DNA methylation contributes to natural human variation
DNA methylation patterns are important for establishing cell, tissue, and organism phenotypes, but little is known about their contribution to natural human variation. To determine their contribution to variability, we have generated genome-scale DNA methylation profiles of three human populations (...
Saved in:
| Published in: | Genome research Vol. 23; no. 9; p. 1363 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.09.2013
|
| Subjects: | |
| ISSN: | 1549-5469, 1549-5469 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | DNA methylation patterns are important for establishing cell, tissue, and organism phenotypes, but little is known about their contribution to natural human variation. To determine their contribution to variability, we have generated genome-scale DNA methylation profiles of three human populations (Caucasian-American, African-American, and Han Chinese-American) and examined the differentially methylated CpG sites. The distinctly methylated genes identified suggest an influence of DNA methylation on phenotype differences, such as susceptibility to certain diseases and pathogens, and response to drugs and environmental agents. DNA methylation differences can be partially traced back to genetic variation, suggesting that differentially methylated CpG sites serve as evolutionarily established mediators between the genetic code and phenotypic variability. Notably, one-third of the DNA methylation differences were not associated with any genetic variation, suggesting that variation in population-specific sites takes place at the genetic and epigenetic levels, highlighting the contribution of epigenetic modification to natural human variation. |
|---|---|
| AbstractList | DNA methylation patterns are important for establishing cell, tissue, and organism phenotypes, but little is known about their contribution to natural human variation. To determine their contribution to variability, we have generated genome-scale DNA methylation profiles of three human populations (Caucasian-American, African-American, and Han Chinese-American) and examined the differentially methylated CpG sites. The distinctly methylated genes identified suggest an influence of DNA methylation on phenotype differences, such as susceptibility to certain diseases and pathogens, and response to drugs and environmental agents. DNA methylation differences can be partially traced back to genetic variation, suggesting that differentially methylated CpG sites serve as evolutionarily established mediators between the genetic code and phenotypic variability. Notably, one-third of the DNA methylation differences were not associated with any genetic variation, suggesting that variation in population-specific sites takes place at the genetic and epigenetic levels, highlighting the contribution of epigenetic modification to natural human variation. DNA methylation patterns are important for establishing cell, tissue, and organism phenotypes, but little is known about their contribution to natural human variation. To determine their contribution to variability, we have generated genome-scale DNA methylation profiles of three human populations (Caucasian-American, African-American, and Han Chinese-American) and examined the differentially methylated CpG sites. The distinctly methylated genes identified suggest an influence of DNA methylation on phenotype differences, such as susceptibility to certain diseases and pathogens, and response to drugs and environmental agents. DNA methylation differences can be partially traced back to genetic variation, suggesting that differentially methylated CpG sites serve as evolutionarily established mediators between the genetic code and phenotypic variability. Notably, one-third of the DNA methylation differences were not associated with any genetic variation, suggesting that variation in population-specific sites takes place at the genetic and epigenetic levels, highlighting the contribution of epigenetic modification to natural human variation.DNA methylation patterns are important for establishing cell, tissue, and organism phenotypes, but little is known about their contribution to natural human variation. To determine their contribution to variability, we have generated genome-scale DNA methylation profiles of three human populations (Caucasian-American, African-American, and Han Chinese-American) and examined the differentially methylated CpG sites. The distinctly methylated genes identified suggest an influence of DNA methylation on phenotype differences, such as susceptibility to certain diseases and pathogens, and response to drugs and environmental agents. DNA methylation differences can be partially traced back to genetic variation, suggesting that differentially methylated CpG sites serve as evolutionarily established mediators between the genetic code and phenotypic variability. Notably, one-third of the DNA methylation differences were not associated with any genetic variation, suggesting that variation in population-specific sites takes place at the genetic and epigenetic levels, highlighting the contribution of epigenetic modification to natural human variation. |
| Author | Heyn, Holger Hernando-Herraez, Irene Gomez, Antonio Sandoval, Juan Monk, Dave Wang, Liewei Moran, Sebastian Sayols, Sergi Marques-Bonet, Tomas Hata, Kenichiro Esteller, Manel |
| Author_xml | – sequence: 1 givenname: Holger surname: Heyn fullname: Heyn, Holger organization: Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain – sequence: 2 givenname: Sebastian surname: Moran fullname: Moran, Sebastian – sequence: 3 givenname: Irene surname: Hernando-Herraez fullname: Hernando-Herraez, Irene – sequence: 4 givenname: Sergi surname: Sayols fullname: Sayols, Sergi – sequence: 5 givenname: Antonio surname: Gomez fullname: Gomez, Antonio – sequence: 6 givenname: Juan surname: Sandoval fullname: Sandoval, Juan – sequence: 7 givenname: Dave surname: Monk fullname: Monk, Dave – sequence: 8 givenname: Kenichiro surname: Hata fullname: Hata, Kenichiro – sequence: 9 givenname: Tomas surname: Marques-Bonet fullname: Marques-Bonet, Tomas – sequence: 10 givenname: Liewei surname: Wang fullname: Wang, Liewei – sequence: 11 givenname: Manel surname: Esteller fullname: Esteller, Manel |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23908385$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj7tPwzAYxC1URB8wsqKMLCl-xx6r8milChaYI8f-QoMSp9gOUv97IigS091JP53u5mjiew8IXRO8JASTu_ewJIITVYyRnqHZGHQuuNSTf36K5jF-YIwZV-oCTSnTWDElZkjeP6-yDtL-2JrU9D6zvU-hqYYEMUt95k0agmmz_dAZn32Z0Pxgl-i8Nm2Eq5Mu0Nvjw-t6k-9enrbr1S63gqqUOyuVY5JVwhVWMybxaCg3RjLgWpPCQlE7QWwNxbhHCYe1karWFKjjUNEFuv3tPYT-c4CYyq6JFtrWeOiHWBJOteRYKjaiNyd0qDpw5SE0nQnH8u8r_QZCWFb6 |
| CitedBy_id | crossref_primary_10_1016_j_fsigen_2018_08_008 crossref_primary_10_1186_s13148_023_01445_5 crossref_primary_10_3390_cells9030653 crossref_primary_10_1161_CIRCGEN_123_004079 crossref_primary_10_1038_ncomms7326 crossref_primary_10_1007_s11033_020_05747_2 crossref_primary_10_1186_s41935_018_0042_1 crossref_primary_10_1080_15592294_2020_1809852 crossref_primary_10_1371_journal_pgen_1005650 crossref_primary_10_1186_s13073_018_0527_4 crossref_primary_10_2217_epi_2016_0163 crossref_primary_10_1097_BOR_0000000000000840 crossref_primary_10_3390_ijms20194822 crossref_primary_10_1038_ncomms10047 crossref_primary_10_1080_15592294_2024_2332819 crossref_primary_10_1080_15592294_2019_1644879 crossref_primary_10_2217_epi_15_114 crossref_primary_10_1007_s13318_016_0376_8 crossref_primary_10_1038_nrc4001 crossref_primary_10_3389_fpls_2018_00041 crossref_primary_10_1016_j_jpeds_2018_06_051 crossref_primary_10_1093_nar_gkw996 crossref_primary_10_1002_ajpa_24041 crossref_primary_10_1016_j_pbb_2023_173631 crossref_primary_10_1002_bies_201600058 crossref_primary_10_3389_fgene_2018_00610 crossref_primary_10_1080_15592294_2015_1045179 crossref_primary_10_1093_molbev_msw184 crossref_primary_10_2217_epi_2018_0042 crossref_primary_10_1016_j_ccell_2020_04_012 crossref_primary_10_1017_S0954579416000857 crossref_primary_10_1371_journal_pgen_1007707 crossref_primary_10_1101_gr_183749_114 crossref_primary_10_1007_s12032_022_01737_5 crossref_primary_10_1002_ajhb_23742 crossref_primary_10_1186_s12864_015_2202_0 crossref_primary_10_1080_07357907_2020_1812079 crossref_primary_10_1158_0008_5472_CAN_15_0243 crossref_primary_10_1186_s12864_018_4618_9 crossref_primary_10_2217_pgs_15_106 crossref_primary_10_1371_journal_pgen_1004663 crossref_primary_10_1002_gepi_21789 crossref_primary_10_3390_agronomy11040680 crossref_primary_10_1186_s13072_019_0321_6 crossref_primary_10_1016_j_cell_2016_07_012 crossref_primary_10_1093_hmg_ddw407 crossref_primary_10_1093_eep_dvx002 crossref_primary_10_1186_s13072_016_0074_4 crossref_primary_10_3389_fgene_2014_00113 crossref_primary_10_1016_j_bbr_2017_12_004 crossref_primary_10_2217_pgs_14_170 crossref_primary_10_1093_eep_dvab012 crossref_primary_10_1017_S109285292100105X crossref_primary_10_1007_s00438_016_1264_2 crossref_primary_10_1111_jeb_13535 crossref_primary_10_1093_molbev_msy227 crossref_primary_10_1038_s41559_017_0299_z crossref_primary_10_1186_s12863_021_00977_0 crossref_primary_10_1016_j_ajpath_2017_06_019 crossref_primary_10_1186_s44330_025_00029_4 crossref_primary_10_1371_journal_pone_0153354 crossref_primary_10_3389_fphys_2019_01397 crossref_primary_10_3390_genes13020178 crossref_primary_10_1186_s12881_016_0335_x crossref_primary_10_1016_j_envpol_2018_07_015 crossref_primary_10_1016_j_fsigen_2023_102923 crossref_primary_10_1186_s13073_015_0258_8 crossref_primary_10_1177_2397198319855872 crossref_primary_10_1093_nar_gkv693 crossref_primary_10_1186_s12967_015_0506_0 crossref_primary_10_1186_s13072_015_0037_1 crossref_primary_10_1016_j_ijpsycho_2018_01_008 crossref_primary_10_1111_jdv_15865 crossref_primary_10_1007_s10753_024_02076_5 crossref_primary_10_1007_s11427_022_2284_8 crossref_primary_10_1093_icb_icu040 crossref_primary_10_1093_nar_gku811 crossref_primary_10_3109_03014460_2014_961960 crossref_primary_10_1111_eci_12899 crossref_primary_10_1186_s12864_020_07092_x crossref_primary_10_1111_desc_12282 crossref_primary_10_12968_bjon_2020_29_17_1030 crossref_primary_10_1155_2015_164529 crossref_primary_10_1093_nar_gkv580 crossref_primary_10_1007_s10549_015_3276_8 crossref_primary_10_1111_mec_13480 crossref_primary_10_1186_s12920_024_02002_6 crossref_primary_10_1016_j_forsciint_2024_112339 crossref_primary_10_1016_j_ygeno_2025_111050 crossref_primary_10_1111_mec_13231 crossref_primary_10_1186_s13059_016_1030_0 crossref_primary_10_1016_j_autrev_2018_11_005 crossref_primary_10_1038_s41398_023_02380_y crossref_primary_10_1002_ajmg_b_32568 crossref_primary_10_1093_hmg_ddw283 crossref_primary_10_1016_j_cell_2019_02_033 crossref_primary_10_1038_s41576_024_00804_z crossref_primary_10_1186_s12859_019_2845_y crossref_primary_10_1016_j_psyneuen_2024_107147 crossref_primary_10_7717_peerj_7847 crossref_primary_10_1093_molbev_msad086 crossref_primary_10_1186_s13072_018_0245_6 crossref_primary_10_1038_s41588_022_01081_4 crossref_primary_10_1002_ijc_30205 crossref_primary_10_1186_s12862_018_1177_2 crossref_primary_10_1016_j_ccell_2015_07_012 crossref_primary_10_1016_j_jpsychires_2016_12_020 crossref_primary_10_1101_gr_227066_117 crossref_primary_10_3389_fcell_2025_1532711 crossref_primary_10_1002_1878_0261_70013 crossref_primary_10_1186_s13059_015_0741_y crossref_primary_10_1080_10826084_2023_2259450 crossref_primary_10_1139_gen_2013_0125 crossref_primary_10_1186_1471_2105_15_141 crossref_primary_10_1371_journal_pgen_1005661 crossref_primary_10_4161_epi_28323 crossref_primary_10_1186_s13059_016_0926_z crossref_primary_10_3389_fimmu_2017_01048 crossref_primary_10_1007_s13258_023_01392_8 crossref_primary_10_1186_s13059_017_1373_1 crossref_primary_10_1038_nrclinonc_2018_30 crossref_primary_10_1093_bib_bbu018 crossref_primary_10_1038_s41584_020_0470_9 crossref_primary_10_2217_epi_2017_0046 crossref_primary_10_1111_mec_13573 crossref_primary_10_3390_genes14040873 crossref_primary_10_1002_em_21989 crossref_primary_10_1093_hmg_ddab038 crossref_primary_10_1093_bib_bbac617 crossref_primary_10_1186_s13148_023_01600_y crossref_primary_10_1016_j_forsciint_2015_01_037 crossref_primary_10_1016_j_ygeno_2018_01_002 crossref_primary_10_1007_s00438_017_1298_0 crossref_primary_10_1016_j_plipres_2016_10_002 crossref_primary_10_1186_s13148_017_0313_y crossref_primary_10_1093_hmg_ddab161 crossref_primary_10_1534_genetics_115_185504 crossref_primary_10_1002_cbin_11508 crossref_primary_10_1097_MOL_0000000000000059 crossref_primary_10_1186_s13059_018_1601_3 crossref_primary_10_3390_cells9020466 crossref_primary_10_1111_1755_0998_13493 crossref_primary_10_3390_ijms25084230 crossref_primary_10_1186_s12864_019_5880_1 crossref_primary_10_1016_j_fsigen_2016_06_005 crossref_primary_10_1371_journal_pgen_1010719 crossref_primary_10_1093_gbe_evu271 crossref_primary_10_3390_cancers13010108 crossref_primary_10_2337_db20_0117 crossref_primary_10_1007_s00040_017_0594_3 crossref_primary_10_1038_s41598_018_23957_4 crossref_primary_10_1111_aman_12351 crossref_primary_10_3390_cancers13194807 crossref_primary_10_1093_jhered_esx004 crossref_primary_10_1007_s00414_025_03513_2 crossref_primary_10_1016_j_fsigen_2018_03_009 crossref_primary_10_1080_15592294_2018_1561117 crossref_primary_10_3390_app112311179 crossref_primary_10_1016_j_mad_2017_11_013 crossref_primary_10_1016_j_ijcard_2016_03_062 crossref_primary_10_1111_mec_13550 crossref_primary_10_1016_j_fsigen_2017_04_010 crossref_primary_10_1038_s41397_019_0104_2 crossref_primary_10_1136_lupus_2022_000698 crossref_primary_10_1186_s12864_019_5761_7 crossref_primary_10_1093_ije_dyy029 crossref_primary_10_1038_s41598_018_30579_3 crossref_primary_10_1038_s41374_020_0422_7 crossref_primary_10_1038_s41591_018_0013_y crossref_primary_10_1136_jech_2014_204781 crossref_primary_10_1016_j_reprotox_2024_108576 crossref_primary_10_1007_s00194_025_00768_2 crossref_primary_10_1016_j_gde_2018_06_008 crossref_primary_10_1186_s12916_020_01736_1 crossref_primary_10_1038_s41598_024_72240_2 crossref_primary_10_3390_ijms20215343 crossref_primary_10_1093_nar_gkv244 crossref_primary_10_3390_biology5020024 crossref_primary_10_1016_j_neuroscience_2017_08_004 crossref_primary_10_1016_j_fsigen_2025_103346 crossref_primary_10_1534_genetics_116_195594 crossref_primary_10_3389_fgene_2015_00190 crossref_primary_10_1093_hmg_ddw301 crossref_primary_10_1038_s41398_022_02195_3 crossref_primary_10_3389_fnbeh_2015_00347 crossref_primary_10_3390_genes12020129 crossref_primary_10_1016_j_tig_2021_09_013 crossref_primary_10_3390_genes13112165 crossref_primary_10_1038_s41420_021_00555_4 crossref_primary_10_1007_s00439_020_02167_x crossref_primary_10_1111_mec_13777 crossref_primary_10_1080_15592294_2018_1549769 crossref_primary_10_1101_gr_171439_113 crossref_primary_10_1038_srep41843 crossref_primary_10_1007_s12031_018_1046_x crossref_primary_10_1016_j_mad_2018_06_006 crossref_primary_10_1093_ecco_jcc_jjac127 crossref_primary_10_1038_s42003_023_05658_5 crossref_primary_10_1093_cdn_nzaa097 crossref_primary_10_1016_j_tig_2015_09_006 crossref_primary_10_1038_s41467_024_47005_0 crossref_primary_10_1016_j_tig_2013_09_006 crossref_primary_10_1007_s11883_020_00875_3 crossref_primary_10_1242_jeb_106799 crossref_primary_10_1371_journal_pone_0193496 crossref_primary_10_3390_biomedicines10123090 crossref_primary_10_1038_nrg3891 crossref_primary_10_1016_j_fsigen_2017_02_009 crossref_primary_10_1017_qpb_2022_14 crossref_primary_10_4103_jrms_JRMS_83_19 crossref_primary_10_1371_journal_pone_0120388 crossref_primary_10_1016_j_fsigen_2023_102870 crossref_primary_10_1038_srep17328 crossref_primary_10_1093_nar_gky691 crossref_primary_10_1007_s12192_017_0871_0 crossref_primary_10_1093_hmg_ddaa280 crossref_primary_10_1186_s12885_015_1461_0 crossref_primary_10_1016_j_neubiorev_2020_03_007 crossref_primary_10_1080_17501911_2025_2533115 crossref_primary_10_1186_s40101_022_00305_0 crossref_primary_10_1016_j_numecd_2016_04_002 crossref_primary_10_1016_j_addicn_2023_100096 crossref_primary_10_1371_journal_pone_0155478 crossref_primary_10_3390_ijms21134718 crossref_primary_10_1016_j_biopha_2022_113396 crossref_primary_10_1007_s10620_018_5072_x crossref_primary_10_1038_ijo_2014_34 crossref_primary_10_1093_hmg_ddz273 crossref_primary_10_1016_j_jpsychires_2016_08_012 crossref_primary_10_1186_s40246_025_00763_4 crossref_primary_10_1097_IJG_0000000000000453 crossref_primary_10_1007_s11926_017_0657_5 crossref_primary_10_1016_j_jasrep_2015_11_004 crossref_primary_10_1007_s11356_020_10804_1 crossref_primary_10_1016_j_fsigen_2017_07_011 crossref_primary_10_1016_j_jaci_2016_02_045 crossref_primary_10_1111_eva_13604 crossref_primary_10_3390_ijms241512489 crossref_primary_10_1111_mec_15803 crossref_primary_10_1016_j_forsciint_2020_110372 crossref_primary_10_3390_ijms140918925 crossref_primary_10_1177_2516865720981924 crossref_primary_10_1080_15592294_2023_2185742 crossref_primary_10_1111_aogs_12431 crossref_primary_10_1007_s40142_014_0058_2 crossref_primary_10_1080_15592294_2020_1817290 crossref_primary_10_3390_biology12020252 crossref_primary_10_1080_15592294_2022_2163363 crossref_primary_10_1016_j_forsciint_2023_111682 crossref_primary_10_1016_j_jaut_2018_09_007 crossref_primary_10_2217_epi_15_17 crossref_primary_10_1016_j_jgg_2015_10_001 crossref_primary_10_1038_s41386_018_0157_y crossref_primary_10_1126_science_1248127 crossref_primary_10_1371_journal_pgen_1005826 crossref_primary_10_1038_mp_2016_242 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1101/gr.154187.112 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1549-5469 |
| ExternalDocumentID | 23908385 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: U01 GM061388 – fundername: NIGMS NIH HHS grantid: GM61388 – fundername: NCI NIH HHS grantid: CA138461 – fundername: NIGMS NIH HHS grantid: U19 GM061388 – fundername: NCI NIH HHS grantid: R01 CA138461 |
| GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAFWJ AAZTW ABDIX ABDNZ ACGFO ACLKE ACYGS ADBBV ADNWM AEILP AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 NPM R.V RCX RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP 7X8 |
| ID | FETCH-LOGICAL-c528t-dc68d363b5d7c933605d724aa63e49917ce7fd51cfe783885d09a68f92e2d4eb2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 290 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324080000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-5469 |
| IngestDate | Fri Sep 05 08:46:02 EDT 2025 Mon Jul 21 05:56:12 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c528t-dc68d363b5d7c933605d724aa63e49917ce7fd51cfe783885d09a68f92e2d4eb2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://recercat.cat/handle/2072/315496 |
| PMID | 23908385 |
| PQID | 1429640683 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1429640683 pubmed_primary_23908385 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-09-01 |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Genome research |
| PublicationTitleAlternate | Genome Res |
| PublicationYear | 2013 |
| References | 21703449 - Cell. 2011 Jun 24;145(7):1049-61 22968699 - Nat Commun. 2012;3:1053 21346778 - Genes Immun. 2011 Sep;12(6):428-33 7926745 - Genes Dev. 1994 Jun 15;8(12):1463-72 22983211 - Nat Neurosci. 2012 Oct;15(10):1371-3 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75 12861015 - Mol Cell Biol. 2003 Aug;23(15):5293-300 18467348 - Bioinformatics. 2008 Jul 1;24(13):1547-8 20944598 - Nat Biotechnol. 2010 Oct;28(10):1057-68 15933200 - Science. 2005 Jun 3;308(5727):1466-9 12925520 - Biostatistics. 2003 Apr;4(2):249-64 20981092 - Nature. 2010 Oct 28;467(7319):1061-73 20080672 - Proc Natl Acad Sci U S A. 2010 Jan 26;107 Suppl 1:1757-64 22840920 - Cell. 2012 Aug 3;150(3):457-69 19541911 - Genome Res. 2009 Sep;19(9):1639-45 19151718 - Nat Genet. 2009 Feb;41(2):240-5 20485568 - PLoS Genet. 2010 May;6(5):e1000952 23064414 - Nat Genet. 2012 Nov;44(11):1236-42 17522677 - Nature. 2007 May 24;447(7143):433-40 22976472 - Hum Mol Genet. 2012 Oct 15;21(R1):R24-8 21593595 - Epigenetics. 2011 Jun;6(6):692-702 19193149 - J Comput Biol. 2009 Feb;16(2):317-29 19056939 - Science. 2008 Dec 19;322(5909):1855-7 22322129 - Genome Biol. 2012;13(2):R8 23141533 - Cell. 2012 Nov 9;151(4):702-8 19303049 - Methods. 2009 Jul;48(3):265-76 20215007 - Am J Hum Genet. 2010 Mar 12;86(3):411-9 18805990 - Genes Dev. 2008 Oct 1;22(19):2621-6 19349983 - Nat Genet. 2009 May;41(5):591-5 22300631 - Genome Res. 2012 Apr;22(4):623-32 18292342 - Science. 2008 Feb 22;319(5866):1100-4 22139925 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1047-54 22641018 - Nat Rev Genet. 2012 Jul;13(7):484-92 21441907 - Nature. 2011 May 5;473(7345):43-9 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 20923822 - Genome Res. 2010 Nov;20(11):1482-92 21251332 - Genome Biol. 2011;12(1):R10 16009939 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10604-9 17907809 - PLoS Genet. 2007 Sep;3(9):1724-35 11498580 - Science. 2001 Aug 10;293(5532):1093-8 21561920 - Bioinformatics. 2011 Jul 1;27(13):1882-3 18006571 - Nucleic Acids Res. 2008 Jan;36(Database issue):D102-6 22532803 - PLoS Genet. 2012;8(4):e1002629 20724161 - Trends Microbiol. 2010 Oct;18(10):439-47 18757419 - Cancer Res. 2008 Sep 1;68(17):7050-8 19648217 - Genome Res. 2009 Sep;19(9):1655-64 20849587 - BMC Genomics. 2010;11:502 22126295 - Epigenomics. 2011 Dec;3(6):771-84 15461798 - Genome Biol. 2004;5(10):R80 21358819 - PLoS One. 2011;6(2):e16432 22955616 - Nature. 2012 Sep 6;489(7414):57-74 19487240 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W247-52 17122850 - Nature. 2006 Nov 23;444(7118):444-54 16595560 - Bioinformatics. 2006 Jun 15;22(12):1540-2 22941276 - Nat Med. 2012 Sep;18(9):1369-77 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15 |
| References_xml | – reference: 22941276 - Nat Med. 2012 Sep;18(9):1369-77 – reference: 15461798 - Genome Biol. 2004;5(10):R80 – reference: 18292342 - Science. 2008 Feb 22;319(5866):1100-4 – reference: 22840920 - Cell. 2012 Aug 3;150(3):457-69 – reference: 20215007 - Am J Hum Genet. 2010 Mar 12;86(3):411-9 – reference: 11498580 - Science. 2001 Aug 10;293(5532):1093-8 – reference: 18805990 - Genes Dev. 2008 Oct 1;22(19):2621-6 – reference: 19487240 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W247-52 – reference: 19193149 - J Comput Biol. 2009 Feb;16(2):317-29 – reference: 7926745 - Genes Dev. 1994 Jun 15;8(12):1463-72 – reference: 15933200 - Science. 2005 Jun 3;308(5727):1466-9 – reference: 21441907 - Nature. 2011 May 5;473(7345):43-9 – reference: 23064414 - Nat Genet. 2012 Nov;44(11):1236-42 – reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74 – reference: 22968699 - Nat Commun. 2012;3:1053 – reference: 19541911 - Genome Res. 2009 Sep;19(9):1639-45 – reference: 21561920 - Bioinformatics. 2011 Jul 1;27(13):1882-3 – reference: 18467348 - Bioinformatics. 2008 Jul 1;24(13):1547-8 – reference: 20485568 - PLoS Genet. 2010 May;6(5):e1000952 – reference: 22983211 - Nat Neurosci. 2012 Oct;15(10):1371-3 – reference: 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75 – reference: 17522677 - Nature. 2007 May 24;447(7143):433-40 – reference: 19648217 - Genome Res. 2009 Sep;19(9):1655-64 – reference: 21358819 - PLoS One. 2011;6(2):e16432 – reference: 21346778 - Genes Immun. 2011 Sep;12(6):428-33 – reference: 12861015 - Mol Cell Biol. 2003 Aug;23(15):5293-300 – reference: 19349983 - Nat Genet. 2009 May;41(5):591-5 – reference: 22126295 - Epigenomics. 2011 Dec;3(6):771-84 – reference: 22532803 - PLoS Genet. 2012;8(4):e1002629 – reference: 20849587 - BMC Genomics. 2010;11:502 – reference: 12925520 - Biostatistics. 2003 Apr;4(2):249-64 – reference: 22300631 - Genome Res. 2012 Apr;22(4):623-32 – reference: 20724161 - Trends Microbiol. 2010 Oct;18(10):439-47 – reference: 23141533 - Cell. 2012 Nov 9;151(4):702-8 – reference: 22976472 - Hum Mol Genet. 2012 Oct 15;21(R1):R24-8 – reference: 20923822 - Genome Res. 2010 Nov;20(11):1482-92 – reference: 20944598 - Nat Biotechnol. 2010 Oct;28(10):1057-68 – reference: 21593595 - Epigenetics. 2011 Jun;6(6):692-702 – reference: 22139925 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1047-54 – reference: 18006571 - Nucleic Acids Res. 2008 Jan;36(Database issue):D102-6 – reference: 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15 – reference: 19056939 - Science. 2008 Dec 19;322(5909):1855-7 – reference: 16595560 - Bioinformatics. 2006 Jun 15;22(12):1540-2 – reference: 17907809 - PLoS Genet. 2007 Sep;3(9):1724-35 – reference: 19303049 - Methods. 2009 Jul;48(3):265-76 – reference: 21251332 - Genome Biol. 2011;12(1):R10 – reference: 16009939 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10604-9 – reference: 21703449 - Cell. 2011 Jun 24;145(7):1049-61 – reference: 22641018 - Nat Rev Genet. 2012 Jul;13(7):484-92 – reference: 20080672 - Proc Natl Acad Sci U S A. 2010 Jan 26;107 Suppl 1:1757-64 – reference: 17122850 - Nature. 2006 Nov 23;444(7118):444-54 – reference: 18757419 - Cancer Res. 2008 Sep 1;68(17):7050-8 – reference: 19151718 - Nat Genet. 2009 Feb;41(2):240-5 – reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 – reference: 22322129 - Genome Biol. 2012;13(2):R8 – reference: 20981092 - Nature. 2010 Oct 28;467(7319):1061-73 |
| SSID | ssj0003488 |
| Score | 2.573776 |
| Snippet | DNA methylation patterns are important for establishing cell, tissue, and organism phenotypes, but little is known about their contribution to natural human... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1363 |
| SubjectTerms | Adult African Americans - genetics Asian Americans - genetics DNA Methylation Epigenesis, Genetic European Continental Ancestry Group - genetics Female Genetic Variation Genome, Human Genome-Wide Association Study Humans Male Population - genetics Quantitative Trait Loci |
| Title | DNA methylation contributes to natural human variation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23908385 https://www.proquest.com/docview/1429640683 |
| Volume | 23 |
| WOSCitedRecordID | wos000324080000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwGLWAgmDhKFe5ZCTEZjWxk9ieUClUDBB1ANQtcn0gBpLSlEr999hOQickJJYog6Mkn53P3_HyHgBXSUwFD2KMuOESRVpLNA6MQtYPhiLEWEtPpvP6SNOUjUZ8WBfcyhpW2fhE76hVIV2NvBtGrkEYJIzcTD6RU41y3dVaQmMVtIgNZRyki46WbOEk8rqTjoUMxTYP_OHYDLtvU1dTCRl1_9D8Hl36XWaw89_n2wXbdXwJe9WC2AMrOm-D_V5uc-uPBbyGHvHpS-ltsHHbnG32G923fZDcpT3ohKUXFUwOejS7k8XSJZwV0FOB2lt4dT84t7m2H3YAXgb3z_0HVKsrIBljNkNKJkyRhIxjRSUnxOY1iuJIiIRomwaFVGpqVBxKoykjjMUq4CJhhmONVWQT8kOwlhe5PgZQEIExNcRQJSMqxJjZQdJOCJHh2G7CHXDZ2CyzL-NaEiLXxVeZLa3WAUeV4bNJRbORYcJtfMjikz9cfQq2sNepcOCvM9Ay9tvV52Bdzmfv5fTCLwt7TIdP3--pwek |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+methylation+contributes+to+natural+human+variation&rft.jtitle=Genome+research&rft.au=Heyn%2C+Holger&rft.au=Moran%2C+Sebastian&rft.au=Hernando-Herraez%2C+Irene&rft.au=Sayols%2C+Sergi&rft.date=2013-09-01&rft.issn=1549-5469&rft.eissn=1549-5469&rft.volume=23&rft.issue=9&rft.spage=1363&rft_id=info:doi/10.1101%2Fgr.154187.112&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-5469&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-5469&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-5469&client=summon |