The “Phagocytic Synapse” and Clearance of Apoptotic Cells

Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular renewal and innate immunity. The timely removal of apoptotic cells prevents progression to secondary necrosis and release of cellular contents...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in immunology Vol. 8; p. 1708
Main Authors: Barth, Nicole D., Marwick, John A., Vendrell, Marc, Rossi, Adriano G., Dransfield, Ian
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media S.A 04.12.2017
Subjects:
ISSN:1664-3224, 1664-3224
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular renewal and innate immunity. The timely removal of apoptotic cells prevents progression to secondary necrosis and release of cellular contents, preventing cellular stress and inflammation. In addition, altered phagocyte behavior following apoptotic cell contact and phagocytosis engages an anti-inflammatory phenotype, which impacts upon development and progression of inflammatory and immune responses. Defective apoptotic cell clearance underlies the development of various inflammatory and autoimmune diseases. There is considerable functional redundancy in the receptors that mediate apoptotic cell clearance, highlighting the importance of this process in diverse physiological processes. A single phagocyte may utilize multiple receptor pathways for the efficient capture of apoptotic cells by phagocytes (tethering) and the subsequent initiation of signaling events necessary for internalization. In this review, we will consider the surface alterations and molecular opsonization events associated with apoptosis that may represent a tunable signal that confers distinct intracellular signaling events and hence specific phagocyte responses in a context-dependent manner. Efficient molecular communication between phagocytes and apoptotic targets may require cooperative receptor utilization and the establishment of efferocytic synapse, which acts to stabilize adhesive interactions and facilitate the organization of signaling platforms that are necessary for controlling phagocyte responses.
AbstractList Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular renewal and innate immunity. The timely removal of apoptotic cells prevents progression to secondary necrosis and release of cellular contents, preventing cellular stress and inflammation. In addition, altered phagocyte behavior following apoptotic cell contact and phagocytosis engages an anti-inflammatory phenotype, which impacts upon development and progression of inflammatory and immune responses. Defective apoptotic cell clearance underlies the development of various inflammatory and autoimmune diseases. There is considerable functional redundancy in the receptors that mediate apoptotic cell clearance, highlighting the importance of this process in diverse physiological processes. A single phagocyte may utilize multiple receptor pathways for the efficient capture of apoptotic cells by phagocytes (tethering) and the subsequent initiation of signaling events necessary for internalization. In this review, we will consider the surface alterations and molecular opsonization events associated with apoptosis that may represent a tunable signal that confers distinct intracellular signaling events and hence specific phagocyte responses in a context-dependent manner. Efficient molecular communication between phagocytes and apoptotic targets may require cooperative receptor utilization and the establishment of efferocytic synapse, which acts to stabilize adhesive interactions and facilitate the organization of signaling platforms that are necessary for controlling phagocyte responses.
Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular renewal and innate immunity. The timely removal of apoptotic cells prevents progression to secondary necrosis and release of cellular contents, preventing cellular stress and inflammation. In addition, altered phagocyte behavior following apoptotic cell contact and phagocytosis engages an anti-inflammatory phenotype, which impacts upon development and progression of inflammatory and immune responses. Defective apoptotic cell clearance underlies the development of various inflammatory and autoimmune diseases. There is considerable functional redundancy in the receptors that mediate apoptotic cell clearance, highlighting the importance of this process in diverse physiological processes. A single phagocyte may utilize multiple receptor pathways for the efficient capture of apoptotic cells by phagocytes (tethering) and the subsequent initiation of signaling events necessary for internalization. In this review, we will consider the surface alterations and molecular opsonization events associated with apoptosis that may represent a tunable signal that confers distinct intracellular signaling events and hence specific phagocyte responses in a context-dependent manner. Efficient molecular communication between phagocytes and apoptotic targets may require cooperative receptor utilization and the establishment of efferocytic synapse, which acts to stabilize adhesive interactions and facilitate the organization of signaling platforms that are necessary for controlling phagocyte responses.Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular renewal and innate immunity. The timely removal of apoptotic cells prevents progression to secondary necrosis and release of cellular contents, preventing cellular stress and inflammation. In addition, altered phagocyte behavior following apoptotic cell contact and phagocytosis engages an anti-inflammatory phenotype, which impacts upon development and progression of inflammatory and immune responses. Defective apoptotic cell clearance underlies the development of various inflammatory and autoimmune diseases. There is considerable functional redundancy in the receptors that mediate apoptotic cell clearance, highlighting the importance of this process in diverse physiological processes. A single phagocyte may utilize multiple receptor pathways for the efficient capture of apoptotic cells by phagocytes (tethering) and the subsequent initiation of signaling events necessary for internalization. In this review, we will consider the surface alterations and molecular opsonization events associated with apoptosis that may represent a tunable signal that confers distinct intracellular signaling events and hence specific phagocyte responses in a context-dependent manner. Efficient molecular communication between phagocytes and apoptotic targets may require cooperative receptor utilization and the establishment of efferocytic synapse, which acts to stabilize adhesive interactions and facilitate the organization of signaling platforms that are necessary for controlling phagocyte responses.
Author Marwick, John A.
Rossi, Adriano G.
Barth, Nicole D.
Vendrell, Marc
Dransfield, Ian
AuthorAffiliation 1 MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
AuthorAffiliation_xml – name: 1 MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
Author_xml – sequence: 1
  givenname: Nicole D.
  surname: Barth
  fullname: Barth, Nicole D.
– sequence: 2
  givenname: John A.
  surname: Marwick
  fullname: Marwick, John A.
– sequence: 3
  givenname: Marc
  surname: Vendrell
  fullname: Vendrell, Marc
– sequence: 4
  givenname: Adriano G.
  surname: Rossi
  fullname: Rossi, Adriano G.
– sequence: 5
  givenname: Ian
  surname: Dransfield
  fullname: Dransfield, Ian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29255465$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1q3DAUhUVJadI0-66Kl93MVD-WLC9aCEN_AoEWmq7FtXw1o2BbruQJzC4P0r5cnqTyTFKSQgVC4uqc74p7XpKjIQxIyGtGl0Lo-p3zfb9dcsqqZd5UPyMnTKlyITgvjx7dj8lZStc0r7IWQsgX5JjXXMpSyRPy_mqDxd3tr28bWAe7m7wtvu8GGBPe3f4uYGiLVYcQYbBYBFecj2GcwqxaYdelV-S5gy7h2f15Sn58-ni1-rK4_Pr5YnV-ubCS62nhEEVLgaPDpiyRW62sdFhVWrCWYttUXAPkKlpoQDBb1VQCt6oBrh2l4pRcHLhtgGszRt9D3JkA3uwLIa4NxPyrDk0jZGu5pK0TUGpugaq6aazWQqIr3cz6cGCN26bH1uIwReieQJ--DH5j1uHGyIoLSlUGvL0HxPBzi2kyvU82jwMGDNtkWF3pignF6ix987jX3yYP888CdRDYGFKK6Iz1E0w-zK19Zxg1c9Zmn7WZszb7rLOR_mN8YP_X8gdKu6_5
CitedBy_id crossref_primary_10_1096_fj_202002078R
crossref_primary_10_1002_anie_202117218
crossref_primary_10_1126_sciimmunol_adj2898
crossref_primary_10_3389_fimmu_2025_1524315
crossref_primary_10_3389_fphys_2021_621830
crossref_primary_10_1098_rsob_200039
crossref_primary_10_1002_acr2_11245
crossref_primary_10_1038_s41598_023_48492_9
crossref_primary_10_3390_ijms24032796
crossref_primary_10_1007_s00436_023_07828_0
crossref_primary_10_3390_cells10051265
crossref_primary_10_1080_08820139_2024_2415409
crossref_primary_10_1186_s12964_025_02090_6
crossref_primary_10_1002_jcsm_13024
crossref_primary_10_1016_j_jbc_2024_105765
crossref_primary_10_1089_ars_2020_8203
crossref_primary_10_7554_eLife_82094
crossref_primary_10_1002_dvdy_163
crossref_primary_10_1007_s00281_019_00760_5
crossref_primary_10_3389_fimmu_2024_1443096
crossref_primary_10_1016_j_cub_2020_10_066
crossref_primary_10_1002_ange_202117218
crossref_primary_10_3389_fncel_2021_673217
crossref_primary_10_3389_fimmu_2020_00553
crossref_primary_10_1007_s11705_021_2080_8
crossref_primary_10_1084_jem_20201353
crossref_primary_10_3389_fimmu_2020_01097
crossref_primary_10_1016_j_coi_2020_07_007
crossref_primary_10_1111_imr_13266
crossref_primary_10_1016_j_thromres_2018_01_023
crossref_primary_10_1002_ange_202113020
crossref_primary_10_1016_j_beha_2020_101221
crossref_primary_10_1111_imr_13170
crossref_primary_10_7554_eLife_55732
crossref_primary_10_1186_s12974_021_02201_3
crossref_primary_10_1038_s41467_020_17772_7
crossref_primary_10_1016_j_cmet_2021_08_001
crossref_primary_10_3390_antiox11020212
crossref_primary_10_1007_s12033_024_01222_6
crossref_primary_10_1002_art_42297
crossref_primary_10_1242_dev_204919
crossref_primary_10_3390_cells11244076
crossref_primary_10_1002_anie_202113020
crossref_primary_10_1055_a_2675_2564
crossref_primary_10_3389_fimmu_2020_00738
crossref_primary_10_1271_kagakutoseibutsu_62_283
crossref_primary_10_1016_j_ejcb_2022_151285
crossref_primary_10_3389_fimmu_2023_1139204
crossref_primary_10_3390_cells11213502
crossref_primary_10_1002_pep2_24181
crossref_primary_10_1111_eci_12948
crossref_primary_10_1038_s41392_025_02332_6
crossref_primary_10_3389_fphar_2019_00055
crossref_primary_10_3389_fphar_2019_00891
crossref_primary_10_3390_ijms25137278
crossref_primary_10_4049_jimmunol_2100532
Cites_doi 10.1126/science.1078124
10.1016/0005-2736(83)90169-4
10.4049/jimmunol.1401719
10.1182/blood-2006-03-011742
10.1101/cshperspect.a009076
10.1038/343170a0
10.1038/sj.onc.1201542
10.1186/1742-2094-9-196
10.1152/physiol.00038.2009
10.1189/jlb.1005571
10.1083/jcb.200206062
10.1038/sj.cdd.4402242
10.1242/jcs.114.1.119
10.1016/j.bbrc.2004.04.003
10.1016/0014-5793(92)80964-I
10.1016/S0960-9822(00)00362-6
10.1016/j.devcel.2016.06.023
10.4049/jimmunol.159.2.919
10.1038/nrn.2016.86
10.1073/pnas.1320174111
10.4049/jimmunol.135.5.3394
10.4049/jimmunol.169.1.487
10.1084/jem.182.5.1545
10.1111/imr.12212
10.1038/417182a
10.1172/JCI116019
10.1101/cshperspect.a004994
10.1073/pnas.1114799108
10.1152/physrev.00033.2007
10.1016/S0092-8674(03)00758-X
10.1038/nature10071
10.1038/emboj.2012.26
10.1073/pnas.83.10.3311
10.1073/pnas.1121101109
10.1146/annurev-biophys-042910-155238
10.4049/jimmunol.180.4.2329
10.1016/S1097-2765(04)00237-0
10.1016/S0952-7915(99)80009-0
10.1186/s12865-016-0143-2
10.1002/cyto.a.20206
10.1038/sj.emboj.7600912
10.1111/imr.12376
10.1016/0378-4274(95)03474-9
10.1083/jcb.201007056
10.3389/fimmu.2016.00018
10.4049/jimmunol.172.3.1882
10.1126/science.1236758
10.1016/S0092-8674(00)81002-8
10.1038/ncb2068
10.1242/jcs.174631
10.1126/science.1152066
10.1038/nature06329
10.1038/46601
10.1038/cdd.2014.86
10.1038/ni.3392
10.1189/jlb.1005550
10.4049/jimmunol.149.12.4029
10.1038/sj.cdd.4400680
10.1016/j.cub.2009.01.042
10.1385/CBB:39:3:223
10.1083/jcb.201004096
10.1182/blood.V85.11.3264.bloodjournal85113264
10.4049/jimmunol.153.3.1254
10.1038/cddis.2015.18
10.1182/blood-2012-09-435057
10.1074/jbc.M109336200
10.1091/mbc.E13-04-0212
10.1242/jcs.066696
10.1172/JCI114328
10.1016/j.bbamcr.2008.01.030
10.1128/MCB.06743-11
10.1073/pnas.94.24.12932
10.4049/jimmunol.1502532
10.1016/S0014-5793(96)01197-0
10.1146/annurev-immunol-032713-120142
10.1242/jcs.01632
10.1084/jem.193.7.855
10.1084/jem.194.6.781
10.1016/0092-8674(95)90520-0
10.1101/cshperspect.a002311
10.1073/pnas.96.16.8925
10.1073/pnas.80.11.3461
10.1038/nri957
10.1074/jbc.M311750200
10.4049/jimmunol.1601520
10.1371/journal.pone.0033142
10.1126/science.285.5425.221
10.1136/thx.2009.133363
10.1111/j.1600-065X.2009.00778.x
10.1073/pnas.93.5.2234
10.1038/327339a0
10.4049/jimmunol.180.4.2522
10.1038/nri3607
10.1016/j.cell.2015.11.048
10.1038/sj.cdd.4402094
10.1038/ni.2670
10.1016/j.neuron.2012.10.015
10.1083/jcb.200708043
10.1016/S1534-5807(03)00090-X
10.1016/0014-4827(67)90405-3
10.1084/jem.142.5.1263
10.1038/ni.1832
10.1016/j.immuni.2007.01.016
10.1083/jcb.201608094
10.1021/bi992221r
10.1002/jlb.64.5.600
10.4049/jimmunol.164.3.1322
10.1074/jbc.M807047200
10.1016/j.earlhumdev.2009.09.005
10.1007/978-1-4615-0067-4_42
10.1073/pnas.96.11.6353
10.1074/jbc.M709105200
10.1126/science.1064535
ContentType Journal Article
Copyright Copyright © 2017 Barth, Marwick, Vendrell, Rossi and Dransfield. 2017 Barth, Marwick, Vendrell, Rossi and Dransfield
Copyright_xml – notice: Copyright © 2017 Barth, Marwick, Vendrell, Rossi and Dransfield. 2017 Barth, Marwick, Vendrell, Rossi and Dransfield
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2017.01708
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_b35dc250df3a482ca069bbc8835ef4f0
PMC5723006
29255465
10_3389_fimmu_2017_01708
Genre Journal Article
Review
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0601481
– fundername: Medical Research Council
  grantid: MR/K013386/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M025160/1
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c528t-fee3d0a2efeb44e2c86c5fe77831d0edb728aac86ecaba31c7905a2c6ba28f003
IEDL.DBID DOA
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000416911500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-3224
IngestDate Fri Oct 03 12:45:46 EDT 2025
Thu Aug 21 18:22:15 EDT 2025
Fri Sep 05 12:30:37 EDT 2025
Sat May 31 02:05:53 EDT 2025
Sat Nov 29 02:50:19 EST 2025
Tue Nov 18 21:26:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords cell–cell interactions
phagocytosis
phosphatidylserine
apoptotic cells
phagocytic receptor
macrophage
opsonin
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-fee3d0a2efeb44e2c86c5fe77831d0edb728aac86ecaba31c7905a2c6ba28f003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Specialty section: This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology
Reviewed by: Raymond B. Birge, Rutgers University, The State University of New Jersey, United States; Michael R. Elliott, University of Rochester, United States
Edited by: Kirsten Lauber, Ludwig-Maximilians-Universität München, Germany
OpenAccessLink https://doaj.org/article/b35dc250df3a482ca069bbc8835ef4f0
PMID 29255465
PQID 1978713619
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b35dc250df3a482ca069bbc8835ef4f0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5723006
proquest_miscellaneous_1978713619
pubmed_primary_29255465
crossref_citationtrail_10_3389_fimmu_2017_01708
crossref_primary_10_3389_fimmu_2017_01708
PublicationCentury 2000
PublicationDate 2017-12-04
PublicationDateYYYYMMDD 2017-12-04
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-04
  day: 04
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2017
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Park (B53) 2008; 283
Wang (B19) 2010; 12
Dransfield (B61) 2015; 6
Ogden (B42) 2001; 194
Langenhan (B106) 2016; 17
Tosello-Trampont (B49) 2007; 14
Leahy (B101) 1996; 84
Finnemann (B110) 1997; 94
Segawa (B27) 2011; 108
Persson (B1) 2010; 65
Lemke (B56) 2013; 5
Savill (B4) 2002; 2
Hart (B45) 2004; 172
Lv (B33) 2015; 195
Griffin (B60) 1975; 142
Ostrowski (B36) 2016; 38
Hart (B65) 2012; 7
Flannagan (B82) 2014; 25
Sasaki (B105) 2006; 25
Hanayama (B21) 2002; 417
Vernon-Wilson (B85) 2006; 79
Cooke (B99) 1987; 327
Kayalar (B69) 1996; 93
Freeman (B79) 2016; 164
Murakami (B52) 2014; 21
Kirkham (B87) 2004; 318
Burstyn-Cohen (B108) 2012; 76
Borrego (B51) 2013; 121
Xiong (B92) 2001; 294
Segal (B63) 2001; 114
Tan (B104) 2002; 159
Hart (B37) 2000; 7
Grakoui (B72) 1999; 285
Takizawa (B41) 1996; 397
Leupin (B77) 2000; 10
Savill (B35) 1989; 84
Uehara (B44) 2008; 180
Andersen (B20) 2000; 39
Frasch (B29) 2008; 283
Heiring (B95) 2004; 279
Gardai (B34) 2003; 115
van Genderen (B71) 2008; 1783
Ramirez-Ortiz (B107) 2013; 14
Penberthy (B50) 2016; 269
Goodridge (B78) 2011; 472
Yeung (B16) 2008; 319
Fadok (B13) 1992; 149
Freeman (B64) 2014; 262
Kagan (B7) 2002; 169
Suzuki (B15) 2013; 341
Griffin (B62) 1985; 135
Lillemeier (B89) 2009; 11
Dahlbäck (B94) 1983; 80
McEvoy (B14) 1986; 83
Lin (B76) 2016; 17
Dustin (B74) 2012; 41
Park (B17) 2007; 450
Kim (B83) 2012; 32
Nomura (B115) 2017; 198
Dransfield (B47) 1995; 85
Nishimori (B48) 1997; 15
Ellgaard (B100) 2003; 39
Stitt (B22) 1995; 80
Franc (B11) 1999; 11
Bevers (B24) 1983; 736
Campbell (B91) 2011; 3
Païdassi (B23) 2008; 180
Arur (B43) 2003; 4
Concha (B70) 1992; 314
Chattopadhyay (B93) 2009; 229
Hart (B66) 1997; 159
Dransfield (B46) 1994; 153
Morris (B10) 1984; 115
Araç (B90) 2012; 31
Martin (B12) 1995; 182
Elliott (B80) 2017; 198
Park (B55) 2009; 19
Elliott (B5) 2010; 189
Slater (B9) 1995; 8
Jones (B40) 1995; 86
Su (B54) 2002; 277
Lauber (B3) 2004; 14
Finnemann (B109) 2003; 533
Franz (B38) 2006; 69
Gardai (B31) 2006; 79
Rabinovitch (B59) 1967; 46
Park (B18) 2008; 15
Barclay (B88) 2014; 32
Oldenborg (B6) 2001; 193
Flannagan (B67) 2010; 191
Kevany (B111) 2010; 25
Hornik (B114) 2016; 129
Tietjen (B28) 2014; 111
Chang (B8) 1999; 96
Cao (B98) 2007; 26
Wu (B84) 2005; 118
Meesmann (B39) 2010; 123
Rudenko (B97) 2002; 298
Lawrence (B32) 2009; 85
Lopes (B75) 2017; 216
Pratt (B96) 1999; 402
Fricker (B113) 2012; 9
Savill (B58) 1992; 90
Pike (B103) 1999; 96
Poon (B2) 2014; 14
Chang (B81) 2016; 17
Lillis (B102) 2008; 88
Niedergang (B68) 2016; 7
McCutcheon (B86) 1998; 64
Tsai (B30) 2008; 180
Fischer (B26) 2006; 108
Dustin (B73) 2010; 2
Ruggiero (B112) 2012; 109
Dillon (B25) 2000; 164
Savill (B57) 1990; 343
References_xml – volume: 298
  start-page: 2353
  year: 2002
  ident: B97
  article-title: Structure of the LDL receptor extracellular domain at endosomal pH
  publication-title: Science
  doi: 10.1126/science.1078124
– volume: 736
  start-page: 57
  year: 1983
  ident: B24
  article-title: Changes in membrane phospholipid distribution during platelet activation
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2736(83)90169-4
– volume: 195
  start-page: 661
  year: 2015
  ident: B33
  article-title: Loss of cell surface CD47 clustering formation and binding avidity to SIRPα facilitate apoptotic cell clearance by macrophages
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1401719
– volume: 108
  start-page: 4094
  year: 2006
  ident: B26
  article-title: Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells
  publication-title: Blood
  doi: 10.1182/blood-2006-03-011742
– volume: 5
  start-page: a009076
  year: 2013
  ident: B56
  article-title: Biology of the TAM receptors
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a009076
– volume: 343
  start-page: 170
  year: 1990
  ident: B57
  article-title: Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis
  publication-title: Nature
  doi: 10.1038/343170a0
– volume: 15
  start-page: 2145
  year: 1997
  ident: B48
  article-title: A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1201542
– volume: 9
  start-page: 196
  year: 2012
  ident: B113
  article-title: Primary phagocytosis of viable neurons by microglia activated with LPS or Aβ is dependent on calreticulin/LRP phagocytic signalling
  publication-title: J Neuroinflammation
  doi: 10.1186/1742-2094-9-196
– volume: 25
  start-page: 8
  year: 2010
  ident: B111
  article-title: Phagocytosis of retinal rod and cone photoreceptors
  publication-title: Physiology (Bethesda)
  doi: 10.1152/physiol.00038.2009
– volume: 79
  start-page: 1260
  year: 2006
  ident: B85
  article-title: CD31 promotes beta1 integrin-dependent engulfment of apoptotic Jurkat T lymphocytes opsonized for phagocytosis by fibronectin
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.1005571
– volume: 115
  start-page: 426
  year: 1984
  ident: B10
  article-title: Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis
  publication-title: Am J Pathol
– volume: 159
  start-page: 373
  year: 2002
  ident: B104
  article-title: Crystal structure of the TSP-1 type 1 repeats: a novel layered fold and its biological implication
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200206062
– volume: 15
  start-page: 192
  year: 2008
  ident: B18
  article-title: Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4402242
– volume: 114
  start-page: 119
  year: 2001
  ident: B63
  article-title: Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts
  publication-title: J Cell Sci
  doi: 10.1242/jcs.114.1.119
– volume: 318
  start-page: 32
  year: 2004
  ident: B87
  article-title: Macrophage phagocytosis of apoptotic neutrophils is compromised by matrix proteins modified by cigarette smoke and lipid peroxidation products
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2004.04.003
– volume: 314
  start-page: 159
  year: 1992
  ident: B70
  article-title: Annexin V forms calcium-dependent trimeric units on phospholipid vesicles
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(92)80964-I
– volume: 10
  start-page: 277
  year: 2000
  ident: B77
  article-title: Exclusion of CD45 from the T-cell receptor signaling area in antigen-stimulated T lymphocytes
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(00)00362-6
– volume: 38
  start-page: 135
  year: 2016
  ident: B36
  article-title: Diffusion barriers, mechanical forces, and the biophysics of phagocytosis
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2016.06.023
– volume: 159
  start-page: 919
  year: 1997
  ident: B66
  article-title: CD44 regulates phagocytosis of apoptotic neutrophil granulocytes, but not apoptotic lymphocytes, by human macrophages
  publication-title: J Immunol
  doi: 10.4049/jimmunol.159.2.919
– volume: 17
  start-page: 550
  year: 2016
  ident: B106
  article-title: Adhesion G protein-coupled receptors in nervous system development and disease
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn.2016.86
– volume: 111
  start-page: E1463
  year: 2014
  ident: B28
  article-title: Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1320174111
– volume: 135
  start-page: 3394
  year: 1985
  ident: B62
  article-title: Effects of differentiation in vivo and of lymphokine treatment in vitro on the mobility of C3 receptors of human and mouse mononuclear phagocytes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.135.5.3394
– volume: 169
  start-page: 487
  year: 2002
  ident: B7
  article-title: A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.169.1.487
– volume: 182
  start-page: 1545
  year: 1995
  ident: B12
  article-title: Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl
  publication-title: J Exp Med
  doi: 10.1084/jem.182.5.1545
– volume: 262
  start-page: 193
  year: 2014
  ident: B64
  article-title: Phagocytosis: receptors, signal integration, and the cytoskeleton
  publication-title: Immunol Rev
  doi: 10.1111/imr.12212
– volume: 417
  start-page: 182
  year: 2002
  ident: B21
  article-title: Identification of a factor that links apoptotic cells to phagocytes
  publication-title: Nature
  doi: 10.1038/417182a
– volume: 90
  start-page: 1513
  year: 1992
  ident: B58
  article-title: Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis
  publication-title: J Clin Invest
  doi: 10.1172/JCI116019
– volume: 3
  start-page: A004994
  year: 2011
  ident: B91
  article-title: Integrin structure, activation, and interactions
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a004994
– volume: 108
  start-page: 19246
  year: 2011
  ident: B27
  article-title: Constitutive exposure of phosphatidylserine on viable cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1114799108
– volume: 88
  start-page: 887
  year: 2008
  ident: B102
  article-title: LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00033.2007
– volume: 115
  start-page: 13
  year: 2003
  ident: B34
  article-title: By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00758-X
– volume: 472
  start-page: 471
  year: 2011
  ident: B78
  article-title: Activation of the innate immune receptor dectin-1 upon formation of a ‘phagocytic synapse’
  publication-title: Nature
  doi: 10.1038/nature10071
– volume: 31
  start-page: 1364
  year: 2012
  ident: B90
  article-title: A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis
  publication-title: EMBO J
  doi: 10.1038/emboj.2012.26
– volume: 83
  start-page: 3311
  year: 1986
  ident: B14
  article-title: Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.83.10.3311
– volume: 109
  start-page: 8145
  year: 2012
  ident: B112
  article-title: Diurnal, localized exposure of phosphatidylserine by rod outer segment tips in wild-type but not Itgb5-/- or Mfge8-/- mouse retina
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1121101109
– volume: 41
  start-page: 543
  year: 2012
  ident: B74
  article-title: Receptor signaling clusters in the immune synapse
  publication-title: Annu Rev Biophys
  doi: 10.1146/annurev-biophys-042910-155238
– volume: 180
  start-page: 2329
  year: 2008
  ident: B23
  article-title: C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.4.2329
– volume: 14
  start-page: 277
  year: 2004
  ident: B3
  article-title: Clearance of apoptotic cells: getting rid of the corpses
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(04)00237-0
– volume: 11
  start-page: 47
  year: 1999
  ident: B11
  article-title: Phagocytosis and development: back to the future
  publication-title: Curr Opin Immunol
  doi: 10.1016/S0952-7915(99)80009-0
– volume: 17
  start-page: 5
  year: 2016
  ident: B76
  article-title: TIRF imaging of Fc gamma receptor microclusters dynamics and signaling on macrophages during frustrated phagocytosis
  publication-title: BMC Immunol
  doi: 10.1186/s12865-016-0143-2
– volume: 86
  start-page: 651
  year: 1995
  ident: B40
  article-title: Apoptosis is associated with reduced expression of complement regulatory molecules, adhesion molecules and other receptors on polymorphonuclear leucocytes: functional relevance and role in inflammation
  publication-title: Immunology
– volume: 69
  start-page: 230
  year: 2006
  ident: B38
  article-title: Lectins detect changes of the glycosylation status of plasma membrane constituents during late apoptosis
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.20206
– volume: 25
  start-page: 80
  year: 2006
  ident: B105
  article-title: Structural basis for Gas6-Axl signalling
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600912
– volume: 269
  start-page: 44
  year: 2016
  ident: B50
  article-title: Apoptotic cell recognition receptors and scavenger receptors
  publication-title: Immunol Rev
  doi: 10.1111/imr.12376
– volume: 8
  start-page: 149
  year: 1995
  ident: B9
  article-title: Signalling mechanisms and oxidative stress in apoptosis
  publication-title: Toxicol Lett
  doi: 10.1016/0378-4274(95)03474-9
– volume: 191
  start-page: 1205
  year: 2010
  ident: B67
  article-title: Dynamic macrophage ‘probing’ is required for the efficient capture of phagocytic targets
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201007056
– volume: 7
  start-page: 18
  year: 2016
  ident: B68
  article-title: Comparative anatomy of phagocytic and immunological synapses
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00018
– volume: 172
  start-page: 1882
  year: 2004
  ident: B45
  article-title: Immune complexes bind preferentially to Fc gamma RIIA (CD32) on apoptotic neutrophils, leading to augmented phagocytosis by macrophages and release of proinflammatory cytokines
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.3.1882
– volume: 341
  start-page: 403
  year: 2013
  ident: B15
  article-title: Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells
  publication-title: Science
  doi: 10.1126/science.1236758
– volume: 84
  start-page: 155
  year: 1996
  ident: B101
  article-title: 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81002-8
– volume: 12
  start-page: 655
  year: 2010
  ident: B19
  article-title: Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2068
– volume: 129
  start-page: 65
  year: 2016
  ident: B114
  article-title: Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis
  publication-title: J Cell Sci
  doi: 10.1242/jcs.174631
– volume: 319
  start-page: 210
  year: 2008
  ident: B16
  article-title: Membrane phosphatidylserine regulates surface charge and protein localization
  publication-title: Science
  doi: 10.1126/science.1152066
– volume: 450
  start-page: 430
  year: 2007
  ident: B17
  article-title: BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module
  publication-title: Nature
  doi: 10.1038/nature06329
– volume: 402
  start-page: 439
  year: 1999
  ident: B96
  article-title: Structure of the C2 domain of human factor VIII at 1.5 A resolution
  publication-title: Nature
  doi: 10.1038/46601
– volume: 21
  start-page: 1746
  year: 2014
  ident: B52
  article-title: CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2014.86
– volume: 17
  start-page: 574
  year: 2016
  ident: B81
  article-title: Initiation of T cell signaling by CD45 segregation at ‘close contacts’
  publication-title: Nat Immunol
  doi: 10.1038/ni.3392
– volume: 79
  start-page: 896
  year: 2006
  ident: B31
  article-title: Recognition ligands on apoptotic cells: a perspective
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.1005550
– volume: 149
  start-page: 4029
  year: 1992
  ident: B13
  article-title: Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.149.12.4029
– volume: 7
  start-page: 493
  year: 2000
  ident: B37
  article-title: Molecular characterization of the surface of apoptotic neutrophils: implications for functional downregulation and recognition by phagocytes
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4400680
– volume: 19
  start-page: 346
  year: 2009
  ident: B55
  article-title: The phosphatidylserine receptor TIM-4 does not mediate direct signaling
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2009.01.042
– volume: 39
  start-page: 223
  year: 2003
  ident: B100
  article-title: Calnexin, calreticulin, and ERp57: teammates in glycoprotein folding
  publication-title: Cell Biochem Biophys
  doi: 10.1385/CBB:39:3:223
– volume: 189
  start-page: 1059
  year: 2010
  ident: B5
  article-title: Clearance of apoptotic cells: implications in health and disease
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201004096
– volume: 85
  start-page: 3264
  year: 1995
  ident: B47
  article-title: Regulation of cell adhesion molecule expression and function associated with neutrophil apoptosis
  publication-title: Blood
  doi: 10.1182/blood.V85.11.3264.bloodjournal85113264
– volume: 153
  start-page: 1254
  year: 1994
  ident: B46
  article-title: Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression
  publication-title: J Immunol
  doi: 10.4049/jimmunol.153.3.1254
– volume: 6
  start-page: e1646
  year: 2015
  ident: B61
  article-title: Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2015.18
– volume: 121
  start-page: 1951
  year: 2013
  ident: B51
  article-title: The CD300 molecules: an emerging family of regulators of the immune system
  publication-title: Blood
  doi: 10.1182/blood-2012-09-435057
– volume: 277
  start-page: 11772
  year: 2002
  ident: B54
  article-title: Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109336200
– volume: 25
  start-page: 1511
  year: 2014
  ident: B82
  article-title: The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E13-04-0212
– volume: 123
  start-page: 3347
  year: 2010
  ident: B39
  article-title: Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes
  publication-title: J Cell Sci
  doi: 10.1242/jcs.066696
– volume: 84
  start-page: 1518
  year: 1989
  ident: B35
  article-title: Phagocytosis of aged human neutrophils by macrophages is mediated by a novel ‘charge-sensitive’ recognition mechanism
  publication-title: J Clin Invest
  doi: 10.1172/JCI114328
– volume: 1783
  start-page: 953
  year: 2008
  ident: B71
  article-title: Extracellular annexin A5: functions of phosphatidylserine-binding and two-dimensional crystallization
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2008.01.030
– volume: 32
  start-page: 2698
  year: 2012
  ident: B83
  article-title: Cross talk between engulfment receptors stabilin-2 and integrin αvβ5 orchestrates engulfment of phosphatidylserine-exposed erythrocytes
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.06743-11
– volume: 94
  start-page: 12932
  year: 1997
  ident: B110
  article-title: Phagocytosis of rod outer segments by retinal pigment epithelial cells requires alpha(v)beta5 integrin for binding but not for internalization
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.24.12932
– volume: 198
  start-page: 4792
  year: 2017
  ident: B115
  article-title: Activated microglia desialylate and phagocytose cells via neuraminidase, galectin-3, and Mer tyrosine kinase
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1502532
– volume: 397
  start-page: 269
  year: 1996
  ident: B41
  article-title: Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(96)01197-0
– volume: 32
  start-page: 25
  year: 2014
  ident: B88
  article-title: The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-032713-120142
– volume: 118
  start-page: 539
  year: 2005
  ident: B84
  article-title: A role for Mer tyrosine kinase in alphavbeta5 integrin-mediated phagocytosis of apoptotic cells
  publication-title: J Cell Sci
  doi: 10.1242/jcs.01632
– volume: 193
  start-page: 855
  year: 2001
  ident: B6
  article-title: CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis
  publication-title: J Exp Med
  doi: 10.1084/jem.193.7.855
– volume: 194
  start-page: 781
  year: 2001
  ident: B42
  article-title: C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells
  publication-title: J Exp Med
  doi: 10.1084/jem.194.6.781
– volume: 80
  start-page: 661
  year: 1995
  ident: B22
  article-title: The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90520-0
– volume: 2
  start-page: a002311
  year: 2010
  ident: B73
  article-title: Understanding the structure and function of the immunological synapse
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a002311
– volume: 96
  start-page: 8925
  year: 1999
  ident: B103
  article-title: Structure of human factor VIIa and its implications for the triggering of blood coagulation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.16.8925
– volume: 80
  start-page: 3461
  year: 1983
  ident: B94
  article-title: Visualization of human C4b-binding protein and its complexes with vitamin K-dependent protein S and complement protein C4b
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.80.11.3461
– volume: 2
  start-page: 965
  year: 2002
  ident: B4
  article-title: A blast from the past: clearance of apoptotic cells regulates immune responses
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri957
– volume: 279
  start-page: 6952
  year: 2004
  ident: B95
  article-title: Ligand recognition and homophilic interactions in Tyro3: structural insights into the Axl/Tyro3 receptor tyrosine kinase family
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M311750200
– volume: 198
  start-page: 1387
  year: 2017
  ident: B80
  article-title: Efferocytosis signaling in the regulation of macrophage inflammatory responses
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1601520
– volume: 7
  start-page: e33142
  year: 2012
  ident: B65
  article-title: Characterization of the effects of cross-linking of macrophage CD44 associated with increased phagocytosis of apoptotic PMN
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0033142
– volume: 285
  start-page: 221
  year: 1999
  ident: B72
  article-title: The immunological synapse: a molecular machine controlling T cell activation
  publication-title: Science
  doi: 10.1126/science.285.5425.221
– volume: 65
  start-page: 1111
  year: 2010
  ident: B1
  article-title: Transepithelial exit of leucocytes: inflicting, reflecting or resolving airway inflammation?
  publication-title: Thorax
  doi: 10.1136/thx.2009.133363
– volume: 229
  start-page: 356
  year: 2009
  ident: B93
  article-title: Sequence, structure, function, immunity: structural genomics of costimulation
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.2009.00778.x
– volume: 93
  start-page: 2234
  year: 1996
  ident: B69
  article-title: Cleavage of actin by interleukin 1 beta-converting enzyme to reverse DNase I inhibition
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.5.2234
– volume: 327
  start-page: 339
  year: 1987
  ident: B99
  article-title: The solution structure of human epidermal growth factor
  publication-title: Nature
  doi: 10.1038/327339a0
– volume: 180
  start-page: 2522
  year: 2008
  ident: B44
  article-title: Auto-oxidation and oligomerization of protein S on the apoptotic cell surface is required for Mer tyrosine kinase-mediated phagocytosis of apoptotic cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.4.2522
– volume: 14
  start-page: 166
  year: 2014
  ident: B2
  article-title: Apoptotic cell clearance: basic biology and therapeutic potential
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3607
– volume: 164
  start-page: 128
  year: 2016
  ident: B79
  article-title: Integrins form an expanding diffusional barrier that coordinates phagocytosis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.048
– volume: 14
  start-page: 963
  year: 2007
  ident: B49
  article-title: Identification of two signaling submodules within the CrkII/ELMO/Dock180 pathway regulating engulfment of apoptotic cells
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4402094
– volume: 14
  start-page: 917
  year: 2013
  ident: B107
  article-title: The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity
  publication-title: Nat Immunol
  doi: 10.1038/ni.2670
– volume: 76
  start-page: 1123
  year: 2012
  ident: B108
  article-title: Genetic dissection of TAM receptor-ligand interaction in retinal pigment epithelial cell phagocytosis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.10.015
– volume: 180
  start-page: 989
  year: 2008
  ident: B30
  article-title: Inhibition of ‘self’ engulfment through deactivation of myosin-II at the phagocytic synapse between human cells
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200708043
– volume: 4
  start-page: 587
  year: 2003
  ident: B43
  article-title: Annexin I is an endogenous ligand that mediates apoptotic cell engulfment
  publication-title: Dev Cell
  doi: 10.1016/S1534-5807(03)00090-X
– volume: 46
  start-page: 19
  year: 1967
  ident: B59
  article-title: The dissociation of the attachment and ingestion phases of phagocytosis by macrophages
  publication-title: Exp Cell Res
  doi: 10.1016/0014-4827(67)90405-3
– volume: 142
  start-page: 1263
  year: 1975
  ident: B60
  article-title: Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane
  publication-title: J Exp Med
  doi: 10.1084/jem.142.5.1263
– volume: 11
  start-page: 90
  year: 2009
  ident: B89
  article-title: TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation
  publication-title: Nat Immunol
  doi: 10.1038/ni.1832
– volume: 26
  start-page: 311
  year: 2007
  ident: B98
  article-title: T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.01.016
– volume: 216
  start-page: 1123
  year: 2017
  ident: B75
  article-title: Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201608094
– volume: 39
  start-page: 6200
  year: 2000
  ident: B20
  article-title: Functional analyses of two cellular binding domains of bovine lactadherin
  publication-title: Biochemistry (Mosc)
  doi: 10.1021/bi992221r
– volume: 64
  start-page: 600
  year: 1998
  ident: B86
  article-title: Regulation of macrophage phagocytosis of apoptotic neutrophils by adhesion to fibronectin
  publication-title: J Leukoc Biol
  doi: 10.1002/jlb.64.5.600
– volume: 164
  start-page: 1322
  year: 2000
  ident: B25
  article-title: Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.164.3.1322
– volume: 283
  start-page: 33736
  year: 2008
  ident: B29
  article-title: NADPH oxidase-dependent generation of lysophosphatidylserine enhances clearance of activated and dying neutrophils via G2A
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M807047200
– volume: 85
  start-page: 659
  year: 2009
  ident: B32
  article-title: Decreased CD47 expression during spontaneous apoptosis targets neutrophils for phagocytosis by monocyte-derived macrophages
  publication-title: Early Hum Dev
  doi: 10.1016/j.earlhumdev.2009.09.005
– volume: 533
  start-page: 337
  year: 2003
  ident: B109
  article-title: Role of alphavbeta5 integrin in regulating phagocytosis by the retinal pigment epithelium
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-1-4615-0067-4_42
– volume: 96
  start-page: 6353
  year: 1999
  ident: B8
  article-title: Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.11.6353
– volume: 283
  start-page: 10593
  year: 2008
  ident: B53
  article-title: Requirement of adaptor protein GULP during stabilin-2-mediated cell corpse engulfment
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M709105200
– volume: 294
  start-page: 339
  year: 2001
  ident: B92
  article-title: Crystal structure of the extracellular segment of integrin alpha Vbeta3
  publication-title: Science
  doi: 10.1126/science.1064535
SSID ssj0000493335
Score 2.4248476
SecondaryResourceType review_article
Snippet Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1708
SubjectTerms apoptotic cells
cell–cell interactions
Immunology
macrophage
phagocytic receptor
phagocytosis
phosphatidylserine
Title The “Phagocytic Synapse” and Clearance of Apoptotic Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/29255465
https://www.proquest.com/docview/1978713619
https://pubmed.ncbi.nlm.nih.gov/PMC5723006
https://doaj.org/article/b35dc250df3a482ca069bbc8835ef4f0
Volume 8
WOSCitedRecordID wos000416911500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-3224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493335
  issn: 1664-3224
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3SkEIvIU0_4n4EB3rpwV1bki35mC4JOTQhkBb2JmR51GzY2Et2t7CXkh_S_rn8kozkzbIbSnvpxQd5ZIs3EjMPDW8APlAIcBWv0wQV2kQ455JSIk9YZmtrEGmbhK4lX-TZmRoMyvOVVl--JqyTB-6A61U8ry3F6dpxIxSzJi3KqrKKMgd0wgW2TlnPCpm66vJeznne3UsSCyt7bnh9PfOlXPKTl4xRa3EoyPX_Kcd8XCq5EnuOd2B7kTTGh91in8MGNrvwtGsjOX8RWsXHd7e_zi_N99bOySi-mDdmPMG729-xaeq475tDeP_GrYsPx-142nqrPo5Gk5fw7fjoa_8kWbRFSGzO1DRxiASuYeiwEgKZVYUvGZNS8axOsa4kU8bQKFpTGZ5Zr8FlmC0qw5SjU_wKNpu2wT2IvRxhQUkC0ueETa2RihiKcnUhMmHSNILeA0jaLjTDfeuKkSbu4GHVAVbtYdUB1gg-LmeMO72Mv9h-9rgv7bzSdRgg_-uF__W__B_BwYPXNJ0Mf91hGmxnE50RQSYKTgwxgtedF5e_YiXz5Xl5BHLNv2trWX_TDC-D-nYuibWlxZv_sfi38MzDEcpjxDvYnN7M8D1s2R_T4eRmH57IgdoPG5uepz-P7gFf_AIB
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+%E2%80%9CPhagocytic+Synapse%E2%80%9D+and+Clearance+of+Apoptotic+Cells&rft.jtitle=Frontiers+in+immunology&rft.au=Nicole+D.+Barth&rft.au=John+A.+Marwick&rft.au=Marc+Vendrell&rft.au=Adriano+G.+Rossi&rft.date=2017-12-04&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=8&rft_id=info:doi/10.3389%2Ffimmu.2017.01708&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b35dc250df3a482ca069bbc8835ef4f0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon