On Riemann-Liouville integrals and Caputo Fractional derivatives via strongly modified (p, h)-convex functions
The paper introduces a new class of convexity named strongly modified ( p , h )-convex functions and establishes various properties of these functions, providing a comprehensive understanding of their behavior and characteristics. Additionally, the paper investigates Schur inequality and Hermite-Had...
Uloženo v:
| Vydáno v: | PloS one Ročník 19; číslo 10; s. e0311386 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
15.10.2024
|
| Témata: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The paper introduces a new class of convexity named strongly modified (
p
,
h
)-convex functions and establishes various properties of these functions, providing a comprehensive understanding of their behavior and characteristics. Additionally, the paper investigates Schur inequality and Hermite-Hadamard (H-H) inequalities for this new class of convexity. Also, H-H inequalities are proved within context of Riemann-Liouville integrals and Caputo Fractional derivatives. The efficiency and feasibility of Schur inequality and H-H inequalities are supported by incorporating multiple illustrations, that demonstrate the applicability of strongly modified (
p
,
h
)-convex functions. The results contribute to the field of mathematical analysis and provide valuable insights into the properties and applications of strongly modified (
p
,
h
)-convex functions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0311386 |