Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models

Sparsity is an essential feature of many contemporary data problems. Remote sensing, various forms of automated screening and other high throughput measurement devices collect a large amount of information, typically about few independent statistical subjects or units. In certain cases it is reasona...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the Royal Statistical Society. Series B, Statistical methodology Ročník 75; číslo 3; s. 471 - 498
Hlavní autori: Augugliaro, Luigi, Mineo, Angelo M., Wit, Ernst C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Blackwell Publishing Ltd 01.06.2013
Oxford University Press
Predmet:
ISSN:1369-7412, 1467-9868
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sparsity is an essential feature of many contemporary data problems. Remote sensing, various forms of automated screening and other high throughput measurement devices collect a large amount of information, typically about few independent statistical subjects or units. In certain cases it is reasonable to assume that the underlying process generating the data is itself sparse, in the sense that only a few of the measured variables are involved in the process. We propose an explicit method of monotonically decreasing sparsity for outcomes that can be modelled by an exponential family. In our approach we generalize the equiangular condition in a generalized linear model. Although the geometry involves the Fisher information in a way that is not obvious in the simple regression setting, the equiangular condition turns out to be equivalent with an intuitive condition imposed on the Rao score test statistics. In certain special cases the method can be tweaked to obtain L1-penalized generalized linear model solution paths, but the method itself defines sparsity more directly. Although the computation of the solution paths is not trivial, the method compares favourably with other path following algorithms.
AbstractList Sparsity is an essential feature of many contemporary data problems. Remote sensing, various forms of automated screening and other high throughput measurement devices collect a large amount of information, typically about few independent statistical subjects or units. In certain cases it is reasonable to assume that the underlying process generating the data is itself sparse, in the sense that only a few of the measured variables are involved in the process. We propose an explicit method of monotonically decreasing sparsity for outcomes that can be modelled by an exponential family. In our approach we generalize the equiangular condition in a generalized linear model. Although the geometry involves the Fisher information in a way that is not obvious in the simple regression setting, the equiangular condition turns out to be equivalent with an intuitive condition imposed on the Rao score test statistics. In certain special cases the method can be tweaked to obtain L1‐penalized generalized linear model solution paths, but the method itself defines sparsity more directly. Although the computation of the solution paths is not trivial, the method compares favourably with other path following algorithms.
Sparsity is an essential feature of many contemporary data problems. Remote sensing, various forms of automated screening and other high throughput measurement devices collect a large amount of information, typically about few independent statistical subjects or units. In certain cases it is reasonable to assume that the underlying process generating the data is itself sparse, in the sense that only a few of the measured variables are involved in the process. We propose an explicit method of monotonically decreasing sparsity for outcomes that can be modelled by an exponential family. In our approach we generalize the equiangular condition in a generalized linear model. Although the geometry involves the Fisher information in a way that is not obvious in the simple regression setting, the equiangular condition turns out to be equivalent with an intuitive condition imposed on the Rao score test statistics. In certain special cases the method can be tweaked to obtain L1-penalized generalized linear model solution paths, but the method itself defines sparsity more directly. Although the computation of the solution paths is not trivial, the method compares favourably with other path following algorithms. Reprinted by permission of Blackwell Publishers
Sparsity is an essential feature of many contemporary data problems. Remote sensing, various forms of automated screening and other high throughput measurement devices collect a large amount of information, typically about few independent statistical subjects or units. In certain cases it is reasonable to assume that the underlying process generating the data is itself sparse, in the sense that only a few of the measured variables are involved in the process. We propose an explicit method of monotonically decreasing sparsity for outcomes that can be modelled by an exponential family. In our approach we generalize the equiangular condition in a generalized linear model. Although the geometry involves the Fisher information in a way that is not obvious in the simple regression setting, the equiangular condition turns out to be equivalent with an intuitive condition imposed on the Rao score test statistics. In certain special cases the method can be tweaked to obtain L1-penalized generalized linear model solution paths, but the method itself defines sparsity more directly. Although the computation of the solution paths is not trivial, the method compares favourably with other path following algorithms. [PUBLICATION ABSTRACT]
Author Augugliaro, Luigi
Mineo, Angelo M.
Wit, Ernst C.
Author_xml – sequence: 1
  givenname: Luigi
  surname: Augugliaro
  fullname: Augugliaro, Luigi
– sequence: 2
  givenname: Angelo M.
  surname: Mineo
  fullname: Mineo, Angelo M.
– sequence: 3
  givenname: Ernst C.
  surname: Wit
  fullname: Wit, Ernst C.
BookMark eNqFkstvVCEUxompie3oxr0JiRtjclu43MvDnfYxNml8tBrdEQbOHRmZyxSY1PrXS73aRdMoG0i-33fgnI89tDPGERB6Ssk-resg5bzYpy0h5AHapR0XjZJc7tQz46oRHW0fob2cVxUgXLBdVI78MECCsXgT8BLiGkryFgcwuWAzLgPgBMsEOfs4vsIGu_sNZrNJ0dhvuEScNyZlqOIIyQT_ExwOfgST8Do6CPkxejiYkOHJn32GPp8cfzp825y9n58evj5rbN8q0liuYBCuBwrWKMXksBjY4DhZiA4GJ0E5Yi2V0AuljFVcOCWdo73jXElG2Ay9mOrWp11uIRe99tlCCGaEuM2adlTWYcmW_h9louWt6FtR0ed30FXcprE2Uqm-7yiT9fYZejlRNsWcEwx6k_zapGtNib7JSt9kpX9nVWFyB7a-mFInXpLx4X4LnSxXPsD1P4rr84uLN389zybPKpeYbj1tJ0Ttq6t6M-k-F_hxq5v0XdfPInr95d1ct1_5h4_z-bk-Yr8ALdfDoQ
CitedBy_id crossref_primary_10_1093_biostatistics_kxy060
crossref_primary_10_1002_cjs_11309
crossref_primary_10_3390_e22090965
crossref_primary_10_3390_rs11222605
crossref_primary_10_1007_s11222_017_9761_7
crossref_primary_10_1093_biomet_asw023
crossref_primary_10_1016_j_spl_2018_02_039
crossref_primary_10_1002_wics_1288
crossref_primary_10_1007_s41237_024_00237_2
crossref_primary_10_1007_s41884_020_00035_1
crossref_primary_10_1007_s11222_025_10625_7
crossref_primary_10_1177_0962280219842890
crossref_primary_10_1515_sagmb_2014_0075
crossref_primary_10_1016_j_csda_2021_107302
Cites_doi 10.1214/09-AOS692
10.2307/2348005
10.1016/0041-5553(67)90040-7
10.1007/978-1-4612-5056-2
10.1016/0047-259X(82)90065-3
10.1093/biomet/69.1.1
10.1080/01621459.1986.10478291
10.1214/aos/1176345632
10.1002/0470011084
10.1016/j.jmva.2008.12.002
10.1111/1467-9868.00342
10.1214/09-AOS778
10.2307/2529336
10.1198/016214501753382273
10.1093/bioinformatics/17.6.520
10.1007/978-1-4899-3242-6
10.1002/bimj.200900028
10.1214/08-SS035
10.1214/aos/1176348262
10.1214/07-AOAS147
10.1080/01621459.1998.10474094
10.1093/biomet/asp013
10.1137/1.9780898719154
10.1214/009053604000000067
10.1214/10-AOS798
10.1111/j.1467-9868.2007.00607.x
10.1214/009053607000000127
10.1198/016214504000000692
10.1111/j.2517-6161.1996.tb02080.x
10.1002/9781118165980
10.1198/004017004000000338
10.1007/978-1-4757-2201-7
10.1111/j.1467-9868.2008.00668.x
10.1158/1078-0432.CCR-09-0788
10.1214/aos/1176345779
10.1198/jasa.2010.tm09313
10.1214/009053604000001156
ContentType Journal Article
Copyright Copyright © 2013 The Royal Statistical Society and Blackwell Publishing Ltd.
2013 Royal Statistical Society
Copyright_xml – notice: Copyright © 2013 The Royal Statistical Society and Blackwell Publishing Ltd.
– notice: 2013 Royal Statistical Society
DBID BSCLL
AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
DOI 10.1111/rssb.12000
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
International Bibliography of the Social Sciences (IBSS)

International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9868
EndPage 498
ExternalDocumentID 2979954941
10_1111_rssb_12000
RSSB12000
24772734
ark_67375_WNG_2X6PQGGR_D
Genre article
Feature
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
10A
1OC
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHBH
AANHP
AAONW
AAPXW
AARHZ
AASGY
AAUAY
AAWIL
AAXRX
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABDFA
ABEHJ
ABEJV
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQH
ABPQP
ABPTD
ABPVW
ABWST
ABXSQ
ABYWD
ABZEH
ACAHQ
ACBWZ
ACCZN
ACFRR
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACRPL
ACSCC
ACTMH
ACUBG
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
ADZMN
AEGXH
AEIMD
AEMOZ
AEUPB
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AGLNM
AGQPQ
AHQJS
AIHAF
AIURR
AJAOE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMBMR
AMVHM
AMYDB
ANFBD
ARCSS
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZGI
ZL0
ZZTAW
~02
~IA
~KM
~WT
ALUQN
AAHHS
ABYAD
ACCFJ
ACTWD
AEEZP
AELPN
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
JSODD
AAYXX
CITATION
O8X
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c5290-c69ef7d5e1eca9938fbf3fd60b74efd8e9d0cc18e5799ac967d98dd15d6698303
IEDL.DBID DRFUL
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319406500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1369-7412
IngestDate Sun Sep 28 08:20:37 EDT 2025
Thu Oct 02 11:40:55 EDT 2025
Mon Nov 10 21:21:14 EST 2025
Sat Nov 29 05:52:02 EST 2025
Tue Nov 18 20:49:25 EST 2025
Wed Jan 22 16:48:34 EST 2025
Thu Jul 03 21:13:51 EDT 2025
Tue Nov 11 03:31:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5290-c69ef7d5e1eca9938fbf3fd60b74efd8e9d0cc18e5799ac967d98dd15d6698303
Notes ArticleID:RSSB12000
ark:/67375/WNG-2X6PQGGR-D
istex:A6991866E2200B1F9C1E67C6D96C48D9CC6218AD
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/rssb.12000
PQID 1355413898
PQPubID 39359
PageCount 28
ParticipantIDs proquest_miscellaneous_1418120821
proquest_miscellaneous_1372627527
proquest_journals_1355413898
crossref_primary_10_1111_rssb_12000
crossref_citationtrail_10_1111_rssb_12000
wiley_primary_10_1111_rssb_12000_RSSB12000
jstor_primary_24772734
istex_primary_ark_67375_WNG_2X6PQGGR_D
PublicationCentury 2000
PublicationDate June 2013
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: June 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Oxford University Press
References Fan, J. and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Ass., 96, 1348-1360.
James, G. M. and Radchenko, P. (2009) A generalized Dantzig selector with shrinkage tuning. Biometrika, 96, 323-337.
Hesterberg, T., Choi, N. H., Meire, L. and Fraley, C. (2008) Least angle and l1 penalized regression: a review. Statist. Surv., 2, 61-93.
Hocking, R. R. (1976) The analysis and selection of variables in linear regression. Biometrics, 32, 1-49.
Atkinson, C. and Mitchell, A. F. S. (1981) Rao's distance measure. Sankhya A, 43, 345-365.
Kato, K. (2009) On the degrees of freedom in shrinkage estimation. J. Multiv. Anal., 100, 1338-1352.
Burnham, K. P. and Anderson, D. R. (2000) Model Selection and Inference: a Practical Information-theoretical Approach. New York: Springer.
Huang, J. and Zhang, T. (2010) The benefit of group sparsity. Ann. Statist., 38, 1978-2004.
Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288.
Li, Y., Wang, N. and Carroll, R. J. (2010) Generalized functional linear models with semi-parametric single-index interaction. J. Am. Statist. Ass., 105, 621-633.
Spivak, M. (1979) A Comprehensive Introduction to Differential Geometry, 2nd edn. Boston: Publish or Perish.
James, G. M. (2002) Generalized linear models with functional predictors. J. R. Statist. Soc. B, 64, 411-432.
Amari, S.-I. (1982a) Geometrical theory of asymptotic ancillarity and conditional inference. Biometrika, 67, 1-17.
James, G. M., Radchenko, P. and Lv, J. (2009) DASSO: connections between the Dantzig selector and lasso. J. R. Statist. Soc. B, 71, 127-142.
Stein, C. (1981) Estimation of the mean of a multivariate normal distribution. Ann. Statist., 9, 1135-1151.
Burbea J. and Rao, R. C. (1982) Entropy differential metric, distance and divergence measures in probability spaces-a unified approach. J. Multiv. Anal., 12, 575-596.
Candes, E. and Tao, T. (2007) The Dantzig selector: statistical estimation when p is much larger that n (with discussion). Ann. Statist., 35, 2313-2351.
Madigan, D. and Ridgeway, G. (2004) Discussion to least angle regression. Ann. Statist., 32, 465-469.
do Carmo, M. P. (1992) Riemannian Geometry. Boston: Birkhäuser.
Efron, B. (1986) How biased is the apparent error rate of a prediction rule?J. Am. Statist. Ass., 81, 461-470.
Menter, D.G., Schilsky, R. L. and Dubois, R. N. (2010) Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clin. Cancer Res., 16, 1384-1390.
Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D. and Altman, R. B. (2001) Missing value estimation methods for DNA. Bioinformatics, 17, 520-525.
Amari, S.-I. and Nagaoka, H. (2000) Methods of Information Geometry. Providence: American Mathematical Society.
Efron, B. (2004) The estimation of prediction error: covariance penalties and cross-validation. J. Am. Statist. Ass., 99, 619-632.
Wit, E. C. and McClure, J. D. (2004) Statistics for Microarrays: Design, Analysis and Inference. Chichester: Wiley.
Wu, T. T. and Lange, K. (2008) Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Statist., 2, 224-244.
Shen, X., Huang, H.-C. and Ye, J. (2004) Adaptive model selection and assessment for exponential family distributions. Technometrics, 46, 306-317.
Wei, B.-C. (1998) Exponential Family Nonlinear Models. Singapore: Springer.
Myers, R. H., Montgomery, D. C. and Vining, G. G. (2007) Generalized Linear Models: with Applications in Engineering and the Sciences. New York: Wiley.
Kass, R. and Vos, P. W. (1997) Geometrical Foundation of Asymptotic Inference. New York: Wiley.
Vos, P. W. (1991) A geometric approach to detecting influential cases. Ann. Statist., 19, 1570-1581.
Ye, J. (1998) On measuring and correcting the effects of data mining and model selection. J. Am. Statist. Ass., 93, 120-131.
Park, M. Y. and Hastie, T. (2007) L1-regularization path algorithm for generalized linear models. J. R. Statist. Soc. B, 69, 659-677.
Allgower, E. and Georg, K. (2003) Introduction to Numerical Continuation Methods. New York: Society for Industrial and Applied Mathematics.
Müller, H.-G. and Stadtmüller, U. (2005) Generalized functional linear models. Ann. Statist., 33, 774-805.
Zou, H., Hastie, T. and Tibshirani, R. (2007) On the ''degrees of freedom'' of the lasso. Ann. Statist., 35, 2173-2192.
Amari, S.-I. (1982b) Differential geometry of curved exponential families-curvatures and information loss. Ann. Statist., 10, 357-385.
Fan, J. and Song, R. (2010) Sure independence screening in generalized linear models with NP-dimensionality. Ann. Statist., 38, 3567-3604.
Amari, S.-I. (1985) Differential-geometrical Methods in Statistics. New York: Springer.
Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004) Least angle regression (with discussion). Ann. Statist., 32, 407-451.
Goeman, J. (2010) L1 penalized estimation in the Cox proportional hazards model. Biometr. J., 52, 70-84.
Bregman, L. M. (1967) The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Phys., 7, 200-217.
Jolliffe, I. T. (1982) A note on the use of principal components in regression. Appl. Statist., 31, 300-303.
Meier, L., van de Geer, S. and Bühlmann, P. (2009) High-dimensional additive modelling. Ann. Statist., 37, 3779-3821.
Rao, C. R. (1945) Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calc. Math. Soc., 37, 81-91.
Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization paths for generalized linear models via coordinate descent. J. Statist. Softwr., 33, 1-22.
1982; 12
2010; 33
1991; 19
2010; 38
2010; 16
2010; 105
1945; 37
1982; 31
1982b; 10
2004; 46
2009
1998
1997
2007
1981; 9
2004
2003
1992
1982a; 67
1996; 58
2008; 2
1981; 43
2007; 35
1979
2004; 32
1976; 32
1967; 7
2004; 99
1986; 81
2009; 96
2000
2002; 64
2009; 71
2009; 100
1985
2001; 17
1998; 93
2010; 52
2005; 33
2001; 96
2009; 37
2007; 69
1989
Amari (2023031303053345800_) 1982; 10
James (2023031303053345800_) 2002; 64
James (2023031303053345800_) 2009; 71
Bregman (2023031303053345800_) 1967; 7
Hesterberg (2023031303053345800_) 2008; 2
Rao (2023031303053345800_) 1945; 37
Goeman (2023031303053345800_) 2010; 52
Park (2023031303053345800_) 2007; 69
Fan (2023031303053345800_) 2010; 38
Friedman (2023031303053345800_) 2010; 33
Hocking (2023031303053345800_) 1976; 32
Fan (2023031303053345800_) 2001; 96
Madigan (2023031303053345800_) 2004; 32
Wei (2023031303053345800_) 1998
McCullagh (2023031303053345800_) 1989
Müller (2023031303053345800_) 2005; 33
Troyanskaya (2023031303053345800_) 2001; 17
Burbea (2023031303053345800_) 1982; 12
Shen (2023031303053345800_) 2004; 46
Amari (2023031303053345800_) 1982; 67
Myers (2023031303053345800_) 2007
Candes (2023031303053345800_) 2007; 35
Kass (2023031303053345800_) 1997
Huang (2023031303053345800_) 2010; 38
Menter (2023031303053345800_) 2010; 16
Allgower (2023031303053345800_) 2003
Efron (2023031303053345800_) 1986; 81
Zou (2023031303053345800_) 2007; 35
Spivak (2023031303053345800_) 1979
Ye (2023031303053345800_) 1998; 93
Amari (2023031303053345800_) 2000
Efron (2023031303053345800_) 2004; 99
do Carmo (2023031303053345800_) 1992
Kato (2023031303053345800_) 2009; 100
Burnham (2023031303053345800_) 2000
Meier (2023031303053345800_) 2009; 37
Efron (2023031303053345800_) 2004; 32
Stein (2023031303053345800_) 1981; 9
Wit (2023031303053345800_) 2004
Goeman (2023031303053345800_) 2009
Amari (2023031303053345800_) 1985
Atkinson (2023031303053345800_) 1981; 43
James (2023031303053345800_) 2009; 96
Tibshirani (2023031303053345800_) 1996; 58
Jolliffe (2023031303053345800_) 1982; 31
Vos (2023031303053345800_) 1991; 19
Li (2023031303053345800_) 2010; 105
Wu (2023031303053345800_) 2008; 2
References_xml – reference: Amari, S.-I. (1985) Differential-geometrical Methods in Statistics. New York: Springer.
– reference: Fan, J. and Song, R. (2010) Sure independence screening in generalized linear models with NP-dimensionality. Ann. Statist., 38, 3567-3604.
– reference: do Carmo, M. P. (1992) Riemannian Geometry. Boston: Birkhäuser.
– reference: Kato, K. (2009) On the degrees of freedom in shrinkage estimation. J. Multiv. Anal., 100, 1338-1352.
– reference: Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization paths for generalized linear models via coordinate descent. J. Statist. Softwr., 33, 1-22.
– reference: James, G. M. and Radchenko, P. (2009) A generalized Dantzig selector with shrinkage tuning. Biometrika, 96, 323-337.
– reference: Hesterberg, T., Choi, N. H., Meire, L. and Fraley, C. (2008) Least angle and l1 penalized regression: a review. Statist. Surv., 2, 61-93.
– reference: Müller, H.-G. and Stadtmüller, U. (2005) Generalized functional linear models. Ann. Statist., 33, 774-805.
– reference: Fan, J. and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Ass., 96, 1348-1360.
– reference: Park, M. Y. and Hastie, T. (2007) L1-regularization path algorithm for generalized linear models. J. R. Statist. Soc. B, 69, 659-677.
– reference: Rao, C. R. (1945) Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calc. Math. Soc., 37, 81-91.
– reference: Wu, T. T. and Lange, K. (2008) Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Statist., 2, 224-244.
– reference: Burnham, K. P. and Anderson, D. R. (2000) Model Selection and Inference: a Practical Information-theoretical Approach. New York: Springer.
– reference: Shen, X., Huang, H.-C. and Ye, J. (2004) Adaptive model selection and assessment for exponential family distributions. Technometrics, 46, 306-317.
– reference: Zou, H., Hastie, T. and Tibshirani, R. (2007) On the ''degrees of freedom'' of the lasso. Ann. Statist., 35, 2173-2192.
– reference: Allgower, E. and Georg, K. (2003) Introduction to Numerical Continuation Methods. New York: Society for Industrial and Applied Mathematics.
– reference: Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004) Least angle regression (with discussion). Ann. Statist., 32, 407-451.
– reference: Jolliffe, I. T. (1982) A note on the use of principal components in regression. Appl. Statist., 31, 300-303.
– reference: Amari, S.-I. (1982a) Geometrical theory of asymptotic ancillarity and conditional inference. Biometrika, 67, 1-17.
– reference: Hocking, R. R. (1976) The analysis and selection of variables in linear regression. Biometrics, 32, 1-49.
– reference: Li, Y., Wang, N. and Carroll, R. J. (2010) Generalized functional linear models with semi-parametric single-index interaction. J. Am. Statist. Ass., 105, 621-633.
– reference: Wit, E. C. and McClure, J. D. (2004) Statistics for Microarrays: Design, Analysis and Inference. Chichester: Wiley.
– reference: Amari, S.-I. (1982b) Differential geometry of curved exponential families-curvatures and information loss. Ann. Statist., 10, 357-385.
– reference: Kass, R. and Vos, P. W. (1997) Geometrical Foundation of Asymptotic Inference. New York: Wiley.
– reference: Efron, B. (2004) The estimation of prediction error: covariance penalties and cross-validation. J. Am. Statist. Ass., 99, 619-632.
– reference: Bregman, L. M. (1967) The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Phys., 7, 200-217.
– reference: Spivak, M. (1979) A Comprehensive Introduction to Differential Geometry, 2nd edn. Boston: Publish or Perish.
– reference: Candes, E. and Tao, T. (2007) The Dantzig selector: statistical estimation when p is much larger that n (with discussion). Ann. Statist., 35, 2313-2351.
– reference: Menter, D.G., Schilsky, R. L. and Dubois, R. N. (2010) Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clin. Cancer Res., 16, 1384-1390.
– reference: Wei, B.-C. (1998) Exponential Family Nonlinear Models. Singapore: Springer.
– reference: Ye, J. (1998) On measuring and correcting the effects of data mining and model selection. J. Am. Statist. Ass., 93, 120-131.
– reference: Stein, C. (1981) Estimation of the mean of a multivariate normal distribution. Ann. Statist., 9, 1135-1151.
– reference: Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288.
– reference: Madigan, D. and Ridgeway, G. (2004) Discussion to least angle regression. Ann. Statist., 32, 465-469.
– reference: Amari, S.-I. and Nagaoka, H. (2000) Methods of Information Geometry. Providence: American Mathematical Society.
– reference: James, G. M., Radchenko, P. and Lv, J. (2009) DASSO: connections between the Dantzig selector and lasso. J. R. Statist. Soc. B, 71, 127-142.
– reference: James, G. M. (2002) Generalized linear models with functional predictors. J. R. Statist. Soc. B, 64, 411-432.
– reference: Meier, L., van de Geer, S. and Bühlmann, P. (2009) High-dimensional additive modelling. Ann. Statist., 37, 3779-3821.
– reference: Myers, R. H., Montgomery, D. C. and Vining, G. G. (2007) Generalized Linear Models: with Applications in Engineering and the Sciences. New York: Wiley.
– reference: Atkinson, C. and Mitchell, A. F. S. (1981) Rao's distance measure. Sankhya A, 43, 345-365.
– reference: Efron, B. (1986) How biased is the apparent error rate of a prediction rule?J. Am. Statist. Ass., 81, 461-470.
– reference: Huang, J. and Zhang, T. (2010) The benefit of group sparsity. Ann. Statist., 38, 1978-2004.
– reference: Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D. and Altman, R. B. (2001) Missing value estimation methods for DNA. Bioinformatics, 17, 520-525.
– reference: Burbea J. and Rao, R. C. (1982) Entropy differential metric, distance and divergence measures in probability spaces-a unified approach. J. Multiv. Anal., 12, 575-596.
– reference: Vos, P. W. (1991) A geometric approach to detecting influential cases. Ann. Statist., 19, 1570-1581.
– reference: Goeman, J. (2010) L1 penalized estimation in the Cox proportional hazards model. Biometr. J., 52, 70-84.
– volume: 67
  start-page: 1
  year: 1982a
  end-page: 17
  article-title: Geometrical theory of asymptotic ancillarity and conditional inference
  publication-title: Biometrika
– year: 1985
– volume: 31
  start-page: 300
  year: 1982
  end-page: 303
  article-title: A note on the use of principal components in regression
  publication-title: Appl. Statist.
– volume: 35
  start-page: 2173
  year: 2007
  end-page: 2192
  article-title: On the ‘‘degrees of freedom’’ of the lasso
  publication-title: Ann. Statist.
– year: 2009
– volume: 2
  start-page: 61
  year: 2008
  end-page: 93
  article-title: Least angle and penalized regression: a review
  publication-title: Statist. Surv.
– volume: 52
  start-page: 70
  year: 2010
  end-page: 84
  article-title: L1 penalized estimation in the Cox proportional hazards model
  publication-title: Biometr. J.
– volume: 43
  start-page: 345
  year: 1981
  end-page: 365
  article-title: Rao's distance measure
  publication-title: Sankhya A
– volume: 12
  start-page: 575
  year: 1982
  end-page: 596
  article-title: Entropy differential metric, distance and divergence measures in probability spaces—a unified approach
  publication-title: J. Multiv. Anal.
– volume: 33
  start-page: 774
  year: 2005
  end-page: 805
  article-title: Generalized functional linear models
  publication-title: Ann. Statist.
– year: 2007
– year: 1989
– year: 2003
– year: 2000
– volume: 9
  start-page: 1135
  year: 1981
  end-page: 1151
  article-title: Estimation of the mean of a multivariate normal distribution
  publication-title: Ann. Statist.
– volume: 96
  start-page: 323
  year: 2009
  end-page: 337
  article-title: A generalized Dantzig selector with shrinkage tuning
  publication-title: Biometrika
– volume: 100
  start-page: 1338
  year: 2009
  end-page: 1352
  article-title: On the degrees of freedom in shrinkage estimation
  publication-title: J. Multiv. Anal.
– volume: 69
  start-page: 659
  year: 2007
  end-page: 677
  article-title: ‐regularization path algorithm for generalized linear models
  publication-title: J. R. Statist. Soc. B
– volume: 2
  start-page: 224
  year: 2008
  end-page: 244
  article-title: Coordinate descent algorithms for lasso penalized regression
  publication-title: Ann. Appl. Statist.
– volume: 37
  start-page: 3779
  year: 2009
  end-page: 3821
  article-title: High‐dimensional additive modelling
  publication-title: Ann. Statist.
– year: 1979
– year: 1992
– volume: 32
  start-page: 407
  year: 2004
  end-page: 451
  article-title: Least angle regression (with discussion)
  publication-title: Ann. Statist.
– volume: 38
  start-page: 1978
  year: 2010
  end-page: 2004
  article-title: The benefit of group sparsity
  publication-title: Ann. Statist.
– volume: 32
  start-page: 465
  year: 2004
  end-page: 469
  article-title: Discussion to least angle regression
  publication-title: Ann. Statist.
– year: 1998
– volume: 38
  start-page: 3567
  year: 2010
  end-page: 3604
  article-title: Sure independence screening in generalized linear models with ‐dimensionality
  publication-title: Ann. Statist.
– volume: 105
  start-page: 621
  year: 2010
  end-page: 633
  article-title: Generalized functional linear models with semi‐parametric single‐index interaction
  publication-title: J. Am. Statist. Ass.
– volume: 17
  start-page: 520
  year: 2001
  end-page: 525
  article-title: Missing value estimation methods for DNA
  publication-title: Bioinformatics
– volume: 19
  start-page: 1570
  year: 1991
  end-page: 1581
  article-title: A geometric approach to detecting influential cases
  publication-title: Ann. Statist.
– volume: 35
  start-page: 2313
  year: 2007
  end-page: 2351
  article-title: The Dantzig selector: statistical estimation when is much larger that (with discussion)
  publication-title: Ann. Statist.
– volume: 10
  start-page: 357
  year: 1982b
  end-page: 385
  article-title: Differential geometry of curved exponential families‐curvatures and information loss
  publication-title: Ann. Statist.
– volume: 16
  start-page: 1384
  year: 2010
  end-page: 1390
  article-title: Cyclooxygenase‐2 and cancer treatment: understanding the risk should be worth the reward
  publication-title: Clin. Cancer Res.
– volume: 37
  start-page: 81
  year: 1945
  end-page: 91
  article-title: Information and the accuracy attainable in the estimation of statistical parameters
  publication-title: Bull. Calc. Math. Soc.
– volume: 32
  start-page: 1
  year: 1976
  end-page: 49
  article-title: The analysis and selection of variables in linear regression
  publication-title: Biometrics
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Statist. Ass.
– year: 2004
– year: 1997
– volume: 7
  start-page: 200
  year: 1967
  end-page: 217
  article-title: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
  publication-title: USSR Comput. Math. Phys.
– volume: 81
  start-page: 461
  year: 1986
  end-page: 470
  article-title: How biased is the apparent error rate of a prediction rule?
  publication-title: J. Am. Statist. Ass.
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Statist. Softwr.
– volume: 99
  start-page: 619
  year: 2004
  end-page: 632
  article-title: The estimation of prediction error: covariance penalties and cross‐validation
  publication-title: J. Am. Statist. Ass.
– volume: 64
  start-page: 411
  year: 2002
  end-page: 432
  article-title: Generalized linear models with functional predictors
  publication-title: J. R. Statist. Soc. B
– volume: 71
  start-page: 127
  year: 2009
  end-page: 142
  article-title: DASSO: connections between the Dantzig selector and lasso
  publication-title: J. R. Statist. Soc. B
– volume: 93
  start-page: 120
  year: 1998
  end-page: 131
  article-title: On measuring and correcting the effects of data mining and model selection
  publication-title: J. Am. Statist. Ass.
– volume: 46
  start-page: 306
  year: 2004
  end-page: 317
  article-title: Adaptive model selection and assessment for exponential family distributions
  publication-title: Technometrics
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Statist. Soc. B
– volume: 37
  start-page: 3779
  year: 2009
  ident: 2023031303053345800_
  article-title: High-dimensional additive modelling
  publication-title: Ann. Statist.
  doi: 10.1214/09-AOS692
– volume-title: Generalized Linear Models: with Applications in Engineering and the Sciences
  year: 2007
  ident: 2023031303053345800_
– volume: 31
  start-page: 300
  year: 1982
  ident: 2023031303053345800_
  article-title: A note on the use of principal components in regression
  publication-title: Appl. Statist.
  doi: 10.2307/2348005
– volume: 7
  start-page: 200
  year: 1967
  ident: 2023031303053345800_
  article-title: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
  publication-title: USSR Comput. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– volume-title: A Comprehensive Introduction to Differential Geometry
  year: 1979
  ident: 2023031303053345800_
– volume-title: Differential-geometrical Methods in Statistics
  year: 1985
  ident: 2023031303053345800_
  doi: 10.1007/978-1-4612-5056-2
– volume: 12
  start-page: 575
  year: 1982
  ident: 2023031303053345800_
  article-title: Entropy differential metric, distance and divergence measures in probability spaces—a unified approach
  publication-title: J. Multiv. Anal.
  doi: 10.1016/0047-259X(82)90065-3
– volume: 67
  start-page: 1
  year: 1982
  ident: 2023031303053345800_
  article-title: Geometrical theory of asymptotic ancillarity and conditional inference
  publication-title: Biometrika
  doi: 10.1093/biomet/69.1.1
– volume-title: Methods of Information Geometry
  year: 2000
  ident: 2023031303053345800_
– volume: 81
  start-page: 461
  year: 1986
  ident: 2023031303053345800_
  article-title: How biased is the apparent error rate of a prediction rule?
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1986.10478291
– volume: 9
  start-page: 1135
  year: 1981
  ident: 2023031303053345800_
  article-title: Estimation of the mean of a multivariate normal distribution
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176345632
– volume-title: Statistics for Microarrays: Design, Analysis and Inference
  year: 2004
  ident: 2023031303053345800_
  doi: 10.1002/0470011084
– volume: 37
  start-page: 81
  year: 1945
  ident: 2023031303053345800_
  article-title: Information and the accuracy attainable in the estimation of statistical parameters
  publication-title: Bull. Calc. Math. Soc.
– volume: 100
  start-page: 1338
  year: 2009
  ident: 2023031303053345800_
  article-title: On the degrees of freedom in shrinkage estimation
  publication-title: J. Multiv. Anal.
  doi: 10.1016/j.jmva.2008.12.002
– volume: 64
  start-page: 411
  year: 2002
  ident: 2023031303053345800_
  article-title: Generalized linear models with functional predictors
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/1467-9868.00342
– volume: 43
  start-page: 345
  year: 1981
  ident: 2023031303053345800_
  article-title: Rao’s distance measure
  publication-title: Sankhya A
– volume: 38
  start-page: 1978
  year: 2010
  ident: 2023031303053345800_
  article-title: The benefit of group sparsity
  publication-title: Ann. Statist.
  doi: 10.1214/09-AOS778
– volume: 32
  start-page: 1
  year: 1976
  ident: 2023031303053345800_
  article-title: The analysis and selection of variables in linear regression
  publication-title: Biometrics
  doi: 10.2307/2529336
– volume: 96
  start-page: 1348
  year: 2001
  ident: 2023031303053345800_
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214501753382273
– volume: 17
  start-page: 520
  year: 2001
  ident: 2023031303053345800_
  article-title: Missing value estimation methods for DNA
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.520
– volume-title: Exponential Family Nonlinear Models
  year: 1998
  ident: 2023031303053345800_
– volume-title: Generalized Linear Models
  year: 1989
  ident: 2023031303053345800_
  doi: 10.1007/978-1-4899-3242-6
– volume: 52
  start-page: 70
  year: 2010
  ident: 2023031303053345800_
  article-title: L1 penalized estimation in the Cox proportional hazards model
  publication-title: Biometr. J.
  doi: 10.1002/bimj.200900028
– volume: 2
  start-page: 61
  year: 2008
  ident: 2023031303053345800_
  article-title: Least angle and l1 penalized regression: a review
  publication-title: Statist. Surv.
  doi: 10.1214/08-SS035
– volume: 19
  start-page: 1570
  year: 1991
  ident: 2023031303053345800_
  article-title: A geometric approach to detecting influential cases
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176348262
– volume: 2
  start-page: 224
  year: 2008
  ident: 2023031303053345800_
  article-title: Coordinate descent algorithms for lasso penalized regression
  publication-title: Ann. Appl. Statist.
  doi: 10.1214/07-AOAS147
– volume: 93
  start-page: 120
  year: 1998
  ident: 2023031303053345800_
  article-title: On measuring and correcting the effects of data mining and model selection
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1998.10474094
– volume: 96
  start-page: 323
  year: 2009
  ident: 2023031303053345800_
  article-title: A generalized Dantzig selector with shrinkage tuning
  publication-title: Biometrika
  doi: 10.1093/biomet/asp013
– volume-title: Introduction to Numerical Continuation Methods
  year: 2003
  ident: 2023031303053345800_
  doi: 10.1137/1.9780898719154
– volume: 32
  start-page: 407
  year: 2004
  ident: 2023031303053345800_
  article-title: Least angle regression (with discussion)
  publication-title: Ann. Statist.
  doi: 10.1214/009053604000000067
– volume: 38
  start-page: 3567
  year: 2010
  ident: 2023031303053345800_
  article-title: Sure independence screening in generalized linear models with NP-dimensionality
  publication-title: Ann. Statist.
  doi: 10.1214/10-AOS798
– volume: 69
  start-page: 659
  year: 2007
  ident: 2023031303053345800_
  article-title: L1-regularization path algorithm for generalized linear models
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2007.00607.x
– volume: 35
  start-page: 2173
  year: 2007
  ident: 2023031303053345800_
  article-title: On the ‘‘degrees of freedom’’ of the lasso
  publication-title: Ann. Statist.
  doi: 10.1214/009053607000000127
– volume: 99
  start-page: 619
  year: 2004
  ident: 2023031303053345800_
  article-title: The estimation of prediction error: covariance penalties and cross-validation
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214504000000692
– volume: 35
  start-page: 2313
  year: 2007
  ident: 2023031303053345800_
  article-title: The Dantzig selector: statistical estimation when p is much larger that n (with discussion)
  publication-title: Ann. Statist.
– volume: 32
  start-page: 465
  year: 2004
  ident: 2023031303053345800_
  article-title: Discussion to least angle regression
  publication-title: Ann. Statist.
– volume: 58
  start-page: 267
  year: 1996
  ident: 2023031303053345800_
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 33
  start-page: 1
  year: 2010
  ident: 2023031303053345800_
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Statist. Softwr.
– volume-title: Geometrical Foundation of Asymptotic Inference
  year: 1997
  ident: 2023031303053345800_
  doi: 10.1002/9781118165980
– volume: 46
  start-page: 306
  year: 2004
  ident: 2023031303053345800_
  article-title: Adaptive model selection and assessment for exponential family distributions
  publication-title: Technometrics
  doi: 10.1198/004017004000000338
– volume-title: Riemannian Geometry
  year: 1992
  ident: 2023031303053345800_
  doi: 10.1007/978-1-4757-2201-7
– volume-title: penalized: L1 (lasso) and L2 (ridge) penalized estimation in GLMs and in the Cox model
  year: 2009
  ident: 2023031303053345800_
– volume: 71
  start-page: 127
  year: 2009
  ident: 2023031303053345800_
  article-title: DASSO: connections between the Dantzig selector and lasso
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2008.00668.x
– volume-title: Model Selection and Inference: a Practical Information-theoretical Approach
  year: 2000
  ident: 2023031303053345800_
– volume: 16
  start-page: 1384
  year: 2010
  ident: 2023031303053345800_
  article-title: Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-09-0788
– volume: 10
  start-page: 357
  year: 1982
  ident: 2023031303053345800_
  article-title: Differential geometry of curved exponential families-curvatures and information loss
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176345779
– volume: 105
  start-page: 621
  year: 2010
  ident: 2023031303053345800_
  article-title: Generalized functional linear models with semi-parametric single-index interaction
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/jasa.2010.tm09313
– volume: 33
  start-page: 774
  year: 2005
  ident: 2023031303053345800_
  article-title: Generalized functional linear models
  publication-title: Ann. Statist.
  doi: 10.1214/009053604000001156
SSID ssj0000673
Score 2.182589
Snippet Sparsity is an essential feature of many contemporary data problems. Remote sensing, various forms of automated screening and other high throughput measurement...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 471
SubjectTerms Algorithms
Computation
Computational methods
Covariance penalty theory
Degrees of freedom
Differential geometry
Equivalence
Estimators
Fisher information
Generalization
Generalized degrees of freedom
Generalized linear model
Generalized linear models
Geometric angles
Geometry
Information geometry
Least angle regression
Linear analysis
Linear models
Linear regression
Mathematical analysis
Mathematical independent variables
Mathematical models
Mathematical vectors
Measurement
Path following algorithm
Regression
Regression analysis
Remote sensing
Screening
Sparse models
Sparsity
Statistical analysis
Statistics
Studies
Tangents
Variable selection
Title Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models
URI https://api.istex.fr/ark:/67375/WNG-2X6PQGGR-D/fulltext.pdf
https://www.jstor.org/stable/24772734
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12000
https://www.proquest.com/docview/1355413898
https://www.proquest.com/docview/1372627527
https://www.proquest.com/docview/1418120821
Volume 75
WOSCitedRecordID wos000319406500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-9868
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000673
  issn: 1369-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-Nloe9ML6mZRvICIQEUlDsJXE87QUoLQ9TNToGfbMc26kQJZ2SDiH-enzOB500TUK8RcpZuth355_ju98BvMBiRa5c9HPHrjiMC1WESqUqVFnu0AYt0txnW3w55dNpNp-Lsy046WphGn6I_ocbeoaP1-jgKq83nLyq6_wNxUqTOzBkznCTAQxHs_HF6WYkPmrqroTThbKWnhQzef6OvrYhDXFuf3W5iddQ5yZ29ZvPeOf_1L4P91rQSd42VvIAtmz5ELYRZzY0zY9gPWobpTiHX5KFXf3ATluaLLG1D1HlYmlJZRdN0mx5TBQxNw_oOMrJekVcsKpq6156Zutvv60hqL-qiO-_Uz-Gi_GHz-8_hm1DhlAnTEShToUtuEkstVo5YJMVeXFUmDTKeWwLk1lhIq1pZhMuhNIi5UZkxtDEpKnI3Ga5C4NyVdo9IElcREYZh1fdgUxbN8bmkcg5M9rGnGUBvOpWReqWrRybZixld2rBiZR-IgN43steNhwdN0q99Ivbi6jqO2a18UR-nU4km6dnnyaTmRwFsOtXvxdkMUeUFwdw2JmDbD29lhQBG972OpWf9a-dj-LFiyrt6gplOEM2aMZvkYkRazlARgN47Q3olm-Rs_Pzd_5p_1-ED2CbNd08wogewmBdXdkncFf_dNZWPW295w_YTx94
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-0J9gXv4tbq0YUQWFlk-5uNr6p513F86jXVu8tZJPsIV73ZPcq4l9vJvvhFUpBfFvIBPIxM_llM_MbgGeYrMiV837u2hWHcaGKUKlUhSrLHdqgRZr7aIsvEz6dZvO5OGxjczAXpuGH6H-4oWV4f40Gjj-kN6y8quv8FcVUk6swiJ0eOQUfDGejk8mmK95vEq-EGwxlLT8phvL87X3uRBrg4v7qghPPwc5N8OpPn9HN_xz3LbjRwk7yptGT23DFlndgG5FmQ9R8F9bDtlSKM_klWdjVKdba0mSJxX2IKhdLSyq7aMJmy9dEEXNxh46lnKxXxLmrqrau0XNbf_ttDcEJqIr4Cjz1PTgZvT9-dxC2JRlCnTARhToVtuAmsdRq5aBNVuTFfmHSKOexLUxmhYm0pplNuBBKi5QbkRlDE5OmInPH5Q5slavS3geSxEVklHGI1V3JtHV9bB6JnDOjbcxZFsCLblukbvnKsWzGUnb3FlxI6RcygKe97I-GpeNCqed-d3sRVX3HuDaeyK_TsWTz9PDzeDyTwwB2_Pb3gizmiPPiAPY6fZCtrdeSImTD91435Cd9s7NSfHpRpV2doQxnyAfN-CUyMaItB8loAC-9Bl0yFzk7Onrrv3b_RfgxXD84_jSRkw_Tjw9gmzW1PcKI7sHWujqzD-Ga_uk0r3rUmtIf-i4jaA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEB90V-S--D6snhpRBIVK02ubxm_ququ4LOuep_stpHks4to92j0R_3oz6cM9OA7Eb4VMII-ZyS_NzG8AnmKyIpPO-7lrVxImVtpQykyGMi8c2qA2K3y0xZcpm83y5ZLP29gczIVp-CH6H25oGd5fo4GbE213rLyq6-IlxVSTyzBMsIrMAIajxfh4uuuKD5vEK-4GQ-OWnxRDef72PnMiDXFxf3XBiWdg5y549afP-Pp_jvsGXGthJ3nd6MlNuGTKW7CHSLMhar4N21FbKsWZ_JqszOYH1tpSZI3FfYgsV2tDKrNqwmbLV0QSfX6HjqWcbDfEuauqNq7Rc1t_-200wQnIivgKPPUdOB6_-_z2fdiWZAhVGvMoVBk3lunUUKOkgza5Leyh1VlUsMRYnRuuI6VoblLGuVQ8Y5rnWtNUZxnP3XG5D4NyU5q7QNLERlpqh1jdlUwZ18cUES9YrJVJWJwH8LzbFqFavnIsm7EW3b0FF1L4hQzgSS970rB0nCv1zO9uLyKr7xjXxlLxdTYR8TKbf5pMFmIUwL7f_l4wThjivCSAg04fRGvrtaAI2fC91w35cd_srBSfXmRpNqcow2Lkg47ZBTIJoi0HyWgAL7wGXTAXsTg6euO_7v2L8CO4Oh-NxfTD7ON92Iub0h5hRA9gsK1OzQO4on46xasetpb0B1LcIuM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+geometric+least+angle+regression%3A+a+differential+geometric+approach+to+sparse+generalized+linear+models&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Augugliaro%2C+Luigi&rft.au=Mineo%2C+Angelo+M&rft.au=Wit%2C+Ernst+C&rft.date=2013-06-01&rft.pub=Oxford+University+Press&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=75&rft.issue=3&rft.spage=471&rft_id=info:doi/10.1111%2Frssb.12000&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2979954941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon