Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram

Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death. This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG). A convolutional neural network (CNN) was trained and validated using dig...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American College of Cardiology Ročník 75; číslo 7; s. 722
Hlavní autori: Ko, Wei-Yin, Siontis, Konstantinos C, Attia, Zachi I, Carter, Rickey E, Kapa, Suraj, Ommen, Steve R, Demuth, Steven J, Ackerman, Michael J, Gersh, Bernard J, Arruda-Olson, Adelaide M, Geske, Jeffrey B, Asirvatham, Samuel J, Lopez-Jimenez, Francisco, Nishimura, Rick A, Friedman, Paul A, Noseworthy, Peter A
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 25.02.2020
Predmet:
ISSN:1558-3597, 1558-3597
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death. This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG). A convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects. In the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively. ECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening.
AbstractList Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death. This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG). A convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects. In the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively. ECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening.
Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.BACKGROUNDHypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG).OBJECTIVESThis study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG).A convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects.METHODSA convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects.In the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively.RESULTSIn the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively.ECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening.CONCLUSIONSECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening.
Author Arruda-Olson, Adelaide M
Ko, Wei-Yin
Demuth, Steven J
Attia, Zachi I
Nishimura, Rick A
Asirvatham, Samuel J
Gersh, Bernard J
Kapa, Suraj
Siontis, Konstantinos C
Ommen, Steve R
Ackerman, Michael J
Lopez-Jimenez, Francisco
Friedman, Paul A
Geske, Jeffrey B
Noseworthy, Peter A
Carter, Rickey E
Author_xml – sequence: 1
  givenname: Wei-Yin
  surname: Ko
  fullname: Ko, Wei-Yin
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
– sequence: 2
  givenname: Konstantinos C
  surname: Siontis
  fullname: Siontis, Konstantinos C
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
– sequence: 3
  givenname: Zachi I
  surname: Attia
  fullname: Attia, Zachi I
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
– sequence: 4
  givenname: Rickey E
  surname: Carter
  fullname: Carter, Rickey E
  organization: Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, Florida
– sequence: 5
  givenname: Suraj
  surname: Kapa
  fullname: Kapa, Suraj
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
– sequence: 6
  givenname: Steve R
  surname: Ommen
  fullname: Ommen, Steve R
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
– sequence: 7
  givenname: Steven J
  surname: Demuth
  fullname: Demuth, Steven J
  organization: Information Technology, Mayo Clinic, Rochester, Minnesota
– sequence: 8
  givenname: Michael J
  surname: Ackerman
  fullname: Ackerman, Michael J
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
– sequence: 9
  givenname: Bernard J
  surname: Gersh
  fullname: Gersh, Bernard J
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
– sequence: 10
  givenname: Adelaide M
  surname: Arruda-Olson
  fullname: Arruda-Olson, Adelaide M
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
– sequence: 11
  givenname: Jeffrey B
  surname: Geske
  fullname: Geske, Jeffrey B
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
– sequence: 12
  givenname: Samuel J
  surname: Asirvatham
  fullname: Asirvatham, Samuel J
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
– sequence: 13
  givenname: Francisco
  surname: Lopez-Jimenez
  fullname: Lopez-Jimenez, Francisco
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
– sequence: 14
  givenname: Rick A
  surname: Nishimura
  fullname: Nishimura, Rick A
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
– sequence: 15
  givenname: Paul A
  surname: Friedman
  fullname: Friedman, Paul A
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
– sequence: 16
  givenname: Peter A
  surname: Noseworthy
  fullname: Noseworthy, Peter A
  email: Noseworthy.Peter@mayo.edu
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota. Electronic address: Noseworthy.Peter@mayo.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32081280$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAYhC1URD_gDzAgjywJthPnY0ShUKQKFjpHb5w3bYpjBycB5d9TSpFY7m64e4abk4mxBgm55sznjEd3e38PSvmC8dTnwmcBOyMzLmXiBTKNJ__ylMy7bs8YixKeXpBpIFjCRcJmZPuAPaq-tobaiq7GFl3vbLurFc3AlbVtRttCvxvppqvNlgLNrPm0eviZgKYvOLij9V_WvXtLA4XGki71AeqsOiK2DppLcl6B7vDq5AuyeVy-ZStv_fr0nN2vPSVF0ntRxVhYIhSSFQGqMkDJw6QSIUqMQWFYYFQqwSFBqDDmEpSMUbKwOmxEFYsFuf3lts5-DNj1eVN3CrUGg3bochFyKVKeHnRBbk7VoWiwzFtXN-DG_O8c8Q3Tf2yV
CitedBy_id crossref_primary_10_1016_j_atherosclerosis_2023_01_003
crossref_primary_10_1542_pir_2023_005975
crossref_primary_10_1016_j_cpcardiol_2023_101750
crossref_primary_10_1016_j_jcmg_2021_01_014
crossref_primary_10_1016_j_cjca_2024_05_027
crossref_primary_10_1016_j_echo_2024_10_001
crossref_primary_10_1016_j_jacc_2024_07_064
crossref_primary_10_1038_s41746_024_01130_8
crossref_primary_10_1016_j_atherosclerosis_2023_117238
crossref_primary_10_1016_j_jacep_2022_07_012
crossref_primary_10_1016_j_hrthm_2024_05_040
crossref_primary_10_3390_diagnostics13142345
crossref_primary_10_1002_joa3_13037
crossref_primary_10_1016_j_artmed_2022_102342
crossref_primary_10_1055_s_0045_1809615
crossref_primary_10_1016_j_ccep_2021_04_011
crossref_primary_10_1097_MBP_0000000000000503
crossref_primary_10_1093_eurheartj_ehab649
crossref_primary_10_1016_j_hrthm_2020_08_021
crossref_primary_10_1097_TP_0000000000005023
crossref_primary_10_1016_j_cmpb_2024_108097
crossref_primary_10_1016_j_cpcardiol_2025_103004
crossref_primary_10_1038_s41598_025_08824_3
crossref_primary_10_1038_s41591_022_02053_1
crossref_primary_10_2174_0126662558348090241210063629
crossref_primary_10_3390_jcm11133910
crossref_primary_10_1016_j_jacep_2025_02_024
crossref_primary_10_3389_fpubh_2023_1328918
crossref_primary_10_3389_fcvm_2022_809027
crossref_primary_10_1161_CIRCEP_119_007952
crossref_primary_10_3390_bioengineering12030250
crossref_primary_10_1016_j_acvd_2025_07_012
crossref_primary_10_1002_joa3_13052
crossref_primary_10_3390_jpm12050700
crossref_primary_10_1093_eurheartj_ehae148
crossref_primary_10_1016_j_compbiomed_2024_108207
crossref_primary_10_1016_j_cjca_2024_02_030
crossref_primary_10_1016_j_cpcardiol_2024_102786
crossref_primary_10_1016_j_annemergmed_2024_06_004
crossref_primary_10_3390_diagnostics14070767
crossref_primary_10_1016_j_hrtlng_2025_09_012
crossref_primary_10_1016_j_ejim_2025_106441
crossref_primary_10_1016_j_cvdhj_2023_03_001
crossref_primary_10_1038_s41598_022_10346_1
crossref_primary_10_1016_j_tcm_2022_01_011
crossref_primary_10_1007_s11886_020_01317_x
crossref_primary_10_1002_j_2040_4603_2022_tb00218_x
crossref_primary_10_1016_j_compbiomed_2025_110674
crossref_primary_10_1093_eurheartj_ehab544
crossref_primary_10_3390_s22208002
crossref_primary_10_1111_jce_15440
crossref_primary_10_1038_s41746_024_01234_1
crossref_primary_10_1007_s10554_023_02973_0
crossref_primary_10_1016_j_ebiom_2021_103613
crossref_primary_10_4103_jpbs_jpbs_557_25
crossref_primary_10_1002_joa3_70031
crossref_primary_10_1161_CIRCULATIONAHA_120_051968
crossref_primary_10_3390_diagnostics11091523
crossref_primary_10_1186_s12938_025_01349_w
crossref_primary_10_1016_j_jjcc_2023_07_017
crossref_primary_10_1007_s11897_024_00688_4
crossref_primary_10_1007_s11886_025_02250_7
crossref_primary_10_3390_diagnostics14111103
crossref_primary_10_1093_ehjdh_ztaf086
crossref_primary_10_7759_cureus_55869
crossref_primary_10_1016_j_mayocpiqo_2025_100657
crossref_primary_10_1007_s00399_022_00855_x
crossref_primary_10_1016_j_medengphy_2023_103964
crossref_primary_10_1136_heartjnl_2020_316646
crossref_primary_10_1161_CIRCOUTCOMES_121_008360
crossref_primary_10_1016_j_cjca_2024_04_014
crossref_primary_10_1186_s12933_024_02141_1
crossref_primary_10_1038_s41586_025_09227_0
crossref_primary_10_3389_fphys_2022_864747
crossref_primary_10_1016_j_landig_2024_12_006
crossref_primary_10_3390_bioengineering11030219
crossref_primary_10_1038_s43856_024_00451_9
crossref_primary_10_1007_s12170_023_00723_4
crossref_primary_10_3389_fcvm_2023_1279324
crossref_primary_10_1136_openhrt_2023_002414
crossref_primary_10_1111_jce_14936
crossref_primary_10_1016_j_jelectrocard_2023_04_004
crossref_primary_10_1038_s41598_024_78268_8
crossref_primary_10_1016_j_mayocp_2020_09_020
crossref_primary_10_1038_s44161_025_00685_3
crossref_primary_10_1016_j_mayocp_2021_06_024
crossref_primary_10_1016_j_jacc_2022_05_029
crossref_primary_10_1016_j_jelectrocard_2024_01_008
crossref_primary_10_1016_j_jelectrocard_2024_01_006
crossref_primary_10_1016_j_rccl_2025_07_001
crossref_primary_10_1016_j_cjca_2021_09_016
crossref_primary_10_1016_j_pcad_2023_08_001
crossref_primary_10_1016_j_pcad_2023_08_005
crossref_primary_10_1016_j_heliyon_2025_e42968
crossref_primary_10_1161_CIRCRESAHA_121_319876
crossref_primary_10_3389_fcvm_2023_1104947
crossref_primary_10_1016_j_jelectrocard_2025_153888
crossref_primary_10_1007_s11936_023_01032_0
crossref_primary_10_1016_j_hroo_2025_08_040
crossref_primary_10_1016_j_cgh_2024_08_009
crossref_primary_10_1016_j_jjcc_2023_04_020
crossref_primary_10_1016_j_jacc_2021_08_043
crossref_primary_10_1016_j_hrthm_2024_08_030
crossref_primary_10_1016_j_cvdhj_2021_12_003
crossref_primary_10_1007_s11936_023_01029_9
crossref_primary_10_1016_j_jacc_2025_01_030
crossref_primary_10_1007_s12204_023_2628_5
crossref_primary_10_1016_j_mayocp_2024_07_016
crossref_primary_10_1161_CIRCULATIONAHA_123_067750
crossref_primary_10_1016_j_cpcardiol_2024_102877
crossref_primary_10_1016_j_ijcard_2020_11_003
crossref_primary_10_1161_CIRCEP_124_013695
crossref_primary_10_3748_wjg_v27_i40_6825
crossref_primary_10_1007_s11886_024_02062_1
crossref_primary_10_1093_eurjpc_zwae008
crossref_primary_10_1016_j_jjcc_2021_11_017
crossref_primary_10_1136_heartjnl_2023_323822
crossref_primary_10_1161_CIRCULATIONAHA_121_058696
crossref_primary_10_1161_JAHA_120_016193
crossref_primary_10_1016_j_csm_2022_02_004
crossref_primary_10_1016_j_echo_2022_12_014
crossref_primary_10_1161_JAHA_122_026974
crossref_primary_10_1016_j_ijcard_2021_09_048
crossref_primary_10_1093_ajh_hpaa092
crossref_primary_10_1186_s40001_023_01065_y
crossref_primary_10_1016_j_jelectrocard_2023_07_002
crossref_primary_10_1038_s41598_022_25284_1
crossref_primary_10_1155_2021_4367875
crossref_primary_10_1007_s13755_023_00237_8
crossref_primary_10_3390_s21072539
crossref_primary_10_1111_anec_12998
crossref_primary_10_1016_j_jacadv_2025_101746
crossref_primary_10_1038_s41591_024_03243_9
crossref_primary_10_1093_ehjdh_ztaf025
crossref_primary_10_1093_jamia_ocac122
crossref_primary_10_1080_21681163_2021_1894486
crossref_primary_10_3389_fphys_2023_1118360
crossref_primary_10_1016_j_ijcard_2021_05_017
crossref_primary_10_2147_VHRM_S279337
crossref_primary_10_1097_CRD_0000000000001014
crossref_primary_10_1136_heartjnl_2024_325608
crossref_primary_10_1016_j_acvd_2025_06_078
crossref_primary_10_1080_1061186X_2024_2448711
crossref_primary_10_1111_eci_70002
crossref_primary_10_1016_j_echo_2024_04_017
crossref_primary_10_1016_j_cjca_2024_07_026
crossref_primary_10_1016_j_ejim_2025_04_036
crossref_primary_10_1016_j_ccep_2021_10_013
crossref_primary_10_1016_j_jaccas_2024_103228
crossref_primary_10_3390_jcdd11090290
crossref_primary_10_3390_biomedicines13051019
crossref_primary_10_1038_s41569_020_00503_2
crossref_primary_10_1016_j_cardfail_2022_12_016
crossref_primary_10_2215_CJN_0000000000000483
crossref_primary_10_1007_s42114_024_00906_6
crossref_primary_10_1016_j_jacadv_2025_102139
crossref_primary_10_1002_ccd_70041
crossref_primary_10_1161_CIRCULATIONAHA_120_050231
crossref_primary_10_3390_bioengineering8120193
crossref_primary_10_1016_j_jacc_2019_12_028
crossref_primary_10_1016_j_cvdhj_2020_11_006
crossref_primary_10_14309_ajg_0000000000001617
crossref_primary_10_1007_s11886_022_01776_4
crossref_primary_10_1016_j_pop_2025_07_007
crossref_primary_10_3390_jcm11237072
crossref_primary_10_1016_j_cpcardiol_2023_102097
crossref_primary_10_1093_eurheartj_ehaf073
crossref_primary_10_1016_j_ijcard_2021_08_026
crossref_primary_10_1016_j_asoc_2025_113655
crossref_primary_10_1016_j_ijcard_2021_01_012
crossref_primary_10_3390_jcm11185408
crossref_primary_10_1016_j_amjcard_2024_11_028
crossref_primary_10_1016_j_cvdhj_2022_10_002
crossref_primary_10_1111_jce_16373
crossref_primary_10_1136_bmjmed_2022_000193
crossref_primary_10_18043_001c_91424
crossref_primary_10_3390_diagnostics14171839
crossref_primary_10_3390_life13010171
crossref_primary_10_1007_s00380_024_02367_9
crossref_primary_10_1016_j_ijcard_2021_10_013
crossref_primary_10_1016_j_repc_2024_08_009
crossref_primary_10_3389_fcvm_2022_889523
crossref_primary_10_1016_j_jacadv_2023_100582
crossref_primary_10_1016_j_measurement_2023_113856
crossref_primary_10_1016_j_jelectrocard_2025_153900
crossref_primary_10_3390_jcm12082828
crossref_primary_10_1016_j_jacc_2024_03_400
crossref_primary_10_1016_j_mayocp_2021_04_023
crossref_primary_10_1038_s44222_023_00102_z
crossref_primary_10_1093_ehjdh_ztaf073
crossref_primary_10_4103_heartviews_heartviews_103_24
crossref_primary_10_1186_s12872_022_03028_3
crossref_primary_10_1038_s41746_023_00993_7
crossref_primary_10_1093_eurheartjsupp_suad074
crossref_primary_10_1016_j_jscai_2024_102494
crossref_primary_10_12677_acm_2025_153593
crossref_primary_10_1016_j_cmpb_2023_107359
crossref_primary_10_1016_j_jacc_2025_07_031
crossref_primary_10_1016_j_jcmg_2021_04_030
crossref_primary_10_1038_s41440_023_01469_7
crossref_primary_10_1109_ACCESS_2021_3098039
crossref_primary_10_3390_app12031605
crossref_primary_10_1016_j_jacc_2022_01_005
crossref_primary_10_1038_s41746_024_01410_3
crossref_primary_10_1093_ehjdh_ztaf067
crossref_primary_10_1016_j_jacadv_2023_100686
crossref_primary_10_1093_ehjdh_ztaf061
crossref_primary_10_1161_CIRCEP_120_009056
crossref_primary_10_3390_jcm14134718
crossref_primary_10_2196_52073
crossref_primary_10_3389_fphys_2022_1089343
crossref_primary_10_3390_cells10061532
crossref_primary_10_3390_jpm14040367
crossref_primary_10_1038_s41746_024_01407_y
crossref_primary_10_1016_j_mayocp_2024_11_001
crossref_primary_10_3390_jcm13041033
crossref_primary_10_1016_j_bspc_2021_102742
crossref_primary_10_1093_ehjdh_ztaf054
crossref_primary_10_5334_gh_1250
crossref_primary_10_1016_j_cjca_2021_07_016
crossref_primary_10_1016_j_compbiomed_2021_105041
crossref_primary_10_1016_j_jhepr_2025_101356
crossref_primary_10_1161_CIRCHEARTFAILURE_124_012667
crossref_primary_10_3389_fcvm_2021_654515
crossref_primary_10_1093_ehjcr_ytad010
crossref_primary_10_1016_j_tcm_2024_08_002
crossref_primary_10_1007_s13534_025_00492_6
crossref_primary_10_1038_s41440_024_01938_7
crossref_primary_10_3390_ijms24065680
crossref_primary_10_1161_JAHA_120_016598
crossref_primary_10_1007_s10620_023_07928_y
crossref_primary_10_1183_13993003_00192_2024
crossref_primary_10_1016_j_jacc_2021_11_012
crossref_primary_10_1016_j_imavis_2025_105427
crossref_primary_10_1016_j_hrthm_2024_01_031
ContentType Journal Article
Copyright Copyright © 2020 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2020 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
DBID NPM
7X8
DOI 10.1016/j.jacc.2019.12.030
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1558-3597
ExternalDocumentID 32081280
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
0SF
18M
1B1
1P~
1~.
1~5
2WC
4.4
457
4G.
53G
5GY
5RE
5VS
6PF
7-5
71M
8P~
AABNK
AABVL
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKUH
AALRI
AAOAW
AAQFI
AAQQT
AAXUO
ABBQC
ABFNM
ABFRF
ABLJU
ABMAC
ABMZM
ABOCM
ABVKL
ACGFO
ACGFS
ACIUM
ACJTP
ACPRK
ADBBV
ADEZE
ADVLN
AEFWE
AEKER
AENEX
AEVXI
AEXQZ
AFCTW
AFETI
AFRAH
AFRHN
AFTJW
AGYEJ
AHMBA
AITUG
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
BAWUL
BLXMC
CS3
DIK
DU5
E3Z
EBS
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FNPLU
G-Q
GBLVA
GX1
HVGLF
IHE
IXB
J1W
K-O
KQ8
L7B
MO0
N9A
NCXOZ
NPM
O-L
O9-
OA.
OAUVE
OK1
OL~
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SSZ
T5K
TR2
UNMZH
UV1
W8F
WH7
WOQ
WOW
YYM
YZZ
Z5R
7X8
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c528t-6f004deab50b3ecd3e5148f24e5e7ace4be6dc21a8eafe715ac57e504feab2f72
IEDL.DBID 7X8
ISICitedReferencesCount 268
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516833900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1558-3597
IngestDate Sat Sep 27 21:48:07 EDT 2025
Wed Feb 19 02:31:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords electrocardiogram
diagnostic performance
hypertrophic cardiomyopathy
artificial intelligence
Language English
License Copyright © 2020 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-6f004deab50b3ecd3e5148f24e5e7ace4be6dc21a8eafe715ac57e504feab2f72
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S0735109720300036
PMID 32081280
PQID 2415291915
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2415291915
pubmed_primary_32081280
PublicationCentury 2000
PublicationDate 2020-02-25
PublicationDateYYYYMMDD 2020-02-25
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American College of Cardiology
PublicationTitleAlternate J Am Coll Cardiol
PublicationYear 2020
SSID ssj0006819
Score 2.6894732
Snippet Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death. This study sought to develop an artificial intelligence approach...
Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.BACKGROUNDHypertrophic cardiomyopathy (HCM) is an uncommon but...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 722
Title Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram
URI https://www.ncbi.nlm.nih.gov/pubmed/32081280
https://www.proquest.com/docview/2415291915
Volume 75
WOSCitedRecordID wos000516833900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qRLz4_TG_iOA12CZNk55E5sYuGzso7DbS9MUPsJ1bHey_N0kzdhIEL-0poaTv5X393vshdJerlOd5GhGdSBugcCOI4lKRwjCTxjqLARJPNiGGQzkeZ6OQcJsHWOXqTvQXdVFplyO_95Yms9EFf5h-Ecca5aqrgUJjE7WYdWWcVIvxelp4Kj2xhzWZkjDrOYemmQbf9aG0G2EYZz4dyKLfXUxvanr7__3IA7QXnEz82EjFIdqA8gjtDEIZ_Ri9PkHtIVglrgzu21B0Vs-q6du7xh2PT_1cVo6qeIk9ogAr3KnKRRBSu7Gb6OFfHkJOur7_qsDdhlJH-y0c6usEvfS6z50-CYwLRHMqa5IaqzMFqJxHOQNdMLD-lDQ0AQ5CaUhySAtNYyVBGRAxV5oL4FFi7BpqBD1FW2VVwjnCVtld6Jdp6YcMCruSK8f_pzQDo0wb3a6OcGIl2pUpVAnV93yyPsQ2Omv-w2TajN6YMGpdGCqjiz-svkS71AXHrv-cX6GWsfoM12hbL-r3-ezGi4p9DkeDHwSVy6U
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Hypertrophic+Cardiomyopathy+Using+a+Convolutional+Neural+Network-Enabled+Electrocardiogram&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Ko%2C+Wei-Yin&rft.au=Siontis%2C+Konstantinos+C&rft.au=Attia%2C+Zachi+I&rft.au=Carter%2C+Rickey+E&rft.date=2020-02-25&rft.issn=1558-3597&rft.eissn=1558-3597&rft.volume=75&rft.issue=7&rft.spage=722&rft_id=info:doi/10.1016%2Fj.jacc.2019.12.030&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-3597&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-3597&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-3597&client=summon