On Riemann-Liouville integrals and Caputo Fractional derivatives via strongly modified (p, h)-convex functions

The paper introduces a new class of convexity named strongly modified ( p , h )-convex functions and establishes various properties of these functions, providing a comprehensive understanding of their behavior and characteristics. Additionally, the paper investigates Schur inequality and Hermite-Had...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 19; číslo 10; s. e0311386
Hlavní autoři: Nosheen, Ammara, Khan, Khuram Ali, Bukhari, Mudassir Hussain, Kahungu, Michael Kikomba, Aljohani, A. F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 15.10.2024
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper introduces a new class of convexity named strongly modified ( p , h )-convex functions and establishes various properties of these functions, providing a comprehensive understanding of their behavior and characteristics. Additionally, the paper investigates Schur inequality and Hermite-Hadamard (H-H) inequalities for this new class of convexity. Also, H-H inequalities are proved within context of Riemann-Liouville integrals and Caputo Fractional derivatives. The efficiency and feasibility of Schur inequality and H-H inequalities are supported by incorporating multiple illustrations, that demonstrate the applicability of strongly modified ( p , h )-convex functions. The results contribute to the field of mathematical analysis and provide valuable insights into the properties and applications of strongly modified ( p , h )-convex functions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0311386