary_10_1016_j_etran_2023_100264
crossref_primary_10_1002_aenm_202003663
crossref_primary_10_1002_adfm_202419095
crossref_primary_10_1093_mam_ozaf048_669
crossref_primary_10_1002_open_202400041
crossref_primary_10_1088_2752_5724_accdf3
crossref_primary_10_1002_eom2_12181
crossref_primary_10_1007_s12274_023_5658_2
crossref_primary_10_1007_s00289_024_05540_2
crossref_primary_10_3390_en17174412
crossref_primary_10_1002_aenm_202401802
crossref_primary_10_1016_j_cej_2021_133352
crossref_primary_10_1002_celc_202000591
crossref_primary_10_1016_j_jcis_2023_03_182
crossref_primary_10_1002_advs_202303985
crossref_primary_10_1039_D1EE00049G
crossref_primary_10_1002_adfm_202300973
crossref_primary_10_1016_j_ssi_2024_116607
crossref_primary_10_1016_j_est_2025_117314
crossref_primary_10_1002_adma_202401482
crossref_primary_10_1007_s40145_022_0580_8
crossref_primary_10_1039_D3NR00683B
crossref_primary_10_1002_adma_202206402
crossref_primary_10_1007_s11664_024_11446_6
crossref_primary_10_1002_adsu_202100389
crossref_primary_10_1002_inf2_12551
crossref_primary_10_1002_aenm_202400985
crossref_primary_10_1016_j_nanoen_2022_107726
crossref_primary_10_1002_advs_202300226
crossref_primary_10_1002_advs_202103786
crossref_primary_10_1002_advs_202105723
crossref_primary_10_1016_j_cej_2023_143530
crossref_primary_10_1016_j_est_2025_117200
crossref_primary_10_3390_batteries11030106
crossref_primary_10_1002_anie_202014265
crossref_primary_10_3390_inorganics10060081
crossref_primary_10_1016_j_jcis_2022_01_031
crossref_primary_10_1007_s12598_020_01501_6
crossref_primary_10_1002_advs_202104506
crossref_primary_10_1016_j_jallcom_2020_157340
crossref_primary_10_1007_s11581_024_05745_5
crossref_primary_10_1002_ange_202302586
crossref_primary_10_1007_s41779_023_00877_9
crossref_primary_10_1002_adma_202415864
crossref_primary_10_1007_s40843_025_3318_9
crossref_primary_10_1002_advs_202207627
crossref_primary_10_6023_A24020061
crossref_primary_10_1016_j_ssi_2023_116308
crossref_primary_10_1016_j_cej_2024_157772
crossref_primary_10_1002_advs_202207744
crossref_primary_10_3390_app14073115
crossref_primary_10_1002_inf2_12214
crossref_primary_10_1088_1402_4896_ad25b7
crossref_primary_10_1021_acsami_5c07021
crossref_primary_10_1002_aenm_202302711
crossref_primary_10_1007_s40820_024_01632_w
crossref_primary_10_1007_s40843_022_2259_3
crossref_primary_10_1002_aenm_202301746
crossref_primary_10_1016_j_jcis_2024_12_109
crossref_primary_10_1016_j_cej_2023_147558
crossref_primary_10_1039_D4TA08557D
crossref_primary_10_1002_cnma_202300202
crossref_primary_10_1039_D3QM00736G
crossref_primary_10_1002_advs_202413875
crossref_primary_10_1016_j_jpowsour_2024_236027
crossref_primary_10_1002_adfm_202403154
crossref_primary_10_3390_nano12122023
crossref_primary_10_1002_anie_202410463
crossref_primary_10_1002_cssc_202500347
crossref_primary_10_1039_D1EE03345J
crossref_primary_10_1002_aenm_202002869
crossref_primary_10_1002_advs_202205108
crossref_primary_10_1039_D1EE03466A
crossref_primary_10_1016_j_nxmate_2024_100307
crossref_primary_10_1002_aenm_202204028
crossref_primary_10_1016_j_partic_2023_04_002
crossref_primary_10_1016_j_cej_2021_132659
crossref_primary_10_1002_ange_202305004
crossref_primary_10_1007_s41918_022_00131_z
crossref_primary_10_1002_aenm_202003700
crossref_primary_10_1002_aenm_202301886
crossref_primary_10_1021_acsaem_5c01901
crossref_primary_10_1016_j_cej_2022_135092
crossref_primary_10_1002_smll_202302691
crossref_primary_10_1016_j_mtener_2021_100939
crossref_primary_10_3390_en18030466
crossref_primary_10_3390_pr13030756
crossref_primary_10_1002_batt_202300263
crossref_primary_10_1016_j_jcis_2024_05_139
crossref_primary_10_1021_acs_chemrev_4c01012
crossref_primary_10_1002_smll_202406357
crossref_primary_10_1002_inf2_12248
crossref_primary_10_1016_j_memsci_2021_119432
crossref_primary_10_3390_ma13225232
crossref_primary_10_1039_D4EE03134B
crossref_primary_10_1002_anie_202305004
crossref_primary_10_1016_j_jcis_2023_03_116
crossref_primary_10_1007_s11581_021_04340_2
crossref_primary_10_1002_smll_202406007
crossref_primary_10_1007_s11431_021_2027_3
crossref_primary_10_1007_s12274_023_6354_y
crossref_primary_10_1002_ange_202304339
crossref_primary_10_1039_D2QM01071B
crossref_primary_10_1016_j_cej_2022_139348
crossref_primary_10_1002_aesr_202300074
crossref_primary_10_1002_smtd_202501397
crossref_primary_10_1002_ange_202410463
crossref_primary_10_1007_s42114_021_00412_z
crossref_primary_10_1016_j_memsci_2021_119840
crossref_primary_10_1002_inf2_70012
crossref_primary_10_1002_adma_202301540
crossref_primary_10_1016_j_jpowsour_2025_236771
crossref_primary_10_1002_tcr_202200116
crossref_primary_10_1002_adts_202501125
crossref_primary_10_1016_j_chempr_2022_03_002
crossref_primary_10_1002_smll_202108026
crossref_primary_10_3390_en16237695
crossref_primary_10_1002_adem_202201390
crossref_primary_10_3390_ma16072655
crossref_primary_10_1016_j_jechem_2022_03_010
crossref_primary_10_1039_D4QI01831A
crossref_primary_10_1021_acsami_5c01991
crossref_primary_10_1002_macp_202100234
crossref_primary_10_1016_j_cej_2021_131236
crossref_primary_10_1002_adfm_202105253
crossref_primary_10_1039_D3EE02705H
crossref_primary_10_1007_s41918_023_00204_7
crossref_primary_10_1002_idm2_12109
crossref_primary_10_3390_batteries9110543
crossref_primary_10_1002_idm2_12108
crossref_primary_10_1002_smll_202305772
crossref_primary_10_1016_j_est_2023_109644
crossref_primary_10_1016_j_mtnano_2021_100128
crossref_primary_10_3390_polym14030363
crossref_primary_10_1002_smll_202407476
crossref_primary_10_3390_nano12193390
crossref_primary_10_1016_j_mtener_2022_101052
crossref_primary_10_1002_sus2_93
crossref_primary_10_1016_j_energy_2022_126058
crossref_primary_10_1002_smll_202006578
crossref_primary_10_35534_spe_2023_10004
crossref_primary_10_1002_cey2_108
crossref_primary_10_1016_j_cej_2024_149509
crossref_primary_10_1039_D3EE02020G
crossref_primary_10_1002_cssc_202201554
crossref_primary_10_1021_acsnano_4c10091
crossref_primary_10_1007_s41918_023_00200_x
crossref_primary_10_1002_adfm_202405060
crossref_primary_10_1007_s40684_023_00541_4
crossref_primary_10_1002_advs_202100899
crossref_primary_10_1007_s41918_025_00242_3
crossref_primary_10_1002_adfm_202421670
crossref_primary_10_1016_j_coelec_2021_100828
crossref_primary_10_1039_D1RA01312B
crossref_primary_10_1002_smsc_202100055
crossref_primary_10_1016_j_apmt_2022_101447
crossref_primary_10_1016_j_est_2024_112287
crossref_primary_10_1002_advs_202002212
crossref_primary_10_3390_en17174295
crossref_primary_10_1002_anie_202304339
crossref_primary_10_1002_smll_202504166
crossref_primary_10_1002_adfm_202513625
crossref_primary_10_1002_advs_202001207
crossref_primary_10_1007_s40843_021_1908_x
crossref_primary_10_1002_aenm_202000845
crossref_primary_10_1002_adma_202502653
crossref_primary_10_1016_j_ssi_2021_115710
crossref_primary_10_3390_gels11050317
crossref_primary_10_1039_D2CC02203F
crossref_primary_10_1039_D3QM00840A
crossref_primary_10_1007_s11581_024_05451_2
crossref_primary_10_1063_5_0206377
crossref_primary_10_1016_j_cej_2024_148995
crossref_primary_10_1038_s41524_025_01764_6
crossref_primary_10_1002_wene_544
crossref_primary_10_1016_j_cej_2021_130632
crossref_primary_10_1002_smll_202310912
crossref_primary_10_1016_j_ssi_2021_115840
crossref_primary_10_1016_j_ensm_2025_104492
crossref_primary_10_1016_j_apsusc_2025_162723
crossref_primary_10_1002_elsa_202100167
crossref_primary_10_1002_ente_202201372
crossref_primary_10_1016_S1003_6326_24_66587_8
crossref_primary_10_1007_s12274_024_6902_4
crossref_primary_10_1002_adfm_202212806
crossref_primary_10_1007_s40820_022_00996_1
crossref_primary_10_1002_smll_202304234
crossref_primary_10_3390_batteries7040075
crossref_primary_10_1002_smll_202307505
crossref_primary_10_1016_j_est_2023_109712
crossref_primary_10_1002_adfm_202213702
crossref_primary_10_1002_aenm_201904230
crossref_primary_10_1016_j_cej_2024_156000
crossref_primary_10_1007_s12274_023_6142_8
crossref_primary_10_3390_batteries10120454
crossref_primary_10_1002_batt_202100288
crossref_primary_10_1016_j_cej_2022_136479
crossref_primary_10_1002_rpm2_70021
crossref_primary_10_1002_smll_202006627
crossref_primary_10_1016_j_jpowsour_2025_237205
crossref_primary_10_1016_j_jpowsour_2023_233806
crossref_primary_10_1002_sstr_202000042
crossref_primary_10_3390_batteries9050270
crossref_primary_10_1002_adfm_202511014
crossref_primary_10_1002_app_57372
crossref_primary_10_1002_aenm_202204377
crossref_primary_10_1021_acsami_5c08547
crossref_primary_10_1002_celc_202300759
crossref_primary_10_1007_s11814_025_00395_3
crossref_primary_10_1016_j_nanoen_2022_107499
crossref_primary_10_1002_aenm_202504095
crossref_primary_10_1016_j_jpowsour_2023_232849
crossref_primary_10_1039_D5TA01193K
crossref_primary_10_1007_s10800_025_02322_0
crossref_primary_10_1016_j_nanoen_2023_108890
crossref_primary_10_1016_j_jpowsour_2024_235091
crossref_primary_10_1007_s11426_024_2491_9
crossref_primary_10_1002_aenm_202000802
crossref_primary_10_1002_tcr_202300155
crossref_primary_10_3390_membranes13020155
crossref_primary_10_1007_s10008_020_04783_z
crossref_primary_10_3390_nano10081606
crossref_primary_10_1002_ange_202014265
crossref_primary_10_1016_j_ceramint_2020_12_239
crossref_primary_10_1016_j_jcis_2023_08_075
crossref_primary_10_1007_s11581_022_04461_2
crossref_primary_10_1088_1361_6528_ad27ad
crossref_primary_10_1007_s11426_022_1525_3
crossref_primary_10_1007_s40820_023_01055_z
crossref_primary_10_1002_advs_202414714
crossref_primary_10_1002_anie_202302586
crossref_primary_10_1039_D3SE00421J
crossref_primary_10_1039_D4RA06863G
crossref_primary_10_1002_advs_202505530
crossref_primary_10_1016_j_colsurfa_2023_131487
crossref_primary_10_1007_s41918_022_00170_6
crossref_primary_10_1002_smll_202408045
crossref_primary_10_1002_adma_202311195
crossref_primary_10_1016_j_cej_2024_154151
crossref_primary_10_3390_en16124549
crossref_primary_10_1007_s42765_024_00402_y
crossref_primary_10_1002_pc_28391
crossref_primary_10_1002_admi_202101486
crossref_primary_10_1002_adfm_202315777
crossref_primary_10_1002_est2_506
crossref_primary_10_1002_smll_202412301
Cites_doi 10.1016/j.electacta.2018.07.191
10.1016/j.materresbull.2018.02.051
10.1039/C7EE02723K
10.1039/C7EE02555F
10.1039/C6TA02621D
10.1016/j.electacta.2017.08.162
10.1002/anie.201710841
10.1002/aenm.201500408
10.1021/acsami.8b02240
10.1021/acsami.7b17301
10.1021/acsami.7b03887
10.1021/acsmaterialslett.9b00189
10.1021/acsenergylett.7b00175
10.1016/j.ssi.2016.04.014
10.1038/nmat3066
10.1016/j.mser.2018.10.004
10.1039/C7TA10517G
10.1016/j.ssi.2009.03.022
10.1016/j.ensm.2018.07.004
10.1002/adfm.201707570
10.1002/adma.201701169
10.1021/acsaem.8b02185
10.1149/2.1321902jes
10.1021/acsami.9b07830
10.1016/j.jpowsour.2005.10.104
10.1021/acsami.6b16304
10.1016/j.jpowsour.2017.10.059
10.1021/acs.nanolett.7b00715
10.1016/j.jpowsour.2014.10.078
10.1088/1361-6528/ab0fb2
10.1557/mrs.2018.212
10.1149/2.0381712jes
10.1002/anie.201608924
10.1002/adem.201900055
10.1021/acsami.8b17279
10.1016/j.ssi.2018.12.008
10.1016/j.jpowsour.2007.01.028
10.1016/j.nanoen.2018.07.036
10.1016/j.cej.2019.121922
10.1002/aenm.201602920
10.1039/C6QM00098C
10.1039/C6EE03499C
10.1021/acsenergylett.7b00204
10.1021/acsenergylett.7b00849
10.1016/j.jpowsour.2018.02.026
10.1021/acs.chemrev.6b00586
10.1016/j.electacta.2015.03.038
10.1016/j.nanoen.2016.11.045
10.1021/acsenergylett.8b01564
10.1016/j.nanoen.2017.12.037
10.1021/acsami.7b12092
10.1016/j.electacta.2017.11.164
10.1002/chem.201703464
10.1002/adma.201502059
10.1021/acsami.7b18123
10.1021/acssuschemeng.9b00143
10.1016/j.nanoen.2019.03.051
10.1021/jacs.7b10864
10.1016/j.ssi.2017.12.007
10.1002/aenm.201800933
10.1002/anie.201204983
10.1021/acs.nanolett.7b00221
10.1039/c0cs00081g
10.1073/pnas.1708489114
10.1007/s11581-014-1176-2
10.1002/aenm.201702657
10.1039/C6TA01826B
10.1002/aenm.201701437
10.1002/aenm.201701602
10.1021/acs.nanolett.5b04117
10.1002/adma.201303070
10.1002/aenm.201500117
10.1016/j.ssi.2017.12.018
10.1021/acsaem.8b01850
10.1021/acsami.8b19237
10.1073/pnas.1600422113
10.1002/adma.201606823
10.1016/j.ensm.2018.03.016
10.1016/j.compscitech.2019.02.030
10.1016/j.coelec.2018.03.033
10.1021/acsami.8b01003
10.1007/s10853-018-03188-8
10.1016/j.chempr.2018.12.002
10.1039/C7EE01095H
10.1002/anie.201607539
10.1016/j.jpowsour.2018.04.099
10.1016/j.joule.2018.06.021
10.1016/j.ensm.2018.11.009
10.1039/C7TA04320A
10.1007/s41918-018-0011-2
10.1002/admi.201701097
10.1016/j.joule.2018.07.009
10.1016/j.nanoen.2016.09.002
10.1039/C4EE01432D
10.1016/j.matlet.2016.02.128
10.1002/aenm.201500212
10.1039/C7CS00255F
10.1021/acs.nanolett.5b00600
10.1016/j.cej.2019.02.148
10.1002/chem.201803616
10.1021/jacs.9b03517
10.1016/j.mtnano.2018.12.003
10.1021/acssuschemeng.8b04076
10.1016/j.jpowsour.2018.07.005
10.1021/acs.jpcc.6b11136
10.1021/acs.nanolett.8b05019
10.1038/nenergy.2016.141
10.1149/2.0731504jes
10.1021/acs.chemrev.5b00563
10.1016/j.ensm.2016.07.003
10.1007/s11426-017-9164-2
10.1021/acsami.8b06658
10.1002/aenm.201401408
10.1016/j.electacta.2017.02.021
10.1021/acsami.8b21770
10.1016/j.electacta.2018.10.005
10.1021/jacs.6b05341
10.1002/admi.201900200
10.1149/1.3356988
10.1038/nenergy.2017.35
10.1016/j.jpowsour.2015.09.111
10.1039/C7TA00290D
10.1039/C6TA10066J
10.1002/adma.201807789
10.1021/acsami.7b00336
10.1039/C9DT00074G
10.1038/natrevmats.2016.103
10.1002/adfm.201805301
10.1021/acs.jpcc.8b02693
10.1016/j.jpowsour.2017.04.014
10.1002/aenm.201901604
10.1039/C8TA11449H
10.1002/aenm.201804004
10.1016/j.jpowsour.2018.03.016
10.1021/acsami.8b01631
10.1002/adma.201700007
10.1016/j.chempr.2019.05.009
10.1007/s10853-019-03535-3
10.1039/C8TA03358G
10.1016/j.ssi.2016.07.013
10.1002/adma.201705702
10.1021/acs.jpcc.8b02556
10.1038/nenergy.2016.42
10.1016/j.nanoen.2017.01.028
10.1016/j.ssi.2018.08.010
10.1002/aenm.201502214
10.1016/j.jpowsour.2013.05.030
10.1016/j.ensm.2019.04.043
10.1039/C7TA05832B
10.1021/jacs.7b06364
10.1007/s11581-016-1908-6
10.3144/expresspolymlett.2017.5
10.1016/j.mattod.2018.01.001
10.1002/admi.201800899
10.1021/acsenergylett.7b00292
10.1038/nnano.2017.16
10.1021/acs.jpclett.7b01321
10.1002/aenm.201703474
10.1002/aenm.201700260
10.1002/aenm.201803854
10.1021/acsenergylett.6b00609
10.1038/nenergy.2017.125
10.1039/C7TA08741A
10.1007/s11581-019-02852-6
10.1039/C6CE00171H
10.1038/srep45390
10.1016/j.nanoen.2018.01.028
10.1021/acsami.9b02675
10.1016/j.ensm.2017.08.015
10.1021/acs.accounts.7b00460
10.1021/acsami.7b03806
10.1039/C6MH00218H
10.1002/aenm.201500118
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.201903088
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
PROQUEST
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Publicly Available Content Database

PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_137c4a049cab4befa040a52e4cf1f276
PMC7055568
32154083
10_1002_advs_201903088
ADVS1507
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Guangdong Province Technical Plan
  funderid: 2017B010119001; 2017B090907005
– fundername: National Natural Science Foundation of China
  funderid: 51672156
– fundername: Guangdong Pearl River Talents
  funderid: 2017BT01N111
– fundername: Shenzhen Technical Plan
  funderid: JCYJ20180508152210821; JCYJ20170817161221958; JCYJ20170412170706047
– fundername: Guangdong Pearl River Talents
  grantid: 2017BT01N111
– fundername: Shenzhen Technical Plan
  grantid: JCYJ20180508152210821; JCYJ20170817161221958; JCYJ20170412170706047
– fundername: Guangdong Province Technical Plan
  grantid: 2017B010119001; 2017B090907005
– fundername: ;
  grantid: 51672156
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IAO
IGS
ITC
PHGZM
PHGZT
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5297-1aef58c73920dc6ba378340c7e52cb030fae00b49915744b8aaa4853d041b8c63
IEDL.DBID BENPR
ISICitedReferencesCount 700
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508284700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Fri Oct 03 12:50:36 EDT 2025
Tue Nov 04 01:57:41 EST 2025
Fri Sep 05 08:03:38 EDT 2025
Fri Jul 25 05:56:37 EDT 2025
Wed Feb 19 02:29:05 EST 2025
Sat Nov 29 07:23:50 EST 2025
Tue Nov 18 22:20:41 EST 2025
Wed Jan 22 16:34:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords interfaces
solid composite electrolytes
ionic conductivity
lithium batteries
Language English
License Attribution
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5297-1aef58c73920dc6ba378340c7e52cb030fae00b49915744b8aaa4853d041b8c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5787-5498
OpenAccessLink https://www.proquest.com/docview/2370478896?pq-origsite=%requestingapplication%
PMID 32154083
PQID 2370478896
PQPubID 4365299
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_137c4a049cab4befa040a52e4cf1f276
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7055568
proquest_miscellaneous_2375866018
proquest_journals_2370478896
pubmed_primary_32154083
crossref_citationtrail_10_1002_advs_201903088
crossref_primary_10_1002_advs_201903088
wiley_primary_10_1002_advs_201903088_ADVS1507
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2019; 11
2017 2019; 10 6
2019; 17
2014; 26
2013; 240
2016; 301
2018; 45
2018; 43
2017 2017; 11 1
2018; 46
2018; 6
2019 2018 2019 2018 2016; 367 325 25 10 291
2016 2017; 1 2
2018; 9
2018; 8
2018; 292
2018; 3
2018; 2
2018; 4
2018; 1
2019; 21
2019; 23
2019; 29
2018; 30
2018 2015; 6 5
2017; 164
2019; 7
2019; 9
2018; 28
2019; 6
2019; 5
2019; 31
2019; 30
2019; 2
2019; 1
2012 2017; 51 46
2018; 102
2007; 166
2017; 372
2017; 253
2016; 18
2018; 21
2017; 258
2017; 139
2018; 24
2016; 4
2016; 5
2016; 6
2016; 1
2016; 3
2015 2011; 3 40
2017; 56
2016; 28
2018; 11
2018; 10
2016; 295
2018; 15
2019; 330
2019 2018 2018; 136 24 392
2006 2016; 159 172
2017; 5
2017; 7
2018; 122
2017; 8
2017; 2
2017 2011; 2 10
2019; 54
2018 2019 2019; 2 9
2015 2015; 5 5
2015 2019; 175 5
2017; 353
2017; 114
2017; 9
2017; 31
2019; 60
2017 2018; 5 316
2017 2019 2015; 230 48 162
2017 2016; 7 4
2017; 33
2010; 157
2016; 113
2019 2019 2019 2019; 2 175 54 166
2017; 121
2017 2017 2017; 7 50 60
2018; 383
2015; 15
2019 2019; 17 19
2015; 5
2018; 140
2015 2016; 27 16
2018; 387
2017; 23
2018 2018; 5 11
2017; 29
2019; 141
2016; 55
2017 2017 2018; 12 29 284
2014 2017 2015; 7 117 5
2018; 397
2018; 315
2017; 17
2017; 10
2015; 21
2015; 274
2009 2016; 180 116
2018; 52
2016; 138
2019; 375
2018; 57
e_1_2_8_49_2
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_34_2
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_19_3
e_1_2_8_19_4
e_1_2_8_19_5
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_95_2
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_124_2
e_1_2_8_29_1
e_1_2_8_21_4
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_2
e_1_2_8_110_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_63_2
e_1_2_8_21_3
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_14_3
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_90_3
e_1_2_8_90_2
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
Liu Q. (e_1_2_8_95_3) 2019
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_106_2
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_24_2
e_1_2_8_24_3
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_130_2
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_13_2
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_126_3
e_1_2_8_126_2
e_1_2_8_107_1
e_1_2_8_32_2
e_1_2_8_107_2
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_27_2
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Xue Z. (e_1_2_8_7_1) 2015; 3
e_1_2_8_80_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_4_3
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_58_2
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 367 325 25 10 291
  start-page: 230 112 907 8
  year: 2019 2018 2019 2018 2016
  publication-title: Chem. Eng. J. Solid State Ionics Ionics ACS Appl. Mater. Interfaces Solid State Ionics
– volume: 274
  start-page: 458
  year: 2015
  publication-title: J. Power Sources
– volume: 15
  start-page: 46
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 157
  start-page: A611
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 11 1
  start-page: 35 269
  year: 2017 2017
  publication-title: eXPRESS Polym. Lett. Mater. Chem. Front.
– volume: 2
  start-page: 1734
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 24
  year: 2018
  publication-title: Chem. ‐ Eur. J.
– volume: 5
  start-page: 4940
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1991
  year: 2018
  publication-title: Joule
– volume: 159 172
  start-page: 690 1
  year: 2006 2016
  publication-title: J. Power Sources Mater. Lett.
– volume: 375
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 21
  start-page: 594
  year: 2018
  publication-title: Mater. Today
– volume: 27 16
  start-page: 5995 459
  year: 2015 2016
  publication-title: Adv. Mater. Nano Lett.
– volume: 17 19
  start-page: 309 2343
  year: 2019 2019
  publication-title: Energy Storage Mater. Nano Lett.
– volume: 136 24 392
  start-page: 27 206
  year: 2019 2018 2018
  publication-title: Mater. Sci. Eng., R Chem. ‐ Eur. J. J. Power Sources
– volume: 2
  start-page: 1130
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 43
  start-page: 759
  year: 2018
  publication-title: MRS Bull.
– volume: 17
  start-page: 2967
  year: 2017
  publication-title: Nano Lett.
– volume: 10
  start-page: 7069
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 258
  start-page: 1106
  year: 2017
  publication-title: Electrochim. Acta
– volume: 10 6
  start-page: 1911
  year: 2017 2019
  publication-title: Energy Environ. Sci. Adv. Mater. Interfaces
– volume: 30
  year: 2019
  publication-title: Nanotechnology
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 9385
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 253
  start-page: 430
  year: 2017
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 9654
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 1385
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 23
  start-page: 497
  year: 2017
  publication-title: Ionics
– volume: 57
  start-page: 2096
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 860
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 7 50 60
  start-page: 2653 1508
  year: 2017 2017 2017
  publication-title: Adv. Energy Mater. Acc. Chem. Res. Sci. China: Chem.
– volume: 121
  start-page: 2563
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 330
  start-page: 54
  year: 2019
  publication-title: Solid State Ionics
– volume: 5
  start-page: 74
  year: 2019
  publication-title: Chem
– volume: 372
  start-page: 1
  year: 2017
  publication-title: J. Power Sources
– volume: 56
  start-page: 753
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 21
  start-page: 381
  year: 2015
  publication-title: Ionics
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 21
  year: 2019
  publication-title: Adv. Eng. Mater.
– volume: 23
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 3
  start-page: 2775
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 383
  start-page: 150
  year: 2018
  publication-title: J. Power Sources
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 180 116
  start-page: 911 140
  year: 2009 2016
  publication-title: Solid State Ionics Chem. Rev.
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 11
  start-page: 784
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 176
  year: 2018
  publication-title: Nano Energy
– volume: 52
  start-page: 279
  year: 2018
  publication-title: Nano Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 23
  start-page: 306
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 122
  start-page: 9852
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 387
  start-page: 72
  year: 2018
  publication-title: J. Power Sources
– volume: 240
  start-page: 653
  year: 2013
  publication-title: J. Power Sources
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 141
  start-page: 9165
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 56
  year: 2018
  publication-title: Curr. Opin. Electrochem.
– volume: 114
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 2 175 54 166
  start-page: 1600 28 9603 A416
  year: 2019 2019 2019 2019
  publication-title: ACS Appl. Energy Mater. Compos. Sci. Technol. J. Mater. Sci. J. Electrochem. Soc.
– volume: 7
  start-page: 4675
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 54
  start-page: 4874
  year: 2019
  publication-title: J. Mater. Sci.
– volume: 10
  start-page: 139
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 5 316
  start-page: 29
  year: 2017 2018
  publication-title: J. Mater. Chem. A Solid State Ionics
– volume: 7
  start-page: 7163
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 2
  start-page: 134
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 447
  year: 2016
  publication-title: Nano Energy
– volume: 102
  start-page: 412
  year: 2018
  publication-title: Mater. Res. Bull.
– volume: 140
  start-page: 82
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 230 48 162
  start-page: 342 3263 A704
  year: 2017 2019 2015
  publication-title: Electrochim. Acta Dalton Trans. J. Electrochem. Soc.
– volume: 1
  start-page: 354
  year: 2019
  publication-title: ACS Mater. Lett.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 11
  start-page: 185
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 7 117 5
  start-page: 3857 4759
  year: 2014 2017 2015
  publication-title: Energy Environ. Sci. Chem. Rev. Adv. Energy Mater.
– volume: 4
  start-page: 1
  year: 2018
  publication-title: Mater. Today Nano
– volume: 45
  start-page: 413
  year: 2018
  publication-title: Nano Energy
– volume: 295
  start-page: 65
  year: 2016
  publication-title: Solid State Ionics
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 175 5
  start-page: 18 2326
  year: 2015 2019
  publication-title: Electrochim. Acta Chem
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 113
  start-page: 7094
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 33
  start-page: 363
  year: 2017
  publication-title: Nano Energy
– volume: 8
  start-page: 3473
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 4113
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12 29 284
  start-page: 194 177
  year: 2017 2017 2018
  publication-title: Nat. Nanotechnol. Adv. Mater. Electrochim. Acta
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 139
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 2
  start-page: 1378
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 6 5
  year: 2018 2015
  publication-title: J. Mater. Chem. A Adv. Energy Mater.
– volume: 60
  start-page: 205
  year: 2019
  publication-title: Nano Energy
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1496
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 2740
  year: 2015
  publication-title: Nano Lett.
– volume: 2 9
  start-page: 1674
  year: 2018 2019 2019
  publication-title: Joule Adv. Energy Mater. Energy Storage Mater.
– volume: 315
  start-page: 65
  year: 2018
  publication-title: Solid State Ionics
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 1 2
  year: 2016 2017
  publication-title: Nat. Energy Nat. Rev. Mater.
– volume: 18
  start-page: 4236
  year: 2016
  publication-title: CrystEngComm
– volume: 5 11
  start-page: 527
  year: 2018 2018
  publication-title: Adv. Mater. Interfaces Energy Environ. Sci.
– volume: 26
  start-page: 201
  year: 2014
  publication-title: Adv. Mater.
– volume: 17
  start-page: 3182
  year: 2017
  publication-title: Nano Lett.
– volume: 301
  start-page: 47
  year: 2016
  publication-title: J. Power Sources
– volume: 7 4
  start-page: 7135
  year: 2017 2016
  publication-title: Adv. Energy Mater. J. Mater. Chem. A
– volume: 5
  start-page: 5222
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 292
  start-page: 718
  year: 2018
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 113
  year: 2018
  publication-title: Electrochem. Energy Rev.
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 397
  start-page: 87
  year: 2018
  publication-title: J. Power Sources
– volume: 7
  start-page: 3391
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 353
  start-page: 287
  year: 2017
  publication-title: J. Power Sources
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 2 10
  start-page: 2734 682
  year: 2017 2011
  publication-title: ACS Energy Lett. Nat. Mater.
– volume: 166
  start-page: 226
  year: 2007
  publication-title: J. Power Sources
– volume: 3 40
  start-page: 2525
  year: 2015 2011
  publication-title: Chem. A Chem. Soc. Rev.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 5 5
  year: 2015 2015
  publication-title: Adv. Energy Mater. Adv. Energy Mater.
– volume: 6
  start-page: 4279
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 51 46
  start-page: 6046
  year: 2012 2017
  publication-title: Angew. Chem., Int. Ed. Chem. Soc. Rev.
– volume: 17
  start-page: 220
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 31
  start-page: 478
  year: 2017
  publication-title: Nano Energy
– volume: 3
  start-page: 487
  year: 2016
  publication-title: Mater. Horiz.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_90_3
  doi: 10.1016/j.electacta.2018.07.191
– ident: e_1_2_8_136_1
  doi: 10.1016/j.materresbull.2018.02.051
– ident: e_1_2_8_80_1
  doi: 10.1039/C7EE02723K
– ident: e_1_2_8_107_2
  doi: 10.1039/C7EE02555F
– ident: e_1_2_8_18_1
  doi: 10.1039/C6TA02621D
– ident: e_1_2_8_54_1
  doi: 10.1016/j.electacta.2017.08.162
– ident: e_1_2_8_55_1
  doi: 10.1002/anie.201710841
– ident: e_1_2_8_124_1
  doi: 10.1002/aenm.201500408
– ident: e_1_2_8_19_4
  doi: 10.1021/acsami.8b02240
– ident: e_1_2_8_64_1
  doi: 10.1021/acsami.7b17301
– ident: e_1_2_8_111_1
  doi: 10.1021/acsami.7b03887
– ident: e_1_2_8_79_1
  doi: 10.1021/acsmaterialslett.9b00189
– ident: e_1_2_8_94_1
  doi: 10.1021/acsenergylett.7b00175
– ident: e_1_2_8_19_5
  doi: 10.1016/j.ssi.2016.04.014
– ident: e_1_2_8_13_2
  doi: 10.1038/nmat3066
– ident: e_1_2_8_14_1
  doi: 10.1016/j.mser.2018.10.004
– ident: e_1_2_8_72_1
  doi: 10.1039/C7TA10517G
– ident: e_1_2_8_34_1
  doi: 10.1016/j.ssi.2009.03.022
– ident: e_1_2_8_110_1
  doi: 10.1016/j.ensm.2018.07.004
– ident: e_1_2_8_129_1
  doi: 10.1002/adfm.201707570
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201701169
– ident: e_1_2_8_21_1
  doi: 10.1021/acsaem.8b02185
– ident: e_1_2_8_21_4
  doi: 10.1149/2.1321902jes
– ident: e_1_2_8_88_1
  doi: 10.1021/acsami.9b07830
– ident: e_1_2_8_49_1
  doi: 10.1016/j.jpowsour.2005.10.104
– ident: e_1_2_8_100_1
  doi: 10.1021/acsami.6b16304
– ident: e_1_2_8_117_1
  doi: 10.1016/j.jpowsour.2017.10.059
– ident: e_1_2_8_60_1
  doi: 10.1021/acs.nanolett.7b00715
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jpowsour.2014.10.078
– ident: e_1_2_8_3_1
  doi: 10.1088/1361-6528/ab0fb2
– ident: e_1_2_8_16_1
  doi: 10.1557/mrs.2018.212
– ident: e_1_2_8_118_1
  doi: 10.1149/2.0381712jes
– ident: e_1_2_8_140_1
  doi: 10.1002/anie.201608924
– ident: e_1_2_8_85_1
  doi: 10.1002/adem.201900055
– ident: e_1_2_8_65_1
  doi: 10.1021/acsami.8b17279
– ident: e_1_2_8_101_1
  doi: 10.1016/j.ssi.2018.12.008
– ident: e_1_2_8_75_1
  doi: 10.1016/j.jpowsour.2007.01.028
– ident: e_1_2_8_105_1
  doi: 10.1016/j.nanoen.2018.07.036
– ident: e_1_2_8_73_1
  doi: 10.1016/j.cej.2019.121922
– ident: e_1_2_8_28_1
  doi: 10.1002/aenm.201602920
– ident: e_1_2_8_32_2
  doi: 10.1039/C6QM00098C
– ident: e_1_2_8_131_1
  doi: 10.1039/C6EE03499C
– ident: e_1_2_8_134_1
  doi: 10.1021/acsenergylett.7b00204
– ident: e_1_2_8_13_1
  doi: 10.1021/acsenergylett.7b00849
– ident: e_1_2_8_121_1
  doi: 10.1016/j.jpowsour.2018.02.026
– ident: e_1_2_8_4_2
  doi: 10.1021/acs.chemrev.6b00586
– ident: e_1_2_8_8_1
  doi: 10.1016/j.electacta.2015.03.038
– ident: e_1_2_8_31_1
  doi: 10.1016/j.nanoen.2016.11.045
– ident: e_1_2_8_93_1
  doi: 10.1021/acsenergylett.8b01564
– ident: e_1_2_8_44_1
  doi: 10.1016/j.nanoen.2017.12.037
– ident: e_1_2_8_20_1
  doi: 10.1021/acsami.7b12092
– ident: e_1_2_8_42_1
  doi: 10.1016/j.electacta.2017.11.164
– ident: e_1_2_8_141_1
  doi: 10.1002/chem.201703464
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.201502059
– ident: e_1_2_8_97_1
  doi: 10.1021/acsami.7b18123
– ident: e_1_2_8_74_1
  doi: 10.1021/acssuschemeng.9b00143
– ident: e_1_2_8_77_1
  doi: 10.1016/j.nanoen.2019.03.051
– ident: e_1_2_8_113_1
  doi: 10.1021/jacs.7b10864
– ident: e_1_2_8_45_1
  doi: 10.1016/j.ssi.2017.12.007
– ident: e_1_2_8_102_1
  doi: 10.1002/aenm.201800933
– ident: e_1_2_8_130_1
  doi: 10.1002/anie.201204983
– year: 2019
  ident: e_1_2_8_95_3
  publication-title: Energy Storage Mater.
– ident: e_1_2_8_48_1
  doi: 10.1021/acs.nanolett.7b00221
– ident: e_1_2_8_7_2
  doi: 10.1039/c0cs00081g
– ident: e_1_2_8_50_1
  doi: 10.1073/pnas.1708489114
– ident: e_1_2_8_30_1
  doi: 10.1007/s11581-014-1176-2
– ident: e_1_2_8_89_1
  doi: 10.1002/aenm.201702657
– ident: e_1_2_8_28_2
  doi: 10.1039/C6TA01826B
– ident: e_1_2_8_39_1
  doi: 10.1002/aenm.201701437
– ident: e_1_2_8_127_1
  doi: 10.1002/aenm.201701602
– ident: e_1_2_8_27_2
  doi: 10.1021/acs.nanolett.5b04117
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.201303070
– ident: e_1_2_8_4_3
  doi: 10.1002/aenm.201500117
– ident: e_1_2_8_63_2
  doi: 10.1016/j.ssi.2017.12.018
– ident: e_1_2_8_67_1
  doi: 10.1021/acsaem.8b01850
– ident: e_1_2_8_119_1
  doi: 10.1021/acsami.8b19237
– ident: e_1_2_8_41_1
  doi: 10.1073/pnas.1600422113
– ident: e_1_2_8_125_1
  doi: 10.1002/adma.201606823
– ident: e_1_2_8_56_1
  doi: 10.1016/j.ensm.2018.03.016
– ident: e_1_2_8_21_2
  doi: 10.1016/j.compscitech.2019.02.030
– ident: e_1_2_8_61_1
  doi: 10.1016/j.coelec.2018.03.033
– ident: e_1_2_8_112_1
  doi: 10.1021/acsami.8b01003
– ident: e_1_2_8_122_1
  doi: 10.1007/s10853-018-03188-8
– ident: e_1_2_8_15_1
  doi: 10.1016/j.chempr.2018.12.002
– ident: e_1_2_8_58_1
  doi: 10.1039/C7EE01095H
– ident: e_1_2_8_62_1
  doi: 10.1002/anie.201607539
– ident: e_1_2_8_14_3
  doi: 10.1016/j.jpowsour.2018.04.099
– ident: e_1_2_8_95_1
  doi: 10.1016/j.joule.2018.06.021
– ident: e_1_2_8_103_1
  doi: 10.1016/j.ensm.2018.11.009
– ident: e_1_2_8_98_1
  doi: 10.1039/C7TA04320A
– ident: e_1_2_8_84_1
  doi: 10.1007/s41918-018-0011-2
– ident: e_1_2_8_107_1
  doi: 10.1002/admi.201701097
– ident: e_1_2_8_91_1
  doi: 10.1016/j.joule.2018.07.009
– ident: e_1_2_8_47_1
  doi: 10.1016/j.nanoen.2016.09.002
– ident: e_1_2_8_4_1
  doi: 10.1039/C4EE01432D
– ident: e_1_2_8_49_2
  doi: 10.1016/j.matlet.2016.02.128
– ident: e_1_2_8_123_1
  doi: 10.1002/aenm.201500212
– ident: e_1_2_8_130_2
  doi: 10.1039/C7CS00255F
– ident: e_1_2_8_40_1
  doi: 10.1021/acs.nanolett.5b00600
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cej.2019.02.148
– ident: e_1_2_8_14_2
  doi: 10.1002/chem.201803616
– ident: e_1_2_8_115_1
  doi: 10.1021/jacs.9b03517
– ident: e_1_2_8_83_1
  doi: 10.1016/j.mtnano.2018.12.003
– ident: e_1_2_8_86_1
  doi: 10.1021/acssuschemeng.8b04076
– ident: e_1_2_8_139_1
  doi: 10.1016/j.jpowsour.2018.07.005
– ident: e_1_2_8_66_1
  doi: 10.1021/acs.jpcc.6b11136
– ident: e_1_2_8_110_2
  doi: 10.1021/acs.nanolett.8b05019
– ident: e_1_2_8_5_1
  doi: 10.1038/nenergy.2016.141
– ident: e_1_2_8_24_3
  doi: 10.1149/2.0731504jes
– ident: e_1_2_8_34_2
  doi: 10.1021/acs.chemrev.5b00563
– ident: e_1_2_8_9_1
  doi: 10.1016/j.ensm.2016.07.003
– ident: e_1_2_8_126_3
  doi: 10.1007/s11426-017-9164-2
– ident: e_1_2_8_70_1
  doi: 10.1021/acsami.8b06658
– ident: e_1_2_8_106_2
  doi: 10.1002/aenm.201401408
– ident: e_1_2_8_24_1
  doi: 10.1016/j.electacta.2017.02.021
– ident: e_1_2_8_69_1
  doi: 10.1021/acsami.8b21770
– ident: e_1_2_8_71_1
  doi: 10.1016/j.electacta.2018.10.005
– ident: e_1_2_8_108_1
  doi: 10.1021/jacs.6b05341
– ident: e_1_2_8_22_1
  doi: 10.1002/admi.201900200
– ident: e_1_2_8_132_1
  doi: 10.1149/1.3356988
– ident: e_1_2_8_59_1
  doi: 10.1038/nenergy.2017.35
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jpowsour.2015.09.111
– ident: e_1_2_8_128_1
  doi: 10.1039/C7TA00290D
– ident: e_1_2_8_68_1
  doi: 10.1002/chem.201803616
– ident: e_1_2_8_96_1
  doi: 10.1039/C6TA10066J
– ident: e_1_2_8_114_1
  doi: 10.1002/adma.201807789
– ident: e_1_2_8_99_1
  doi: 10.1021/acsami.7b00336
– ident: e_1_2_8_24_2
  doi: 10.1039/C9DT00074G
– ident: e_1_2_8_6_2
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_8_57_1
  doi: 10.1002/adfm.201805301
– ident: e_1_2_8_137_1
  doi: 10.1021/acs.jpcc.8b02693
– ident: e_1_2_8_53_1
  doi: 10.1016/j.jpowsour.2017.04.014
– ident: e_1_2_8_95_2
  doi: 10.1002/aenm.201901604
– ident: e_1_2_8_87_1
  doi: 10.1039/C8TA11449H
– ident: e_1_2_8_109_1
  doi: 10.1002/aenm.201804004
– ident: e_1_2_8_138_1
  doi: 10.1016/j.jpowsour.2018.03.016
– ident: e_1_2_8_76_1
  doi: 10.1021/acsami.8b01631
– ident: e_1_2_8_90_2
  doi: 10.1002/adma.201700007
– ident: e_1_2_8_8_2
  doi: 10.1016/j.chempr.2019.05.009
– ident: e_1_2_8_21_3
  doi: 10.1007/s10853-019-03535-3
– ident: e_1_2_8_106_1
  doi: 10.1039/C8TA03358G
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ssi.2016.07.013
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201705702
– ident: e_1_2_8_104_1
  doi: 10.1021/acs.jpcc.8b02556
– ident: e_1_2_8_6_1
  doi: 10.1038/nenergy.2016.42
– ident: e_1_2_8_10_1
  doi: 10.1016/j.nanoen.2017.01.028
– ident: e_1_2_8_19_2
  doi: 10.1016/j.ssi.2018.08.010
– ident: e_1_2_8_26_1
  doi: 10.1002/aenm.201502214
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jpowsour.2013.05.030
– ident: e_1_2_8_81_1
  doi: 10.1016/j.ensm.2019.04.043
– ident: e_1_2_8_63_1
  doi: 10.1039/C7TA05832B
– ident: e_1_2_8_51_1
  doi: 10.1021/jacs.7b06364
– ident: e_1_2_8_17_1
  doi: 10.1007/s11581-016-1908-6
– ident: e_1_2_8_32_1
  doi: 10.3144/expresspolymlett.2017.5
– ident: e_1_2_8_82_1
  doi: 10.1016/j.mattod.2018.01.001
– ident: e_1_2_8_58_2
  doi: 10.1002/admi.201800899
– ident: e_1_2_8_133_1
  doi: 10.1021/acsenergylett.7b00292
– ident: e_1_2_8_90_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.jpclett.7b01321
– ident: e_1_2_8_78_1
  doi: 10.1002/aenm.201703474
– ident: e_1_2_8_126_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_8_116_1
  doi: 10.1002/aenm.201803854
– volume: 3
  start-page: 19218
  year: 2015
  ident: e_1_2_8_7_1
  publication-title: Chem. A
– ident: e_1_2_8_120_1
  doi: 10.1021/acsenergylett.6b00609
– ident: e_1_2_8_2_1
  doi: 10.1038/nenergy.2017.125
– ident: e_1_2_8_11_1
  doi: 10.1039/C7TA08741A
– ident: e_1_2_8_19_3
  doi: 10.1007/s11581-019-02852-6
– ident: e_1_2_8_25_1
  doi: 10.1039/C6CE00171H
– ident: e_1_2_8_29_1
  doi: 10.1038/srep45390
– ident: e_1_2_8_135_1
  doi: 10.1016/j.nanoen.2018.01.028
– ident: e_1_2_8_92_1
  doi: 10.1021/acsami.9b02675
– ident: e_1_2_8_35_1
  doi: 10.1016/j.ensm.2017.08.015
– ident: e_1_2_8_126_2
  doi: 10.1021/acs.accounts.7b00460
– ident: e_1_2_8_52_1
  doi: 10.1021/acsami.7b03806
– ident: e_1_2_8_36_1
  doi: 10.1039/C6MH00218H
– ident: e_1_2_8_124_2
  doi: 10.1002/aenm.201500118
SSID ssj0001537418
Score 2.6465173
SecondaryResourceType review_article
Snippet Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present...
Abstract Solid composite electrolytes (SCEs) that combine the advantages of solid polymer electrolytes (SPEs) and inorganic ceramic electrolytes (ICEs) present...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1903088
SubjectTerms Ceramics
Electrodes
Electrolytes
Energy
Fluorides
interfaces
ionic conductivity
Ions
Lithium
lithium batteries
Nanoparticles
Polymers
Polymethyl methacrylate
Renewable resources
Review
Reviews
solid composite electrolytes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUl9NBLafq5bVoUCLQ9mJUtyZKPbUjIIYSFtJBTjSRLxLBrh81uIP--M5LX2aUtufRmrMGWZ0aeN_boDSFHuvENMrllFtBxhhEiq7h1Gbel4TJ4zoKLzSbUxYW-uqpmW62-sCYs0QMnxU1zrpwwgGOdscL6AIfMyMILF_JQqEi2DahnK5lK-4M50rJsWBpZMTXNHbJzQ_zjLLZZeYhCkaz_bwjzz0LJbQAbI9DpC_J8gI70W5ryPnniu5dkf1ict_TLwCD99RX5NcOqK3iHUdM1dPawn5L2gR6D0KJ101k_v1_4JcU3AlZueXrZz9uGnqTGOPN7AKEUIC09b1fX7XpBExUnZNavyc_Tkx_HZ9nQSCFzsqhUlhsfpHYKsBBrXGkNx_YazCkvC2dBIcF4xiwkP7lUQlhtjBEQx8GKudWu5G_IXtd3_h2hvglMucKCoBYSLJMHLmwluQElOc0nJNsotnYDyzg2u5jXiR-5qNEQ9WiICfk8yt8kfo1_Sn5HO41SyIsdT4C31IO31I95y4QcbKxcD4sVbsEVchTpCoYPx2FYZvjvxHS-X0cZqUvIXmEeb5NTjDPhAJsEw2dXO-6yM9Xdka69jlTeyGUkS7hmFh3rERXUAFUuEcG__x-6-ECeFfjxIBbUHZC91XLtP5Kn7m7V3i4_xfX0G5tVJTQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBSKI-yUJCRkICDtUlsx84RqlYcULVSQeqJyHZsGmk3Qfuo1H_fGSebbQQIIW5RPHL8mLG_ccbfEPJWV75CJjdmAR0z3CFYwa1j3OaGy-B5ElxMNqHOzvTFRTG7dYu_44cYDtzQMuJ6jQZu7Gq6Iw011RXSbcOGxsFS7pJ7aco1Jm_IxGx3yiI50rNghjnwrhnXQmyZG5NsOq5itDNFAv_foc5fgydvg9q4K50-_P_-PCL7PSKlHzsVOiB3fPOYHPQ2v6Lve2LqD0_I9xkGc8HSSE1T0dnumiZtAz0GoUXtprN2fr3wS4oLDQaEeXrezuuKnnT5dubXgG0pIGX6pV5f1psF7Rg-wWF_Sr6dnnw9_sz6_AzMyaxQLDU-SO0UQKykcrk1HLN2JE55mTkL3QjGJ4kFnyqVSgirjTEC4AEoR2q1y_kzste0jX9OqK9ColxmQVAL6YRJAxe2kNzAODvNJ4Rt56Z0PXk55tCYlx3tclbi8JXD8E3Iu0H-Z0fb8UfJTzjVgxTSbccX7fJH2VtvmXIFbQJnyhkrrA_wmBiZeeFCGjKVT8jRVlHKfg2AT3CF1Ee6gOI3QzFYL_6SMY1vN1FG6hycYmjHYadXQ0s4oDGRYN_VSONGTR2XNPVlZAhHiiSZQ50satxfhqAEBHSOjsGLf5R_SR5kePwQQ_KOyN56ufGvyH13ta5Xy9fREm8A3mE1gw
  priority: 102
  providerName: Wiley-Blackwell
Title Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201903088
https://www.ncbi.nlm.nih.gov/pubmed/32154083
https://www.proquest.com/docview/2370478896
https://www.proquest.com/docview/2375866018
https://pubmed.ncbi.nlm.nih.gov/PMC7055568
https://doaj.org/article/137c4a049cab4befa040a52e4cf1f276
Volume 7
WOSCitedRecordID wos000508284700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest One Academic
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Science Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYlgMXYHkshaUyEhJwiJr4EScnxK66YiW2RCyIciGyHYeN1CZLHyvtv2fsuCkVrwMXq61Hre0Z299Mpt8g9DwpTGGZ3AIF6DiwN0SQUqUDqmJJeWloWGpXbEJMJsl0mmY-4Lb0aZWbM9Ed1EWjbYx8RKiwRDJJGr--_B7YqlH26aovobGH-papjPVQ_2g8yT5soyycWnqWDVtjSEayuLIs3XAP0tCVW9neRo60_3dI89eEyZ-BrLuJTu787xzuotseg-I3rdHsoxumvof2_S5f4peeivrVffQ1s-lbcBhiWRc42_4xEzclPgaheaVHWTO7npsFtkeLTQEz-LyZVQUetxV2ZteAZjFgY_yuWl1U6zluOT3BRX-APp2MPx6_DXxFhkBzkoogkqbkiRYAqsJCx0pSW6cj1MJwohWsaClNGCrwoiIuGFOJlJIBIABziFSiY_oQ9eqmNo8QNkUZCk0UCCaMayajkjKVciphlXVCByjYaCbXnq7cVs2Y5S3RMsmtJvNOkwP0opO_bIk6_ih5ZBXdSVmCbfdBs_iW-_2aR1TAmMB90lIxZUp4GUpODNNlVBIRD9DhRsW53_XwE51-B-hZ1w371T6EkbVp1k6GJzG4wTCOg9aqupFQwF8stHMXO_a2M9Tdnrq6cJzglhSJx_CdgbPMfyxBDpjn3LoCj_8-jSfoFrHxBZdzd4h6q8XaPEU39dWqWi6GaI-wDFoxTYZ-4w1dTAPaM_LetdDfz07Psi_w7vPp5AcdZjto
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFAkuQHkGCiwSCDhYsXe99uaAEJRWjZpGllqk9oLZXa-ppcQueRTlT_EbmfErRLxOPXCL7JGza3878816_A0hz2ViE1RyczSwYwcjhNPn2jhcB4qL1HI3NWWziXA0kicn_WiDfG--hcGyysYnlo46KQzukfcYD1FIRvaDt-dfHewahW9XmxYaFSwO7PIbpGyzN4MP8HxfMLa3e7yz79RdBRwjWD90PGVTIU0IxMBNTKAVx14TrgmtYEYD5lNlXVdDJuCJ0Pe1VEr5ENRgSp6WJuBw3Stk0wewyw7ZjAaH0elqV0dwlINp1CFd1lPJBaqCQ9zlbtneZRX9yiYBv2O2vxZo_kycy8i3d_N_u2e3yI2aY9N31aLYIhs2v022ai82o69qqe3Xd8inCMvTwNlTlSc0Wn14SouU7oDRJDO9qBgvJ3ZK0XViiZulR8U4S-hu1UFovAS2ToH702E2P8sWE1pplmZ2dpd8vJR53iOdvMjtA0JtkrqhYRoMpS-Mr7yU-7ovuIKnaiTvEqdBQmxqOXbsCjKOKyFpFiNy4hY5XfKytT-vhEj-aPkegdVaoYB4eaCYfolrfxR7PIQxQXpolPa1TeGnqwSzvkm9lIVBl2w3kIprrwZ_0eKpS561p8Ef4UsmldtiUdoIGUCaD-O4X6G4HQkHfum7OPdwDd9rQ10_k2dnpeY5ij6JAK7plCvhH7cgBk53hKnOw79P4ym5tn98OIyHg9HBI3Kd4V5KWV-4TTrz6cI-JlfNxTybTZ_UC52Sz5e9Tn4AWOqPZg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKQYgLUNaBAkYCAYdoEjvOckAI2o6oWg0jFaSeGmzHppFmkjJL0fw1fh3vOcswYjv1wC1KnhI7-d5mv3yPkGdJbnJkcvMURMceeggv5Up7XEWSC2u4b7VrNhEPh8nxcTraIN_bf2GwrLK1ic5Q55XGNfI-4zESySRp1LdNWcRod_Dm7KuHHaRwp7Vtp1FD5MAsv0H6Nnu9vwvf-jljg72PO--9psOApwVLYy-QxopExxAk-LmOlOTYd8LXsRFMK8C_lcb3FWQFgYjDUCVSyhAcHEwvUImOONz3Erkch-CUsWyQfVit7wiOxDAtT6TP-jI_R35w8MDcd41eVn7QtQv4XYz7a6nmzyG084GDG__z27tJrjeRN31bq8oW2TDlLbLV2LYZfdkQcL-6TU5GWLQGLoDKMqej1e-otLJ0B4Qmhe6PqvFyYqYUDSoWvhl6VI2LnO7VfYXGS4jhKWQE9LCYnxaLCa2ZTAszu0M-Xcg875LNsirNfUJNbv1YMwWCSSh0KAPLQ5UKLuEL64T3iNeiItMNSTv2ChlnNb00yxBFWYeiHnnRyZ_V9CR_lHyHIOukkFbcnaimX7LGSmUBj2FMkDRqqUJlLBz6UjATahtYFkc9st3CK2tsHTyiw1aPPO0ug5XCrSdZmmrhZEQSQfIP47hXI7obCYeoM_Rx7vEa1teGun6lLE4dEzpSQYkI7uk5rfjHK8gg0jvCBOjB36fxhFwF5cgO94cHD8k1hgssruhwm2zOpwvziFzR5_NiNn3sNJ6SzxetJD8AgjeWoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+and+Perspective+of+Ceramic%2FPolymer+Composite+Solid+Electrolytes+for+Lithium+Batteries&rft.jtitle=Advanced+science&rft.au=Li%2C+Song&rft.au=Zhang%2C+Shi-Qi&rft.au=Shen%2C+Lu&rft.au=Liu%2C+Qi&rft.date=2020-03-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=7&rft.issue=5&rft.spage=1903088&rft_id=info:doi/10.1002%2Fadvs.201903088&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon