When should meta‐analysis avoid making hidden normality assumptions?

Meta‐analysis is a widely used statistical technique. The simplicity of the calculations required when performing conventional meta‐analyses belies the parametric nature of the assumptions that justify them. In particular, the normal distribution is extensively, and often implicitly, assumed. Here,...

Full description

Saved in:
Bibliographic Details
Published in:Biometrical journal Vol. 60; no. 6; pp. 1040 - 1058
Main Authors: Jackson, Dan, White, Ian R.
Format: Journal Article
Language:English
Published: Germany Wiley - VCH Verlag GmbH & Co. KGaA 01.11.2018
John Wiley and Sons Inc
Subjects:
ISSN:0323-3847, 1521-4036, 1521-4036
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Meta‐analysis is a widely used statistical technique. The simplicity of the calculations required when performing conventional meta‐analyses belies the parametric nature of the assumptions that justify them. In particular, the normal distribution is extensively, and often implicitly, assumed. Here, we review how the normal distribution is used in meta‐analysis. We discuss when the normal distribution is likely to be adequate and also when it should be avoided. We discuss alternative and more advanced methods that make less use of the normal distribution. We conclude that statistical methods that make fewer normality assumptions should be considered more often in practice. In general, statisticians and applied analysts should understand the assumptions made by their statistical analyses. They should also be able to defend these assumptions. Our hope is that this article will foster a greater appreciation of the extent to which assumptions involving the normal distribution are made in statistical methods for meta‐analysis. We also hope that this article will stimulate further discussion and methodological work.
AbstractList Meta-analysis is a widely used statistical technique. The simplicity of the calculations required when performing conventional meta-analyses belies the parametric nature of the assumptions that justify them. In particular, the normal distribution is extensively, and often implicitly, assumed. Here, we review how the normal distribution is used in meta-analysis. We discuss when the normal distribution is likely to be adequate and also when it should be avoided. We discuss alternative and more advanced methods that make less use of the normal distribution. We conclude that statistical methods that make fewer normality assumptions should be considered more often in practice. In general, statisticians and applied analysts should understand the assumptions made by their statistical analyses. They should also be able to defend these assumptions. Our hope is that this article will foster a greater appreciation of the extent to which assumptions involving the normal distribution are made in statistical methods for meta-analysis. We also hope that this article will stimulate further discussion and methodological work.
Meta-analysis is a widely used statistical technique. The simplicity of the calculations required when performing conventional meta-analyses belies the parametric nature of the assumptions that justify them. In particular, the normal distribution is extensively, and often implicitly, assumed. Here, we review how the normal distribution is used in meta-analysis. We discuss when the normal distribution is likely to be adequate and also when it should be avoided. We discuss alternative and more advanced methods that make less use of the normal distribution. We conclude that statistical methods that make fewer normality assumptions should be considered more often in practice. In general, statisticians and applied analysts should understand the assumptions made by their statistical analyses. They should also be able to defend these assumptions. Our hope is that this article will foster a greater appreciation of the extent to which assumptions involving the normal distribution are made in statistical methods for meta-analysis. We also hope that this article will stimulate further discussion and methodological work.Meta-analysis is a widely used statistical technique. The simplicity of the calculations required when performing conventional meta-analyses belies the parametric nature of the assumptions that justify them. In particular, the normal distribution is extensively, and often implicitly, assumed. Here, we review how the normal distribution is used in meta-analysis. We discuss when the normal distribution is likely to be adequate and also when it should be avoided. We discuss alternative and more advanced methods that make less use of the normal distribution. We conclude that statistical methods that make fewer normality assumptions should be considered more often in practice. In general, statisticians and applied analysts should understand the assumptions made by their statistical analyses. They should also be able to defend these assumptions. Our hope is that this article will foster a greater appreciation of the extent to which assumptions involving the normal distribution are made in statistical methods for meta-analysis. We also hope that this article will stimulate further discussion and methodological work.
Author Jackson, Dan
White, Ian R.
AuthorAffiliation 1 Statistical Innovation Group AstraZeneca Cambridge UK
2 MRC Clinical Trials Unit at UCL London UK
AuthorAffiliation_xml – name: 1 Statistical Innovation Group AstraZeneca Cambridge UK
– name: 2 MRC Clinical Trials Unit at UCL London UK
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0002-4963-8123
  surname: Jackson
  fullname: Jackson, Dan
  email: daniel.jackson1@astrazeneca.com
  organization: Statistical Innovation Group
– sequence: 2
  givenname: Ian R.
  surname: White
  fullname: White, Ian R.
  organization: MRC Clinical Trials Unit at UCL
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30062789$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUha0KVAbabZdVpG7YZLj-SeJsqADxK6puWnVp3SQO46ljD3ECmh2PwDPyJHjEgCgS6sqS_Z1zj8_dJhvOO03IFwpTCsD2KtPNpwyoBICCfiATmjGaCuD5BpkAZzzlUhRbZDuEeURKEOwj2eIAOStkOSEnf2baJWHmR9sknR7w4e4eHdplMCHBG2_iLf417iqZmaaJqPN9h9YMywRDGLvFYLwL3z-RzRZt0J_X5w75fXL86-gsvfx5en50cJnWGStFWsehkoPIOBNVS6uayibPC9GWiBmXtBKCirzi2BRYUFkKgKxqq0I0DcgSkO-Q_SffxVh1uqm1G3q0atGbDvul8mjUvy_OzNSVv1E5kyxnPBrsrg16fz3qMKjOhFpbi077MSgGEiTLMigj-u0NOvdjH7uJFI2_ySWUWaS-vk70EuW54giIJ6DufQi9blVtBlzVFgMaqyio1SbVapPqZZNRNn0je3Z-V7Cec2usXv6HVofnPy5WBfNHHG2wdQ
CitedBy_id crossref_primary_10_3390_vetsci12040345
crossref_primary_10_11124_JBIES_23_00368
crossref_primary_10_1111_jep_70172
crossref_primary_10_2188_jea_JE20200376
crossref_primary_10_1214_22_BA1327
crossref_primary_10_1186_s12874_018_0618_3
crossref_primary_10_1186_s13756_023_01291_3
crossref_primary_10_3758_s13428_023_02132_2
crossref_primary_10_1515_ijb_2021_0087
crossref_primary_10_3758_s13428_024_02554_6
crossref_primary_10_1016_j_ajodo_2024_06_003
crossref_primary_10_1007_s11606_021_07098_5
crossref_primary_10_3390_vetsci12020182
crossref_primary_10_1016_j_jdent_2020_103541
crossref_primary_10_1002_bimj_201800381
crossref_primary_10_1002_bimj_70048
crossref_primary_10_1080_23249935_2021_1998243
crossref_primary_10_1111_fme_12719
crossref_primary_10_1002_bimj_70062
crossref_primary_10_1002_jrsm_1336
crossref_primary_10_3390_tropicalmed8020083
crossref_primary_10_1007_s40300_021_00211_y
crossref_primary_10_1177_0962280220983544
crossref_primary_10_1002_jrsm_1693
crossref_primary_10_1038_s41598_024_59755_4
crossref_primary_10_1002_bimj_201800179
crossref_primary_10_1177_09622802211065159
crossref_primary_10_1002_bimj_201800177
crossref_primary_10_1186_s12874_020_01205_6
crossref_primary_10_1016_j_ajic_2019_06_030
crossref_primary_10_1186_s12874_020_01075_y
crossref_primary_10_3390_ani14081220
crossref_primary_10_1093_biomtc_ujaf037
crossref_primary_10_1186_s12916_023_02823_9
crossref_primary_10_1186_s12874_022_01809_0
crossref_primary_10_3390_agronomy10040560
crossref_primary_10_1186_s12916_021_02195_y
crossref_primary_10_1016_j_wnsx_2025_100449
crossref_primary_10_1186_s12874_024_02378_0
crossref_primary_10_1177_0962280219833079
crossref_primary_10_1002_hsr2_178
crossref_primary_10_1016_j_jclinepi_2020_07_003
crossref_primary_10_1002_bimj_201800203
crossref_primary_10_1002_jmv_27841
crossref_primary_10_1002_bimj_201800161
crossref_primary_10_1002_bimj_201900376
crossref_primary_10_1002_bimj_201900379
crossref_primary_10_1053_j_sodo_2023_12_002
crossref_primary_10_1177_0962280220925840
crossref_primary_10_1002_jrsm_1356
crossref_primary_10_1186_s12874_024_02347_7
crossref_primary_10_1080_00949655_2020_1815200
crossref_primary_10_1093_aje_kwz261
crossref_primary_10_3758_s13428_025_02622_5
crossref_primary_10_1002_bimj_202000227
crossref_primary_10_1002_cre2_767
crossref_primary_10_1002_jrsm_1475
crossref_primary_10_1186_s12874_024_02215_4
crossref_primary_10_1002_sim_9985
crossref_primary_10_1002_bimj_201800194
crossref_primary_10_1111_rssa_12838
crossref_primary_10_1002_bimj_201800192
crossref_primary_10_1016_j_jdent_2025_105591
crossref_primary_10_1177_09622802241269645
crossref_primary_10_1002_jrsm_1488
crossref_primary_10_1002_jrsm_1401
crossref_primary_10_1016_j_commtr_2021_100008
crossref_primary_10_1002_jrsm_1404
crossref_primary_10_1002_jrsm_1648
crossref_primary_10_1002_bimj_202100108
crossref_primary_10_1016_j_marenvres_2024_106498
crossref_primary_10_1002_bimj_202200132
crossref_primary_10_1214_23_BA1363
crossref_primary_10_1016_j_jclinepi_2021_03_020
crossref_primary_10_1186_s12874_019_0689_9
crossref_primary_10_1007_s00411_020_00863_w
crossref_primary_10_1002_bimj_201800189
crossref_primary_10_1002_bimj_201800188
crossref_primary_10_1002_bimj_201900351
crossref_primary_10_1002_bimj_201800183
crossref_primary_10_1002_bimj_201800182
crossref_primary_10_1002_bimj_201800187
crossref_primary_10_1002_bimj_201800186
crossref_primary_10_1002_sim_8781
crossref_primary_10_1002_bimj_201800185
crossref_primary_10_1177_09622802231206474
crossref_primary_10_1002_bimj_201800184
crossref_primary_10_1080_10543406_2022_2105345
crossref_primary_10_1016_j_aucc_2020_10_004
crossref_primary_10_1017_rsm_2025_21
crossref_primary_10_1111_epi_17821
crossref_primary_10_1002_jrsm_1654
crossref_primary_10_1002_jrsm_1415
crossref_primary_10_1002_jrsm_1490
crossref_primary_10_1002_jrsm_1370
crossref_primary_10_1016_j_jenvman_2025_125317
crossref_primary_10_1017_rsm_2025_26
crossref_primary_10_1016_j_cct_2021_106440
crossref_primary_10_1097_EDE_0000000000001232
crossref_primary_10_1016_j_ajog_2021_09_025
crossref_primary_10_1186_s12917_024_03991_3
crossref_primary_10_1002_bimj_201900184
crossref_primary_10_1093_aje_kwad082
crossref_primary_10_1002_bimj_201800096
crossref_primary_10_1016_j_idnow_2022_02_009
crossref_primary_10_1002_jrsm_1388
crossref_primary_10_1002_sim_10001
crossref_primary_10_1002_ev_20508
crossref_primary_10_1177_09622802241231496
crossref_primary_10_1002_sim_10008
crossref_primary_10_3390_nu16111710
crossref_primary_10_1002_jrsm_1661
crossref_primary_10_1038_s41598_022_26462_x
crossref_primary_10_1177_09622802221125913
crossref_primary_10_1186_s12874_020_00929_9
crossref_primary_10_1002_bimj_201800127
crossref_primary_10_3390_biomedinformatics1020005
Cites_doi 10.1002/1097-0258(20001230)19:24<3417::AID-SIM614>3.0.CO;2-L
10.1002/jrsm.1191
10.1002/jrsm.1205
10.1016/j.cct.2015.09.002
10.18637/jss.v036.i03
10.1136/bmj.d549
10.1002/sim.6844
10.1002/9780470743386
10.1002/sim.2050
10.1007/s10654-007-9165-7
10.1002/sim.6879
10.1002/(SICI)1097-0258(19980430)17:8<841::AID-SIM781>3.0.CO;2-D
10.1002/sim.791
10.1177/0962280211413451
10.1002/jrsm.1114
10.1111/j.0006-341X.1999.00732.x
10.1002/sim.4451
10.1002/sim.2897
10.1186/1471-2288-14-103
10.1093/biostatistics/kxp032
10.1002/sim.4326
10.1002/sim.1262
10.6028/jres.087.022
10.1198/sbr.2009.0009
10.1002/sim.2514
10.1002/sim.7588
10.1002/sim.6595
10.1186/1471-2288-14-25
10.1002/sim.823
10.1136/bmj.c221
10.1002/jrsm.1146
10.1214/ss/1177013012
10.1002/jrsm.1162
10.1007/BF02589065
10.1186/1471-2288-11-19
10.1002/bimj.200510175
10.1093/biostatistics/3.4.445
10.1002/sim.4172
10.1186/s12874-015-0034-x
10.1002/jrsm.1045
10.1002/sim.919
10.1093/biomet/asv011
10.1002/jrsm.1037
10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A
10.1002/jrsm.1251
10.1002/(SICI)1097-0258(19970415)16:7<753::AID-SIM494>3.0.CO;2-G
10.1002/sim.1186
10.1002/bimj.201400184
10.1111/j.1467-985X.2008.00552.x
10.1002/jrsm.1164
10.1177/0962280210392008
10.1177/1536867X0900900203
10.1177/0962280215583568
10.1002/(SICI)1521-4036(199912)41:8<901::AID-BIMJ901>3.0.CO;2-W
10.1002/jrsm.1081
10.1111/j.1541-0420.2010.01442.x
10.1002/sim.5909
10.1002/sim.7411
10.1002/sim.6632
10.1002/sim.7140
10.1177/0962280214534409
10.1002/sim.3487
10.1016/0197-2456(86)90046-2
10.1002/bimj.200900074
10.1111/sjos.12172
10.1002/jrsm.54
10.1002/sim.4350
10.1093/biomet/87.3.619
10.1016/j.jclinepi.2014.08.012
10.1201/9781420011333
10.1002/sim.1009
10.1177/0272989X05282643
10.2307/3109760
10.1002/sim.650
10.1007/s10729-007-9041-8
10.1002/14651858.CD000546.pub2
10.1002/sim.4040
10.1002/sim.1040
ContentType Journal Article
Copyright 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 The Authors. Biometrical Journal Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 The Authors. Biometrical Journal Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1002/bimj.201800071
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate JACKSON and WHITE
EISSN 1521-4036
EndPage 1058
ExternalDocumentID PMC6282623
30062789
10_1002_bimj_201800071
BIMJ1894
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Medical Research Council
  funderid: MC_UU_12023/21
– fundername: British Heart Foundation
  grantid: RG13/13/30194
– fundername: Medical Research Council
  grantid: MC_UU_12023/21
– fundername: British Heart Foundation
  grantid: SP/09/002
– fundername: British Heart Foundation
  grantid: RG/13/13/30194
– fundername: Medical Research Council
  grantid: MR/L003120/1
– fundername: British Heart Foundation
  grantid: RG/08/014
– fundername: Medical Research Council
  grantid: G0800270
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
24P
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
YHZ
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5294-c27883045324bf1bc18d6674f9aa5381b44146b3ad7a71894005bfb74dd0890a3
IEDL.DBID 24P
ISICitedReferencesCount 127
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449709000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0323-3847
1521-4036
IngestDate Tue Nov 04 01:49:04 EST 2025
Sun Nov 09 11:56:29 EST 2025
Sat Nov 29 14:30:43 EST 2025
Mon Jul 21 06:08:01 EDT 2025
Sat Nov 29 06:28:48 EST 2025
Tue Nov 18 21:23:54 EST 2025
Wed Jan 22 16:27:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords distributional assumptions
random effects models
central limit theorem
normal approximation
Language English
License Attribution
2018 The Authors. Biometrical Journal Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5294-c27883045324bf1bc18d6674f9aa5381b44146b3ad7a71894005bfb74dd0890a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4963-8123
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.201800071
PMID 30062789
PQID 2129468095
PQPubID 105592
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6282623
proquest_miscellaneous_2080825509
proquest_journals_2129468095
pubmed_primary_30062789
crossref_citationtrail_10_1002_bimj_201800071
crossref_primary_10_1002_bimj_201800071
wiley_primary_10_1002_bimj_201800071_BIMJ1894
PublicationCentury 2000
PublicationDate November 2018
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Biometrical journal
PublicationTitleAlternate Biom J
PublicationYear 2018
Publisher Wiley - VCH Verlag GmbH & Co. KGaA
John Wiley and Sons Inc
Publisher_xml – name: Wiley - VCH Verlag GmbH & Co. KGaA
– name: John Wiley and Sons Inc
References 2015; 34
2017; 8
2013; 4
2015; 102
2000; 87
2011; 11
2010; 340
1999; 41
2001a; 20
2001b; 20
2008; 1
1993; 3
2016; 35
2005; 24
2005; 25
2015; 45
1998; 17
2014; 5
2000; 19
2009; 10
1986; 7
2017; 36
2010; 29
2008; 27
2016; 43
1999; 55
2014; 14
1997; 16
1998; 54
2007; 22
2016b; 7
2018; 37
2007; 26
2015; 57
2015; 15
2015; 6
2010; 36
2017; 26
2011a; 2
2011
2012a; 21
2011b; 67
2009
2008
2011; 30
2002; 3
2009; 172
2008; 11
1996; 15
2012; 31
2012b; 21
2001; 20
2009; 28
2015; 68
2016; 7
1988; 3
2012; 3
2002; 21
1982; 87
2006; 48
2009; 9
2001; 3
2016a; 35
2010; 52
2016; 25
2014; 33
2011; 342
e_1_2_11_70_1
Emerging Risk Factors Collaboration (e_1_2_11_18_1) 2007; 22
e_1_2_11_72_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
Jackson D. (e_1_2_11_45_1) 2011; 30
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
Higgins J. P. T. (e_1_2_11_32_1) 2011
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
30085350 - Biom J. 2018 Nov;60(6):1059-1061. doi: 10.1002/bimj.201800096.
30069962 - Biom J. 2018 Nov;60(6):1071-1072. doi: 10.1002/bimj.201800182.
30101441 - Biom J. 2018 Nov;60(6):1091-1093. doi: 10.1002/bimj.201800203.
30069981 - Biom J. 2018 Nov;60(6):1068-1070. doi: 10.1002/bimj.201800179.
30091155 - Biom J. 2018 Nov;60(6):1079-1080. doi: 10.1002/bimj.201800186.
30209813 - Biom J. 2018 Nov;60(6):1094-1095. doi: 10.1002/bimj.201800241.
30088289 - Biom J. 2018 Nov;60(6):1089-1090. doi: 10.1002/bimj.201800194.
30069918 - Biom J. 2018 Nov;60(6):1081-1082. doi: 10.1002/bimj.201800187.
30069949 - Biom J. 2018 Nov;60(6):1075-1076. doi: 10.1002/bimj.201800184.
30101466 - Biom J. 2018 Nov;60(6):1087-1088. doi: 10.1002/bimj.201800192.
30069906 - Biom J. 2018 Nov;60(6):1073-1074. doi: 10.1002/bimj.201800183.
30069975 - Biom J. 2018 Nov;60(6):1062-1063. doi: 10.1002/bimj.201800127.
30079529 - Biom J. 2018 Nov;60(6):1064-1065. doi: 10.1002/bimj.201800161.
30069959 - Biom J. 2018 Nov;60(6):1085-1086. doi: 10.1002/bimj.201800189.
30069902 - Biom J. 2018 Nov;60(6):1083-1084. doi: 10.1002/bimj.201800188.
30069937 - Biom J. 2018 Nov;60(6):1066-1067. doi: 10.1002/bimj.201800177.
30088287 - Biom J. 2018 Nov;60(6):1077-1078. doi: 10.1002/bimj.201800185.
References_xml – year: 2011
– volume: 35
  start-page: 2503
  year: 2016
  end-page: 2515
  article-title: Hartung‐Knapp method is not always conservative compared to fixed‐effect meta‐analysis
  publication-title: Statistics in Medicine
– volume: 15
  start-page: 49
  year: 2015
  article-title: An accurate test for homogeneity of odds ratios based on Cochran's Q‐statistic
  publication-title: BMC Medical Research Methodology
– year: 2009
– volume: 54
  start-page: 525
  year: 1998
  end-page: 536
  article-title: Recent developments in computer‐assisted analysis of mixtures
  publication-title: Biometrics
– volume: 43
  start-page: 191
  year: 2016
  end-page: 201
  article-title: Integrated likelihood inference in small sample meta‐analysis for continuous outcomes
  publication-title: Scandinavian Journal of Statistics
– volume: 11
  start-page: 19
  year: 2011
  article-title: A random effects variance shift model for detecting and accommodating outliers in meta‐analysis
  publication-title: BMC Medical Research Methodology
– volume: 15
  start-page: 619
  year: 1996
  end-page: 629
  article-title: A likelihood approach to meta‐analysis with random effects
  publication-title: Statistics in Medicine
– volume: 4
  start-page: 220
  year: 2013
  end-page: 229
  article-title: Confidence intervals for the between‐study variance in random effects meta‐analysis using generalised Cochran heterogeneity statistics
  publication-title: Research Synthesis Methods
– volume: 20
  start-page: 1771
  year: 2001a
  end-page: 1782
  article-title: On tests of the overall treatment effect in meta‐analysis with normally distributed responses
  publication-title: Statistics in Medicine
– volume: 7
  start-page: 177
  year: 1986
  end-page: 188
  article-title: Meta‐analysis in clinical trials
  publication-title: Controlled Clinical Trials
– volume: 5
  start-page: 285
  year: 2014
  end-page: 293
  article-title: A finite mixture method for outlier detection and robustness in meta‐analysis
  publication-title: Research Synthesis Methods
– volume: 27
  start-page: 418
  year: 2008
  end-page: 434
  article-title: Flexible parametric models for random‐effects distributions
  publication-title: Statistics in Medicine
– volume: 21
  start-page: 3153
  year: 2002
  end-page: 3159
  article-title: A simple confidence interval for meta‐analysis
  publication-title: Statistics in Medicine
– volume: 20
  start-page: 2243
  year: 2001
  end-page: 2260
  article-title: Meta‐analysis of ordinal outcomes using individual patient data
  publication-title: Statistics in Medicine
– volume: 35
  start-page: 485
  year: 2016a
  end-page: 495
  article-title: Misunderstandings about Q and “Cochran's Q test” in meta‐analysis
  publication-title: Statistics in Medicine
– volume: 16
  start-page: 753
  year: 1997
  end-page: 768
  article-title: Incorporating variability in estimates of heterogeneity in the random effects model in meta‐analysis
  publication-title: Statistics in Medicine
– volume: 10
  start-page: 792
  year: 2009
  end-page: 805
  article-title: Modeling between‐trial variance structure in mixed treatment comparisons
  publication-title: Biostatistics
– volume: 33
  start-page: 17
  year: 2014
  end-page: 30
  article-title: Meta‐analysis for diagnostic accuracy studies: A new statistical model using beta‐binomial distributions and bivariate copulas
  publication-title: Statistics in Medicine
– volume: 102
  start-page: 281
  year: 2015
  end-page: 294
  article-title: On random‐effects meta‐analysis
  publication-title: Biometrika
– volume: 20
  start-page: 1947
  year: 2001
  end-page: 1956
  article-title: Meta‐analysis of binary data: Which within study variance estimate to use?
  publication-title: Statistics in Medicine
– volume: 3
  start-page: 269
  year: 1993
  end-page: 290
  article-title: A modified random‐effect procedure for combining risk difference in sets of 2× 2 tables from clinical trials
  publication-title: Journal of the Italian Statistical Society
– volume: 6
  start-page: 372
  year: 2015
  end-page: 382
  article-title: Approximate confidence intervals for moment‐based estimators of the between‐study variance in random effects meta‐analysis
  publication-title: Research Synthesis Methods
– volume: 29
  start-page: 3046
  year: 2010
  end-page: 3067
  article-title: Random effects meta‐analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data
  publication-title: Statistics in Medicine
– volume: 48
  start-page: 271
  year: 2006
  end-page: 285
  article-title: Assessing the amount of heterogeneity in random‐effects meta‐analysis
  publication-title: Biometrical Journal
– volume: 25
  start-page: 2858
  year: 2016
  end-page: 2877
  article-title: A general framework for the use of logistic regression models in meta‐analysis
  publication-title: Statistical Methods in Medical Research
– volume: 41
  start-page: 901
  year: 1999
  end-page: 916
  article-title: An alternative method for meta‐analysis
  publication-title: Biometrical Journal
– volume: 87
  start-page: 377
  year: 1982
  end-page: 385
  article-title: Consensus values and weighting factors
  publication-title: Journal of Research of the National Bureau of Standards
– volume: 35
  start-page: 2467
  year: 2016
  end-page: 2478
  article-title: Low‐event‐rate meta‐analyses of clinical trials: Implementing good practices
  publication-title: Statistics in Medicine
– volume: 7
  start-page: 55
  year: 2016
  end-page: 79
  article-title: Methods to estimate the between‐study variance and its uncertainty in meta‐analysis
  publication-title: Research Synthesis Methods
– volume: 3
  start-page: 445
  year: 2002
  end-page: 457
  article-title: Some general points in estimating heterogeneity variance with the DerSimonian–Laird estimator
  publication-title: Biostatistics
– volume: 172
  start-page: 137
  year: 2009
  end-page: 159
  article-title: A re‐evaluation of random‐effects meta‐analysis
  publication-title: Journal of the Royal Statistical Society, Series A
– volume: 30
  start-page: 3082
  year: 2011
  end-page: 3094
  article-title: An informed reference prior for between‐study heterogeneity in meta‐analyses of binary outcomes
  publication-title: Statistics in Medicine
– volume: 21
  start-page: 589
  year: 2002
  end-page: 624
  article-title: Advanced methods in meta‐analysis: Multivariate approach and meta‐regression
  publication-title: Statistics in Medicine
– year: 2008
– volume: 20
  start-page: 825
  year: 2001
  end-page: 840
  article-title: A comparison of statistical methods for meta‐analysis
  publication-title: Statistics in Medicine
– volume: 7
  start-page: 459
  year: 2016b
  end-page: 461
  article-title: Shortcomings of an approximate confidence interval for moment‐based estimators of the between‐study variance in random‐effects meta‐analysis
  publication-title: Research Synthesis Methods
– volume: 20
  start-page: 3875
  year: 2001b
  end-page: 3889
  article-title: A refined method for the meta‐analysis of controlled clinical trials with binary outcome
  publication-title: Statistics in Medicine
– volume: 14
  start-page: 103
  year: 2014
  article-title: Methods for calculating confidence and credible intervals for the residual between‐study variance in random effects meta‐regression models
  publication-title: BMC Medical Research Methodology
– volume: 3
  start-page: 111
  year: 2012
  end-page: 125
  article-title: Consistency and inconsistency in network meta‐analysis: Model estimation using multivariate meta‐regression
  publication-title: Research Synthesis Methods
– volume: 8
  start-page: 254
  year: 2017
  article-title: Practical challenges of as a measure of heterogeneity
  publication-title: Research Synthesis Methods
– volume: 55
  start-page: 732
  year: 1999
  end-page: 737
  article-title: Valid inference in random effects meta‐analysis
  publication-title: Biometrics
– volume: 30
  start-page: 2481
  year: 2011
  end-page: 2510
  article-title: Multivariate meta‐analysis: Potential and promise (with discussion)
  publication-title: Statistics in Medicine
– volume: 36
  start-page: 1
  issue: 3
  year: 2010
  end-page: 48
  article-title: Conducting meta‐analyses in R with the metafor package
  publication-title: Journal of Statistical Software
– volume: 22
  start-page: 839
  year: 2007
  end-page: 869
  article-title: The Emerging Risk Factors Collaboration: Analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases
  publication-title: European Journal of Epidemiology
– volume: 57
  start-page: 633
  year: 2015
  end-page: 648
  article-title: Meta‐analysis of clinical trials with rare events
  publication-title: Biometrical Journal
– volume: 24
  start-page: 1307
  year: 2005
  end-page: 1319
  article-title: Investigating heterogeneity in an individual patient data meta‐analysis of time to event outcomes
  publication-title: Statistics in Medicine
– volume: 26
  start-page: 37
  year: 2007
  end-page: 52
  article-title: Confidence intervals for the amount of heterogeneity in meta‐analysis
  publication-title: Statistics in Medicine
– volume: 30
  start-page: 3304
  year: 2011
  end-page: 3312
  article-title: Confidence intervals for a random‐effects meta‐analysis based on Bartlett‐type corrections
  publication-title: Statistics in Medicine
– volume: 68
  start-page: 52
  year: 2015
  end-page: 60
  article-title: Predictive distributions were developed for the extent of heterogeneity in meta‐analyses of continuous outcome data
  publication-title: Journal of Clinical Epidemiology
– volume: 21
  start-page: 1539
  year: 2002
  end-page: 1558
  article-title: Quantifying heterogeneity in a meta‐analysis
  publication-title: Statistics in Medicine
– volume: 21
  start-page: 409
  year: 2012a
  end-page: 426
  article-title: Performance of statistical methods for meta‐analysis when true study effects are non‐normally distributed: A simulation study
  publication-title: Statistical Methods in Medical Research
– volume: 26
  start-page: 1500
  year: 2017
  end-page: 1518
  article-title: Random‐effects meta‐analysis: The number of studies matters
  publication-title: Statistical Methods in Medical Research
– volume: 6
  start-page: 287
  year: 2015
  end-page: 289
  article-title: We know less than we should about methods of meta‐analysis
  publication-title: Research Synthesis Methods
– volume: 21
  start-page: 657
  year: 2012b
  end-page: 659
  article-title: Performance of statistical methods for meta‐analysis when true study effects are non‐normally distributed: A comparison between DerSimonian–Laird and restricted maximum likelihood
  publication-title: Statistical Methods in Medical Research
– volume: 9
  start-page: 211
  year: 2009
  end-page: 229
  article-title: metandi: Meta‐analysis of diagnostic accuracy using hierarchical logistic regression
  publication-title: Stata Journal
– volume: 2
  start-page: 254
  year: 2011a
  end-page: 270
  article-title: On the moments of Cochran's Q statistic under the null hypothesis, with application to the meta‐analysis of risk difference
  publication-title: Research Synthesis Methods
– volume: 1
  start-page: 92
  year: 2008
  end-page: 100
  article-title: The significance level of the standard test for a treatment effect in meta‐analysis
  publication-title: Statistics in Biopharmaceutical Research
– volume: 45
  start-page: 139
  year: 2015
  end-page: 145
  article-title: Meta‐analysis in clinical trials revisited
  publication-title: Contemporary Clinical Trials
– volume: 31
  start-page: 313
  year: 2012
  end-page: 327
  article-title: Higher‐order likelihood inference in meta‐analysis and meta‐regression
  publication-title: Statistics in Medicine
– volume: 87
  start-page: 619
  year: 2000
  end-page: 632
  article-title: Nonparametric estimation of heterogeneity variance for the standardised difference used in meta‐analysis
  publication-title: Biometrika
– volume: 28
  start-page: 338
  year: 2009
  end-page: 348
  article-title: A re‐evaluation of the quantile approximation method for random effects meta‐analysis
  publication-title: Statistics in Medicine
– volume: 7
  start-page: 314
  year: 2016
  end-page: 328
  article-title: New models for describing outliers in meta‐analysis
  publication-title: Research Synthesis Methods
– volume: 11
  start-page: 121
  year: 2008
  end-page: 131
  article-title: A new approach to outliers in meta‐analysis
  publication-title: Health Care Management Science
– volume: 52
  start-page: 85
  year: 2010
  end-page: 94
  article-title: Hans van Houwelingen and the art of summing up
  publication-title: Biometrical Journal
– volume: 3
  start-page: 109
  year: 1988
  end-page: 117
  article-title: Selection models and the file drawer problem
  publication-title: Statistical Science
– volume: 3
  start-page: 80
  year: 2012
  end-page: 97
  article-title: Indirect and mixed‐treatment comparison, network, or multiple‐treatments meta‐analysis: Many names, many benefits, many concerns for the next generation evidence synthesis tool
  publication-title: Research Synthesis Methods
– volume: 340
  start-page: 521
  year: 2010
  end-page: 525
  article-title: Meta‐analysis of individual participant data: Rationale, conduct, and reporting
  publication-title: British Medical Journal
– volume: 36
  start-page: 301
  year: 2017
  end-page: 317
  article-title: Random effects meta‐analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation
  publication-title: Statistics in Medicine
– volume: 342
  start-page: 964
  year: 2011
  end-page: 967
  article-title: Interpretation of random effects meta‐analyses
  publication-title: British Medical Journal
– volume: 67
  start-page: 203
  year: 2011b
  end-page: 212
  article-title: Testing for homogeneity in meta‐analysis I. The one‐parameter case: Standardized mean difference
  publication-title: Biometrics
– volume: 34
  start-page: 3842
  year: 2015
  end-page: 3865
  article-title: A mixed effect model for bivariate meta‐analysis of diagnostic test accuracy studies using a copula representation of the random effects distribution
  publication-title: Statistics in Medicine
– volume: 3
  year: 2001
  article-title: Aversive smoking for smoking cessation
  publication-title: Cochrane Database of Systematic Reviews
– volume: 25
  start-page: 646
  year: 2005
  end-page: 654
  article-title: The interpretation of random‐effects meta‐analysis in decision models
  publication-title: Medical Decision Making
– volume: 14
  start-page: 25
  year: 2014
  article-title: The Hartung‐Knapp‐Sidik‐Jonkman method for random effects meta‐analysis is straightforward and considerably outperforms the standard DerSimonian‐Laird method
  publication-title: BMC Medical Research Methodology
– volume: 17
  start-page: 841
  year: 1998
  end-page: 856
  article-title: Detecting and describing heterogeneity in meta‐analysis
  publication-title: Statistics in Medicine
– volume: 19
  start-page: 3417
  year: 2000
  end-page: 3432
  article-title: A multilevel model framework for meta‐analysis of clinical trials with binary outcomes
  publication-title: Statistics in Medicine
– volume: 36
  start-page: 3923
  year: 2017
  end-page: 3934
  article-title: The Hartung‐Knapp modification for random‐effects meta‐analysis: A useful refinement but are there any residual concerns?
  publication-title: Statistics in Medicine
– volume: 37
  start-page: 1059
  year: 2018
  end-page: 1085
  article-title: A comparison of seven random‐effects models for meta‐analyses that estimate the summary odds ratio
  publication-title: Statistics in Medicine
– ident: e_1_2_11_72_1
  doi: 10.1002/1097-0258(20001230)19:24<3417::AID-SIM614>3.0.CO;2-L
– ident: e_1_2_11_4_1
  doi: 10.1002/jrsm.1191
– ident: e_1_2_11_35_1
  doi: 10.1002/jrsm.1205
– ident: e_1_2_11_16_1
  doi: 10.1016/j.cct.2015.09.002
– ident: e_1_2_11_76_1
  doi: 10.18637/jss.v036.i03
– ident: e_1_2_11_64_1
  doi: 10.1136/bmj.d549
– ident: e_1_2_11_67_1
  doi: 10.1002/sim.6844
– ident: e_1_2_11_12_1
  doi: 10.1002/9780470743386
– ident: e_1_2_11_71_1
  doi: 10.1002/sim.2050
– volume: 22
  start-page: 839
  year: 2007
  ident: e_1_2_11_18_1
  article-title: The Emerging Risk Factors Collaboration: Analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases
  publication-title: European Journal of Epidemiology
  doi: 10.1007/s10654-007-9165-7
– ident: e_1_2_11_79_1
  doi: 10.1002/sim.6879
– ident: e_1_2_11_26_1
  doi: 10.1002/(SICI)1097-0258(19980430)17:8<841::AID-SIM781>3.0.CO;2-D
– ident: e_1_2_11_28_1
  doi: 10.1002/sim.791
– ident: e_1_2_11_49_1
  doi: 10.1177/0962280211413451
– ident: e_1_2_11_5_1
  doi: 10.1002/jrsm.1114
– ident: e_1_2_11_19_1
  doi: 10.1111/j.0006-341X.1999.00732.x
– ident: e_1_2_11_21_1
  doi: 10.1002/sim.4451
– volume-title: Cochrane plbibitalic‐handbook for systematic reviews of interventions version 5.1.0
  year: 2011
  ident: e_1_2_11_32_1
– ident: e_1_2_11_54_1
  doi: 10.1002/sim.2897
– ident: e_1_2_11_46_1
  doi: 10.1186/1471-2288-14-103
– ident: e_1_2_11_55_1
  doi: 10.1093/biostatistics/kxp032
– ident: e_1_2_11_61_1
  doi: 10.1002/sim.4326
– ident: e_1_2_11_68_1
  doi: 10.1002/sim.1262
– ident: e_1_2_11_60_1
  doi: 10.6028/jres.087.022
– ident: e_1_2_11_39_1
  doi: 10.1198/sbr.2009.0009
– ident: e_1_2_11_75_1
  doi: 10.1002/sim.2514
– ident: e_1_2_11_44_1
  doi: 10.1002/sim.7588
– ident: e_1_2_11_57_1
  doi: 10.1002/sim.6595
– ident: e_1_2_11_37_1
  doi: 10.1186/1471-2288-14-25
– ident: e_1_2_11_14_1
  doi: 10.1002/sim.823
– ident: e_1_2_11_63_1
  doi: 10.1136/bmj.c221
– ident: e_1_2_11_33_1
  doi: 10.1002/jrsm.1146
– ident: e_1_2_11_38_1
  doi: 10.1214/ss/1177013012
– ident: e_1_2_11_42_1
  doi: 10.1002/jrsm.1162
– ident: e_1_2_11_17_1
  doi: 10.1007/BF02589065
– ident: e_1_2_11_20_1
  doi: 10.1186/1471-2288-11-19
– ident: e_1_2_11_47_1
  doi: 10.1002/bimj.200510175
– ident: e_1_2_11_9_1
  doi: 10.1093/biostatistics/3.4.445
– volume: 30
  start-page: 2481
  year: 2011
  ident: e_1_2_11_45_1
  article-title: Multivariate meta‐analysis: Potential and promise (with discussion)
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4172
– ident: e_1_2_11_52_1
  doi: 10.1186/s12874-015-0034-x
– ident: e_1_2_11_77_1
  doi: 10.1002/jrsm.1045
– ident: e_1_2_11_78_1
  doi: 10.1002/sim.919
– ident: e_1_2_11_80_1
  doi: 10.1093/biomet/asv011
– ident: e_1_2_11_65_1
  doi: 10.1002/jrsm.1037
– ident: e_1_2_11_25_1
  doi: 10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A
– ident: e_1_2_11_36_1
  doi: 10.1002/jrsm.1251
– ident: e_1_2_11_7_1
  doi: 10.1002/(SICI)1097-0258(19970415)16:7<753::AID-SIM494>3.0.CO;2-G
– ident: e_1_2_11_30_1
  doi: 10.1002/sim.1186
– ident: e_1_2_11_11_1
  doi: 10.1002/bimj.201400184
– ident: e_1_2_11_31_1
  doi: 10.1111/j.1467-985X.2008.00552.x
– ident: e_1_2_11_74_1
  doi: 10.1002/jrsm.1164
– ident: e_1_2_11_48_1
  doi: 10.1177/0962280210392008
– ident: e_1_2_11_24_1
  doi: 10.1177/1536867X0900900203
– ident: e_1_2_11_22_1
  doi: 10.1177/0962280215583568
– ident: e_1_2_11_27_1
  doi: 10.1002/(SICI)1521-4036(199912)41:8<901::AID-BIMJ901>3.0.CO;2-W
– ident: e_1_2_11_40_1
  doi: 10.1002/jrsm.1081
– ident: e_1_2_11_51_1
  doi: 10.1111/j.1541-0420.2010.01442.x
– ident: e_1_2_11_53_1
  doi: 10.1002/sim.5909
– ident: e_1_2_11_43_1
  doi: 10.1002/sim.7411
– ident: e_1_2_11_34_1
  doi: 10.1002/sim.6632
– ident: e_1_2_11_59_1
  doi: 10.1002/sim.7140
– ident: e_1_2_11_69_1
  doi: 10.1177/0962280214534409
– ident: e_1_2_11_41_1
  doi: 10.1002/sim.3487
– ident: e_1_2_11_15_1
  doi: 10.1016/0197-2456(86)90046-2
– ident: e_1_2_11_66_1
  doi: 10.1002/bimj.200900074
– ident: e_1_2_11_6_1
  doi: 10.1111/sjos.12172
– ident: e_1_2_11_50_1
  doi: 10.1002/jrsm.54
– ident: e_1_2_11_58_1
  doi: 10.1002/sim.4350
– ident: e_1_2_11_56_1
  doi: 10.1093/biomet/87.3.619
– ident: e_1_2_11_62_1
  doi: 10.1016/j.jclinepi.2014.08.012
– ident: e_1_2_11_10_1
  doi: 10.1201/9781420011333
– ident: e_1_2_11_29_1
  doi: 10.1002/sim.1009
– ident: e_1_2_11_2_1
  doi: 10.1177/0272989X05282643
– ident: e_1_2_11_8_1
  doi: 10.2307/3109760
– ident: e_1_2_11_13_1
  doi: 10.1002/sim.650
– ident: e_1_2_11_3_1
  doi: 10.1007/s10729-007-9041-8
– ident: e_1_2_11_23_1
  doi: 10.1002/14651858.CD000546.pub2
– ident: e_1_2_11_70_1
  doi: 10.1002/sim.4040
– ident: e_1_2_11_73_1
  doi: 10.1002/sim.1040
– reference: 30069902 - Biom J. 2018 Nov;60(6):1083-1084. doi: 10.1002/bimj.201800188.
– reference: 30069959 - Biom J. 2018 Nov;60(6):1085-1086. doi: 10.1002/bimj.201800189.
– reference: 30085350 - Biom J. 2018 Nov;60(6):1059-1061. doi: 10.1002/bimj.201800096.
– reference: 30069975 - Biom J. 2018 Nov;60(6):1062-1063. doi: 10.1002/bimj.201800127.
– reference: 30069981 - Biom J. 2018 Nov;60(6):1068-1070. doi: 10.1002/bimj.201800179.
– reference: 30069906 - Biom J. 2018 Nov;60(6):1073-1074. doi: 10.1002/bimj.201800183.
– reference: 30069962 - Biom J. 2018 Nov;60(6):1071-1072. doi: 10.1002/bimj.201800182.
– reference: 30079529 - Biom J. 2018 Nov;60(6):1064-1065. doi: 10.1002/bimj.201800161.
– reference: 30101466 - Biom J. 2018 Nov;60(6):1087-1088. doi: 10.1002/bimj.201800192.
– reference: 30209813 - Biom J. 2018 Nov;60(6):1094-1095. doi: 10.1002/bimj.201800241.
– reference: 30069949 - Biom J. 2018 Nov;60(6):1075-1076. doi: 10.1002/bimj.201800184.
– reference: 30069918 - Biom J. 2018 Nov;60(6):1081-1082. doi: 10.1002/bimj.201800187.
– reference: 30088289 - Biom J. 2018 Nov;60(6):1089-1090. doi: 10.1002/bimj.201800194.
– reference: 30101441 - Biom J. 2018 Nov;60(6):1091-1093. doi: 10.1002/bimj.201800203.
– reference: 30088287 - Biom J. 2018 Nov;60(6):1077-1078. doi: 10.1002/bimj.201800185.
– reference: 30069937 - Biom J. 2018 Nov;60(6):1066-1067. doi: 10.1002/bimj.201800177.
– reference: 30091155 - Biom J. 2018 Nov;60(6):1079-1080. doi: 10.1002/bimj.201800186.
SSID ssj0009042
Score 2.544202
SecondaryResourceType review_article
Snippet Meta‐analysis is a widely used statistical technique. The simplicity of the calculations required when performing conventional meta‐analyses belies the...
Meta-analysis is a widely used statistical technique. The simplicity of the calculations required when performing conventional meta-analyses belies the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1040
SubjectTerms Aversive Therapy
C-Reactive Protein - metabolism
Central limit theorem
Discussion: When should meta‐analysis avoid making hidden normality assumptions?
distributional assumptions
Humans
Meta-analysis
Meta-Analysis as Topic
normal approximation
Normal Distribution
Normality
random effects models
Review
Smoking Cessation
Statistical analysis
Statistical methods
Statistics as Topic - methods
Title When should meta‐analysis avoid making hidden normality assumptions?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.201800071
https://www.ncbi.nlm.nih.gov/pubmed/30062789
https://www.proquest.com/docview/2129468095
https://www.proquest.com/docview/2080825509
https://pubmed.ncbi.nlm.nih.gov/PMC6282623
Volume 60
WOSCitedRecordID wos000449709000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009042
  issn: 0323-3847
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BCxKX8iwslCpISJyiJrHjxwnxWgEqVYWotLdo7DjaRTSLuttKvfET-I38EmacbNpVhRDikkM8UWJ7Hp9jzzcAz4MyDUpa5NhQ-lSq0KSm1HVK4KNAZ5vc-pgovK8PDsxkYg8vZfF3_BDDDze2jOiv2cDRLfYuSEPd7PgrH80yMUxeh808F4aLNxTy8IJ2N5PdPkIhUkGOeEXbmBV768-vh6UrWPPqkcnLUDbGovHt_-_FHdjqcWjyqlOcu3AttPfgZleZ8vw-jMlJt8liygWwk-OwxF8_fmLPX5Lg2XxGd2Mdq2TKHCRt0jL2ZUifEBonFYnq_PIBHI3ffXnzPu1LLqS-LKxMfUFLYt48JZzlmtz53NRKadlYRHKNuSP0JJUTWGukqMZV1UvXOC3rOjM2Q7ENG-28DY8gsegF6lplBMhkqA16lDIQgChFg0GJEaSrEa98z0fOZTG-VR2TclHx2FTD2IzgxSD_vWPi-KPkzmoCq94iFxWFaCuVIUQ5gmdDM9kSb5BgG-anJEPwmVbMhKFG8LCb7-FVgrNNtaEWvaYJgwDzdK-3tLNp5OtWtKwllEkdjprwl6-vXn_49JGH9vE_yj-BW3yzS5TcgY3lyWl4Cjf82XK2ONmNdkFXPTG7sPn28_ho_zfa_hIL
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB7xKGovQFtow6MYqVJPFo69Xu-eECCiUJIohyDlZq3XayUInIo8pN76E_ob-SXMrB1DFFWoElfvWPbuzuObfXwD8N1wkSmGSY40oXYZN5krwih1EXz4KpFZXWp7UbgVdTqi35fd8jQh3YUp-CGqBTeyDOuvycBpQfrkmTU0Gd7f0tksYePkKqwzDDWk6j7rPvPueqzYSPADN0BPPOdt9PyTxfcX49IS2Fw-M_kSy9pg1Nh6g25sw2aJRJ2zQnU-worJP8FGUZvy92dooJvOnfGASmA792aiHv_8VSWDiaNmoyE-tZWsnAGxkOROTuiXQL2DeByVxCr06Q7cNC57F023LLrg6tCXzNU-JsW0fYpIK8nqia6LlPOIZVIpdI71BPET40mg0khhXKO66mGSJRFLU09ITwW7sJaPcvMVHKl0oKKUewjJmEmF0ooxgxAiDDJleFADdz7ksS4Zyakwxl1ccCn7MY1NXI1NDX5U8r8KLo5_Sh7MZzAubXIcY5CWjAvElDU4rprRmmiLROVmNEUZBNCYMyOKqsGXYsKrTwV03zQS2BItqEIlQEzdiy35cGAZuzkmtogzscNWFV75-_j8qv2ThnbvP-WP4H2z127FravO9T58IIHi2uQBrE0epuYQ3unZZDh--GaN5AkhlhNu
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEB61CUW9UKC0DQ1gpEo9WXHs9Xr3hChgQRuiCDUSN2u9XiupiBMlAam3PkKfsU_SGdtxiCKEKvXqGflndn6-9e5-A_DJcJEqhpMcaXxtM25SW_hBYiP4cFUs07bU-UHhTtDtittb2St3E9JZmIIfovrhRpGR52sKcDNJ0taSNTQejn7Q3iyR18mXUGfUSaYG9fObsN9ZMu86rFhKcD3bw1y8YG503NbqHVYr0xrcXN81-RjN5uUofPMfPmQbtkosap0WzrMDL0y2C6-K7pQ_30KIiTqzZgNqgm2NzFz9-fVblRwmlnoYD_Fq3svKGhAPSWZlhH8J1luIyNFNcpc-2YN-ePH97NIu2y7Y2ncls7WL02JaQEWsFaftWLdFwnnAUqkUpsd2jAiK8dhTSaCwslFndT9O44AliSOko7x3UMvGmfkAllTaU0HCHQRlzCRCacWYQRDhe6ky3GuAvTB5pEtOcmqNcRcVbMpuRLaJKts04HOlPynYOJ7UbC5GMCqjchZhmZaMC0SVDTiuxBhPtEiiMjO-Rx2E0DhrRhzVgPfFgFeP8ujEaSBQEqy4QqVAXN2rkmw4yDm7OU5tEWniB-eu8MzbR1-urr-Saff_Uf8INnvnYdS56n77CK9JXpybbEJtPr03B7ChH-bD2fSwjJK_l5UUhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+should+meta%E2%80%90analysis+avoid+making+hidden+normality+assumptions%3F&rft.jtitle=Biometrical+journal&rft.au=Jackson%2C+Dan&rft.au=White%2C+Ian+R.&rft.date=2018-11-01&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=60&rft.issue=6&rft.spage=1040&rft.epage=1058&rft_id=info:doi/10.1002%2Fbimj.201800071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bimj_201800071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon