The “Phagocytic Synapse” and Clearance of Apoptotic Cells
Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular renewal and innate immunity. The timely removal of apoptotic cells prevents progression to secondary necrosis and release of cellular contents...
Gespeichert in:
| Veröffentlicht in: | Frontiers in immunology Jg. 8; S. 1708 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
Frontiers Media S.A
04.12.2017
|
| Schlagworte: | |
| ISSN: | 1664-3224, 1664-3224 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular renewal and innate immunity. The timely removal of apoptotic cells prevents progression to secondary necrosis and release of cellular contents, preventing cellular stress and inflammation. In addition, altered phagocyte behavior following apoptotic cell contact and phagocytosis engages an anti-inflammatory phenotype, which impacts upon development and progression of inflammatory and immune responses. Defective apoptotic cell clearance underlies the development of various inflammatory and autoimmune diseases. There is considerable functional redundancy in the receptors that mediate apoptotic cell clearance, highlighting the importance of this process in diverse physiological processes. A single phagocyte may utilize multiple receptor pathways for the efficient capture of apoptotic cells by phagocytes (tethering) and the subsequent initiation of signaling events necessary for internalization. In this review, we will consider the surface alterations and molecular opsonization events associated with apoptosis that may represent a tunable signal that confers distinct intracellular signaling events and hence specific phagocyte responses in a context-dependent manner. Efficient molecular communication between phagocytes and apoptotic targets may require cooperative receptor utilization and the establishment of efferocytic synapse, which acts to stabilize adhesive interactions and facilitate the organization of signaling platforms that are necessary for controlling phagocyte responses. |
|---|---|
| AbstractList | Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular renewal and innate immunity. The timely removal of apoptotic cells prevents progression to secondary necrosis and release of cellular contents, preventing cellular stress and inflammation. In addition, altered phagocyte behavior following apoptotic cell contact and phagocytosis engages an anti-inflammatory phenotype, which impacts upon development and progression of inflammatory and immune responses. Defective apoptotic cell clearance underlies the development of various inflammatory and autoimmune diseases. There is considerable functional redundancy in the receptors that mediate apoptotic cell clearance, highlighting the importance of this process in diverse physiological processes. A single phagocyte may utilize multiple receptor pathways for the efficient capture of apoptotic cells by phagocytes (tethering) and the subsequent initiation of signaling events necessary for internalization. In this review, we will consider the surface alterations and molecular opsonization events associated with apoptosis that may represent a tunable signal that confers distinct intracellular signaling events and hence specific phagocyte responses in a context-dependent manner. Efficient molecular communication between phagocytes and apoptotic targets may require cooperative receptor utilization and the establishment of efferocytic synapse, which acts to stabilize adhesive interactions and facilitate the organization of signaling platforms that are necessary for controlling phagocyte responses. Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular renewal and innate immunity. The timely removal of apoptotic cells prevents progression to secondary necrosis and release of cellular contents, preventing cellular stress and inflammation. In addition, altered phagocyte behavior following apoptotic cell contact and phagocytosis engages an anti-inflammatory phenotype, which impacts upon development and progression of inflammatory and immune responses. Defective apoptotic cell clearance underlies the development of various inflammatory and autoimmune diseases. There is considerable functional redundancy in the receptors that mediate apoptotic cell clearance, highlighting the importance of this process in diverse physiological processes. A single phagocyte may utilize multiple receptor pathways for the efficient capture of apoptotic cells by phagocytes (tethering) and the subsequent initiation of signaling events necessary for internalization. In this review, we will consider the surface alterations and molecular opsonization events associated with apoptosis that may represent a tunable signal that confers distinct intracellular signaling events and hence specific phagocyte responses in a context-dependent manner. Efficient molecular communication between phagocytes and apoptotic targets may require cooperative receptor utilization and the establishment of efferocytic synapse, which acts to stabilize adhesive interactions and facilitate the organization of signaling platforms that are necessary for controlling phagocyte responses.Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular renewal and innate immunity. The timely removal of apoptotic cells prevents progression to secondary necrosis and release of cellular contents, preventing cellular stress and inflammation. In addition, altered phagocyte behavior following apoptotic cell contact and phagocytosis engages an anti-inflammatory phenotype, which impacts upon development and progression of inflammatory and immune responses. Defective apoptotic cell clearance underlies the development of various inflammatory and autoimmune diseases. There is considerable functional redundancy in the receptors that mediate apoptotic cell clearance, highlighting the importance of this process in diverse physiological processes. A single phagocyte may utilize multiple receptor pathways for the efficient capture of apoptotic cells by phagocytes (tethering) and the subsequent initiation of signaling events necessary for internalization. In this review, we will consider the surface alterations and molecular opsonization events associated with apoptosis that may represent a tunable signal that confers distinct intracellular signaling events and hence specific phagocyte responses in a context-dependent manner. Efficient molecular communication between phagocytes and apoptotic targets may require cooperative receptor utilization and the establishment of efferocytic synapse, which acts to stabilize adhesive interactions and facilitate the organization of signaling platforms that are necessary for controlling phagocyte responses. |
| Author | Marwick, John A. Rossi, Adriano G. Barth, Nicole D. Vendrell, Marc Dransfield, Ian |
| AuthorAffiliation | 1 MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom |
| AuthorAffiliation_xml | – name: 1 MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom |
| Author_xml | – sequence: 1 givenname: Nicole D. surname: Barth fullname: Barth, Nicole D. – sequence: 2 givenname: John A. surname: Marwick fullname: Marwick, John A. – sequence: 3 givenname: Marc surname: Vendrell fullname: Vendrell, Marc – sequence: 4 givenname: Adriano G. surname: Rossi fullname: Rossi, Adriano G. – sequence: 5 givenname: Ian surname: Dransfield fullname: Dransfield, Ian |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29255465$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1q3DAUhUVJadI0-66Kl93MVD-WLC9aCEN_AoEWmq7FtXw1o2BbruQJzC4P0r5cnqTyTFKSQgVC4uqc74p7XpKjIQxIyGtGl0Lo-p3zfb9dcsqqZd5UPyMnTKlyITgvjx7dj8lZStc0r7IWQsgX5JjXXMpSyRPy_mqDxd3tr28bWAe7m7wtvu8GGBPe3f4uYGiLVYcQYbBYBFecj2GcwqxaYdelV-S5gy7h2f15Sn58-ni1-rK4_Pr5YnV-ubCS62nhEEVLgaPDpiyRW62sdFhVWrCWYttUXAPkKlpoQDBb1VQCt6oBrh2l4pRcHLhtgGszRt9D3JkA3uwLIa4NxPyrDk0jZGu5pK0TUGpugaq6aazWQqIr3cz6cGCN26bH1uIwReieQJ--DH5j1uHGyIoLSlUGvL0HxPBzi2kyvU82jwMGDNtkWF3pignF6ix987jX3yYP888CdRDYGFKK6Iz1E0w-zK19Zxg1c9Zmn7WZszb7rLOR_mN8YP_X8gdKu6_5 |
| CitedBy_id | crossref_primary_10_1096_fj_202002078R crossref_primary_10_1002_anie_202117218 crossref_primary_10_1126_sciimmunol_adj2898 crossref_primary_10_3389_fimmu_2025_1524315 crossref_primary_10_3389_fphys_2021_621830 crossref_primary_10_1098_rsob_200039 crossref_primary_10_1002_acr2_11245 crossref_primary_10_1038_s41598_023_48492_9 crossref_primary_10_3390_ijms24032796 crossref_primary_10_1007_s00436_023_07828_0 crossref_primary_10_3390_cells10051265 crossref_primary_10_1080_08820139_2024_2415409 crossref_primary_10_1186_s12964_025_02090_6 crossref_primary_10_1002_jcsm_13024 crossref_primary_10_1016_j_jbc_2024_105765 crossref_primary_10_1089_ars_2020_8203 crossref_primary_10_7554_eLife_82094 crossref_primary_10_1002_dvdy_163 crossref_primary_10_1007_s00281_019_00760_5 crossref_primary_10_3389_fimmu_2024_1443096 crossref_primary_10_1016_j_cub_2020_10_066 crossref_primary_10_1002_ange_202117218 crossref_primary_10_3389_fncel_2021_673217 crossref_primary_10_3389_fimmu_2020_00553 crossref_primary_10_1007_s11705_021_2080_8 crossref_primary_10_1084_jem_20201353 crossref_primary_10_3389_fimmu_2020_01097 crossref_primary_10_1016_j_coi_2020_07_007 crossref_primary_10_1111_imr_13266 crossref_primary_10_1016_j_thromres_2018_01_023 crossref_primary_10_1002_ange_202113020 crossref_primary_10_1016_j_beha_2020_101221 crossref_primary_10_1111_imr_13170 crossref_primary_10_7554_eLife_55732 crossref_primary_10_1186_s12974_021_02201_3 crossref_primary_10_1038_s41467_020_17772_7 crossref_primary_10_1016_j_cmet_2021_08_001 crossref_primary_10_3390_antiox11020212 crossref_primary_10_1007_s12033_024_01222_6 crossref_primary_10_1002_art_42297 crossref_primary_10_1242_dev_204919 crossref_primary_10_3390_cells11244076 crossref_primary_10_1002_anie_202113020 crossref_primary_10_1055_a_2675_2564 crossref_primary_10_3389_fimmu_2020_00738 crossref_primary_10_1271_kagakutoseibutsu_62_283 crossref_primary_10_1016_j_ejcb_2022_151285 crossref_primary_10_3389_fimmu_2023_1139204 crossref_primary_10_3390_cells11213502 crossref_primary_10_1002_pep2_24181 crossref_primary_10_1111_eci_12948 crossref_primary_10_1038_s41392_025_02332_6 crossref_primary_10_3389_fphar_2019_00055 crossref_primary_10_3389_fphar_2019_00891 crossref_primary_10_3390_ijms25137278 crossref_primary_10_4049_jimmunol_2100532 |
| Cites_doi | 10.1126/science.1078124 10.1016/0005-2736(83)90169-4 10.4049/jimmunol.1401719 10.1182/blood-2006-03-011742 10.1101/cshperspect.a009076 10.1038/343170a0 10.1038/sj.onc.1201542 10.1186/1742-2094-9-196 10.1152/physiol.00038.2009 10.1189/jlb.1005571 10.1083/jcb.200206062 10.1038/sj.cdd.4402242 10.1242/jcs.114.1.119 10.1016/j.bbrc.2004.04.003 10.1016/0014-5793(92)80964-I 10.1016/S0960-9822(00)00362-6 10.1016/j.devcel.2016.06.023 10.4049/jimmunol.159.2.919 10.1038/nrn.2016.86 10.1073/pnas.1320174111 10.4049/jimmunol.135.5.3394 10.4049/jimmunol.169.1.487 10.1084/jem.182.5.1545 10.1111/imr.12212 10.1038/417182a 10.1172/JCI116019 10.1101/cshperspect.a004994 10.1073/pnas.1114799108 10.1152/physrev.00033.2007 10.1016/S0092-8674(03)00758-X 10.1038/nature10071 10.1038/emboj.2012.26 10.1073/pnas.83.10.3311 10.1073/pnas.1121101109 10.1146/annurev-biophys-042910-155238 10.4049/jimmunol.180.4.2329 10.1016/S1097-2765(04)00237-0 10.1016/S0952-7915(99)80009-0 10.1186/s12865-016-0143-2 10.1002/cyto.a.20206 10.1038/sj.emboj.7600912 10.1111/imr.12376 10.1016/0378-4274(95)03474-9 10.1083/jcb.201007056 10.3389/fimmu.2016.00018 10.4049/jimmunol.172.3.1882 10.1126/science.1236758 10.1016/S0092-8674(00)81002-8 10.1038/ncb2068 10.1242/jcs.174631 10.1126/science.1152066 10.1038/nature06329 10.1038/46601 10.1038/cdd.2014.86 10.1038/ni.3392 10.1189/jlb.1005550 10.4049/jimmunol.149.12.4029 10.1038/sj.cdd.4400680 10.1016/j.cub.2009.01.042 10.1385/CBB:39:3:223 10.1083/jcb.201004096 10.1182/blood.V85.11.3264.bloodjournal85113264 10.4049/jimmunol.153.3.1254 10.1038/cddis.2015.18 10.1182/blood-2012-09-435057 10.1074/jbc.M109336200 10.1091/mbc.E13-04-0212 10.1242/jcs.066696 10.1172/JCI114328 10.1016/j.bbamcr.2008.01.030 10.1128/MCB.06743-11 10.1073/pnas.94.24.12932 10.4049/jimmunol.1502532 10.1016/S0014-5793(96)01197-0 10.1146/annurev-immunol-032713-120142 10.1242/jcs.01632 10.1084/jem.193.7.855 10.1084/jem.194.6.781 10.1016/0092-8674(95)90520-0 10.1101/cshperspect.a002311 10.1073/pnas.96.16.8925 10.1073/pnas.80.11.3461 10.1038/nri957 10.1074/jbc.M311750200 10.4049/jimmunol.1601520 10.1371/journal.pone.0033142 10.1126/science.285.5425.221 10.1136/thx.2009.133363 10.1111/j.1600-065X.2009.00778.x 10.1073/pnas.93.5.2234 10.1038/327339a0 10.4049/jimmunol.180.4.2522 10.1038/nri3607 10.1016/j.cell.2015.11.048 10.1038/sj.cdd.4402094 10.1038/ni.2670 10.1016/j.neuron.2012.10.015 10.1083/jcb.200708043 10.1016/S1534-5807(03)00090-X 10.1016/0014-4827(67)90405-3 10.1084/jem.142.5.1263 10.1038/ni.1832 10.1016/j.immuni.2007.01.016 10.1083/jcb.201608094 10.1021/bi992221r 10.1002/jlb.64.5.600 10.4049/jimmunol.164.3.1322 10.1074/jbc.M807047200 10.1016/j.earlhumdev.2009.09.005 10.1007/978-1-4615-0067-4_42 10.1073/pnas.96.11.6353 10.1074/jbc.M709105200 10.1126/science.1064535 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 Barth, Marwick, Vendrell, Rossi and Dransfield. 2017 Barth, Marwick, Vendrell, Rossi and Dransfield |
| Copyright_xml | – notice: Copyright © 2017 Barth, Marwick, Vendrell, Rossi and Dransfield. 2017 Barth, Marwick, Vendrell, Rossi and Dransfield |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/fimmu.2017.01708 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-3224 |
| ExternalDocumentID | oai_doaj_org_article_b35dc250df3a482ca069bbc8835ef4f0 PMC5723006 29255465 10_3389_fimmu_2017_01708 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Medical Research Council grantid: G0601481 – fundername: Medical Research Council grantid: MR/K013386/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/M025160/1 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI IPNFZ NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c528t-fee3d0a2efeb44e2c86c5fe77831d0edb728aac86ecaba31c7905a2c6ba28f003 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000416911500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-3224 |
| IngestDate | Fri Oct 03 12:45:46 EDT 2025 Thu Aug 21 18:22:15 EDT 2025 Fri Sep 05 12:30:37 EDT 2025 Sat May 31 02:05:53 EDT 2025 Sat Nov 29 02:50:19 EST 2025 Tue Nov 18 21:26:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | cell–cell interactions phagocytosis phosphatidylserine apoptotic cells phagocytic receptor macrophage opsonin |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c528t-fee3d0a2efeb44e2c86c5fe77831d0edb728aac86ecaba31c7905a2c6ba28f003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Specialty section: This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology Reviewed by: Raymond B. Birge, Rutgers University, The State University of New Jersey, United States; Michael R. Elliott, University of Rochester, United States Edited by: Kirsten Lauber, Ludwig-Maximilians-Universität München, Germany |
| OpenAccessLink | https://doaj.org/article/b35dc250df3a482ca069bbc8835ef4f0 |
| PMID | 29255465 |
| PQID | 1978713619 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b35dc250df3a482ca069bbc8835ef4f0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5723006 proquest_miscellaneous_1978713619 pubmed_primary_29255465 crossref_citationtrail_10_3389_fimmu_2017_01708 crossref_primary_10_3389_fimmu_2017_01708 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-12-04 |
| PublicationDateYYYYMMDD | 2017-12-04 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in immunology |
| PublicationTitleAlternate | Front Immunol |
| PublicationYear | 2017 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Park (B53) 2008; 283 Wang (B19) 2010; 12 Dransfield (B61) 2015; 6 Ogden (B42) 2001; 194 Langenhan (B106) 2016; 17 Tosello-Trampont (B49) 2007; 14 Leahy (B101) 1996; 84 Finnemann (B110) 1997; 94 Segawa (B27) 2011; 108 Persson (B1) 2010; 65 Lemke (B56) 2013; 5 Savill (B4) 2002; 2 Hart (B45) 2004; 172 Lv (B33) 2015; 195 Griffin (B60) 1975; 142 Ostrowski (B36) 2016; 38 Hart (B65) 2012; 7 Flannagan (B82) 2014; 25 Sasaki (B105) 2006; 25 Hanayama (B21) 2002; 417 Vernon-Wilson (B85) 2006; 79 Cooke (B99) 1987; 327 Kayalar (B69) 1996; 93 Freeman (B79) 2016; 164 Murakami (B52) 2014; 21 Kirkham (B87) 2004; 318 Burstyn-Cohen (B108) 2012; 76 Borrego (B51) 2013; 121 Xiong (B92) 2001; 294 Segal (B63) 2001; 114 Tan (B104) 2002; 159 Hart (B37) 2000; 7 Grakoui (B72) 1999; 285 Takizawa (B41) 1996; 397 Leupin (B77) 2000; 10 Savill (B35) 1989; 84 Uehara (B44) 2008; 180 Andersen (B20) 2000; 39 Frasch (B29) 2008; 283 Heiring (B95) 2004; 279 Gardai (B34) 2003; 115 van Genderen (B71) 2008; 1783 Ramirez-Ortiz (B107) 2013; 14 Penberthy (B50) 2016; 269 Goodridge (B78) 2011; 472 Yeung (B16) 2008; 319 Fadok (B13) 1992; 149 Freeman (B64) 2014; 262 Kagan (B7) 2002; 169 Suzuki (B15) 2013; 341 Griffin (B62) 1985; 135 Lillemeier (B89) 2009; 11 Dahlbäck (B94) 1983; 80 McEvoy (B14) 1986; 83 Lin (B76) 2016; 17 Dustin (B74) 2012; 41 Park (B17) 2007; 450 Kim (B83) 2012; 32 Nomura (B115) 2017; 198 Dransfield (B47) 1995; 85 Nishimori (B48) 1997; 15 Ellgaard (B100) 2003; 39 Stitt (B22) 1995; 80 Franc (B11) 1999; 11 Bevers (B24) 1983; 736 Campbell (B91) 2011; 3 Païdassi (B23) 2008; 180 Arur (B43) 2003; 4 Concha (B70) 1992; 314 Chattopadhyay (B93) 2009; 229 Hart (B66) 1997; 159 Dransfield (B46) 1994; 153 Morris (B10) 1984; 115 Araç (B90) 2012; 31 Martin (B12) 1995; 182 Elliott (B80) 2017; 198 Park (B55) 2009; 19 Elliott (B5) 2010; 189 Slater (B9) 1995; 8 Jones (B40) 1995; 86 Su (B54) 2002; 277 Lauber (B3) 2004; 14 Finnemann (B109) 2003; 533 Franz (B38) 2006; 69 Gardai (B31) 2006; 79 Rabinovitch (B59) 1967; 46 Park (B18) 2008; 15 Barclay (B88) 2014; 32 Oldenborg (B6) 2001; 193 Flannagan (B67) 2010; 191 Kevany (B111) 2010; 25 Hornik (B114) 2016; 129 Tietjen (B28) 2014; 111 Chang (B8) 1999; 96 Cao (B98) 2007; 26 Wu (B84) 2005; 118 Meesmann (B39) 2010; 123 Rudenko (B97) 2002; 298 Lawrence (B32) 2009; 85 Lopes (B75) 2017; 216 Pratt (B96) 1999; 402 Fricker (B113) 2012; 9 Savill (B58) 1992; 90 Pike (B103) 1999; 96 Poon (B2) 2014; 14 Chang (B81) 2016; 17 Lillis (B102) 2008; 88 Niedergang (B68) 2016; 7 McCutcheon (B86) 1998; 64 Tsai (B30) 2008; 180 Fischer (B26) 2006; 108 Dustin (B73) 2010; 2 Ruggiero (B112) 2012; 109 Dillon (B25) 2000; 164 Savill (B57) 1990; 343 |
| References_xml | – volume: 298 start-page: 2353 year: 2002 ident: B97 article-title: Structure of the LDL receptor extracellular domain at endosomal pH publication-title: Science doi: 10.1126/science.1078124 – volume: 736 start-page: 57 year: 1983 ident: B24 article-title: Changes in membrane phospholipid distribution during platelet activation publication-title: Biochim Biophys Acta doi: 10.1016/0005-2736(83)90169-4 – volume: 195 start-page: 661 year: 2015 ident: B33 article-title: Loss of cell surface CD47 clustering formation and binding avidity to SIRPα facilitate apoptotic cell clearance by macrophages publication-title: J Immunol doi: 10.4049/jimmunol.1401719 – volume: 108 start-page: 4094 year: 2006 ident: B26 article-title: Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells publication-title: Blood doi: 10.1182/blood-2006-03-011742 – volume: 5 start-page: a009076 year: 2013 ident: B56 article-title: Biology of the TAM receptors publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a009076 – volume: 343 start-page: 170 year: 1990 ident: B57 article-title: Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis publication-title: Nature doi: 10.1038/343170a0 – volume: 15 start-page: 2145 year: 1997 ident: B48 article-title: A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis publication-title: Oncogene doi: 10.1038/sj.onc.1201542 – volume: 9 start-page: 196 year: 2012 ident: B113 article-title: Primary phagocytosis of viable neurons by microglia activated with LPS or Aβ is dependent on calreticulin/LRP phagocytic signalling publication-title: J Neuroinflammation doi: 10.1186/1742-2094-9-196 – volume: 25 start-page: 8 year: 2010 ident: B111 article-title: Phagocytosis of retinal rod and cone photoreceptors publication-title: Physiology (Bethesda) doi: 10.1152/physiol.00038.2009 – volume: 79 start-page: 1260 year: 2006 ident: B85 article-title: CD31 promotes beta1 integrin-dependent engulfment of apoptotic Jurkat T lymphocytes opsonized for phagocytosis by fibronectin publication-title: J Leukoc Biol doi: 10.1189/jlb.1005571 – volume: 115 start-page: 426 year: 1984 ident: B10 article-title: Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis publication-title: Am J Pathol – volume: 159 start-page: 373 year: 2002 ident: B104 article-title: Crystal structure of the TSP-1 type 1 repeats: a novel layered fold and its biological implication publication-title: J Cell Biol doi: 10.1083/jcb.200206062 – volume: 15 start-page: 192 year: 2008 ident: B18 article-title: Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4402242 – volume: 114 start-page: 119 year: 2001 ident: B63 article-title: Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts publication-title: J Cell Sci doi: 10.1242/jcs.114.1.119 – volume: 318 start-page: 32 year: 2004 ident: B87 article-title: Macrophage phagocytosis of apoptotic neutrophils is compromised by matrix proteins modified by cigarette smoke and lipid peroxidation products publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2004.04.003 – volume: 314 start-page: 159 year: 1992 ident: B70 article-title: Annexin V forms calcium-dependent trimeric units on phospholipid vesicles publication-title: FEBS Lett doi: 10.1016/0014-5793(92)80964-I – volume: 10 start-page: 277 year: 2000 ident: B77 article-title: Exclusion of CD45 from the T-cell receptor signaling area in antigen-stimulated T lymphocytes publication-title: Curr Biol doi: 10.1016/S0960-9822(00)00362-6 – volume: 38 start-page: 135 year: 2016 ident: B36 article-title: Diffusion barriers, mechanical forces, and the biophysics of phagocytosis publication-title: Dev Cell doi: 10.1016/j.devcel.2016.06.023 – volume: 159 start-page: 919 year: 1997 ident: B66 article-title: CD44 regulates phagocytosis of apoptotic neutrophil granulocytes, but not apoptotic lymphocytes, by human macrophages publication-title: J Immunol doi: 10.4049/jimmunol.159.2.919 – volume: 17 start-page: 550 year: 2016 ident: B106 article-title: Adhesion G protein-coupled receptors in nervous system development and disease publication-title: Nat Rev Neurosci doi: 10.1038/nrn.2016.86 – volume: 111 start-page: E1463 year: 2014 ident: B28 article-title: Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1320174111 – volume: 135 start-page: 3394 year: 1985 ident: B62 article-title: Effects of differentiation in vivo and of lymphokine treatment in vitro on the mobility of C3 receptors of human and mouse mononuclear phagocytes publication-title: J Immunol doi: 10.4049/jimmunol.135.5.3394 – volume: 169 start-page: 487 year: 2002 ident: B7 article-title: A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis publication-title: J Immunol doi: 10.4049/jimmunol.169.1.487 – volume: 182 start-page: 1545 year: 1995 ident: B12 article-title: Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl publication-title: J Exp Med doi: 10.1084/jem.182.5.1545 – volume: 262 start-page: 193 year: 2014 ident: B64 article-title: Phagocytosis: receptors, signal integration, and the cytoskeleton publication-title: Immunol Rev doi: 10.1111/imr.12212 – volume: 417 start-page: 182 year: 2002 ident: B21 article-title: Identification of a factor that links apoptotic cells to phagocytes publication-title: Nature doi: 10.1038/417182a – volume: 90 start-page: 1513 year: 1992 ident: B58 article-title: Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis publication-title: J Clin Invest doi: 10.1172/JCI116019 – volume: 3 start-page: A004994 year: 2011 ident: B91 article-title: Integrin structure, activation, and interactions publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a004994 – volume: 108 start-page: 19246 year: 2011 ident: B27 article-title: Constitutive exposure of phosphatidylserine on viable cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1114799108 – volume: 88 start-page: 887 year: 2008 ident: B102 article-title: LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies publication-title: Physiol Rev doi: 10.1152/physrev.00033.2007 – volume: 115 start-page: 13 year: 2003 ident: B34 article-title: By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation publication-title: Cell doi: 10.1016/S0092-8674(03)00758-X – volume: 472 start-page: 471 year: 2011 ident: B78 article-title: Activation of the innate immune receptor dectin-1 upon formation of a ‘phagocytic synapse’ publication-title: Nature doi: 10.1038/nature10071 – volume: 31 start-page: 1364 year: 2012 ident: B90 article-title: A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis publication-title: EMBO J doi: 10.1038/emboj.2012.26 – volume: 83 start-page: 3311 year: 1986 ident: B14 article-title: Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.83.10.3311 – volume: 109 start-page: 8145 year: 2012 ident: B112 article-title: Diurnal, localized exposure of phosphatidylserine by rod outer segment tips in wild-type but not Itgb5-/- or Mfge8-/- mouse retina publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1121101109 – volume: 41 start-page: 543 year: 2012 ident: B74 article-title: Receptor signaling clusters in the immune synapse publication-title: Annu Rev Biophys doi: 10.1146/annurev-biophys-042910-155238 – volume: 180 start-page: 2329 year: 2008 ident: B23 article-title: C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition publication-title: J Immunol doi: 10.4049/jimmunol.180.4.2329 – volume: 14 start-page: 277 year: 2004 ident: B3 article-title: Clearance of apoptotic cells: getting rid of the corpses publication-title: Mol Cell doi: 10.1016/S1097-2765(04)00237-0 – volume: 11 start-page: 47 year: 1999 ident: B11 article-title: Phagocytosis and development: back to the future publication-title: Curr Opin Immunol doi: 10.1016/S0952-7915(99)80009-0 – volume: 17 start-page: 5 year: 2016 ident: B76 article-title: TIRF imaging of Fc gamma receptor microclusters dynamics and signaling on macrophages during frustrated phagocytosis publication-title: BMC Immunol doi: 10.1186/s12865-016-0143-2 – volume: 86 start-page: 651 year: 1995 ident: B40 article-title: Apoptosis is associated with reduced expression of complement regulatory molecules, adhesion molecules and other receptors on polymorphonuclear leucocytes: functional relevance and role in inflammation publication-title: Immunology – volume: 69 start-page: 230 year: 2006 ident: B38 article-title: Lectins detect changes of the glycosylation status of plasma membrane constituents during late apoptosis publication-title: Cytometry A doi: 10.1002/cyto.a.20206 – volume: 25 start-page: 80 year: 2006 ident: B105 article-title: Structural basis for Gas6-Axl signalling publication-title: EMBO J doi: 10.1038/sj.emboj.7600912 – volume: 269 start-page: 44 year: 2016 ident: B50 article-title: Apoptotic cell recognition receptors and scavenger receptors publication-title: Immunol Rev doi: 10.1111/imr.12376 – volume: 8 start-page: 149 year: 1995 ident: B9 article-title: Signalling mechanisms and oxidative stress in apoptosis publication-title: Toxicol Lett doi: 10.1016/0378-4274(95)03474-9 – volume: 191 start-page: 1205 year: 2010 ident: B67 article-title: Dynamic macrophage ‘probing’ is required for the efficient capture of phagocytic targets publication-title: J Cell Biol doi: 10.1083/jcb.201007056 – volume: 7 start-page: 18 year: 2016 ident: B68 article-title: Comparative anatomy of phagocytic and immunological synapses publication-title: Front Immunol doi: 10.3389/fimmu.2016.00018 – volume: 172 start-page: 1882 year: 2004 ident: B45 article-title: Immune complexes bind preferentially to Fc gamma RIIA (CD32) on apoptotic neutrophils, leading to augmented phagocytosis by macrophages and release of proinflammatory cytokines publication-title: J Immunol doi: 10.4049/jimmunol.172.3.1882 – volume: 341 start-page: 403 year: 2013 ident: B15 article-title: Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells publication-title: Science doi: 10.1126/science.1236758 – volume: 84 start-page: 155 year: 1996 ident: B101 article-title: 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region publication-title: Cell doi: 10.1016/S0092-8674(00)81002-8 – volume: 12 start-page: 655 year: 2010 ident: B19 article-title: Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor publication-title: Nat Cell Biol doi: 10.1038/ncb2068 – volume: 129 start-page: 65 year: 2016 ident: B114 article-title: Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis publication-title: J Cell Sci doi: 10.1242/jcs.174631 – volume: 319 start-page: 210 year: 2008 ident: B16 article-title: Membrane phosphatidylserine regulates surface charge and protein localization publication-title: Science doi: 10.1126/science.1152066 – volume: 450 start-page: 430 year: 2007 ident: B17 article-title: BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module publication-title: Nature doi: 10.1038/nature06329 – volume: 402 start-page: 439 year: 1999 ident: B96 article-title: Structure of the C2 domain of human factor VIII at 1.5 A resolution publication-title: Nature doi: 10.1038/46601 – volume: 21 start-page: 1746 year: 2014 ident: B52 article-title: CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition publication-title: Cell Death Differ doi: 10.1038/cdd.2014.86 – volume: 17 start-page: 574 year: 2016 ident: B81 article-title: Initiation of T cell signaling by CD45 segregation at ‘close contacts’ publication-title: Nat Immunol doi: 10.1038/ni.3392 – volume: 79 start-page: 896 year: 2006 ident: B31 article-title: Recognition ligands on apoptotic cells: a perspective publication-title: J Leukoc Biol doi: 10.1189/jlb.1005550 – volume: 149 start-page: 4029 year: 1992 ident: B13 article-title: Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells publication-title: J Immunol doi: 10.4049/jimmunol.149.12.4029 – volume: 7 start-page: 493 year: 2000 ident: B37 article-title: Molecular characterization of the surface of apoptotic neutrophils: implications for functional downregulation and recognition by phagocytes publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4400680 – volume: 19 start-page: 346 year: 2009 ident: B55 article-title: The phosphatidylserine receptor TIM-4 does not mediate direct signaling publication-title: Curr Biol doi: 10.1016/j.cub.2009.01.042 – volume: 39 start-page: 223 year: 2003 ident: B100 article-title: Calnexin, calreticulin, and ERp57: teammates in glycoprotein folding publication-title: Cell Biochem Biophys doi: 10.1385/CBB:39:3:223 – volume: 189 start-page: 1059 year: 2010 ident: B5 article-title: Clearance of apoptotic cells: implications in health and disease publication-title: J Cell Biol doi: 10.1083/jcb.201004096 – volume: 85 start-page: 3264 year: 1995 ident: B47 article-title: Regulation of cell adhesion molecule expression and function associated with neutrophil apoptosis publication-title: Blood doi: 10.1182/blood.V85.11.3264.bloodjournal85113264 – volume: 153 start-page: 1254 year: 1994 ident: B46 article-title: Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression publication-title: J Immunol doi: 10.4049/jimmunol.153.3.1254 – volume: 6 start-page: e1646 year: 2015 ident: B61 article-title: Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells publication-title: Cell Death Dis doi: 10.1038/cddis.2015.18 – volume: 121 start-page: 1951 year: 2013 ident: B51 article-title: The CD300 molecules: an emerging family of regulators of the immune system publication-title: Blood doi: 10.1182/blood-2012-09-435057 – volume: 277 start-page: 11772 year: 2002 ident: B54 article-title: Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP) publication-title: J Biol Chem doi: 10.1074/jbc.M109336200 – volume: 25 start-page: 1511 year: 2014 ident: B82 article-title: The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis publication-title: Mol Biol Cell doi: 10.1091/mbc.E13-04-0212 – volume: 123 start-page: 3347 year: 2010 ident: B39 article-title: Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes publication-title: J Cell Sci doi: 10.1242/jcs.066696 – volume: 84 start-page: 1518 year: 1989 ident: B35 article-title: Phagocytosis of aged human neutrophils by macrophages is mediated by a novel ‘charge-sensitive’ recognition mechanism publication-title: J Clin Invest doi: 10.1172/JCI114328 – volume: 1783 start-page: 953 year: 2008 ident: B71 article-title: Extracellular annexin A5: functions of phosphatidylserine-binding and two-dimensional crystallization publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2008.01.030 – volume: 32 start-page: 2698 year: 2012 ident: B83 article-title: Cross talk between engulfment receptors stabilin-2 and integrin αvβ5 orchestrates engulfment of phosphatidylserine-exposed erythrocytes publication-title: Mol Cell Biol doi: 10.1128/MCB.06743-11 – volume: 94 start-page: 12932 year: 1997 ident: B110 article-title: Phagocytosis of rod outer segments by retinal pigment epithelial cells requires alpha(v)beta5 integrin for binding but not for internalization publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.24.12932 – volume: 198 start-page: 4792 year: 2017 ident: B115 article-title: Activated microglia desialylate and phagocytose cells via neuraminidase, galectin-3, and Mer tyrosine kinase publication-title: J Immunol doi: 10.4049/jimmunol.1502532 – volume: 397 start-page: 269 year: 1996 ident: B41 article-title: Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells publication-title: FEBS Lett doi: 10.1016/S0014-5793(96)01197-0 – volume: 32 start-page: 25 year: 2014 ident: B88 article-title: The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-032713-120142 – volume: 118 start-page: 539 year: 2005 ident: B84 article-title: A role for Mer tyrosine kinase in alphavbeta5 integrin-mediated phagocytosis of apoptotic cells publication-title: J Cell Sci doi: 10.1242/jcs.01632 – volume: 193 start-page: 855 year: 2001 ident: B6 article-title: CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis publication-title: J Exp Med doi: 10.1084/jem.193.7.855 – volume: 194 start-page: 781 year: 2001 ident: B42 article-title: C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells publication-title: J Exp Med doi: 10.1084/jem.194.6.781 – volume: 80 start-page: 661 year: 1995 ident: B22 article-title: The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases publication-title: Cell doi: 10.1016/0092-8674(95)90520-0 – volume: 2 start-page: a002311 year: 2010 ident: B73 article-title: Understanding the structure and function of the immunological synapse publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a002311 – volume: 96 start-page: 8925 year: 1999 ident: B103 article-title: Structure of human factor VIIa and its implications for the triggering of blood coagulation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.16.8925 – volume: 80 start-page: 3461 year: 1983 ident: B94 article-title: Visualization of human C4b-binding protein and its complexes with vitamin K-dependent protein S and complement protein C4b publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.80.11.3461 – volume: 2 start-page: 965 year: 2002 ident: B4 article-title: A blast from the past: clearance of apoptotic cells regulates immune responses publication-title: Nat Rev Immunol doi: 10.1038/nri957 – volume: 279 start-page: 6952 year: 2004 ident: B95 article-title: Ligand recognition and homophilic interactions in Tyro3: structural insights into the Axl/Tyro3 receptor tyrosine kinase family publication-title: J Biol Chem doi: 10.1074/jbc.M311750200 – volume: 198 start-page: 1387 year: 2017 ident: B80 article-title: Efferocytosis signaling in the regulation of macrophage inflammatory responses publication-title: J Immunol doi: 10.4049/jimmunol.1601520 – volume: 7 start-page: e33142 year: 2012 ident: B65 article-title: Characterization of the effects of cross-linking of macrophage CD44 associated with increased phagocytosis of apoptotic PMN publication-title: PLoS One doi: 10.1371/journal.pone.0033142 – volume: 285 start-page: 221 year: 1999 ident: B72 article-title: The immunological synapse: a molecular machine controlling T cell activation publication-title: Science doi: 10.1126/science.285.5425.221 – volume: 65 start-page: 1111 year: 2010 ident: B1 article-title: Transepithelial exit of leucocytes: inflicting, reflecting or resolving airway inflammation? publication-title: Thorax doi: 10.1136/thx.2009.133363 – volume: 229 start-page: 356 year: 2009 ident: B93 article-title: Sequence, structure, function, immunity: structural genomics of costimulation publication-title: Immunol Rev doi: 10.1111/j.1600-065X.2009.00778.x – volume: 93 start-page: 2234 year: 1996 ident: B69 article-title: Cleavage of actin by interleukin 1 beta-converting enzyme to reverse DNase I inhibition publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.5.2234 – volume: 327 start-page: 339 year: 1987 ident: B99 article-title: The solution structure of human epidermal growth factor publication-title: Nature doi: 10.1038/327339a0 – volume: 180 start-page: 2522 year: 2008 ident: B44 article-title: Auto-oxidation and oligomerization of protein S on the apoptotic cell surface is required for Mer tyrosine kinase-mediated phagocytosis of apoptotic cells publication-title: J Immunol doi: 10.4049/jimmunol.180.4.2522 – volume: 14 start-page: 166 year: 2014 ident: B2 article-title: Apoptotic cell clearance: basic biology and therapeutic potential publication-title: Nat Rev Immunol doi: 10.1038/nri3607 – volume: 164 start-page: 128 year: 2016 ident: B79 article-title: Integrins form an expanding diffusional barrier that coordinates phagocytosis publication-title: Cell doi: 10.1016/j.cell.2015.11.048 – volume: 14 start-page: 963 year: 2007 ident: B49 article-title: Identification of two signaling submodules within the CrkII/ELMO/Dock180 pathway regulating engulfment of apoptotic cells publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4402094 – volume: 14 start-page: 917 year: 2013 ident: B107 article-title: The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity publication-title: Nat Immunol doi: 10.1038/ni.2670 – volume: 76 start-page: 1123 year: 2012 ident: B108 article-title: Genetic dissection of TAM receptor-ligand interaction in retinal pigment epithelial cell phagocytosis publication-title: Neuron doi: 10.1016/j.neuron.2012.10.015 – volume: 180 start-page: 989 year: 2008 ident: B30 article-title: Inhibition of ‘self’ engulfment through deactivation of myosin-II at the phagocytic synapse between human cells publication-title: J Cell Biol doi: 10.1083/jcb.200708043 – volume: 4 start-page: 587 year: 2003 ident: B43 article-title: Annexin I is an endogenous ligand that mediates apoptotic cell engulfment publication-title: Dev Cell doi: 10.1016/S1534-5807(03)00090-X – volume: 46 start-page: 19 year: 1967 ident: B59 article-title: The dissociation of the attachment and ingestion phases of phagocytosis by macrophages publication-title: Exp Cell Res doi: 10.1016/0014-4827(67)90405-3 – volume: 142 start-page: 1263 year: 1975 ident: B60 article-title: Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane publication-title: J Exp Med doi: 10.1084/jem.142.5.1263 – volume: 11 start-page: 90 year: 2009 ident: B89 article-title: TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation publication-title: Nat Immunol doi: 10.1038/ni.1832 – volume: 26 start-page: 311 year: 2007 ident: B98 article-title: T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface publication-title: Immunity doi: 10.1016/j.immuni.2007.01.016 – volume: 216 start-page: 1123 year: 2017 ident: B75 article-title: Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages publication-title: J Cell Biol doi: 10.1083/jcb.201608094 – volume: 39 start-page: 6200 year: 2000 ident: B20 article-title: Functional analyses of two cellular binding domains of bovine lactadherin publication-title: Biochemistry (Mosc) doi: 10.1021/bi992221r – volume: 64 start-page: 600 year: 1998 ident: B86 article-title: Regulation of macrophage phagocytosis of apoptotic neutrophils by adhesion to fibronectin publication-title: J Leukoc Biol doi: 10.1002/jlb.64.5.600 – volume: 164 start-page: 1322 year: 2000 ident: B25 article-title: Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation publication-title: J Immunol doi: 10.4049/jimmunol.164.3.1322 – volume: 283 start-page: 33736 year: 2008 ident: B29 article-title: NADPH oxidase-dependent generation of lysophosphatidylserine enhances clearance of activated and dying neutrophils via G2A publication-title: J Biol Chem doi: 10.1074/jbc.M807047200 – volume: 85 start-page: 659 year: 2009 ident: B32 article-title: Decreased CD47 expression during spontaneous apoptosis targets neutrophils for phagocytosis by monocyte-derived macrophages publication-title: Early Hum Dev doi: 10.1016/j.earlhumdev.2009.09.005 – volume: 533 start-page: 337 year: 2003 ident: B109 article-title: Role of alphavbeta5 integrin in regulating phagocytosis by the retinal pigment epithelium publication-title: Adv Exp Med Biol doi: 10.1007/978-1-4615-0067-4_42 – volume: 96 start-page: 6353 year: 1999 ident: B8 article-title: Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.11.6353 – volume: 283 start-page: 10593 year: 2008 ident: B53 article-title: Requirement of adaptor protein GULP during stabilin-2-mediated cell corpse engulfment publication-title: J Biol Chem doi: 10.1074/jbc.M709105200 – volume: 294 start-page: 339 year: 2001 ident: B92 article-title: Crystal structure of the extracellular segment of integrin alpha Vbeta3 publication-title: Science doi: 10.1126/science.1064535 |
| SSID | ssj0000493335 |
| Score | 2.4248476 |
| SecondaryResourceType | review_article |
| Snippet | Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1708 |
| SubjectTerms | apoptotic cells cell–cell interactions Immunology macrophage phagocytic receptor phagocytosis phosphatidylserine |
| Title | The “Phagocytic Synapse” and Clearance of Apoptotic Cells |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29255465 https://www.proquest.com/docview/1978713619 https://pubmed.ncbi.nlm.nih.gov/PMC5723006 https://doaj.org/article/b35dc250df3a482ca069bbc8835ef4f0 |
| Volume | 8 |
| WOSCitedRecordID | wos000416911500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVtaKGX0u86aYMLvfTgri3JknxMl4ReGgJtYW9mJI-aLRt7ye4G9hLyQ5I_l1_SkbxZdktpL734II-xeE9C89DwhrH3VhcSnBZZaSqVycI3WQWizEj4oBJSYe5lbDahj4_NaFSdbLT6CjVhvT1wD9zAirJxdE43XoA03EGuKmudocwBvfRRrVPWsyGmfvZ5rxCi7O8lSYVVAz8-O1uEUi79MVjGmK1zKNr1_ynH_L1UcuPsOXrCHq-SxvSgn-xTdg_bZ-xh30Zy-Ty2ik9vr65PTuFH55YUlH5dtjCd4e3VTQptkw5Dc4jAb9r59GDaTeddiBriZDJ7wb4fHX4bfs5WbREyV3IzzzyiaHLg6NFKidwZFUrGtDaiaHJsrOYGgEbRgQVRuODBBdwpC9x42sUv2U7btfiapcag9bRjhYZcAqlhYRQpGO4LVKDLJmGDO5Bqt_IMD60rJjVphwBrHWGtA6x1hDVhH9ZfTHu_jL_Efgq4r-OC03UcIP7rFf_1v_hP2Ls71mraGeG6A1rsFrO6IIFMEpwUYsJe9Syuf8UrHsrzyoTpLX635rL9ph2fRvftUpNqy9Xu_5j8HnsU4IjlMfIN25mfL_Ate-Au5uPZ-T67r0dmPy5sen65PPwFp7YBDQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+%22Phagocytic+Synapse%22+and+Clearance+of+Apoptotic+Cells&rft.jtitle=Frontiers+in+immunology&rft.au=Barth%2C+Nicole+D&rft.au=Marwick%2C+John+A&rft.au=Vendrell%2C+Marc&rft.au=Rossi%2C+Adriano+G&rft.date=2017-12-04&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=8&rft.spage=1708&rft_id=info:doi/10.3389%2Ffimmu.2017.01708&rft_id=info%3Apmid%2F29255465&rft.externalDocID=29255465 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |