Desirable Traits of a Good Biocontrol Agent against Verticillium Wilt
The soil-borne fungus causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to control by conventional methods, so there is great potential for biocontrol to manage this disease. In this study we aimed to review the researc...
Gespeichert in:
| Veröffentlicht in: | Frontiers in microbiology Jg. 8; S. 1186 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
Frontiers Media S.A
06.07.2017
|
| Schlagworte: | |
| ISSN: | 1664-302X, 1664-302X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The soil-borne fungus
causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to control by conventional methods, so there is great potential for biocontrol to manage this disease. In this study we aimed to review the research about
biocontrol to get a better understanding of characteristics that are desirable in a biocontrol agent (BCA) against Verticillium wilt. We only considered studies in which the BCAs were tested on plants. Most biocontrol studies were focused on plants of the
, and
and within these families eggplant, cotton, and oilseed rape were the most studied crops. The list of bacterial BCAs with potential against
was dominated by endophytic
and
isolates, while non-pathogenic xylem-colonizing
and
isolates topped the fungal list. Predominant modes of action involved in biocontrol were inhibition of primary inoculum germination, plant growth promotion, competition and induced resistance. Many BCAs showed
antibiosis and mycoparasitism but these traits were not correlated with activity
and there is no evidence that they play a role
. Good BCAs were obtained from soils suppressive to Verticillium wilt, disease suppressive composts, and healthy plants in infested fields. Desirable characteristics in a BCA against
are the ability to (1) affect the survival or germination of microsclerotia, (2) colonize the xylem and/or cortex and compete with the pathogen for nutrients and/or space, (3) induce resistance responses in the plant and/or (4) promote plant growth. Potential BCAs should be screened in conditions that resemble the field situation to increase the chance of successful use in practice. Furthermore, issues such as large scale production, formulation, preservation conditions, shelf life, and application methods should be considered early in the process of selecting BCAs against
. |
|---|---|
| AbstractList | The soil-borne fungus Verticillium causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to control by conventional methods, so there is great potential for biocontrol to manage this disease. In this study we aimed to review the research about Verticillium biocontrol to get a better understanding of characteristics that are desirable in a biocontrol agent (BCA) against Verticillium wilt. We only considered studies in which the BCAs were tested on plants. Most biocontrol studies were focused on plants of the Solanaceae, Malvaceae, and Brassicaceae and within these families eggplant, cotton, and oilseed rape were the most studied crops. The list of bacterial BCAs with potential against Verticillium was dominated by endophytic Bacillus and Pseudomonas isolates, while non-pathogenic xylem-colonizing Verticillium and Fusarium isolates topped the fungal list. Predominant modes of action involved in biocontrol were inhibition of primary inoculum germination, plant growth promotion, competition and induced resistance. Many BCAs showed in vitro antibiosis and mycoparasitism but these traits were not correlated with activity in vivo and there is no evidence that they play a role in planta. Good BCAs were obtained from soils suppressive to Verticillium wilt, disease suppressive composts, and healthy plants in infested fields. Desirable characteristics in a BCA against Verticillium are the ability to (1) affect the survival or germination of microsclerotia, (2) colonize the xylem and/or cortex and compete with the pathogen for nutrients and/or space, (3) induce resistance responses in the plant and/or (4) promote plant growth. Potential BCAs should be screened in conditions that resemble the field situation to increase the chance of successful use in practice. Furthermore, issues such as large scale production, formulation, preservation conditions, shelf life, and application methods should be considered early in the process of selecting BCAs against Verticillium. The soil-borne fungus Verticillium causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to control by conventional methods, so there is great potential for biocontrol to manage this disease. In this study we aimed to review the research about Verticillium biocontrol to get a better understanding of characteristics that are desirable in a biocontrol agent (BCA) against Verticillium wilt. We only considered studies in which the BCAs were tested on plants. Most biocontrol studies were focused on plants of the Solanaceae, Malvaceae, and Brassicaceae and within these families eggplant, cotton, and oilseed rape were the most studied crops. The list of bacterial BCAs with potential against Verticillium was dominated by endophytic Bacillus and Pseudomonas isolates, while non-pathogenic xylem-colonizing Verticillium and Fusarium isolates topped the fungal list. Predominant modes of action involved in biocontrol were inhibition of primary inoculum germination, plant growth promotion, competition and induced resistance. Many BCAs showed in vitro antibiosis and mycoparasitism but these traits were not correlated with activity in vivo and there is no evidence that they play a role in planta. Good BCAs were obtained from soils suppressive to Verticillium wilt, disease suppressive composts, and healthy plants in infested fields. Desirable characteristics in a BCA against Verticillium are the ability to (1) affect the survival or germination of microsclerotia, (2) colonize the xylem and/or cortex and compete with the pathogen for nutrients and/or space, (3) induce resistance responses in the plant and/or (4) promote plant growth. Potential BCAs should be screened in conditions that resemble the field situation to increase the chance of successful use in practice. Furthermore, issues such as large scale production, formulation, preservation conditions, shelf life, and application methods should be considered early in the process of selecting BCAs against Verticillium.The soil-borne fungus Verticillium causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to control by conventional methods, so there is great potential for biocontrol to manage this disease. In this study we aimed to review the research about Verticillium biocontrol to get a better understanding of characteristics that are desirable in a biocontrol agent (BCA) against Verticillium wilt. We only considered studies in which the BCAs were tested on plants. Most biocontrol studies were focused on plants of the Solanaceae, Malvaceae, and Brassicaceae and within these families eggplant, cotton, and oilseed rape were the most studied crops. The list of bacterial BCAs with potential against Verticillium was dominated by endophytic Bacillus and Pseudomonas isolates, while non-pathogenic xylem-colonizing Verticillium and Fusarium isolates topped the fungal list. Predominant modes of action involved in biocontrol were inhibition of primary inoculum germination, plant growth promotion, competition and induced resistance. Many BCAs showed in vitro antibiosis and mycoparasitism but these traits were not correlated with activity in vivo and there is no evidence that they play a role in planta. Good BCAs were obtained from soils suppressive to Verticillium wilt, disease suppressive composts, and healthy plants in infested fields. Desirable characteristics in a BCA against Verticillium are the ability to (1) affect the survival or germination of microsclerotia, (2) colonize the xylem and/or cortex and compete with the pathogen for nutrients and/or space, (3) induce resistance responses in the plant and/or (4) promote plant growth. Potential BCAs should be screened in conditions that resemble the field situation to increase the chance of successful use in practice. Furthermore, issues such as large scale production, formulation, preservation conditions, shelf life, and application methods should be considered early in the process of selecting BCAs against Verticillium. The soil-borne fungus causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to control by conventional methods, so there is great potential for biocontrol to manage this disease. In this study we aimed to review the research about biocontrol to get a better understanding of characteristics that are desirable in a biocontrol agent (BCA) against Verticillium wilt. We only considered studies in which the BCAs were tested on plants. Most biocontrol studies were focused on plants of the , and and within these families eggplant, cotton, and oilseed rape were the most studied crops. The list of bacterial BCAs with potential against was dominated by endophytic and isolates, while non-pathogenic xylem-colonizing and isolates topped the fungal list. Predominant modes of action involved in biocontrol were inhibition of primary inoculum germination, plant growth promotion, competition and induced resistance. Many BCAs showed antibiosis and mycoparasitism but these traits were not correlated with activity and there is no evidence that they play a role . Good BCAs were obtained from soils suppressive to Verticillium wilt, disease suppressive composts, and healthy plants in infested fields. Desirable characteristics in a BCA against are the ability to (1) affect the survival or germination of microsclerotia, (2) colonize the xylem and/or cortex and compete with the pathogen for nutrients and/or space, (3) induce resistance responses in the plant and/or (4) promote plant growth. Potential BCAs should be screened in conditions that resemble the field situation to increase the chance of successful use in practice. Furthermore, issues such as large scale production, formulation, preservation conditions, shelf life, and application methods should be considered early in the process of selecting BCAs against . |
| Author | Tyvaert, Lien França, Soraya C. Deketelaere, Silke Höfte, Monica |
| AuthorAffiliation | Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium |
| AuthorAffiliation_xml | – name: Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium |
| Author_xml | – sequence: 1 givenname: Silke surname: Deketelaere fullname: Deketelaere, Silke – sequence: 2 givenname: Lien surname: Tyvaert fullname: Tyvaert, Lien – sequence: 3 givenname: Soraya C. surname: França fullname: França, Soraya C. – sequence: 4 givenname: Monica surname: Höfte fullname: Höfte, Monica |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28729855$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kctPVDEUxhuDEUT2rsxdupmx73Y2JoiIJCRu8LFrTh93LOm9xbZD4n9vZwYJmNhFX-c73znt7yU6mPMcEHpN8JIxvXo3TtHZJcVELTEhWj5DR0RKvmCY_jh4tD9EJ7Xe4D44pn1-gQ6pVnSlhThC5x9DjQVsCsN1gdjqkMcBhouc_fAhZpfnVnIaTtdhbgOsIc61Dd9CadHFlOJmGr7H1F6h5yOkGk7u12P09dP59dnnxdWXi8uz06uFE1S3hVeEBsDCW-Uc7y0HJQW3Kzkqq7VgEqwcKQ6OaEd6gDGPuXKeOOyJ6udjdLn39RluzG2JE5TfJkM0u4tc1ga2raVgpGLgqBCaSM8t5uC1xnRknHI3Wqe61_u91-3GTsG7_sAC6Ynp08gcf5p1vjOC96-TrBu8vTco-dcm1GamWF1ICeaQN9WQFaUCK6Zll755XOuhyF8OXYD3AldyrSWMDxKCzZa22dE2W9pmR7unyH9SXGzQ4pYYxPT_xD_dUa89 |
| CitedBy_id | crossref_primary_10_3389_fmicb_2018_01006 crossref_primary_10_1371_journal_pone_0269861 crossref_primary_10_1016_j_micres_2020_126535 crossref_primary_10_1080_03235408_2023_2178055 crossref_primary_10_1007_s10658_022_02594_8 crossref_primary_10_1080_17550874_2018_1534146 crossref_primary_10_1016_j_biocontrol_2022_104921 crossref_primary_10_3389_fpls_2021_761740 crossref_primary_10_3390_plants9101318 crossref_primary_10_3389_fpls_2020_00963 crossref_primary_10_1016_j_cropro_2020_105530 crossref_primary_10_1007_s11756_022_01186_5 crossref_primary_10_1007_s10327_022_01058_5 crossref_primary_10_1186_s40793_023_00480_2 crossref_primary_10_3389_fcimb_2020_604923 crossref_primary_10_3390_horticulturae8111048 crossref_primary_10_1007_s00343_019_9099_4 crossref_primary_10_1111_jph_13262 crossref_primary_10_3389_fpls_2023_1113949 crossref_primary_10_1111_jph_70045 crossref_primary_10_3389_fmicb_2021_698930 crossref_primary_10_1007_s11033_020_05676_0 crossref_primary_10_1590_0001_3765201820180319 crossref_primary_10_3389_fmicb_2018_00277 crossref_primary_10_1002_ps_8122 crossref_primary_10_3390_microorganisms10122453 crossref_primary_10_1111_ppa_13562 crossref_primary_10_1016_j_rhisph_2021_100440 crossref_primary_10_3389_fpls_2022_1050216 crossref_primary_10_1007_s42161_021_00772_x crossref_primary_10_1186_s12866_022_02749_x crossref_primary_10_1186_s41938_024_00832_1 crossref_primary_10_3389_fmicb_2024_1396044 crossref_primary_10_3390_plants12203612 crossref_primary_10_3390_ijms21041378 crossref_primary_10_7717_peerj_14754 crossref_primary_10_1016_j_postharvbio_2024_113055 crossref_primary_10_1186_s41938_020_00313_1 crossref_primary_10_1094_PHYTO_04_23_0142_R crossref_primary_10_3390_microorganisms10091710 crossref_primary_10_1186_s13568_020_01132_1 crossref_primary_10_1016_j_compag_2025_110791 crossref_primary_10_3390_agriculture8070090 crossref_primary_10_3390_f16060914 crossref_primary_10_3390_microorganisms10081514 crossref_primary_10_4014_jmb_2401_01022 crossref_primary_10_3390_plants11070840 crossref_primary_10_3390_agriculture14060882 crossref_primary_10_3390_plants9111602 crossref_primary_10_1080_09583157_2021_1885012 crossref_primary_10_1080_15324982_2023_2233933 crossref_primary_10_1007_s10526_022_10147_5 crossref_primary_10_1063_5_0188270 crossref_primary_10_1128_MRA_01595_19 crossref_primary_10_3390_agronomy11101946 crossref_primary_10_1016_j_micres_2024_127833 crossref_primary_10_3390_plants10020412 crossref_primary_10_1016_j_biocontrol_2021_104683 crossref_primary_10_1111_plb_13037 crossref_primary_10_3389_fmicb_2025_1535187 crossref_primary_10_1094_MPMI_34_3 crossref_primary_10_1007_s42452_025_06500_9 crossref_primary_10_3389_fagro_2020_590908 crossref_primary_10_3390_agronomy11101932 crossref_primary_10_1016_j_biocontrol_2019_104168 crossref_primary_10_3390_biology12040513 crossref_primary_10_3389_fmicb_2022_1093699 crossref_primary_10_3390_genes10020110 crossref_primary_10_1007_s11274_025_04488_3 crossref_primary_10_1128_spectrum_01433_21 crossref_primary_10_1080_03235408_2022_2116689 crossref_primary_10_3389_fmicb_2022_906732 crossref_primary_10_3390_plants9060735 crossref_primary_10_1016_j_pmpp_2023_102171 crossref_primary_10_3389_fmicb_2018_00217 crossref_primary_10_3390_plants9111469 crossref_primary_10_3389_fmicb_2018_01029 crossref_primary_10_3390_ijms24021154 crossref_primary_10_3390_plants9111622 crossref_primary_10_1111_jam_14457 crossref_primary_10_1111_pbi_13640 crossref_primary_10_1016_j_envpol_2023_122058 crossref_primary_10_1016_j_biocontrol_2020_104501 crossref_primary_10_3390_agronomy15081997 crossref_primary_10_3389_fmicb_2023_1129721 crossref_primary_10_3390_horticulturae11050459 crossref_primary_10_3389_fagro_2022_911969 crossref_primary_10_1094_MPMI_03_20_0071_R crossref_primary_10_2478_boku_2022_0004 crossref_primary_10_1007_s42161_021_00937_8 crossref_primary_10_3390_microorganisms8071080 crossref_primary_10_1016_j_soilbio_2023_109246 crossref_primary_10_1155_2019_3187943 crossref_primary_10_1186_s12870_024_04910_2 crossref_primary_10_3389_fpls_2022_979585 crossref_primary_10_3389_fmicb_2019_01808 crossref_primary_10_3389_fmicb_2021_652468 crossref_primary_10_3389_fmicb_2021_609482 crossref_primary_10_3390_ijms24031845 crossref_primary_10_3390_ijms242417164 crossref_primary_10_3389_fmicb_2022_839484 crossref_primary_10_1134_S1021443722040112 crossref_primary_10_1016_j_chemosphere_2024_143946 |
| Cites_doi | 10.1094/PDIS-93-12-1281 10.1111/j.1744-7348.2006.00107.x 10.1016/0261-2194(90)90008-U 10.1016/j.cropro.2012.10.002 10.1016/j.biocontrol.2009.11.011 10.1046/j.1365-313X.2003.01830.x 10.1146/annurev.arplant.57.032905.105346 10.1023/B:EJPP.0000003682.18838.cf 10.1007/BF02374599 10.1016/B978-0-12-464450-2.50011-5 10.1111/1462-2920.12538 10.1079/ejhs.2011/2431055 10.1007/s11104-010-0629-2 10.1111/jph.12027 10.1007/s00248-009-9570-4 10.3389/fmicb.2015.00266 10.1111/j.1365-3059.2005.01311.x 10.1080/07060669609500655 10.1111/j.1439-0434.2004.00901.x 10.1079/9780851995298.0000 10.1094/MPMI-11-15-0261-R 10.1146/annurev-phyto-080614-120224 10.1046/j.1439-0434.2001.00585.x 10.1007/s12600-012-0252-2 10.14601/Phytopathol_Mediterr-8450 10.1007/s10526-015-9706-z 10.1016/j.pmpp.2004.10.002 10.1111/j.1365-3059.2005.01285.x 10.1007/s12600-016-0517-2 10.1094/PDIS.2003.87.11.1349 10.1371/journal.pone.0048646 10.1016/j.biocontrol.2007.10.020 10.1128/AEM.71.9.4951-4959.2005 10.1111/j.1439-0434.1998.tb04674.x 10.1007/BF00204965 10.1016/j.cropro.2012.12.020 10.1017/S0953756297006035 10.2136/sssaj2009.0437 10.2503/jjshs.64.555 10.1007/s11104-015-2572-8 10.1094/Phyto-77-1592 10.1111/j.1751-7915.2009.00105.x 10.1007/s12088-009-0008-y 10.1046/j.1439-0434.2003.00762.x 10.1139/w00-101 10.1271/bbb.80812 10.1111/ppa.12198 10.1016/j.apsoil.2012.02.003 10.1016/j.biocontrol.2010.11.010 10.1046/j.1439-0434.2000.00511.x 10.1007/s00572-010-0351-1 10.1094/PD-70-521 10.5897/AJB11.1131 10.1007/BF02853839 10.17660/ActaHortic.2009.842.223 10.13080/z-a.2016.103.051 10.1017/S0021859606005880 10.1111/j.1364-3703.2006.00323.x 10.1016/j.envexpbot.2013.12.015 10.1016/S0944-5013(96)80051-6 10.1016/j.biocontrol.2004.04.015 10.1128/AEM.70.3.1836-1842.2004 10.1111/j.1365-2672.2007.03348.x 10.1023/A:1008632102747 10.1016/j.biocontrol.2010.01.012 10.1016/j.cropro.2005.08.001 10.1023/B:EJPP.0000010132.91241.cb 10.1016/S0038-0717(01)00205-X 10.1016/S0304-4238(01)00336-3 10.1128/AEM.65.12.5357-5363.1999 10.1046/j.1365-2672.2001.01462.x 10.1046/j.1365-3059.2000.00425.x 10.1128/AEM.70.4.1990-1998.2004 10.1094/MPMI-4-005 10.1007/s11104-017-3269-y 10.1023/A:1015080311041 10.1016/j.cropro.2009.03.016 10.1006/pmpp.1998.0163 10.1016/j.cropro.2013.08.008 10.1111/j.1439-0434.2008.01422.x 10.1111/mpp.12350 10.5424/sjar/20110903-525-10 10.1016/0261-2194(95)00017-G 10.1094/MPMI-18-0555 10.1007/s10482-016-0758-6 10.1007/s10526-015-9669-0 10.1007/s10526-010-9308-8 10.1016/j.cropro.2005.05.003 10.1094/PHYTO-08-12-0192-LE 10.1111/j.1365-2672.2012.05371.x 10.1111/j.1751-7915.2010.00165.x 10.1111/jam.13199 10.1094/PHYTO.2004.94.5.412 10.1016/j.biocontrol.2004.02.002 10.1371/journal.pone.0028341 10.1111/j.1469-8137.1983.tb03509.x 10.1002/9781444312157.ch3 10.1094/Phyto-69-453 10.1007/s00425-008-0840-z 10.1007/s10526-017-9801-4 10.1007/s10526-015-9686-z 10.1016/j.biocontrol.2016.07.013 10.1023/B:EJPP.0000019790.45397.90 10.1016/j.cropro.2016.05.009 10.1371/journal.pone.0170557 10.1094/PHYTO-11-13-0315-IA 10.1007/s00374-012-0718-x 10.1016/0048-4059(80)90043-0 10.1016/j.biocontrol.2011.06.009 10.3906/tar-1403-39 10.1007/s10526-007-9111-3 10.1016/j.biocontrol.2013.07.008 10.1016/j.cropro.2010.01.011 10.1007/BF03020601 10.1007/BF02987136 10.1007/s00248-006-9181-2 10.1094/PDIS.2001.85.5.529 10.1128/AEM.70.5.3103-3109.2004 10.1016/j.it.2014.05.004 10.1016/j.biocontrol.2008.05.003 10.1016/S0168-6496(03)00125-9 10.1016/S0048-4059(83)81034-0 10.1094/PD-66-1166 10.1080/07060660709507450 10.1016/S0261-2194(02)00122-9 10.1094/Phyto-69-1176 10.1007/s13199-010-0085-z 10.1080/09583157.2013.873389 10.1111/j.1469-8137.2009.03014.x 10.1094/Phyto-81-644 10.1007/s10526-014-9586-7 10.1094/PD-89-1317 10.1094/pd-89-0777b 10.17660/ActaHortic.2009.838.22 10.1111/j.1439-0434.1974.tb02771.x 10.1007/BF03041463 10.1111/j.1365-3059.2011.02516.x 10.1007/s11104-015-2448-y 10.1007/s00572-009-0279-5 10.1094/phyto-65-767 10.3389/fmicb.2014.00427 10.1094/PDIS-92-1-0069 10.1007/BF03020604 10.1016/S0944-5013(96)80014-0 10.9755/ejfa.2015-04-047 10.4014/jmb.1402.02035 10.1016/j.biocontrol.2007.10.006 10.1007/s00253-009-2092-7 10.1111/j.1462-2920.2011.02665.x 10.1371/journal.ppat.1002137 10.1094/PD-76-0239 10.1007/s10658-008-9376-0 10.1094/PDIS.1998.82.10.1100 10.1016/j.cropro.2010.09.007 10.1016/j.biocontrol.2011.04.002 10.1007/s10526-015-9710-3 10.1094/Phyto-75-25 10.1111/jam.12481 10.1007/s10526-007-9144-7 10.1016/j.biocontrol.2006.02.009 10.1016/B978-0-12-464450-2.50009-7 10.1016/0048-4059(83)90018-8 10.1007/s10526-005-4238-6 10.1080/095831500750016479 10.1111/1462-2920.12725 10.1016/j.biocontrol.2009.01.010 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 Deketelaere, Tyvaert, França and Höfte. 2017 Deketelaere, Tyvaert, França and Höfte |
| Copyright_xml | – notice: Copyright © 2017 Deketelaere, Tyvaert, França and Höfte. 2017 Deketelaere, Tyvaert, França and Höfte |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/fmicb.2017.01186 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-302X |
| ExternalDocumentID | oai_doaj_org_article_673ac255816d4b04ad8802f3424cfbc7 PMC5498563 28729855 10_3389_fmicb_2017_01186 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Agentschap voor Innovatie door Wetenschap en Technologie grantid: IWT 100886 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM ACXDI IPNFZ NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c528t-d712ea05db7cc4186e7654b96f7b88536ab6f20ec18c154b33d047cd1c0d174b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 117 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405227500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-302X |
| IngestDate | Fri Oct 03 12:48:28 EDT 2025 Tue Sep 30 15:20:21 EDT 2025 Sun Nov 09 12:56:15 EST 2025 Mon Jul 21 05:49:00 EDT 2025 Sat Nov 29 07:46:27 EST 2025 Tue Nov 18 22:00:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | survival structures vascular pathogen biological control soil-borne pathogens biocontrol Verticillium wilt cross-protection endophytes |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c528t-d712ea05db7cc4186e7654b96f7b88536ab6f20ec18c154b33d047cd1c0d174b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Microbiology Present Address: Soraya C. França, R&D Microbials, Biobest NV, Westerlo, Belgium Edited by: Jesús Mercado-Blanco, Consejo Superior de Investigaciones Científicas (CSIC), Spain These authors have contributed equally to this work. Reviewed by: Sotiris Tjamos, Agricultural University of Athens, Greece; Nieves Goicoechea, Universidad de Navarra, Spain |
| OpenAccessLink | https://doaj.org/article/673ac255816d4b04ad8802f3424cfbc7 |
| PMID | 28729855 |
| PQID | 1922507386 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_673ac255816d4b04ad8802f3424cfbc7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5498563 proquest_miscellaneous_1922507386 pubmed_primary_28729855 crossref_primary_10_3389_fmicb_2017_01186 crossref_citationtrail_10_3389_fmicb_2017_01186 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-06 |
| PublicationDateYYYYMMDD | 2017-07-06 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in microbiology |
| PublicationTitleAlternate | Front Microbiol |
| PublicationYear | 2017 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Herr (B67) 1995; 14 Giotis (B56) 2009; 123 Pantelides (B124) 2009; 50 Weissinger (B160) 2009; 828 Gkizi (B58) 2016; 29 Sabuquillo (B135) 2006; 37 Heinz (B66) 1998; 52 Marois (B102) 1982; 66 Berg (B10) 2009; 84 Xue (B162) 2016; 44 Li (B87) 2008; 53 Varo (B156); 61 Keinath (B77) 1991; 81 Gutteridge (B63) 2007; 150 Maldonado-González (B99); 17 Mercado-Blanco (B109) 2004; 30 Yuan (B166) 2017; 12 Leben (B84) 1987; 77 Veloso (B158) 2012; 61 Zipfel (B175) 2014; 35 Dobinson (B36) 1996; 18 Porras-Soriano (B127) 2006; 144 Schoina (B142) 2011; 58 Larena (B82) 2003; 151 Yang (B165) 2014; 24 Stadler (B147) 2014; 59 Narisawa (B121) 2000; 49 Garmendia (B52); 31 Tjamos (B149) 2004; 110 Geboloǧlu (B54) 2011; 76 Kalbe (B73) 1996; 151 Gilardi (B55) 2007; 35 Zhou (B173) 2006; 55 Depotter (B32) 2016; 17 Schaible (B138) 1951; 41 Nagtzaam (B117) 1998; 146 Sant (B137) 2010; 53 Bishop (B15); 23 Matsubara (B105) 1995; 64 Grimont (B61) 1992 Inderbitzin (B70) 2014; 104 van Lenteren (B155) 2017 Li (B85) 2012; 113 Cao (B17) 2016; 109 Mirmajlessi (B113) 2016; 103 Kurze (B80) 2001; 85 Berg (B11) 2001; 91 Carrero-Carrón (B18) 2016; 88 Gómez-Lama Cabanás (B60) 2017 Boller (B16) 2009; 60 Rekanovic (B131) 2007; 35 García (B48) 2011; 30 Qin (B130) 2008; 92 Massart (B104) 2015; 60 Solarska (B146) 2000 Debode (B30) 2007; 103 Berg (B13) 1996; 151 Naraghi (B118); 49 Pegg (B126) 2002 Chandelier (B19) 2003; 109 Bishop (B14); 22 Naraghi (B119); 29 Schilirò (B139) 2012; 7 Alström (B4) 2000; 148 Baath (B9) 1983; 95 Andrade-Linares (B6) 2011; 21 Duffy (B39) 2004; 70 Uppal (B152) 2007; 29 Garibaldi (B49) 2005; 89 Maurhofer (B107) 2004; 70 Sabuquillo (B136) 2005; 89 Markakis (B101) 2008; 156 Zheng (B172) 2011; 56 Rybakova (B134) 2016; 405 Li (B88) 2013; 49 Meschke (B111) 2012; 14 Schnathorst (B140) 1981 Morello (B115) 2004; 70 Dobinson (B35) 1998; 102 Erdogan (B43) 2010; 53 Alabouvette (B2) 2009; 184 Fradin (B46) 2006; 7 Uppal (B153) 2008; 44 Zhu (B174) 2013; 161 Zeise (B167) 2000 Klimes (B78) 2015; 53 Malcolm (B97) 2013; 103 Gómez-Lama Cabanás (B59) 2014; 5 Li (B89) 2014; 24 Han (B65) 2015; 17 Johnsson (B72) 1998; 104 Keinath (B76) 1992; 69 Li (B86) 2010; 59 Liu (B91) 1995; 5 Davis (B28) 2000 Xue (B163) 2013; 43 Compant (B22) 2005; 71 Hall (B64) 1986; 70 Martinez (B103) 2009; 842 López-Escudero (B94) 2011; 344 D'Ercole (B33) 2000 Inderbitzin (B71) 2011; 6 Prieto (B128) 2009; 2 Melouk (B108) 1975; 65 Fakhro (B44) 2010; 20 Müller (B116) 2008; 53 Vagelas (B154) 2015; 27 Cooper (B24) 1980; 16 Veronese (B159) 2003; 35 Loper (B92) 1991; 4 Zhang (B168) 2012; 61 Garmendia (B53); 110 Zhang (B170) 2015; 392 Cook (B23) 1985; 75 Narisawa (B122) 2004; 94 Lin (B90) 2009; 73 Gizi (B57) 2011; 58 Grogan (B62) 1979; 69 Hoppenau (B68) 2014; 108 Maldonado-González (B98); 6 Dutta (B40) 1981; 63 Chen (B20) 2004; 64 Dong (B38) 2006; 25 Angelopoulou (B7) 2014; 63 Puhalla (B129) 1981 Zhang (B171) 2012; 11 Díaz (B34) 2005; 54 Abuamsha (B1) 2011; 56 Markakis (B100) 2016; 61 Schnathorst (B141) 1966; 56 Colla (B21) 2012; 40 Tyvaert (B151) 2014; 116 França (B47) 2013; 54 Narisawa (B120) 2002; 108 Ślusarski (B145) 2009; 28 Tjamos (B150) 2005; 18 Dong (B37) 2003; 22 Cotxarrera (B25) 2002; 34 Lazarovits (B83) 2009 Whipps (B161) 2009 Luo (B95) 2010; 74 Danielsson (B27) 2007; 54 Ordentlich (B123) 1990; 9 Alström (B5) 2001; 149 Demir (B31) 2015; 39 Malandraki (B96) 2008; 44 Lal (B81) 2009; 49 Al-Rawahi (B3) 1998; 82 Davis (B29) 1979; 69 Eljounaidi (B41) 2016; 103 Yang (B164) 2013; 47 Entry (B42) 2000; 10 Ferraris (B45) 1974; 81 Ruano-Rosa (B133) 2016; 61 Robinson (B132) 2007; 84 Shittu (B144) 2009; 229 Cummings (B26) 2009; 93 Klosterman (B79) 2011; 7 Berg (B12) 2000; 46 Varo (B157); 121 Stinson (B148) 2003; 87 Karagiannidis (B75) 2002; 94 Meschke (B110) 2010; 3 Garmendia (B50) 2006; 51 Molina (B114) 2003; 45 B143 Garmendia (B51); 152 Zhang (B169) 2011; 9 Matta (B106) 1977; 83 Hwang (B69) 1992; 76 Kapulnik (B74) 2010; 52 Papasotiriou (B125) 2013; 67 Antonopoulos (B8) 2008; 46 Loper (B93) 1999; 65 Minuto (B112) 2006; 25 |
| References_xml | – volume: 93 start-page: 1281 year: 2009 ident: B26 article-title: Greenhouse evaluation of seed and drench treatments for organic management of soilborne pathogens of spinach publication-title: Plant Dis. doi: 10.1094/PDIS-93-12-1281 – start-page: 247 volume-title: Recent Developments in Management of Plant Diseases year: 2009 ident: B83 article-title: Challenges in controlling Verticillium Wilt by the use of nonchemical methods – volume: 150 start-page: 53 year: 2007 ident: B63 article-title: The potential of non-pathogenic Gaeumannomyces spp., occurring naturally or introduced into wheat crops or preceding crops, for controlling take-all in wheat publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.2006.00107.x – volume: 9 start-page: 363 year: 1990 ident: B123 article-title: Integrated control of Verticillium dahliae in potato by Trichoderma harzianum and captan publication-title: Crop Prot. doi: 10.1016/0261-2194(90)90008-U – volume: 43 start-page: 231 year: 2013 ident: B163 article-title: Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton publication-title: Crop Prot. doi: 10.1016/j.cropro.2012.10.002 – volume: 53 start-page: 39 year: 2010 ident: B43 article-title: Biological control of Verticillium wilt on cotton by the use of fluorescent Pseudomonas spp. under field conditions publication-title: Biol. Control doi: 10.1016/j.biocontrol.2009.11.011 – volume: 35 start-page: 574 year: 2003 ident: B159 article-title: Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01830.x – volume: 60 start-page: 379 year: 2009 ident: B16 article-title: A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105346 – volume: 109 start-page: 943 year: 2003 ident: B19 article-title: Genetic and molecular characterization of Verticillium dahliae isolates from woody ornamentals in Belgian nurseries publication-title: Eur. J. Plant Pathol. doi: 10.1023/B:EJPP.0000003682.18838.cf – volume: 63 start-page: 209 year: 1981 ident: B40 article-title: Studies on some fungi isolated from the rhizosphere of tomato plants and the consequent prospect for the control of Verticillium wilt publication-title: Plant Soil doi: 10.1007/BF02374599 – start-page: 146 volume-title: Fungal Wilt Diseases of Plants year: 1981 ident: B129 article-title: Genetics and biochemistry of Wilt of pathogens doi: 10.1016/B978-0-12-464450-2.50011-5 – volume: 17 start-page: 1166 year: 2015 ident: B65 article-title: The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12538 – volume: 76 start-page: 41 year: 2011 ident: B54 article-title: Role of different rootstocks on yield and resistance for Fusarium oxysporium, Verticillium dahliae and Meloidogyne incognita in grafted peppers publication-title: Eur. J. Hortic. Sci. doi: 10.1079/ejhs.2011/2431055 – volume: 344 start-page: 1 year: 2011 ident: B94 article-title: Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen publication-title: Plant Soil doi: 10.1007/s11104-010-0629-2 – volume: 161 start-page: 70 year: 2013 ident: B174 article-title: Characterization of two fungal isolates from cotton and evaluation of their potential for biocontrol of Verticillium wilt of cotton publication-title: J. Phytopathol. doi: 10.1111/jph.12027 – volume: 59 start-page: 344 year: 2010 ident: B86 article-title: Population dynamics and identification of endophytic bacteria antagonistic toward plant-pathogenic fungi in cotton root publication-title: Microb. Ecol. doi: 10.1007/s00248-009-9570-4 – volume: 6 start-page: 266 ident: B98 article-title: Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00266 – volume: 55 start-page: 137 year: 2006 ident: B173 article-title: Verticillium longisporum and V. dahliae: infection and disease in Brassica napus publication-title: Plant. Pathol. doi: 10.1111/j.1365-3059.2005.01311.x – volume: 18 start-page: 55 year: 1996 ident: B36 article-title: Occurrence of race 2 of Verticillium dahliae in processing tomato fields in southwestern Ontario publication-title: Can. J. Plant Pathol doi: 10.1080/07060669609500655 – volume: 152 start-page: 593 ident: B51 article-title: Antioxidant metabolism in asymptomatic leaves of Verticillium-infected pepper associated with an arbuscular mycorrhizal fungus publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.2004.00901.x – volume-title: Verticillium Wilts year: 2002 ident: B126 doi: 10.1079/9780851995298.0000 – volume: 29 start-page: 313 year: 2016 ident: B58 article-title: The innate immune signaling system as a regulator of disease resistance and induced systemic resistance activity against Verticillium dahliae publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-11-15-0261-R – volume: 53 start-page: 181 year: 2015 ident: B78 article-title: Genomics spurs rapid advances in our understanding of the biology of vascular wilt pathogens in the genus Verticillium publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-080614-120224 – volume: 149 start-page: 57 year: 2001 ident: B5 article-title: Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae publication-title: J. Phytopathol. doi: 10.1046/j.1439-0434.2001.00585.x – volume: 40 start-page: 515 year: 2012 ident: B21 article-title: A review and critical analysis of the European situation of soilborne disease management in the vegetable sector publication-title: Phytoparasitica doi: 10.1007/s12600-012-0252-2 – start-page: 260 volume-title: Advances in Verticillium Research and Disease Management year: 2000 ident: B33 article-title: In vitro and in vivo tests of Trichoderma spp. as a biocontrol agent of Verticillium dahliae Kleb. in eggplants – volume: 49 start-page: 321 ident: B118 article-title: Biological control of Verticillium wilt of greenhouse cucumber by Talaromyces flavus publication-title: Phytopathol. Mediterr. doi: 10.14601/Phytopathol_Mediterr-8450 – start-page: 237 volume-title: Advances in Verticillium Research and Disease Management year: 2000 ident: B146 article-title: Antagonistic action of Talaromyces flavus and Trichoderma viride against Verticillium albo-atrum on Hops – volume: 61 start-page: 269 year: 2016 ident: B133 article-title: Fate of Trichoderma harzianum in the olive rhizosphere: time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae publication-title: Biocontrol doi: 10.1007/s10526-015-9706-z – volume: 64 start-page: 283 year: 2004 ident: B20 article-title: Tolerance to a non-host isolate of Verticillium dahliae in tomato publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2004.10.002 – volume: 54 start-page: 773 year: 2005 ident: B34 article-title: Fusarium confers protection against several mycelial pathogens of pepper plants publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.2005.01285.x – volume: 44 start-page: 225 year: 2016 ident: B162 article-title: Antagonistic Streptomyces enhances defense-related responses in cotton for biocontrol of wilt caused by phytotoxin of Verticillium dahliae publication-title: Phytoparasitica doi: 10.1007/s12600-016-0517-2 – volume: 87 start-page: 1349 year: 2003 ident: B148 article-title: Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium Wilt of eggplant publication-title: Plant Dis. doi: 10.1094/PDIS.2003.87.11.1349 – volume: 7 start-page: e48646 year: 2012 ident: B139 article-title: Genetic responses induced in olive roots upon colonization by the biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 publication-title: PLoS ONE doi: 10.1371/journal.pone.0048646 – volume: 44 start-page: 90 year: 2008 ident: B153 article-title: Biological control of potato Verticillium wilt under controlled and field conditions using selected bacterial antagonists and plant extracts publication-title: Biol. Control doi: 10.1016/j.biocontrol.2007.10.020 – volume: 71 start-page: 4951 year: 2005 ident: B22 article-title: Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.9.4951-4959.2005 – volume: 146 start-page: 165 year: 1998 ident: B117 article-title: Efficacy of Talaromyces flavus alone or in combination with other antagonists in controlling Verticillium dahliae in growth chamber experiments publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.1998.tb04674.x – volume: 5 start-page: 293 year: 1995 ident: B91 article-title: Effect of vesicular-arbuscular mycorrhizal fungi on Verticillium wilt of cotton publication-title: Mycorrhiza doi: 10.1007/BF00204965 – volume: 47 start-page: 17 year: 2013 ident: B164 article-title: Combining antagonistic endophytic bacteria in different growth stages of cotton for control of Verticillium wilt publication-title: Crop Prot. doi: 10.1016/j.cropro.2012.12.020 – volume: 102 start-page: 1089 year: 1998 ident: B35 article-title: DNA fingerprinting and vegetative compatibility analysis indicate multiple origins for Verticillium dahliae race 2 tomato isolates from Ontario, Canada publication-title: Mycol. Res. doi: 10.1017/S0953756297006035 – volume: 74 start-page: 2039 year: 2010 ident: B95 article-title: Application of bio-organic fertilizer significantly affected fungal diversity of soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2009.0437 – volume: 64 start-page: 555 year: 1995 ident: B105 article-title: Growth enhancement and Verticillium Wilt control by vesicular-arbuscular Mycorrhizal fungus inoculation in eggplant publication-title: J. Jpn. Soc. Hortic. Sci. doi: 10.2503/jjshs.64.555 – volume: 405 start-page: 65 year: 2016 ident: B134 article-title: Kill or cure? The interaction between endophytic Paenibacillus and Serratia strains and the host plant is shaped by plant growth conditions publication-title: Plant Soil doi: 10.1007/s11104-015-2572-8 – volume: 41 start-page: 986 year: 1951 ident: B138 article-title: Inheritance of resistance to Verticillium wilt in a tomato cross publication-title: Phytopathology – volume: 77 start-page: 1592 year: 1987 ident: B84 article-title: Effects of Pseudomonas fluorescens on potato plant growth and control of Verticillium dahliae publication-title: Phytopathology doi: 10.1094/Phyto-77-1592 – volume: 2 start-page: 499 year: 2009 ident: B128 article-title: Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7 publication-title: Microb. Biotechnol. doi: 10.1111/j.1751-7915.2009.00105.x – volume: 49 start-page: 2 year: 2009 ident: B81 article-title: Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview publication-title: Indian J. Microbiol. doi: 10.1007/s12088-009-0008-y – volume: 151 start-page: 507 year: 2003 ident: B82 article-title: Biocontrol of Fusarium and Verticillium Wilt of tomato by Penicillium oxalicum under greenhouse and field conditions publication-title: J. Phytopathol. doi: 10.1046/j.1439-0434.2003.00762.x – volume: 46 start-page: 1128 year: 2000 ident: B12 article-title: Successful strategy for the selection of new strawberry-associated rhizobacteria antagonistic to Verticillium wilt publication-title: Can. J. Microbiol. doi: 10.1139/w00-101 – volume: 73 start-page: 1489 year: 2009 ident: B90 article-title: Isolation and characterization of endophytic Bacillius subtilis Jaas ed1 antagonist of eggplant Verticillium Wilt publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.80812 – volume: 63 start-page: 1062 year: 2014 ident: B7 article-title: Biological control agents (BCAs) of Verticillium wilt: influence of application rates and delivery method on plant protection, triggering of host defence mechanisms and rhizosphere populations of BCAs publication-title: Plant Pathol. doi: 10.1111/ppa.12198 – volume: 61 start-page: 85 year: 2012 ident: B168 article-title: Systemic modification of cotton root exudates induced by arbuscular mycorrhizal fungi and Bacillus vallismortis HJ-5 and their effects on Verticillium wilt disease publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2012.02.003 – volume: 56 start-page: 209 year: 2011 ident: B172 article-title: A screening strategy of fungal biocontrol agents towards Verticillium wilt of cotton publication-title: Biol. Control doi: 10.1016/j.biocontrol.2010.11.010 – volume: 148 start-page: 417 year: 2000 ident: B4 article-title: Root-colonizing fungi from oilseed rape and their inhibition of Verticillium dahliae publication-title: J. Phytopathol. doi: 10.1046/j.1439-0434.2000.00511.x – volume: 21 start-page: 413 year: 2011 ident: B6 article-title: Effects of dark septate endophytes on tomato plant performance publication-title: Mycorrhiza doi: 10.1007/s00572-010-0351-1 – volume: 70 start-page: 521 year: 1986 ident: B64 article-title: Effects of xylem-colonizing Bacillus spp. on Verticillium wilt in Maples publication-title: Plant Dis. doi: 10.1094/PD-70-521 – volume: 11 start-page: 570 year: 2012 ident: B171 article-title: Identification and characterization of a Bacillus subtilis strain TS06 as bio-control agent of strawberry replant disease (Fusarium and Verticillium wilts) publication-title: Afr. J. Biotechnol. doi: 10.5897/AJB11.1131 – volume: 69 start-page: 503 year: 1992 ident: B76 article-title: Induction of soil suppressiveness to Verticillium wilt of potato by successive croppings publication-title: Am. Potato J. doi: 10.1007/BF02853839 – volume: 842 start-page: 1003 year: 2009 ident: B103 article-title: Persistence of Trichoderma asperellum population in strawberry soilless culture growing systems publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2009.842.223 – volume: 103 start-page: 397 year: 2016 ident: B113 article-title: Screening of native Trichoderma harzianum isolates for their ability to control Verticillium wilt of strawberry publication-title: Zemdirbyste doi: 10.13080/z-a.2016.103.051 – volume: 144 start-page: 151 year: 2006 ident: B127 article-title: Development and resistance to Verticillium dahliae of olive plantlets inoculated with mycorrhizal fungi during the nursery period publication-title: J. Agric. Sci. doi: 10.1017/S0021859606005880 – volume: 7 start-page: 71 year: 2006 ident: B46 article-title: Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2006.00323.x – volume: 108 start-page: 14 year: 2014 ident: B68 article-title: Verticillium dahliae VdTHI4, involved in thiazole biosynthesis, stress response and DNA repair functions, is required for vascular disease induction in tomato publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2013.12.015 – volume: 151 start-page: 19 year: 1996 ident: B13 article-title: Stenotrophomonas maltophilia in the rhizosphere of oilseed rape — occurrence, characterization and interaction with phytopathogenic fungi publication-title: Microbiol. Res. doi: 10.1016/S0944-5013(96)80051-6 – volume: 31 start-page: 296 ident: B52 article-title: Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against Verticillium wilt publication-title: Biol. Control doi: 10.1016/j.biocontrol.2004.04.015 – start-page: 347 volume-title: Advances in Verticillium Research and Disease Management year: 2000 ident: B28 article-title: Associations of Verticillium tricorpus with soil suppressiveness of Verticillium wilt of potato – volume: 70 start-page: 1836 year: 2004 ident: B39 article-title: Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.3.1836-1842.2004 – volume: 103 start-page: 1184 year: 2007 ident: B30 article-title: Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2007.03348.x – volume: 104 start-page: 701 year: 1998 ident: B72 article-title: Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed-borne diseases in field experiments publication-title: Eur. J. Plant Pathol. doi: 10.1023/A:1008632102747 – volume: 53 start-page: 291 year: 2010 ident: B137 article-title: Effect of Trichoderma asperellum strain T34 on Fusarium wilt and water usage in carnation grown on compost-based growth medium publication-title: Biol. Control doi: 10.1016/j.biocontrol.2010.01.012 – volume: 25 start-page: 468 year: 2006 ident: B112 article-title: Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization publication-title: Crop Prot. doi: 10.1016/j.cropro.2005.08.001 – volume: 110 start-page: 35 year: 2004 ident: B149 article-title: Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts publication-title: Eur. J. Plant Pathol. doi: 10.1023/B:EJPP.0000010132.91241.cb – volume: 34 start-page: 467 year: 2002 ident: B25 article-title: Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00205-X – volume: 94 start-page: 145 year: 2002 ident: B75 article-title: Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings publication-title: Sci. Hortic. doi: 10.1016/S0304-4238(01)00336-3 – volume: 65 start-page: 5357 year: 1999 ident: B93 article-title: Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.12.5357-5363.1999 – volume: 91 start-page: 963 year: 2001 ident: B11 article-title: Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb publication-title: J. Appl. Microbiol. doi: 10.1046/j.1365-2672.2001.01462.x – volume: 49 start-page: 141 year: 2000 ident: B121 article-title: Suppression of clubroot and Verticillium yellows in Chinese cabbage in the field by the root endophytic fungus, Heteroconium chaetospira publication-title: Plant Pathol. doi: 10.1046/j.1365-3059.2000.00425.x – volume: 70 start-page: 1990 year: 2004 ident: B107 article-title: Cross Talk between 2,4-Diacetylphloroglucinol-producing biocontrol Pseudomonads on wheat roots publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.4.1990-1998.2004 – start-page: 232 volume-title: Advances in Verticillium Research and Disease Management year: 2000 ident: B167 article-title: The Potential of Talaromyces flavus in controlling Verticillium dahliae – volume: 4 start-page: 5 year: 1991 ident: B92 article-title: Current Review Siderophores in Microbial Interactions on Plant Surfaces publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-4-005 – year: 2017 ident: B60 article-title: A split-root system to assess biocontrol effectiveness and defense-related genetic responses in above-ground tissues during the tripartite interaction Verticillium dahliae-olive-Pseudomonas fluorescens PICF7 in roots publication-title: Plant Soil doi: 10.1007/s11104-017-3269-y – volume: 108 start-page: 103 year: 2002 ident: B120 article-title: Suppression of Verticillium wilt in eggplant by some fungal root endophytes publication-title: Eur. J. Plant Pathol. doi: 10.1023/A:1015080311041 – volume: 28 start-page: 668 year: 2009 ident: B145 article-title: Combined application of dazomet and Trichoderma asperellum as an efficient alternative to methyl bromide in controlling the soil-borne disease complex of bell pepper publication-title: Crop Prot. doi: 10.1016/j.cropro.2009.03.016 – volume: 52 start-page: 385 year: 1998 ident: B66 article-title: Cyclical systemic colonization in Verticillium-infected tomato publication-title: Physiol. Mol. Plant Pathol. doi: 10.1006/pmpp.1998.0163 – volume: 54 start-page: 134 year: 2013 ident: B47 article-title: Population dynamics of Verticillium species in cauliflower fields: influence of crop rotation, debris removal and ryegrass incorporation publication-title: Crop Prot. doi: 10.1016/j.cropro.2013.08.008 – volume: 156 start-page: 622 year: 2008 ident: B101 article-title: Evaluation of compost amendments for control of Vascular Wilt diseases publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.2008.01422.x – volume: 17 start-page: 1004 year: 2016 ident: B32 article-title: Verticillium longisporum, the invisible threat to oilseed rape and other brassicaceous plant hosts publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12350 – volume: 9 start-page: 873 year: 2011 ident: B169 article-title: Dead mycelium of Penicillium chrysogenum protects transplanted cotton plants agains fungal wilts in a saline field publication-title: Span. J. Agric. Res. doi: 10.5424/sjar/20110903-525-10 – volume: 14 start-page: 179 year: 1995 ident: B67 article-title: Biological control of Rhizoctonia solani by binucleate Rhizoctonia spp. and hypovirulent R. solani agents publication-title: Crop Prot. doi: 10.1016/0261-2194(95)00017-G – volume: 18 start-page: 555 year: 2005 ident: B150 article-title: Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression publication-title: Mol. Plant. Microbe. Interact. doi: 10.1094/MPMI-18-0555 – volume: 109 start-page: 1573 year: 2016 ident: B17 article-title: An endophytic Streptomyces sp. strain DHV3-2 from diseased root as a potential biocontrol agent against Verticillium dahliae and growth elicitor in tomato (Solanum lycopersicum) publication-title: Antonie van Leeuwenhoek doi: 10.1007/s10482-016-0758-6 – volume: 61 start-page: 293 year: 2016 ident: B100 article-title: Biological control of Verticillium wilt of olive by Paenibacillus alvei, strain K165 publication-title: Biocontrol doi: 10.1007/s10526-015-9669-0 – volume: 56 start-page: 101 year: 2011 ident: B1 article-title: Differential resistance of oilseed rape cultivars (Brassica napus ssp. oleifera) to Verticillium longisporum infection is affected by rhizosphere colonisation with antagonistic bacteria, Serratia plymuthica and Pseudomonas chlororaphis publication-title: Biocontrol doi: 10.1007/s10526-010-9308-8 – volume: 25 start-page: 324 year: 2006 ident: B38 article-title: Dry mycelium of Penicillium chrysogenum protects cotton plants against wilt diseases and increases yield under field conditions publication-title: Crop Prot. doi: 10.1016/j.cropro.2005.05.003 – volume: 103 start-page: 538 year: 2013 ident: B97 article-title: Hidden host plant associations of soilborne fungal pathogens: an ecological perspective publication-title: Phytopathology doi: 10.1094/PHYTO-08-12-0192-LE – volume: 113 start-page: 641 year: 2012 ident: B85 article-title: Biocontrol of verticillium wilt and colonization of cotton plants by an endophytic bacterial isolate publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2012.05371.x – volume: 3 start-page: 428 year: 2010 ident: B110 article-title: Streptomyces lividans inhibits the proliferation of the fungus Verticillium dahliae on seeds and roots of Arabidopsis thaliana publication-title: Microb. Biotechnol. doi: 10.1111/j.1751-7915.2010.00165.x – volume: 121 start-page: 767 ident: B157 article-title: Selection and evaluation of micro-organisms for biocontrol of Verticillium dahliae in olive publication-title: J. Appl. Microbiol. doi: 10.1111/jam.13199 – volume: 94 start-page: 412 year: 2004 ident: B122 article-title: Control of Verticillium yellows in Chinese cabbage by the dark septate endophytic fungus LtVB3 publication-title: Phytopathology doi: 10.1094/PHYTO.2004.94.5.412 – volume: 30 start-page: 474 year: 2004 ident: B109 article-title: Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp publication-title: Biol. Control doi: 10.1016/j.biocontrol.2004.02.002 – volume: 6 start-page: e28341 year: 2011 ident: B71 article-title: Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species publication-title: PLoS ONE doi: 10.1371/journal.pone.0028341 – volume: 95 start-page: 419 year: 1983 ident: B9 article-title: Plant growth responses to vesicular-arbuscular mycorrhizae 14. Interactions with Verticillium wilt on tomato plants publication-title: New Phytol. doi: 10.1111/j.1469-8137.1983.tb03509.x – start-page: 27 volume-title: Disease Control in Crops – Biological and Environmentally Friendly Approaches year: 2009 ident: B161 article-title: Biological control agents in plant disease control doi: 10.1002/9781444312157.ch3 – volume: 69 start-page: 453 year: 1979 ident: B29 article-title: Influence of Glomus fasciculatus and phosphorus on Verticillium wilt of cotton publication-title: Phytopathology doi: 10.1094/Phyto-69-453 – volume: 229 start-page: 415 year: 2009 ident: B144 article-title: Plant-endophyte interplay protects tomato against a virulent Verticillium publication-title: Planta doi: 10.1007/s00425-008-0840-z – year: 2017 ident: B155 article-title: Biological control using invertebrates and microorganisms: plenty of new opportunities publication-title: BioControl. doi: 10.1007/s10526-017-9801-4 – volume: 60 start-page: 725 year: 2015 ident: B104 article-title: Impact of the omic technologies for understanding the modes of action of biological control agents against plant pathogens publication-title: Biocontrol doi: 10.1007/s10526-015-9686-z – volume: 103 start-page: 62 year: 2016 ident: B41 article-title: Bacterial endophytes as potential biocontrol agents of vascular wilt diseases - Review and future prospects publication-title: Biol. Control doi: 10.1016/j.biocontrol.2016.07.013 – volume: 110 start-page: 227 ident: B53 article-title: Plant phenology influences the effect of mycorrhizal fungi on the development of Verticillium-induced wilt in pepper publication-title: Eur. J. Plant Pathol. doi: 10.1023/B:EJPP.0000019790.45397.90 – volume: 88 start-page: 45 year: 2016 ident: B18 article-title: Trichoderma asperellum is effective for biocontrol of Verticillium wilt in olive caused by the defoliating pathotype of Verticillium dahliae publication-title: Crop Prot. doi: 10.1016/j.cropro.2016.05.009 – volume: 12 start-page: e0170557 year: 2017 ident: B166 article-title: Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium Wilt disease publication-title: PLoS ONE doi: 10.1371/journal.pone.0170557 – volume: 104 start-page: 564 year: 2014 ident: B70 article-title: Verticillium systematics and evolution: how confusion impedes Verticillium wilt management and how to resolve it publication-title: Phytopathology doi: 10.1094/PHYTO-11-13-0315-IA – volume: 49 start-page: 295 year: 2013 ident: B88 article-title: Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-012-0718-x – volume: 16 start-page: 285 year: 1980 ident: B24 article-title: Cell wall degrading enzymes of vascular wilt fungi. III. Possible involvement of endo-pectin lyase in Verticillium wilt of tomato publication-title: Physiol. Plant Pathol. doi: 10.1016/0048-4059(80)90043-0 – volume: 58 start-page: 387 year: 2011 ident: B57 article-title: Seedling vaccination by stem injecting a conidial suspension of F2, a non-pathogenic Fusarium oxysporum strain, suppresses Verticillium wilt of eggplant publication-title: Biol. Control doi: 10.1016/j.biocontrol.2011.06.009 – volume: 39 start-page: 300 year: 2015 ident: B31 article-title: Effects of arbuscular mycorrhizal fungus, humic acid, and whey on wilt disease caused by Verticillium dahliae Kleb. in three solanaceous crops publication-title: Turk. J. Agric. For. doi: 10.3906/tar-1403-39 – volume: 53 start-page: 905 year: 2008 ident: B116 article-title: Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape publication-title: BioControl doi: 10.1007/s10526-007-9111-3 – volume: 67 start-page: 51 year: 2013 ident: B125 article-title: Olive mill wastes: a source of resistance for plants against Verticillium dahliae and a reservoir of biocontrol agents publication-title: Biol. Control doi: 10.1016/j.biocontrol.2013.07.008 – volume: 29 start-page: 658 ident: B119 article-title: Study on antagonistic effects of Talaromyces flavus on Verticillium albo-atrum, the causal agent of potato wilt disease publication-title: Crop Prot. doi: 10.1016/j.cropro.2010.01.011 – volume: 35 start-page: 436 year: 2007 ident: B131 article-title: Possibilities of biological and chemical control of Verticillium wilt in pepper publication-title: Phytoparasitica doi: 10.1007/BF03020601 – volume: 84 start-page: 133 year: 2007 ident: B132 article-title: Interactions of various Verticillium species in combination with V. albo-atrum on Verticillium wilt disease development in potato publication-title: Am. J. Potato Res. doi: 10.1007/BF02987136 – volume: 54 start-page: 134 year: 2007 ident: B27 article-title: Protection of Oilseed Rape (Brassica napus) Toward Fungal Pathogens by Strains of Plant-associated Bacillus amyloliquefaciens publication-title: Microb. Ecol. doi: 10.1007/s00248-006-9181-2 – volume: 85 start-page: 529 year: 2001 ident: B80 article-title: Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48 publication-title: Plant Dis. doi: 10.1094/PDIS.2001.85.5.529 – volume: 70 start-page: 3103 year: 2004 ident: B115 article-title: Negative Cross-communication among wheat rhizosphere bacteria: effect on antibiotic production by the biological control Bacterium Pseudomonas aureofaciens 30-84 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.5.3103-3109.2004 – ident: B143 – volume: 35 start-page: 345 year: 2014 ident: B175 article-title: Plant pattern-recognition receptors publication-title: Trends Immunol. doi: 10.1016/j.it.2014.05.004 – volume: 46 start-page: 166 year: 2008 ident: B8 article-title: Effect of Paenibacillus alvei, strain K165, on the germination of Verticillium dahliae microsclerotia in planta publication-title: Biol. Control doi: 10.1016/j.biocontrol.2008.05.003 – volume: 45 start-page: 71 year: 2003 ident: B114 article-title: Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism publication-title: FEMS Microbiol. Ecol. doi: 10.1016/S0168-6496(03)00125-9 – volume: 22 start-page: 15 ident: B14 article-title: An ultrastructural study of root invasion in three vascular wilt diseases publication-title: Physiol. Plant Pathol. doi: 10.1016/S0048-4059(83)81034-0 – start-page: 2822 volume-title: The Prokaryotes – A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications year: 1992 ident: B61 article-title: The genus Serratia – volume: 66 start-page: 1166 year: 1982 ident: B102 article-title: Biological control of Verticillium Wilt of eggplant in the field publication-title: Plant Dis. doi: 10.1094/PD-66-1166 – volume: 29 start-page: 141 year: 2007 ident: B152 article-title: Pathogenic variability of Verticillium dahliae isolates from potato fields in Manitoba and screening of bacteria for their biocontrol publication-title: Can. J. Plant Pathol. doi: 10.1080/07060660709507450 – volume: 22 start-page: 129 year: 2003 ident: B37 article-title: Differential expression of induced resistance by an aqueous extract of killed Penicillium chrysogenum against Verticillium wilt of cotton publication-title: Crop Prot. doi: 10.1016/S0261-2194(02)00122-9 – volume: 69 start-page: 1176 year: 1979 ident: B62 article-title: Verticillium wilt on resistant tomato cultivars in California: virulence of isolates from plants and soil and relationship of inoculum density to disease incidence publication-title: Phytopathology doi: 10.1094/Phyto-69-1176 – volume: 52 start-page: 103 year: 2010 ident: B74 article-title: Effect of AMF application on growth, productivity and susceptibility to Verticillium wilt of olives grown under desert conditions publication-title: Symbiosis doi: 10.1007/s13199-010-0085-z – volume: 24 start-page: 489 year: 2014 ident: B165 article-title: Evaluation of the effectiveness of a consortium of three plant-growth promoting rhizobacteria for biocontrol of cotton Verticillium wilt publication-title: Biocontrol Sci. Technol doi: 10.1080/09583157.2013.873389 – volume: 184 start-page: 529 year: 2009 ident: B2 article-title: Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.03014.x – volume: 56 start-page: 1204 year: 1966 ident: B141 article-title: Cross-protection in cotton with strains of Verticillium albo-atrum publication-title: Phytopathology – volume: 81 start-page: 644 year: 1991 ident: B77 article-title: Potential of Gliocladium roseum for biocontrol of Verticillium dahliae publication-title: Phytopathology doi: 10.1094/Phyto-81-644 – volume: 59 start-page: 449 year: 2014 ident: B147 article-title: Biocontrol potential of Microsphaeropsis ochracea on microsclerotia of Verticillium longisporum in environments differing in microbial complexity publication-title: Biocontrol doi: 10.1007/s10526-014-9586-7 – volume: 89 start-page: 1317 year: 2005 ident: B136 article-title: Dispersal improvement of a powder formulation of Penicillium oxalicum, a biocontrol agent of tomato wilt publication-title: Plant Dis. doi: 10.1094/PD-89-1317 – volume: 89 start-page: 777 year: 2005 ident: B49 article-title: Verticillium wilt incited by V. dahliae in Eggplant grafted on Solanum torvum in Italy publication-title: Plant Dis. doi: 10.1094/pd-89-0777b – volume: 828 start-page: 133 year: 2009 ident: B160 article-title: Evaluation of new strawberry cultivars and of beneficial microbes to improve strawberry production in Verticillium-Infested soils publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2009.838.22 – volume: 81 start-page: 1 year: 1974 ident: B45 article-title: Polygalacturonase and polygalacturonate trans-eliminase production in vitro and in vivo by Fusarium oxysporum f. sp. lycopersici publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.1974.tb02771.x – volume: 83 start-page: 457 year: 1977 ident: B106 article-title: Control of Verticillium wilt of tomato by preinoculation with avirulent fungi publication-title: Neth. J. Plant Pathol. doi: 10.1007/BF03041463 – volume: 61 start-page: 281 year: 2012 ident: B158 article-title: Fusarium oxysporum Fo47 confers protection to pepper plants against Verticillium dahliae and Phytophthora capsici, and induces the expression of defence genes publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.2011.02516.x – volume: 392 start-page: 101 year: 2015 ident: B170 article-title: Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of Verticillium wilt of cotton publication-title: Plant Soil doi: 10.1007/s11104-015-2448-y – volume: 20 start-page: 191 year: 2010 ident: B44 article-title: Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens publication-title: Mycorrhiza doi: 10.1007/s00572-009-0279-5 – volume: 65 start-page: 767 year: 1975 ident: B108 article-title: Cross protection in mints by Verticillium nigrescens against, V. dahliae publication-title: Phytopathology doi: 10.1094/phyto-65-767 – volume: 5 start-page: 427 year: 2014 ident: B59 article-title: The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00427 – volume: 92 start-page: 69 year: 2008 ident: B130 article-title: Characterization of Verticillium dahliae and V. tricorpus isolates from lettuce and artichoke publication-title: Plant Dis. doi: 10.1094/PDIS-92-1-0069 – volume: 35 start-page: 457 year: 2007 ident: B55 article-title: Effect of antagonistic Fusarium spp. and of different commercial biofungicide formulations on Fusarium wilt of lettuce publication-title: Phytoparasitica doi: 10.1007/BF03020604 – volume: 151 start-page: 433 year: 1996 ident: B73 article-title: Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties publication-title: Microbiol. Res. doi: 10.1016/S0944-5013(96)80014-0 – volume: 27 start-page: 1 year: 2015 ident: B154 article-title: Cross-protection of cotton against Verticillium wilt by Verticillium nigrescens publication-title: Emirates J. Food Agric. doi: 10.9755/ejfa.2015-04-047 – volume: 24 start-page: 1149 year: 2014 ident: B89 article-title: Diversity of endophytic fungi from different Verticillium-wilt-resistant Gossypium hirsutum and evaluation of antifungal activity against Verticillium dahliae in vitro publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1402.02035 – volume: 44 start-page: 180 year: 2008 ident: B96 article-title: Thermal inactivation of compost suppressiveness implicates possible biological factors in disease management publication-title: Biol. Control doi: 10.1016/j.biocontrol.2007.10.006 – volume: 84 start-page: 11 year: 2009 ident: B10 article-title: Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2092-7 – volume: 14 start-page: 940 year: 2012 ident: B111 article-title: Characterization and localization of prodiginines from Streptomyces lividans suppressing Verticillium dahliae in the absence or presence of Arabidopsis thaliana publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2011.02665.x – volume: 7 start-page: e1002137 year: 2011 ident: B79 article-title: Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002137 – volume: 76 start-page: 239 year: 1992 ident: B69 article-title: Effects of vesicular-arbuscular mycorrhizal fungi on the development of Verticillium and Fusarium Wilts of Alfalfa publication-title: Plant Dis. doi: 10.1094/PD-76-0239 – volume: 123 start-page: 387 year: 2009 ident: B56 article-title: Effect of soil amendments and biological control agents (BCAs) on soil-borne root diseases caused by Pyrenochaeta lycopersici and Verticillium albo-atrum in organic greenhouse tomato production systems publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-008-9376-0 – volume: 82 start-page: 1100 year: 1998 ident: B3 article-title: Parasitism and biological control of Verticillium dahliae by Pythium oligandrum publication-title: Plant Dis. doi: 10.1094/PDIS.1998.82.10.1100 – volume: 30 start-page: 85 year: 2011 ident: B48 article-title: Are plant cell wall hydrolysing enzymes of saprobe fungi implicated in the biological control of the Verticillium dahliae pathogenesis? publication-title: Crop Prot. doi: 10.1016/j.cropro.2010.09.007 – volume: 58 start-page: 68 year: 2011 ident: B142 article-title: Evaluation of application methods and biocontrol efficacy of Paenibacillus alvei strain K-165, against the cotton black root rot pathogen Thielaviopsis basicola publication-title: Biol. Control doi: 10.1016/j.biocontrol.2011.04.002 – volume: 61 start-page: 283 ident: B156 article-title: Development and validation of an inoculation method to assess the efficacy of biological treatments against Verticillium wilt in olive trees publication-title: Biocontrol doi: 10.1007/s10526-015-9710-3 – volume: 75 start-page: 25 year: 1985 ident: B23 article-title: Biological control of plant pathogens: theory and application publication-title: Phytopathology doi: 10.1094/Phyto-75-25 – volume: 116 start-page: 1563 year: 2014 ident: B151 article-title: The endophyte Verticillium Vt305 protects cauliflower against Verticillium wilt publication-title: J. Appl. Microbiol. doi: 10.1111/jam.12481 – volume: 53 start-page: 931 year: 2008 ident: B87 article-title: Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant publication-title: BioControl doi: 10.1007/s10526-007-9144-7 – volume: 37 start-page: 256 year: 2006 ident: B135 article-title: Biocontrol of tomato wilt by Penicillium oxalicum formulations in different crop conditions publication-title: Biol. Control doi: 10.1016/j.biocontrol.2006.02.009 – start-page: 81 volume-title: Fungal Wilt Diseases of Plants year: 1981 ident: B140 article-title: Life Cycle and epidemiology of Verticillium doi: 10.1016/B978-0-12-464450-2.50009-7 – volume: 23 start-page: 323 ident: B15 article-title: An ultrastructural study of vascular colonization in three vascular wilt diseases I. Colonization of susceptible cultivars publication-title: Physiol. Plant Pathol. doi: 10.1016/0048-4059(83)90018-8 – volume: 51 start-page: 293 year: 2006 ident: B50 article-title: Defence-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahliae publication-title: Biocontrol doi: 10.1007/s10526-005-4238-6 – volume: 10 start-page: 677 year: 2000 ident: B42 article-title: Wood chip-polyacrylamide medium for biocontrol bacteria decreases Verticillium dahliae infection on potato publication-title: Biocontrol Sci. Technol. doi: 10.1080/095831500750016479 – volume: 17 start-page: 3139 ident: B99 article-title: Endophytic colonization and biocontrol performance of Pseudomonas fluorescens PICF7 in olive (Olea europaea L.) are determined neither by pyoverdine production nor swimming motility publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12725 – volume: 50 start-page: 30 year: 2009 ident: B124 article-title: Mode of action of a non-pathogenic Fusarium oxysporum strain against Verticillium dahliae using Real Time QPCR analysis and biomarker transformation publication-title: Biol. Control doi: 10.1016/j.biocontrol.2009.01.010 |
| SSID | ssj0000402000 |
| Score | 2.509011 |
| SecondaryResourceType | review_article |
| Snippet | The soil-borne fungus
causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to... The soil-borne fungus Verticillium causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1186 |
| SubjectTerms | biocontrol biological control cross-protection endophytes Microbiology soil-borne pathogens survival structures |
| Title | Desirable Traits of a Good Biocontrol Agent against Verticillium Wilt |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28729855 https://www.proquest.com/docview/1922507386 https://pubmed.ncbi.nlm.nih.gov/PMC5498563 https://doaj.org/article/673ac255816d4b04ad8802f3424cfbc7 |
| Volume | 8 |
| WOSCitedRecordID | wos000405227500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-302X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402000 issn: 1664-302X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-302X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402000 issn: 1664-302X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAokLojyX0spIXDiEOrFjO8eCtnCAigOgvVn22IFI2wTtZpG48Ns7ttPVLkJw4ZJD4ij2NxPPfPI8CHnBWg3MVmVRg7aFKF1TNJqLggemrAWnXC7i-l5dXOjFovm40-orxoTl8sAZuFOpuAX0e3UpvXBMWI8aV7VcVAJaBymPnKlmh0ylPTjSIsbyuSSysAbF1IGLoVzqVUy2lHt2KJXr_5OP-Xuo5I7tOb9H7k5OIz3Lkz0kN0J_n9zObSR_PiBzJI_dKuZAUTQ93bimQ0stfTsMnuKgKRqdnsUsKmq_2g5dQvolB1Qvl93mkuLeMD4kn8_nn968K6b2CAXUlR4Lr8oqWFZ7pwAELikoWQvXyFY5jVZYWifbigUoNaCj5Dj3TCjwJTCPPMTxR-SgH_rwhFCuAGkZcI3OoPB1ZYNgEFNonZKIez0jp9dgGZhqh8cWFkuDHCLCaxK8JsJrErwz8nL7xvdcN-MvY19H_LfjYsXrdAP1wEx6YP6lBzPy_Fp6Bv-QeOxh-zBs1gZ9WPTzYnPTGXmcpbn9FPLFqtE1LlDtyXlvLvtP-u5bqsKNxFrXkj_9H5M_InciHCkMWD4jB-NqE47JLfgxduvVCbmpFvokKTheP_yaXwE0EP8W |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Desirable+Traits+of+a+Good+Biocontrol+Agent+against+Verticillium+Wilt&rft.jtitle=Frontiers+in+microbiology&rft.au=Deketelaere%2C+Silke&rft.au=Tyvaert%2C+Lien&rft.au=Fran%C3%A7a%2C+Soraya+C.&rft.au=H%C3%B6fte%2C+Monica&rft.date=2017-07-06&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=8&rft_id=info:doi/10.3389%2Ffmicb.2017.01186&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmicb_2017_01186 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |