Computational functions in biochemical reaction networks

In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the kinetics of chemical reaction mechanisms. In the present article we develop this subject further by first investigating the computational properti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biophysical journal Ročník 67; číslo 2; s. 560
Hlavní autoři: Arkin, A, Ross, J
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.08.1994
Témata:
ISSN:0006-3495
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the kinetics of chemical reaction mechanisms. In the present article we develop this subject further by first investigating the computational properties of several enzymatic (single and multiple) reaction mechanisms: we show their steady states are analogous to either Boolean or fuzzy logic gates. Nearly perfect digital function is obtained only in the regime in which the enzymes are saturated with their substrates. With these enzymatic gates, we construct combinational chemical networks that execute a given truth-table. The dynamic range of a network's output is strongly affected by "input/output matching" conditions among the internal gate elements. We find a simple mechanism, similar to the interconversion of fructose-6-phosphate between its two bisphosphate forms (fructose-1,6-bisphosphate and fructose-2,6-bisphosphate), that functions analogously to an AND gate. When the simple model is supplanted with one in which the enzyme rate laws are derived from experimental data, the steady state of the mechanism functions as an asymmetric fuzzy aggregation operator with properties akin to a fuzzy AND gate. The qualitative behavior of the mechanism does not change when situated within a large model of glycolysis/gluconeogenesis and the TCA cycle. The mechanism, in this case, switches the pathway's mode from glycolysis to gluconeogenesis in response to chemical signals of low blood glucose (cAMP) and abundant fuel for the TCA cycle (acetyl coenzyme A).
AbstractList In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the kinetics of chemical reaction mechanisms. In the present article we develop this subject further by first investigating the computational properties of several enzymatic (single and multiple) reaction mechanisms: we show their steady states are analogous to either Boolean or fuzzy logic gates. Nearly perfect digital function is obtained only in the regime in which the enzymes are saturated with their substrates. With these enzymatic gates, we construct combinational chemical networks that execute a given truth-table. The dynamic range of a network's output is strongly affected by "input/output matching" conditions among the internal gate elements. We find a simple mechanism, similar to the interconversion of fructose-6-phosphate between its two bisphosphate forms (fructose-1,6-bisphosphate and fructose-2,6-bisphosphate), that functions analogously to an AND gate. When the simple model is supplanted with one in which the enzyme rate laws are derived from experimental data, the steady state of the mechanism functions as an asymmetric fuzzy aggregation operator with properties akin to a fuzzy AND gate. The qualitative behavior of the mechanism does not change when situated within a large model of glycolysis/gluconeogenesis and the TCA cycle. The mechanism, in this case, switches the pathway's mode from glycolysis to gluconeogenesis in response to chemical signals of low blood glucose (cAMP) and abundant fuel for the TCA cycle (acetyl coenzyme A).In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the kinetics of chemical reaction mechanisms. In the present article we develop this subject further by first investigating the computational properties of several enzymatic (single and multiple) reaction mechanisms: we show their steady states are analogous to either Boolean or fuzzy logic gates. Nearly perfect digital function is obtained only in the regime in which the enzymes are saturated with their substrates. With these enzymatic gates, we construct combinational chemical networks that execute a given truth-table. The dynamic range of a network's output is strongly affected by "input/output matching" conditions among the internal gate elements. We find a simple mechanism, similar to the interconversion of fructose-6-phosphate between its two bisphosphate forms (fructose-1,6-bisphosphate and fructose-2,6-bisphosphate), that functions analogously to an AND gate. When the simple model is supplanted with one in which the enzyme rate laws are derived from experimental data, the steady state of the mechanism functions as an asymmetric fuzzy aggregation operator with properties akin to a fuzzy AND gate. The qualitative behavior of the mechanism does not change when situated within a large model of glycolysis/gluconeogenesis and the TCA cycle. The mechanism, in this case, switches the pathway's mode from glycolysis to gluconeogenesis in response to chemical signals of low blood glucose (cAMP) and abundant fuel for the TCA cycle (acetyl coenzyme A).
In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the kinetics of chemical reaction mechanisms. In the present article we develop this subject further by first investigating the computational properties of several enzymatic (single and multiple) reaction mechanisms: we show their steady states are analogous to either Boolean or fuzzy logic gates. Nearly perfect digital function is obtained only in the regime in which the enzymes are saturated with their substrates. With these enzymatic gates, we construct combinational chemical networks that execute a given truth-table. The dynamic range of a network's output is strongly affected by "input/output matching" conditions among the internal gate elements. We find a simple mechanism, similar to the interconversion of fructose-6-phosphate between its two bisphosphate forms (fructose-1,6-bisphosphate and fructose-2,6-bisphosphate), that functions analogously to an AND gate. When the simple model is supplanted with one in which the enzyme rate laws are derived from experimental data, the steady state of the mechanism functions as an asymmetric fuzzy aggregation operator with properties akin to a fuzzy AND gate. The qualitative behavior of the mechanism does not change when situated within a large model of glycolysis/gluconeogenesis and the TCA cycle. The mechanism, in this case, switches the pathway's mode from glycolysis to gluconeogenesis in response to chemical signals of low blood glucose (cAMP) and abundant fuel for the TCA cycle (acetyl coenzyme A).
Author Arkin, A
Ross, J
Author_xml – sequence: 1
  givenname: A
  surname: Arkin
  fullname: Arkin, A
  organization: Department of Chemistry, School of Medicine, Stanford University, CA 94305
– sequence: 2
  givenname: J
  surname: Ross
  fullname: Ross, J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/7948674$$D View this record in MEDLINE/PubMed
BookMark eNo9j09Lw0AUxPdQqW31IxRyEj1E3yZv_x0lWBUKXvQcNtsXjCa7MZsgfnujFk8zzG8YmDVb-OCJsS2Haw5c3kQAkGmORlwavNIguEz1gq3-41O2jvENgGcC-JItlUEtFa6YLkLXT6Mdm-Btm9STdz82Jo1Pqia4V-oaN4OB7C9IPI2fYXiPZ-yktm2k86Nu2Mvu7rl4SPdP94_F7T51ItNjmjlbGwfGmFxXSsuKkHMU1rnccYVYaw5Yo6rUQULubO5AUJ4hKktAFWUbdvG32w_hY6I4ll0THbWt9RSmWCo5fxEG5-L2WJyqjg5lPzSdHb7K49XsG4IbVso
CitedBy_id crossref_primary_10_1016_j_bioelechem_2009_06_012
crossref_primary_10_1021_ja046745c
crossref_primary_10_1038_35002131
crossref_primary_10_1038_nnano_2013_189
crossref_primary_10_1098_rsob_240377
crossref_primary_10_1088_1478_3975_2_2_001
crossref_primary_10_1038_ncomms5388
crossref_primary_10_1002_anie_202215759
crossref_primary_10_1371_journal_pcbi_1000064
crossref_primary_10_1016_j_cels_2017_01_012
crossref_primary_10_1002_ange_200503314
crossref_primary_10_1002_anie_200700047
crossref_primary_10_1002_advs_202305695
crossref_primary_10_1016_j_actbio_2020_09_054
crossref_primary_10_1021_ar020285f
crossref_primary_10_1146_annurev_physchem_50_1_51
crossref_primary_10_1021_bp010004n
crossref_primary_10_1038_376307a0
crossref_primary_10_15252_msb_20177845
crossref_primary_10_1007_s11538_017_0270_9
crossref_primary_10_1080_10408430590918387
crossref_primary_10_1073_pnas_0909380107
crossref_primary_10_1016_j_semcdb_2025_103616
crossref_primary_10_1088_0957_4484_7_4_001
crossref_primary_10_1016_j_jmb_2005_12_003
crossref_primary_10_1016_S0167_739X_02_00110_3
crossref_primary_10_1038_nature09679
crossref_primary_10_1109_TMBMC_2016_2640287
crossref_primary_10_1002_cphc_201000844
crossref_primary_10_1007_s00500_014_1330_9
crossref_primary_10_4137_CIN_S14060
crossref_primary_10_1073_pnas_2133841100
crossref_primary_10_1006_jtbi_2000_2294
crossref_primary_10_1007_s11227_019_03138_4
crossref_primary_10_1016_j_tplants_2005_07_005
crossref_primary_10_1096_fj_00_0361com
crossref_primary_10_1162_artl_2009_15_1_15101
crossref_primary_10_1016_S0304_4157_96_00013_5
crossref_primary_10_1080_03650340_2020_1870677
crossref_primary_10_3390_catal12070712
crossref_primary_10_4137_GRSB_S10885
crossref_primary_10_1007_s00114_005_0014_9
crossref_primary_10_1016_j_dyepig_2014_03_024
crossref_primary_10_1016_S1360_1385_99_01498_3
crossref_primary_10_5936_csbj_201304003
crossref_primary_10_1016_j_cell_2021_03_007
crossref_primary_10_1146_annurev_bioeng_2_1_31
crossref_primary_10_1002_elan_201700208
crossref_primary_10_1016_j_pbiomolbio_2004_03_002
crossref_primary_10_1023_A_1013738831686
crossref_primary_10_1007_s11047_005_5869_3
crossref_primary_10_1016_0301_4622_95_00075_5
crossref_primary_10_1162_106454601753238636
crossref_primary_10_1016_j_febslet_2008_01_060
crossref_primary_10_1002_ange_202215759
crossref_primary_10_1002_anie_200503314
crossref_primary_10_1002_cphc_201601402
crossref_primary_10_1016_S0025_5564_97_10019_0
crossref_primary_10_1002__SICI_1521_1878_200006_22_6_507__AID_BIES3_3_0_CO_2_0
crossref_primary_10_1016_j_jtbi_2006_12_035
crossref_primary_10_3390_life10040042
crossref_primary_10_1016_j_biosystems_2019_103983
crossref_primary_10_1146_annurev_biophys_27_1_199
crossref_primary_10_1063_1_474858
crossref_primary_10_1210_me_2006_0356
crossref_primary_10_1002_cbic_200400178
crossref_primary_10_1016_S1369_5274_03_00033_X
crossref_primary_10_1162_106454601753138998
crossref_primary_10_1111_j_1399_3054_2004_00418_x
crossref_primary_10_1021_ja0710149
crossref_primary_10_1016_j_cels_2023_05_001
crossref_primary_10_1002_ange_200700047
crossref_primary_10_1073_pnas_1700818114
crossref_primary_10_1002_bies_200800055
crossref_primary_10_1007_s00500_013_1174_8
crossref_primary_10_1002_bit_10836
crossref_primary_10_1016_j_biosystems_2020_104154
crossref_primary_10_1371_journal_pcbi_1007903
crossref_primary_10_1371_journal_pbio_0040045
crossref_primary_10_1126_science_277_5330_1275
crossref_primary_10_1002_ange_200905513
crossref_primary_10_1016_S0303_2647_03_00039_X
crossref_primary_10_1073_pnas_0608319103
crossref_primary_10_1016_j_copbio_2006_09_001
crossref_primary_10_1088_1478_3975_3_4_007
crossref_primary_10_1016_S0301_4622_98_00180_X
crossref_primary_10_1002_smll_200400111
crossref_primary_10_1016_j_ijleo_2016_06_040
crossref_primary_10_1021_jp962901t
crossref_primary_10_1109_MDT_2012_2192144
crossref_primary_10_1038_nrg3197
crossref_primary_10_1002_anie_200905513
crossref_primary_10_1021_jp962298e
crossref_primary_10_1146_annurev_bioeng_3_1_391
crossref_primary_10_1007_s00216_016_0079_7
crossref_primary_10_1155_2018_9874356
crossref_primary_10_1007_s00359_007_0280_4
crossref_primary_10_1073_pnas_0809314105
crossref_primary_10_1126_science_7624793
crossref_primary_10_1146_annurev_biochem_77_102507_115132
crossref_primary_10_3390_molecules25163634
crossref_primary_10_1126_science_277_5329_1060
crossref_primary_10_1002_smll_200700113
crossref_primary_10_1371_journal_pone_0002815
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/s0006-3495(94)80516-8
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
ExternalDocumentID 7948674
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Comparative Study
Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH 45324
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
0SF
23N
2WC
3O-
3V.
4.4
457
53G
5GY
5RE
62-
6I.
6J9
6TJ
7X2
7X7
88A
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAMRU
AAQXK
AAVLU
AAXUO
ABJNI
ABMAC
ABUWG
ABVKL
ABWVN
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADVLN
AENEX
AEUYN
AEXQZ
AFKRA
AFRAH
AFTJW
AGHFR
AGKMS
AHMBA
AI.
AITUG
AKAPO
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
ARAPS
ASPBG
ATCPS
AVWKF
AYCSE
AZFZN
AZQEC
BAWUL
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
D0L
DIK
DU5
DWQXO
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FGOYB
FRP
FYUFA
G-2
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HVGLF
HX~
HYE
HZ~
IH2
IXB
JIG
KQ8
L7B
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M41
M7P
MVM
N9A
NCXOZ
NPM
O-L
O9-
OK1
OZT
P2P
P62
PKN
PQQKQ
PRG
PROAC
PSQYO
Q2X
R2-
RCE
RIG
RNS
ROL
RPM
RWL
S0X
SES
SSZ
TAE
TBP
TN5
UKHRP
UKR
VH1
WH7
WOQ
WOW
X7M
YNY
YWH
YYP
ZGI
ZXP
~02
~KM
7X8
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
ID FETCH-LOGICAL-c528t-2caf9c099938b786be41145acc3c1744f8104f47b7d603ca3c05e32447ae0ebe2
IEDL.DBID 7X8
ISICitedReferencesCount 163
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10.1016/s0006-3495(94)80516-8&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-3495
IngestDate Sun Sep 28 03:05:51 EDT 2025
Wed Feb 19 01:25:56 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-2caf9c099938b786be41145acc3c1744f8104f47b7d603ca3c05e32447ae0ebe2
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://doi.org/10.1016/s0006-3495(94)80516-8
PMID 7948674
PQID 76794594
PQPubID 23479
ParticipantIDs proquest_miscellaneous_76794594
pubmed_primary_7948674
PublicationCentury 1900
PublicationDate 1994-08-01
PublicationDateYYYYMMDD 1994-08-01
PublicationDate_xml – month: 08
  year: 1994
  text: 1994-08-01
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biophysical journal
PublicationTitleAlternate Biophys J
PublicationYear 1994
References 11607249 - Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):383-7
2626059 - J Theor Biol. 1989 Apr 20;137(4):423-44
16502 - Am J Physiol. 1977 May;232(5):R164-74
17838251 - Science. 1993 Apr 16;260(5106):335-7
4325748 - Comput Biomed Res. 1971 Apr;4(1):65-106
References_xml – reference: 2626059 - J Theor Biol. 1989 Apr 20;137(4):423-44
– reference: 17838251 - Science. 1993 Apr 16;260(5106):335-7
– reference: 11607249 - Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):383-7
– reference: 16502 - Am J Physiol. 1977 May;232(5):R164-74
– reference: 4325748 - Comput Biomed Res. 1971 Apr;4(1):65-106
SSID ssj0012501
Score 1.881569
Snippet In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 560
SubjectTerms Biochemistry - methods
Citric Acid Cycle
Enzymes - metabolism
Gluconeogenesis
Glycolysis
Kinetics
Logic
Models, Theoretical
Substrate Specificity
Title Computational functions in biochemical reaction networks
URI https://www.ncbi.nlm.nih.gov/pubmed/7948674
https://www.proquest.com/docview/76794594
Volume 67
WOSCitedRecordID wos10.1016/s0006-3495(94)80516-8&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5WV8GL78X1mYMHPQRLkjYJCCLi4sVlDwp7K2kesJeuuqvgv3eStuxJPHjpIaVQJl8y3yQz8wFcWm1cxbyhLkQJM4cxq3G4rlzmbMaCVk6bJDYhx2M1nepJD267WpiYVtntiWmjdnMbz8hvZIHIybW4e3unUTMq3q22Ahpr0OdIZCKm5XR1h4DOvdXLKyjHOGBVvxPrg9vBKy2uFQKzoOp3jpl8zWjnf3-5C9stxyT3DSj2oOfrfdhsVCe_D0A1Sg7tKSCJni2Bj8xqUs2iglZqIUCQTqYXpG5SxReH8Dp6fHl4oq2AArU5U0vKrAnaRg7IVSVVUXmB4U9urOUWIxERFAZjQchKuiLj1nCb5R4ZlpDGZzi7bADr9bz2R0CEsbnihlU658jxchOYY1wj_zJKWe2HcNEZpESAxlsHU_v556LsTDKEQWPT8q3po1HiuCqkOP7z0xPYaloYx7y7U-gHXJn-DDbs13K2-DhP047P8eT5B6_WtxE
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+functions+in+biochemical+reaction+networks&rft.jtitle=Biophysical+journal&rft.au=Arkin%2C+A&rft.au=Ross%2C+J&rft.date=1994-08-01&rft.issn=0006-3495&rft.volume=67&rft.issue=2&rft.spage=560&rft_id=info:doi/10.1016%2FS0006-3495%2894%2980516-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon