On Riemann-Liouville integrals and Caputo Fractional derivatives via strongly modified (p, h)-convex functions

The paper introduces a new class of convexity named strongly modified ( p , h )-convex functions and establishes various properties of these functions, providing a comprehensive understanding of their behavior and characteristics. Additionally, the paper investigates Schur inequality and Hermite-Had...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 19; H. 10; S. e0311386
Hauptverfasser: Nosheen, Ammara, Khan, Khuram Ali, Bukhari, Mudassir Hussain, Kahungu, Michael Kikomba, Aljohani, A. F.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 15.10.2024
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper introduces a new class of convexity named strongly modified ( p , h )-convex functions and establishes various properties of these functions, providing a comprehensive understanding of their behavior and characteristics. Additionally, the paper investigates Schur inequality and Hermite-Hadamard (H-H) inequalities for this new class of convexity. Also, H-H inequalities are proved within context of Riemann-Liouville integrals and Caputo Fractional derivatives. The efficiency and feasibility of Schur inequality and H-H inequalities are supported by incorporating multiple illustrations, that demonstrate the applicability of strongly modified ( p , h )-convex functions. The results contribute to the field of mathematical analysis and provide valuable insights into the properties and applications of strongly modified ( p , h )-convex functions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0311386