Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis

In the era of digital medicine, a vast number of medical images are produced every day. There is a great demand for intelligent equipment for adjuvant diagnosis to assist medical doctors with different disciplines. With the development of artificial intelligence, the algorithms of convolutional neur...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in oncology Vol. 11; p. 638182
Main Authors: Yang, Ruixin, Yu, Yingyan
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media S.A 09.03.2021
Subjects:
ISSN:2234-943X, 2234-943X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the era of digital medicine, a vast number of medical images are produced every day. There is a great demand for intelligent equipment for adjuvant diagnosis to assist medical doctors with different disciplines. With the development of artificial intelligence, the algorithms of convolutional neural network (CNN) progressed rapidly. CNN and its extension algorithms play important roles on medical imaging classification, object detection, and semantic segmentation. While medical imaging classification has been widely reported, the object detection and semantic segmentation of imaging are rarely described. In this review article, we introduce the progression of object detection and semantic segmentation in medical imaging study. We also discuss how to accurately define the location and boundary of diseases.
AbstractList In the era of digital medicine, a vast number of medical images are produced every day. There is a great demand for intelligent equipment for adjuvant diagnosis to assist medical doctors with different disciplines. With the development of artificial intelligence, the algorithms of convolutional neural network (CNN) progressed rapidly. CNN and its extension algorithms play important roles on medical imaging classification, object detection, and semantic segmentation. While medical imaging classification has been widely reported, the object detection and semantic segmentation of imaging are rarely described. In this review article, we introduce the progression of object detection and semantic segmentation in medical imaging study. We also discuss how to accurately define the location and boundary of diseases.
In the era of digital medicine, a vast number of medical images are produced every day. There is a great demand for intelligent equipment for adjuvant diagnosis to assist medical doctors with different disciplines. With the development of artificial intelligence, the algorithms of convolutional neural network (CNN) progressed rapidly. CNN and its extension algorithms play important roles on medical imaging classification, object detection, and semantic segmentation. While medical imaging classification has been widely reported, the object detection and semantic segmentation of imaging are rarely described. In this review article, we introduce the progression of object detection and semantic segmentation in medical imaging study. We also discuss how to accurately define the location and boundary of diseases.In the era of digital medicine, a vast number of medical images are produced every day. There is a great demand for intelligent equipment for adjuvant diagnosis to assist medical doctors with different disciplines. With the development of artificial intelligence, the algorithms of convolutional neural network (CNN) progressed rapidly. CNN and its extension algorithms play important roles on medical imaging classification, object detection, and semantic segmentation. While medical imaging classification has been widely reported, the object detection and semantic segmentation of imaging are rarely described. In this review article, we introduce the progression of object detection and semantic segmentation in medical imaging study. We also discuss how to accurately define the location and boundary of diseases.
Author Yang, Ruixin
Yu, Yingyan
AuthorAffiliation Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine , Shanghai , China
AuthorAffiliation_xml – name: Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine , Shanghai , China
Author_xml – sequence: 1
  givenname: Ruixin
  surname: Yang
  fullname: Yang, Ruixin
– sequence: 2
  givenname: Yingyan
  surname: Yu
  fullname: Yu, Yingyan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33768000$$D View this record in MEDLINE/PubMed
BookMark eNp1kstv1DAQhy1URB_0zgnlyGUXO3b8uCCttlBWKvQASNysiWMvXhK72ElR_3u8mxa1SPgy9jy-0Yx_p-goxGARekXwklKp3roYzLLGNVlyKomsn6GTuqZsoRj9fvTofozOc97hcniDCaYv0DGlgsviOEFplUbvvPHQV-sYbmM_jT6G8vpsp3Qw4--YflY-VNftzpqxurBjMSWpgtBVX-wAYfSmXLaDDSMcIi6m6pPtvCmEzQBbH7bVqlDvss8v0XMHfbbn9_YMffvw_uv64-Lq-nKzXl0tTFPLcWEVMAtAMO8Usa1rJAAF3FDBgOJGgeK0YbUkAmirmHGuNUoI7roWM7CCnqHNzO0i7PRN8gOkOx3B64Mjpq2GMrzprTYdcyC7jnPsGBZNK5iSoqwVnLSkIYX1bmbdTO1gO1MGLct5An0aCf6H3sZbLZTkgqgCeHMPSPHXZPOoB5-N7XsINk5Z1w3mtSzD7VNfP-71t8nDp5UEPieYFHNO1mnj572X1r7XBOu9QPReIHovED0LpBTifwof2P8t-QNWcsB6
CitedBy_id crossref_primary_10_1007_s11517_025_03345_7
crossref_primary_10_1109_ACCESS_2025_3586673
crossref_primary_10_3390_electronics13234653
crossref_primary_10_3389_fninf_2022_961588
crossref_primary_10_3390_math10244765
crossref_primary_10_3390_diagnostics14232643
crossref_primary_10_1109_ACCESS_2025_3544515
crossref_primary_10_3390_bioengineering11070670
crossref_primary_10_3389_fbloc_2022_927006
crossref_primary_10_3390_s23063321
crossref_primary_10_1007_s11227_025_07675_z
crossref_primary_10_1109_TGCN_2023_3321113
crossref_primary_10_1109_ACCESS_2022_3195490
crossref_primary_10_1109_ACCESS_2025_3599358
crossref_primary_10_3390_s23218890
crossref_primary_10_1080_01431161_2024_2425119
crossref_primary_10_1177_03000605231223881
crossref_primary_10_1007_s00371_025_04135_w
crossref_primary_10_1038_s41598_024_78184_x
crossref_primary_10_1080_08874417_2024_2414216
crossref_primary_10_3390_pharmaceutics14112378
crossref_primary_10_1097_JS9_0000000000002562
crossref_primary_10_3390_app131910800
crossref_primary_10_1002_osi2_1256
crossref_primary_10_1007_s10278_024_01131_9
crossref_primary_10_1177_11795549231220320
crossref_primary_10_1038_s41598_022_25849_0
crossref_primary_10_1109_ACCESS_2023_3333894
crossref_primary_10_1007_s00586_023_08024_5
crossref_primary_10_1049_ipr2_12854
crossref_primary_10_1093_rheumatology_keae678
crossref_primary_10_1109_JSTARS_2023_3238968
crossref_primary_10_1007_s11517_023_02984_y
crossref_primary_10_1007_s10278_024_00968_4
crossref_primary_10_3390_s25072043
crossref_primary_10_31435_rsglobal_ijite_30122022_7931
crossref_primary_10_3389_fendo_2022_945020
crossref_primary_10_1002_jor_70046
crossref_primary_10_1109_ACCESS_2025_3556523
crossref_primary_10_1371_journal_pone_0313734
crossref_primary_10_1109_ACCESS_2024_3386826
crossref_primary_10_1007_s10278_022_00741_5
crossref_primary_10_1049_cit2_12216
crossref_primary_10_3390_app15126641
crossref_primary_10_3390_agriengineering7010002
crossref_primary_10_1007_s10278_024_01085_y
crossref_primary_10_3390_ani12213055
crossref_primary_10_1007_s00383_023_05609_5
crossref_primary_10_1109_ACCESS_2023_3332468
crossref_primary_10_1007_s12020_024_03808_1
crossref_primary_10_3390_machines11070677
crossref_primary_10_1109_ACCESS_2025_3553087
crossref_primary_10_1007_s00198_025_07604_z
crossref_primary_10_1007_s00371_025_03909_6
crossref_primary_10_1061_JCCEE5_CPENG_6173
crossref_primary_10_3390_app13148295
crossref_primary_10_3390_ijms26157134
crossref_primary_10_1002_acm2_14542
crossref_primary_10_1007_s00371_025_04063_9
crossref_primary_10_3390_min15090952
crossref_primary_10_1007_s10278_024_01092_z
crossref_primary_10_3390_s24175652
crossref_primary_10_1155_2022_5339664
crossref_primary_10_3390_fi15060205
crossref_primary_10_1155_2022_2456550
crossref_primary_10_1007_s11042_024_18866_w
crossref_primary_10_1007_s40336_025_00681_4
crossref_primary_10_1103_PhysRevD_111_072004
crossref_primary_10_1109_JSTQE_2022_3228567
crossref_primary_10_3233_THC_236027
crossref_primary_10_3389_fcomp_2022_1036934
crossref_primary_10_3390_s25010214
crossref_primary_10_1007_s40964_024_00583_3
crossref_primary_10_1007_s10278_023_00926_6
crossref_primary_10_3389_fnins_2024_1363930
crossref_primary_10_3390_math11234730
crossref_primary_10_3390_s25020370
crossref_primary_10_4236_jdaip_2025_132008
crossref_primary_10_3389_fonc_2023_1189370
crossref_primary_10_3390_biomedicines10102438
crossref_primary_10_1016_j_cpet_2021_09_009
crossref_primary_10_3390_technologies13010028
crossref_primary_10_3390_s25051291
crossref_primary_10_1186_s13075_021_02716_3
crossref_primary_10_1007_s12145_025_01716_0
crossref_primary_10_1109_JBHI_2024_3445112
crossref_primary_10_1515_dx_2024_0012
crossref_primary_10_1007_s00432_022_04570_5
crossref_primary_10_1109_ACCESS_2024_3488872
crossref_primary_10_1007_s11282_025_00839_w
crossref_primary_10_3389_fonc_2022_927868
crossref_primary_10_3390_a16100483
crossref_primary_10_3390_rs15204991
crossref_primary_10_3390_s23249759
crossref_primary_10_1007_s11042_024_19707_6
crossref_primary_10_1109_ACCESS_2024_3456893
crossref_primary_10_3390_ai5030064
crossref_primary_10_3390_fire7090303
crossref_primary_10_3390_info14120655
crossref_primary_10_1038_s44303_025_00104_z
crossref_primary_10_1117_1_JMI_10_S1_S11904
crossref_primary_10_3390_rs16101774
crossref_primary_10_3390_rs15041093
crossref_primary_10_1093_bib_bbad531
crossref_primary_10_1109_ACCESS_2023_3320798
crossref_primary_10_3390_cancers16203482
crossref_primary_10_1038_s41598_023_47706_4
crossref_primary_10_3390_agriculture15131351
crossref_primary_10_3390_children10101659
crossref_primary_10_3389_fvets_2024_1334438
crossref_primary_10_1371_journal_pone_0288596
crossref_primary_10_3390_app131911114
crossref_primary_10_1186_s12903_021_01983_5
crossref_primary_10_1145_3729420
crossref_primary_10_3389_fnins_2023_1265032
crossref_primary_10_3390_math12244003
crossref_primary_10_3389_feart_2023_1115805
Cites_doi 10.1109/CVPR.2014.81
10.1155/2016/3289801
10.1007/s10120-018-0793-2
10.1364/BOE.9.001545
10.1109/CVPR.2016.91
10.1109/ICMTMA.2019.00157
10.3844/jcssp.2019.785.799
10.1016/S1470-2045(19)30637-0
10.1109/CVPR.2017.106
10.1109/ICCMC48092.2020.ICCMC-000106
10.1109/CVPR.2017.660
10.1016/j.artmed.2019.101781
10.1038/s41591-018-0307-0
10.1109/3DV.2016.79
10.3390/s20071999
10.1055/a-0855-3532
10.1148/rg.2017170077
10.21037/atm.2020.02.44
10.1113/jphysiol.1962.sp006837
10.1016/j.compmedimag.2020.101732
10.1007/s10120-020-01071-7
10.1038/nature14539
10.1186/s41747-018-0061-6
10.1007/978-3-030-00889-5_1
10.3389/fphar.2020.572372
10.3748/wjg.v25.i14.1666
10.1016/j.media.2019.101619
10.1148/rg.2017160130
10.1097/CM9.0000000000000532
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Copyright © 2021 Yang and Yu.
Copyright © 2021 Yang and Yu. 2021 Yang and Yu
Copyright_xml – notice: Copyright © 2021 Yang and Yu.
– notice: Copyright © 2021 Yang and Yu. 2021 Yang and Yu
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fonc.2021.638182
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2234-943X
ExternalDocumentID oai_doaj_org_article_cd4fa8dd660f4075b74987638af8e151
PMC7986719
33768000
10_3389_fonc_2021_638182
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c528t-e9a4eaa106d91ebf58aa3a05374a3059a963542817a3b94cffbc9776fdb04ae73
IEDL.DBID DOA
ISICitedReferencesCount 198
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000631573100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2234-943X
IngestDate Fri Oct 03 12:42:00 EDT 2025
Thu Aug 21 17:47:27 EDT 2025
Fri Sep 05 12:12:04 EDT 2025
Thu Jan 02 22:36:59 EST 2025
Tue Nov 18 22:02:43 EST 2025
Sat Nov 29 06:47:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords medical images
object detection
semantic segmentation
analysis
convolutional neural network
Language English
License Copyright © 2021 Yang and Yu.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-e9a4eaa106d91ebf58aa3a05374a3059a963542817a3b94cffbc9776fdb04ae73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
This article was submitted to Cancer Imaging and Image-directed Interventions, a section of the journal Frontiers in Oncology
Edited by: Youyong Kong, Southeast University, China
Reviewed by: Guanzhen Yu, Shanghai University of Traditional Chinese Medicine, China; Weiming Mi, Tsinghua University, China
OpenAccessLink https://doaj.org/article/cd4fa8dd660f4075b74987638af8e151
PMID 33768000
PQID 2506285379
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_cd4fa8dd660f4075b74987638af8e151
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7986719
proquest_miscellaneous_2506285379
pubmed_primary_33768000
crossref_citationtrail_10_3389_fonc_2021_638182
crossref_primary_10_3389_fonc_2021_638182
PublicationCentury 2000
PublicationDate 2021-03-09
PublicationDateYYYYMMDD 2021-03-09
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-09
  day: 09
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in oncology
PublicationTitleAlternate Front Oncol
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Girshick (B14) 2014
Zhuang (B18) 2020; 82
Wu (B34); 51
Ronneberger (B22) 2015
Milletari (B26) 2016
Lin (B17) 2016
Liangchieh (B27) 2014; 4
Erickson (B3) 2017; 37
Ma (B32) 2020; 11
Zhou (B25) 2018; 11045
Yu (B11) 2020; 20
Vani (B30) 2020
LeCun (B4) 2015; 521
Zhao (B24) 2017
Piantadosi (B37) 2020; 103
Chen (B21) 2018
Tan (B12) 2020
An (B36) 2020; 23
Badrinarayanan (B23) 2017
Chartrand (B2) 2017; 37
Hubel (B7) 1962; 160
Redmon (B19) 2016
Pesapane (B5) 2018; 2
Wickstrøm (B39) 2020; 60
Cai (B38) 2020; 8
Simonyan (B8) 2014
Ju (B29) 2019
Sladojevic (B28) 2016
Long (B20) 2015
Luo (B35) 2019; 20
He (B10) 2016
Hirasawa (B33) 2018; 21
Liu (B15) 2016
Venhuizen (B13) 2018; 9
Gao (B16) 2019; 132
He (B1) 2019; 25
Florencio (B31) 2019; 15
Szegedy (B9) 2015
Yang (B6) 2019; 25
References_xml – start-page: 1
  year: 2017
  ident: B23
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
– start-page: 580
  volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2014
  ident: B14
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  doi: 10.1109/CVPR.2014.81
– start-page: 3289801
  year: 2016
  ident: B28
  article-title: Deep neural networks based recognition of plant diseases by leaf image classification
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2016/3289801
– volume: 21
  start-page: 653
  year: 2018
  ident: B33
  article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-018-0793-2
– volume: 9
  start-page: 1545
  year: 2018
  ident: B13
  article-title: Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.9.001545
– start-page: 779
  year: 2016
  ident: B19
  article-title: You only look once: unified, real-time object detection
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2016.91
– start-page: 688
  volume-title: 2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA)
  year: 2019
  ident: B29
  article-title: Research on OMR recognition based on convolutional neural network tensorflow platform
  doi: 10.1109/ICMTMA.2019.00157
– volume: 15
  start-page: 785
  year: 2019
  ident: B31
  article-title: Performance analysis of deep learning libraries: tensorflow and PyTorch
  publication-title: J Comput Sci
  doi: 10.3844/jcssp.2019.785.799
– start-page: 833
  volume-title: European Conference on Computer Vision
  year: 2018
  ident: B21
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
– volume: 20
  start-page: 1645
  year: 2019
  ident: B35
  article-title: Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30637-0
– start-page: 936
  year: 2016
  ident: B17
  article-title: Feature pyramid networks for object detection
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2017.106
– start-page: 10778
  volume-title: EfficientDet: Scalable and Efficient Object Detection.2020IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
  year: 2020
  ident: B12
– start-page: 572
  volume-title: 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC)
  year: 2020
  ident: B30
  article-title: Using the keras model for accurate and rapid gender identification through detection of facial features
  doi: 10.1109/ICCMC48092.2020.ICCMC-000106
– start-page: 21
  volume-title: European Conference on Computer Vision
  year: 2016
  ident: B15
  article-title: SSD: single shot MultiBoxDetector
– start-page: 6230
  volume-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2017
  ident: B24
  article-title: Pyramid scene parsing network
  doi: 10.1109/CVPR.2017.660
– volume: 103
  start-page: 101781
  year: 2020
  ident: B37
  article-title: Multi-planar 3D breast segmentation in MRI via deep convolutional neural networks
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.101781
– volume: 25
  start-page: 30
  year: 2019
  ident: B1
  article-title: The practical implementation of artificial intelligence technologies in medicine
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0307-0
– start-page: 234
  volume-title: Medical Image Computing and Computer-Assisted Intervention(MICCAI)
  year: 2015
  ident: B22
  article-title: U-net: convolutional networks for biomedical image segmentation
– start-page: 565
  year: 2016
  ident: B26
  article-title: V-net: fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV).
  doi: 10.1109/3DV.2016.79
– volume: 20
  start-page: 1999
  year: 2020
  ident: B11
  article-title: An efficient and lightweight convolutional neural network for remote sensing image scene classification
  publication-title: Sensors (Basel)
  doi: 10.3390/s20071999
– volume: 51
  start-page: 522
  ident: B34
  article-title: A deep neural network improves endoscopic detection of early gastric cancer without blind spots
  publication-title: Endoscopy
  doi: 10.1055/a-0855-3532
– volume: 37
  start-page: 2113
  year: 2017
  ident: B2
  article-title: Deep learning: a primer for radiologists
  publication-title: Radiographics
  doi: 10.1148/rg.2017170077
– volume: 8
  start-page: 713
  year: 2020
  ident: B38
  article-title: A review of the application of deep learning in medical image classification and segmentation
  publication-title: Ann Transl Med
  doi: 10.21037/atm.2020.02.44
– volume: 160
  start-page: 106
  year: 1962
  ident: B7
  article-title: Reccptive field, binocular interaction and functional architecture in the cat's visual cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 82
  start-page: 101732
  year: 2020
  ident: B18
  article-title: Cardiac VFM visualization and analysis based on YOLO deep learning model and modified 2D continuity equation
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2020.101732
– start-page: 7
  year: 2015
  ident: B20
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 4
  start-page: 357
  year: 2014
  ident: B27
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
  publication-title: Computerence
– volume: 23
  start-page: 884
  year: 2020
  ident: B36
  article-title: A deep learning method for delineating early gastric cancer resection margin under chromoendoscopy and white light endoscopy
  publication-title: Gastric Cancer.
  doi: 10.1007/s10120-020-01071-7
– year: 2014
  ident: B8
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv
– volume: 521
  start-page: 436
  year: 2015
  ident: B4
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 2
  start-page: 35
  year: 2018
  ident: B5
  article-title: Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine
  publication-title: EurRadiol Exp
  doi: 10.1186/s41747-018-0061-6
– volume: 11045
  start-page: 3
  year: 2018
  ident: B25
  article-title: UNet++: a nested U-net architecture for medical image segmentation
  publication-title: Deep Learn Med Image Anal Multimodal Learn Clin Decis Support
  doi: 10.1007/978-3-030-00889-5_1
– volume: 11
  start-page: 572372
  year: 2020
  ident: B32
  article-title: Artificial intelligence-based multiclass classification of benign or malignant mucosal lesions of the stomach
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2020.572372
– volume: 25
  start-page: 1666
  year: 2019
  ident: B6
  article-title: Application of artificial intelligence in gastroenterology
  publication-title: World J Gastroenterol.
  doi: 10.3748/wjg.v25.i14.1666
– volume: 60
  start-page: 101619
  year: 2020
  ident: B39
  article-title: Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101619
– start-page: 1
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2015
  ident: B9
  article-title: Going Deeper with Convolutions
– volume: 37
  start-page: 505
  year: 2017
  ident: B3
  article-title: Machine learning for medical imaging
  publication-title: Radiographics
  doi: 10.1148/rg.2017160130
– volume: 132
  start-page: 2804
  year: 2019
  ident: B16
  article-title: Deep neural network-assisted computed tomography diagnosis of metastatic lymph nodes from gastric cancer
  publication-title: Chin Med J.
  doi: 10.1097/CM9.0000000000000532
– start-page: 770
  volume-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2016
  ident: B10
  article-title: Deep residual learning for image recognition
  doi: 10.1109/CVPR.2016.90
SSID ssj0000650103
Score 2.6462233
SecondaryResourceType review_article
Snippet In the era of digital medicine, a vast number of medical images are produced every day. There is a great demand for intelligent equipment for adjuvant...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 638182
SubjectTerms analysis
convolutional neural network
medical images
object detection
Oncology
semantic segmentation
Title Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/33768000
https://www.proquest.com/docview/2506285379
https://pubmed.ncbi.nlm.nih.gov/PMC7986719
https://doaj.org/article/cd4fa8dd660f4075b74987638af8e151
Volume 11
WOSCitedRecordID wos000631573100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BhRAXxLuBUhmJC4eweTixfaSlFUi0IAHS3qxxYsNKXS_abnvktzPjZFe7CMGFS152FGsenpl4_A3Ay1AYbNuAudeocqmcy0lKGop5SqMcGXQp00bhD-r8XE-n5tNWqS_OCRvggQfCTbpeBtR937ZFoOCjcUoaRlHTGLQv0-bpiryerWBqmIMbLmAwrEtSFGYmYREZsbAqX7dspKodO5Tg-v_kY_6eKrlle07vwd3RaRRvhsHehxs-PoDbZ-Oy-ENYcssABSGOF_F6FCe6Y-yNdErJ3mIWxUfHf17EW79KSVhRYOzFZz8nCs86uvg2H3cjRUH-rBgXcsT7eSpnJNYgJo_g6-nJl-N3-VhMIe-aSq9yb1B6RIoAe1N6FxqNWCOjuUgknTdImthQLFIqrJ2RXQiuI9-wDb0rJHpVP4a9uIh-H4TWZY0edeV1J7X3DtEUaDxNF8E4KTOYrElruxFpnAteXFiKOJgZlplhmRl2YEYGrzZv_BhQNv7S94i5tenH-NjpAUmNHaXG_ktqMnix5rUlfeJFEox-cXVpySXkXaW1Mhk8GXi_-VRNszE52EUGakcqdsay2xJn3xNmtzIMJGie_o_BP4M7TI-UCWcOYG-1vPLP4VZ3vZpdLg_hpprqw6QOdDz7efILhooRug
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Convolutional+Neural+Network+in+Object+Detection+and+Semantic+Segmentation+for+Medical+Imaging+Analysis&rft.jtitle=Frontiers+in+oncology&rft.au=Yang%2C+Ruixin&rft.au=Yu%2C+Yingyan&rft.date=2021-03-09&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=11&rft.spage=638182&rft_id=info:doi/10.3389%2Ffonc.2021.638182&rft_id=info%3Apmid%2F33768000&rft.externalDocID=33768000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon