Computational functions in biochemical reaction networks
In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the kinetics of chemical reaction mechanisms. In the present article we develop this subject further by first investigating the computational properti...
Saved in:
| Published in: | Biophysical journal Vol. 67; no. 2; p. 560 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.08.1994
|
| Subjects: | |
| ISSN: | 0006-3495 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the kinetics of chemical reaction mechanisms. In the present article we develop this subject further by first investigating the computational properties of several enzymatic (single and multiple) reaction mechanisms: we show their steady states are analogous to either Boolean or fuzzy logic gates. Nearly perfect digital function is obtained only in the regime in which the enzymes are saturated with their substrates. With these enzymatic gates, we construct combinational chemical networks that execute a given truth-table. The dynamic range of a network's output is strongly affected by "input/output matching" conditions among the internal gate elements. We find a simple mechanism, similar to the interconversion of fructose-6-phosphate between its two bisphosphate forms (fructose-1,6-bisphosphate and fructose-2,6-bisphosphate), that functions analogously to an AND gate. When the simple model is supplanted with one in which the enzyme rate laws are derived from experimental data, the steady state of the mechanism functions as an asymmetric fuzzy aggregation operator with properties akin to a fuzzy AND gate. The qualitative behavior of the mechanism does not change when situated within a large model of glycolysis/gluconeogenesis and the TCA cycle. The mechanism, in this case, switches the pathway's mode from glycolysis to gluconeogenesis in response to chemical signals of low blood glucose (cAMP) and abundant fuel for the TCA cycle (acetyl coenzyme A). |
|---|---|
| AbstractList | In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the kinetics of chemical reaction mechanisms. In the present article we develop this subject further by first investigating the computational properties of several enzymatic (single and multiple) reaction mechanisms: we show their steady states are analogous to either Boolean or fuzzy logic gates. Nearly perfect digital function is obtained only in the regime in which the enzymes are saturated with their substrates. With these enzymatic gates, we construct combinational chemical networks that execute a given truth-table. The dynamic range of a network's output is strongly affected by "input/output matching" conditions among the internal gate elements. We find a simple mechanism, similar to the interconversion of fructose-6-phosphate between its two bisphosphate forms (fructose-1,6-bisphosphate and fructose-2,6-bisphosphate), that functions analogously to an AND gate. When the simple model is supplanted with one in which the enzyme rate laws are derived from experimental data, the steady state of the mechanism functions as an asymmetric fuzzy aggregation operator with properties akin to a fuzzy AND gate. The qualitative behavior of the mechanism does not change when situated within a large model of glycolysis/gluconeogenesis and the TCA cycle. The mechanism, in this case, switches the pathway's mode from glycolysis to gluconeogenesis in response to chemical signals of low blood glucose (cAMP) and abundant fuel for the TCA cycle (acetyl coenzyme A).In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the kinetics of chemical reaction mechanisms. In the present article we develop this subject further by first investigating the computational properties of several enzymatic (single and multiple) reaction mechanisms: we show their steady states are analogous to either Boolean or fuzzy logic gates. Nearly perfect digital function is obtained only in the regime in which the enzymes are saturated with their substrates. With these enzymatic gates, we construct combinational chemical networks that execute a given truth-table. The dynamic range of a network's output is strongly affected by "input/output matching" conditions among the internal gate elements. We find a simple mechanism, similar to the interconversion of fructose-6-phosphate between its two bisphosphate forms (fructose-1,6-bisphosphate and fructose-2,6-bisphosphate), that functions analogously to an AND gate. When the simple model is supplanted with one in which the enzyme rate laws are derived from experimental data, the steady state of the mechanism functions as an asymmetric fuzzy aggregation operator with properties akin to a fuzzy AND gate. The qualitative behavior of the mechanism does not change when situated within a large model of glycolysis/gluconeogenesis and the TCA cycle. The mechanism, in this case, switches the pathway's mode from glycolysis to gluconeogenesis in response to chemical signals of low blood glucose (cAMP) and abundant fuel for the TCA cycle (acetyl coenzyme A). In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the kinetics of chemical reaction mechanisms. In the present article we develop this subject further by first investigating the computational properties of several enzymatic (single and multiple) reaction mechanisms: we show their steady states are analogous to either Boolean or fuzzy logic gates. Nearly perfect digital function is obtained only in the regime in which the enzymes are saturated with their substrates. With these enzymatic gates, we construct combinational chemical networks that execute a given truth-table. The dynamic range of a network's output is strongly affected by "input/output matching" conditions among the internal gate elements. We find a simple mechanism, similar to the interconversion of fructose-6-phosphate between its two bisphosphate forms (fructose-1,6-bisphosphate and fructose-2,6-bisphosphate), that functions analogously to an AND gate. When the simple model is supplanted with one in which the enzyme rate laws are derived from experimental data, the steady state of the mechanism functions as an asymmetric fuzzy aggregation operator with properties akin to a fuzzy AND gate. The qualitative behavior of the mechanism does not change when situated within a large model of glycolysis/gluconeogenesis and the TCA cycle. The mechanism, in this case, switches the pathway's mode from glycolysis to gluconeogenesis in response to chemical signals of low blood glucose (cAMP) and abundant fuel for the TCA cycle (acetyl coenzyme A). |
| Author | Arkin, A Ross, J |
| Author_xml | – sequence: 1 givenname: A surname: Arkin fullname: Arkin, A organization: Department of Chemistry, School of Medicine, Stanford University, CA 94305 – sequence: 2 givenname: J surname: Ross fullname: Ross, J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/7948674$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9j09Lw0AUxPdQqW31IxRyEj1E3yZv_x0lWBUKXvQcNtsXjCa7MZsgfnujFk8zzG8YmDVb-OCJsS2Haw5c3kQAkGmORlwavNIguEz1gq3-41O2jvENgGcC-JItlUEtFa6YLkLXT6Mdm-Btm9STdz82Jo1Pqia4V-oaN4OB7C9IPI2fYXiPZ-yktm2k86Nu2Mvu7rl4SPdP94_F7T51ItNjmjlbGwfGmFxXSsuKkHMU1rnccYVYaw5Yo6rUQULubO5AUJ4hKktAFWUbdvG32w_hY6I4ll0THbWt9RSmWCo5fxEG5-L2WJyqjg5lPzSdHb7K49XsG4IbVso |
| CitedBy_id | crossref_primary_10_1016_j_bioelechem_2009_06_012 crossref_primary_10_1021_ja046745c crossref_primary_10_1038_35002131 crossref_primary_10_1038_nnano_2013_189 crossref_primary_10_1098_rsob_240377 crossref_primary_10_1088_1478_3975_2_2_001 crossref_primary_10_1038_ncomms5388 crossref_primary_10_1002_anie_202215759 crossref_primary_10_1371_journal_pcbi_1000064 crossref_primary_10_1016_j_cels_2017_01_012 crossref_primary_10_1002_ange_200503314 crossref_primary_10_1002_anie_200700047 crossref_primary_10_1002_advs_202305695 crossref_primary_10_1016_j_actbio_2020_09_054 crossref_primary_10_1021_ar020285f crossref_primary_10_1146_annurev_physchem_50_1_51 crossref_primary_10_1021_bp010004n crossref_primary_10_1038_376307a0 crossref_primary_10_15252_msb_20177845 crossref_primary_10_1007_s11538_017_0270_9 crossref_primary_10_1080_10408430590918387 crossref_primary_10_1073_pnas_0909380107 crossref_primary_10_1016_j_semcdb_2025_103616 crossref_primary_10_1088_0957_4484_7_4_001 crossref_primary_10_1016_j_jmb_2005_12_003 crossref_primary_10_1016_S0167_739X_02_00110_3 crossref_primary_10_1038_nature09679 crossref_primary_10_1109_TMBMC_2016_2640287 crossref_primary_10_1002_cphc_201000844 crossref_primary_10_1007_s00500_014_1330_9 crossref_primary_10_4137_CIN_S14060 crossref_primary_10_1073_pnas_2133841100 crossref_primary_10_1006_jtbi_2000_2294 crossref_primary_10_1007_s11227_019_03138_4 crossref_primary_10_1016_j_tplants_2005_07_005 crossref_primary_10_1096_fj_00_0361com crossref_primary_10_1162_artl_2009_15_1_15101 crossref_primary_10_1016_S0304_4157_96_00013_5 crossref_primary_10_1080_03650340_2020_1870677 crossref_primary_10_3390_catal12070712 crossref_primary_10_4137_GRSB_S10885 crossref_primary_10_1007_s00114_005_0014_9 crossref_primary_10_1016_j_dyepig_2014_03_024 crossref_primary_10_1016_S1360_1385_99_01498_3 crossref_primary_10_5936_csbj_201304003 crossref_primary_10_1016_j_cell_2021_03_007 crossref_primary_10_1146_annurev_bioeng_2_1_31 crossref_primary_10_1002_elan_201700208 crossref_primary_10_1016_j_pbiomolbio_2004_03_002 crossref_primary_10_1023_A_1013738831686 crossref_primary_10_1007_s11047_005_5869_3 crossref_primary_10_1016_0301_4622_95_00075_5 crossref_primary_10_1162_106454601753238636 crossref_primary_10_1016_j_febslet_2008_01_060 crossref_primary_10_1002_ange_202215759 crossref_primary_10_1002_anie_200503314 crossref_primary_10_1002_cphc_201601402 crossref_primary_10_1016_S0025_5564_97_10019_0 crossref_primary_10_1002__SICI_1521_1878_200006_22_6_507__AID_BIES3_3_0_CO_2_0 crossref_primary_10_1016_j_jtbi_2006_12_035 crossref_primary_10_3390_life10040042 crossref_primary_10_1016_j_biosystems_2019_103983 crossref_primary_10_1146_annurev_biophys_27_1_199 crossref_primary_10_1063_1_474858 crossref_primary_10_1210_me_2006_0356 crossref_primary_10_1002_cbic_200400178 crossref_primary_10_1016_S1369_5274_03_00033_X crossref_primary_10_1162_106454601753138998 crossref_primary_10_1111_j_1399_3054_2004_00418_x crossref_primary_10_1021_ja0710149 crossref_primary_10_1016_j_cels_2023_05_001 crossref_primary_10_1002_ange_200700047 crossref_primary_10_1073_pnas_1700818114 crossref_primary_10_1002_bies_200800055 crossref_primary_10_1007_s00500_013_1174_8 crossref_primary_10_1002_bit_10836 crossref_primary_10_1016_j_biosystems_2020_104154 crossref_primary_10_1371_journal_pcbi_1007903 crossref_primary_10_1371_journal_pbio_0040045 crossref_primary_10_1126_science_277_5330_1275 crossref_primary_10_1002_ange_200905513 crossref_primary_10_1016_S0303_2647_03_00039_X crossref_primary_10_1073_pnas_0608319103 crossref_primary_10_1016_j_copbio_2006_09_001 crossref_primary_10_1088_1478_3975_3_4_007 crossref_primary_10_1016_S0301_4622_98_00180_X crossref_primary_10_1002_smll_200400111 crossref_primary_10_1016_j_ijleo_2016_06_040 crossref_primary_10_1021_jp962901t crossref_primary_10_1109_MDT_2012_2192144 crossref_primary_10_1038_nrg3197 crossref_primary_10_1002_anie_200905513 crossref_primary_10_1021_jp962298e crossref_primary_10_1146_annurev_bioeng_3_1_391 crossref_primary_10_1007_s00216_016_0079_7 crossref_primary_10_1155_2018_9874356 crossref_primary_10_1007_s00359_007_0280_4 crossref_primary_10_1073_pnas_0809314105 crossref_primary_10_1126_science_7624793 crossref_primary_10_1146_annurev_biochem_77_102507_115132 crossref_primary_10_3390_molecules25163634 crossref_primary_10_1126_science_277_5329_1060 crossref_primary_10_1002_smll_200700113 crossref_primary_10_1371_journal_pone_0002815 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/s0006-3495(94)80516-8 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| ExternalDocumentID | 7948674 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Comparative Study Journal Article |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: MH 45324 |
| GroupedDBID | --- --K -DZ -~X .55 .GJ 0R~ 0SF 23N 2WC 3O- 3V. 4.4 457 53G 5GY 5RE 62- 6I. 6J9 6TJ 7X2 7X7 88A 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAMRU AAQXK AAVLU AAXUO ABJNI ABMAC ABUWG ABVKL ABWVN ACBEA ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ACRPL ADBBV ADEZE ADMUD ADNMO ADVLN AENEX AEUYN AEXQZ AFKRA AFRAH AFTJW AGHFR AGKMS AHMBA AI. AITUG AKAPO AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS ARAPS ASPBG ATCPS AVWKF AYCSE AZFZN AZQEC BAWUL BBNVY BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CGR CS3 CUY CVF D0L DIK DU5 DWQXO E3Z EBS ECM EIF EJD F5P FCP FDB FEDTE FGOYB FRP FYUFA G-2 GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HVGLF HX~ HYE HZ~ IH2 IXB JIG KQ8 L7B LK8 M0K M0L M1P M2O M2P M2Q M41 M7P MVM N9A NCXOZ NPM O-L O9- OK1 OZT P2P P62 PKN PQQKQ PRG PROAC PSQYO Q2X R2- RCE RIG RNS ROL RPM RWL S0X SES SSZ TAE TBP TN5 UKHRP UKR VH1 WH7 WOQ WOW X7M YNY YWH YYP ZGI ZXP ~02 ~KM 7X8 ABDGV ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP |
| ID | FETCH-LOGICAL-c528t-2caf9c099938b786be41145acc3c1744f8104f47b7d603ca3c05e32447ae0ebe2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 163 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10.1016/s0006-3495(94)80516-8&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-3495 |
| IngestDate | Sun Sep 28 03:05:51 EDT 2025 Wed Feb 19 01:25:56 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c528t-2caf9c099938b786be41145acc3c1744f8104f47b7d603ca3c05e32447ae0ebe2 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://doi.org/10.1016/s0006-3495(94)80516-8 |
| PMID | 7948674 |
| PQID | 76794594 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_76794594 pubmed_primary_7948674 |
| PublicationCentury | 1900 |
| PublicationDate | 1994-08-01 |
| PublicationDateYYYYMMDD | 1994-08-01 |
| PublicationDate_xml | – month: 08 year: 1994 text: 1994-08-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Biophysical journal |
| PublicationTitleAlternate | Biophys J |
| PublicationYear | 1994 |
| References | 11607249 - Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):383-7 2626059 - J Theor Biol. 1989 Apr 20;137(4):423-44 16502 - Am J Physiol. 1977 May;232(5):R164-74 17838251 - Science. 1993 Apr 16;260(5106):335-7 4325748 - Comput Biomed Res. 1971 Apr;4(1):65-106 |
| References_xml | – reference: 2626059 - J Theor Biol. 1989 Apr 20;137(4):423-44 – reference: 17838251 - Science. 1993 Apr 16;260(5106):335-7 – reference: 11607249 - Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):383-7 – reference: 16502 - Am J Physiol. 1977 May;232(5):R164-74 – reference: 4325748 - Comput Biomed Res. 1971 Apr;4(1):65-106 |
| SSID | ssj0012501 |
| Score | 1.881569 |
| Snippet | In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 560 |
| SubjectTerms | Biochemistry - methods Citric Acid Cycle Enzymes - metabolism Gluconeogenesis Glycolysis Kinetics Logic Models, Theoretical Substrate Specificity |
| Title | Computational functions in biochemical reaction networks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/7948674 https://www.proquest.com/docview/76794594 |
| Volume | 67 |
| WOSCitedRecordID | wos10.1016/s0006-3495(94)80516-8&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6qVfDiu1ifOXjQQ7DdJJsEBBGxeLF4UOhtSbJZ6GVbbRX8906SXXoSD172kGVhmUxmvsk8PoBLF6bC6bKkStgQoFhP7ZAJyjDYMEaWwR5Gsgk5HqvJRL904LbthQllla1NjIa6nLlwR34jc9Qcofnd_J0GzqiQW20INNagyxDIBJ2Wk1UOAZ17w5eXU4ZxwKp_J_QHN4tXml8rVMycqt8xZvQ1o53__eUubDcYk9wnpdiDjq_3YTOxTn4fgEpMDs0tIAmeLSofmdbETgODVhwhQBBOxhekTqXii0N4Gz2-PjzRhkCBOpGpJc2cqbQLGJApK1VuPcfwRxjnmMNIhFcKg7GKSyvLfMCcYW4gPCIsLo0f4O5mPVivZ7U_AmKkG-rKc-FtiQiLq4wZzbnJdIUIw8k-XLQCKVBBQ9bB1H72uShakfShl2RazNMcjQLXVS758Z-fnsBWGmEc6u5OoVvhyfRnsOG-ltPFx3ncdnyOX55_AJ32tew |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+functions+in+biochemical+reaction+networks&rft.jtitle=Biophysical+journal&rft.au=Arkin%2C+A&rft.au=Ross%2C+J&rft.date=1994-08-01&rft.issn=0006-3495&rft.volume=67&rft.issue=2&rft.spage=560&rft_id=info:doi/10.1016%2Fs0006-3495%2894%2980516-8&rft_id=info%3Apmid%2F7948674&rft_id=info%3Apmid%2F7948674&rft.externalDocID=7948674 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon |