SWIFT—scalable clustering for automated identification of rare cell populations in large, high‐dimensional flow cytometry datasets, Part 2: Biological evaluation

A multistage clustering and data processing method, SWIFT (detailed in a companion manuscript), has been developed to detect rare subpopulations in large, high‐dimensional flow cytometry datasets. An iterative sampling procedure initially fits the data to multidimensional Gaussian distributions, the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cytometry. Part A Ročník 85; číslo 5; s. 422 - 433
Hlavní autoři: Mosmann, Tim R., Naim, Iftekhar, Rebhahn, Jonathan, Datta, Suprakash, Cavenaugh, James S., Weaver, Jason M., Sharma, Gaurav
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States BlackWell Publishing Ltd 01.05.2014
Témata:
ISSN:1552-4922, 1552-4930, 1552-4930
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A multistage clustering and data processing method, SWIFT (detailed in a companion manuscript), has been developed to detect rare subpopulations in large, high‐dimensional flow cytometry datasets. An iterative sampling procedure initially fits the data to multidimensional Gaussian distributions, then splitting and merging stages use a criterion of unimodality to optimize the detection of rare subpopulations, to converge on a consistent cluster number, and to describe non‐Gaussian distributions. Probabilistic assignment of cells to clusters, visualization, and manipulation of clusters by their cluster medians, facilitate application of expert knowledge using standard flow cytometry programs. The dual problems of rigorously comparing similar complex samples, and enumerating absent or very rare cell subpopulations in negative controls, were solved by assigning cells in multiple samples to a cluster template derived from a single or combined sample. Comparison of antigen‐stimulated and control human peripheral blood cell samples demonstrated that SWIFT could identify biologically significant subpopulations, such as rare cytokine‐producing influenza‐specific T cells. A sensitivity of better than one part per million was attained in very large samples. Results were highly consistent on biological replicates, yet the analysis was sensitive enough to show that multiple samples from the same subject were more similar than samples from different subjects. A companion manuscript (Part 1) details the algorithmic development of SWIFT. © 2014 The Authors. Published by Wiley Periodicals Inc.
AbstractList A multistage clustering and data processing method, SWIFT (detailed in a companion manuscript), has been developed to detect rare subpopulations in large, high‐dimensional flow cytometry datasets. An iterative sampling procedure initially fits the data to multidimensional Gaussian distributions, then splitting and merging stages use a criterion of unimodality to optimize the detection of rare subpopulations, to converge on a consistent cluster number, and to describe non‐Gaussian distributions. Probabilistic assignment of cells to clusters, visualization, and manipulation of clusters by their cluster medians, facilitate application of expert knowledge using standard flow cytometry programs. The dual problems of rigorously comparing similar complex samples, and enumerating absent or very rare cell subpopulations in negative controls, were solved by assigning cells in multiple samples to a cluster template derived from a single or combined sample. Comparison of antigen‐stimulated and control human peripheral blood cell samples demonstrated that SWIFT could identify biologically significant subpopulations, such as rare cytokine‐producing influenza‐specific T cells. A sensitivity of better than one part per million was attained in very large samples. Results were highly consistent on biological replicates, yet the analysis was sensitive enough to show that multiple samples from the same subject were more similar than samples from different subjects. A companion manuscript (Part 1) details the algorithmic development of SWIFT. © 2014 The Authors. Published by Wiley Periodicals Inc.
A multistage clustering and data processing method, SWIFT (detailed in a companion manuscript), has been developed to detect rare subpopulations in large, high-dimensional flow cytometry datasets. An iterative sampling procedure initially fits the data to multidimensional Gaussian distributions, then splitting and merging stages use a criterion of unimodality to optimize the detection of rare subpopulations, to converge on a consistent cluster number, and to describe non-Gaussian distributions. Probabilistic assignment of cells to clusters, visualization, and manipulation of clusters by their cluster medians, facilitate application of expert knowledge using standard flow cytometry programs. The dual problems of rigorously comparing similar complex samples, and enumerating absent or very rare cell subpopulations in negative controls, were solved by assigning cells in multiple samples to a cluster template derived from a single or combined sample. Comparison of antigen-stimulated and control human peripheral blood cell samples demonstrated that SWIFT could identify biologically significant subpopulations, such as rare cytokine-producing influenza-specific T cells. A sensitivity of better than one part per million was attained in very large samples. Results were highly consistent on biological replicates, yet the analysis was sensitive enough to show that multiple samples from the same subject were more similar than samples from different subjects. A companion manuscript (Part 1) details the algorithmic development of SWIFT.
A multistage clustering and data processing method, SWIFT (detailed in a companion manuscript), has been developed to detect rare subpopulations in large, high-dimensional flow cytometry datasets. An iterative sampling procedure initially fits the data to multidimensional Gaussian distributions, then splitting and merging stages use a criterion of unimodality to optimize the detection of rare subpopulations, to converge on a consistent cluster number, and to describe non-Gaussian distributions. Probabilistic assignment of cells to clusters, visualization, and manipulation of clusters by their cluster medians, facilitate application of expert knowledge using standard flow cytometry programs. The dual problems of rigorously comparing similar complex samples, and enumerating absent or very rare cell subpopulations in negative controls, were solved by assigning cells in multiple samples to a cluster template derived from a single or combined sample. Comparison of antigen-stimulated and control human peripheral blood cell samples demonstrated that SWIFT could identify biologically significant subpopulations, such as rare cytokine-producing influenza-specific T cells. A sensitivity of better than one part per million was attained in very large samples. Results were highly consistent on biological replicates, yet the analysis was sensitive enough to show that multiple samples from the same subject were more similar than samples from different subjects. A companion manuscript (Part 1) details the algorithmic development of SWIFT. copyright 2014 The Authors. Published by Wiley Periodicals Inc.
A multistage clustering and data processing method, SWIFT (detailed in a companion manuscript), has been developed to detect rare subpopulations in large, high-dimensional flow cytometry datasets. An iterative sampling procedure initially fits the data to multidimensional Gaussian distributions, then splitting and merging stages use a criterion of unimodality to optimize the detection of rare subpopulations, to converge on a consistent cluster number, and to describe non-Gaussian distributions. Probabilistic assignment of cells to clusters, visualization, and manipulation of clusters by their cluster medians, facilitate application of expert knowledge using standard flow cytometry programs. The dual problems of rigorously comparing similar complex samples, and enumerating absent or very rare cell subpopulations in negative controls, were solved by assigning cells in multiple samples to a cluster template derived from a single or combined sample. Comparison of antigen-stimulated and control human peripheral blood cell samples demonstrated that SWIFT could identify biologically significant subpopulations, such as rare cytokine-producing influenza-specific T cells. A sensitivity of better than one part per million was attained in very large samples. Results were highly consistent on biological replicates, yet the analysis was sensitive enough to show that multiple samples from the same subject were more similar than samples from different subjects. A companion manuscript (Part 1) details the algorithmic development of SWIFT.A multistage clustering and data processing method, SWIFT (detailed in a companion manuscript), has been developed to detect rare subpopulations in large, high-dimensional flow cytometry datasets. An iterative sampling procedure initially fits the data to multidimensional Gaussian distributions, then splitting and merging stages use a criterion of unimodality to optimize the detection of rare subpopulations, to converge on a consistent cluster number, and to describe non-Gaussian distributions. Probabilistic assignment of cells to clusters, visualization, and manipulation of clusters by their cluster medians, facilitate application of expert knowledge using standard flow cytometry programs. The dual problems of rigorously comparing similar complex samples, and enumerating absent or very rare cell subpopulations in negative controls, were solved by assigning cells in multiple samples to a cluster template derived from a single or combined sample. Comparison of antigen-stimulated and control human peripheral blood cell samples demonstrated that SWIFT could identify biologically significant subpopulations, such as rare cytokine-producing influenza-specific T cells. A sensitivity of better than one part per million was attained in very large samples. Results were highly consistent on biological replicates, yet the analysis was sensitive enough to show that multiple samples from the same subject were more similar than samples from different subjects. A companion manuscript (Part 1) details the algorithmic development of SWIFT.
Author Cavenaugh, James S.
Datta, Suprakash
Sharma, Gaurav
Rebhahn, Jonathan
Weaver, Jason M.
Mosmann, Tim R.
Naim, Iftekhar
Author_xml – sequence: 1
  givenname: Tim R.
  surname: Mosmann
  fullname: Mosmann, Tim R.
  organization: University of Rochester Medical Center, University of Rochester
– sequence: 2
  givenname: Iftekhar
  surname: Naim
  fullname: Naim, Iftekhar
  organization: University of Rochester
– sequence: 3
  givenname: Jonathan
  surname: Rebhahn
  fullname: Rebhahn, Jonathan
  organization: University of Rochester Medical Center, University of Rochester
– sequence: 4
  givenname: Suprakash
  surname: Datta
  fullname: Datta, Suprakash
  organization: York University
– sequence: 5
  givenname: James S.
  surname: Cavenaugh
  fullname: Cavenaugh, James S.
  organization: University of Rochester Medical Center, University of Rochester
– sequence: 6
  givenname: Jason M.
  surname: Weaver
  fullname: Weaver, Jason M.
  organization: University of Rochester Medical Center, University of Rochester
– sequence: 7
  givenname: Gaurav
  surname: Sharma
  fullname: Sharma, Gaurav
  organization: University of Rochester
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24532172$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSNURH9gxxp5yWJmsB07cVgglRGFSpWK1EGIlXXj2BkjJx5sp9Xs-ggseAVerE9CZqatoBKIlS3f7x4fH9_DbK_3vc6y5wTPCMb0lVonP4MZpYzxR9kB4ZxOWZXjvfs9pfvZYYxfMc45zumTbJ8ynlNS0oPs58Xn05PFzfWPqMBB7TRSbohJB9u3yPiAYEi-g6QbZBvdJ2usgmR9j7xBAcLIa-fQyq8Gtz2PyPbIQWj1BC1tu7y5_t7YTvdxrIFDxvkrtLHc6RTWqIEEUac4QR8hJERfo7fWO9-OlzikL8ENW9Gn2WMDLupnt-tR9unk3WL-YXp2_v50fnw2VZwKPlWm4mXBNYiaN1VVViovATOsKqZEURLChKkZEUJUBnhtMGMl1E0hippirpr8KHuz010NdacbNT44gJOrYDsIa-nByj8rvV3K1l9KRnMhaD4KvLwVCP7boGOSnY2bhKDXfoiScMryqsSc_QdKREEJJuWIvvjd1r2fu28cAboDVPAxBm2ksmmb3OjSOkmw3MyK3AQvQW5nZWyaPGi60_0Lznb4lXV6_U9Wzr8szo93bb8AZVXXsw
CitedBy_id crossref_primary_10_3389_fimmu_2021_590742
crossref_primary_10_1016_j_vaccine_2019_12_067
crossref_primary_10_1002_cyto_a_23068
crossref_primary_10_1038_s43705_022_00123_6
crossref_primary_10_1093_bib_bbad157
crossref_primary_10_1007_s12185_021_03085_y
crossref_primary_10_1093_infdis_jiw053
crossref_primary_10_4049_jimmunol_1402695
crossref_primary_10_3390_cancers16081503
crossref_primary_10_12688_f1000research_20210_1
crossref_primary_10_1002_eji_201970107
crossref_primary_10_12688_f1000research_20210_2
crossref_primary_10_1002_cyto_a_22654
crossref_primary_10_1002_cyto_a_22733
crossref_primary_10_1177_1177932219838851
crossref_primary_10_1016_j_jaci_2023_05_026
crossref_primary_10_1016_j_aca_2021_338872
crossref_primary_10_3389_fimmu_2017_00858
crossref_primary_10_1002_ctd2_95
crossref_primary_10_1038_nprot_2016_066
crossref_primary_10_1093_bib_bbae633
crossref_primary_10_1371_journal_pone_0205291
crossref_primary_10_1002_eji_201646632
crossref_primary_10_1038_nmeth_4149
crossref_primary_10_1002_cyto_a_22446
crossref_primary_10_1016_j_jim_2023_113584
crossref_primary_10_3389_fimmu_2024_1347926
crossref_primary_10_1016_j_ebiom_2018_10_042
crossref_primary_10_1002_cyto_a_24774
crossref_primary_10_1111_all_16489
crossref_primary_10_1038_s41598_020_58326_7
crossref_primary_10_1007_s00262_014_1649_1
crossref_primary_10_1016_j_coi_2018_03_019
crossref_primary_10_1038_nmeth_3863
crossref_primary_10_1038_s42003_020_0938_9
crossref_primary_10_1053_j_semdp_2023_02_004
crossref_primary_10_1016_j_ymeth_2017_12_015
crossref_primary_10_1038_s41467_023_37478_w
crossref_primary_10_1002_eji_201444645
crossref_primary_10_1002_1878_0261_13362
crossref_primary_10_1002_cyto_a_23030
crossref_primary_10_1002_cyto_a_22740
crossref_primary_10_3390_ijms23063224
crossref_primary_10_1002_cyto_a_24320
crossref_primary_10_3389_fimmu_2018_01672
crossref_primary_10_1002_cyto_a_22626
crossref_primary_10_1002_iid3_246
crossref_primary_10_4049_jimmunol_1800446
crossref_primary_10_1002_cyto_a_22623
crossref_primary_10_3390_vaccines8010138
crossref_primary_10_3389_fcell_2020_00234
crossref_primary_10_3389_fimmu_2021_787574
Cites_doi 10.1016/j.jim.2008.11.002
10.1016/j.jbi.2008.11.003
10.1016/j.jim.2010.07.002
10.1016/j.vaccine.2012.04.059
10.4049/jimmunol.176.3.1465
10.1002/cyto.b.20430
10.1002/bimj.200800201
10.1002/cyto.990090419
10.1016/j.patcog.2010.04.024
10.1002/cyto.b.20435
10.1111/j.1365-2567.2008.02989.x
10.1051/ps/2012013
10.1093/infdis/175.2.382
10.1002/eji.1830191209
10.1109/ICASSP.2010.5495653
10.1073/pnas.0903028106
10.1155/2009/584603
10.1016/0031-3203(87)90056-2
10.1186/1471-2172-6-13
10.1038/nri1416
10.1023/A:1007648401407
10.1182/blood.V77.12.2591.2591
10.1214/10-BA517
10.1109/TPAMI.2005.237
10.1198/jcgs.2010.08111
10.1182/blood.V86.4.1408.bloodjournal8641408
10.1002/cyto.a.20668
10.1109/ISPA.2009.29
10.1002/cyto.a.21007
10.1002/cyto.b.20554
10.1086/315324
10.1002/cyto.a.20823
10.1002/cyto.990060405
10.1186/1471-2105-11-403
10.1198/jcgs.2010.10016
10.1371/journal.pone.0057275
10.1002/cyto.a.22446
10.1007/11776420_4
10.1002/cyto.a.20602
10.1186/1471-2105-10-145
10.1021/ac901049w
10.1371/journal.pcbi.1003130
10.1002/cyto.a.20583
10.1038/nmeth.2365
ContentType Journal Article
Copyright 2014 The Authors. Published by Wiley Periodicals Inc.
2014 The Authors. Published by Wiley Periodicals Inc. 2014
Copyright_xml – notice: 2014 The Authors. Published by Wiley Periodicals Inc.
– notice: 2014 The Authors. Published by Wiley Periodicals Inc. 2014
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1002/cyto.a.22445
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList CrossRef
MEDLINE

Engineering Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1552-4930
EndPage 433
ExternalDocumentID PMC4238823
24532172
10_1002_cyto_a_22445
CYTOA22445
Genre article
Research Support, U.S. Gov't, P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Center for Research Resources and the National Center for Advancing Translational Sciences through the University of Rochester CTSA
  funderid: UL1 RR024160
– fundername: National Institute for Allergy and Infectious Diseases New York Influenza Center of Excellence
  funderid: HHSN266200700008C
– fundername: National Institute for Allergy and Infectious Diseases through the Rochester Human Immunology Center
  funderid: R24AI054953
– fundername: NIAID NIH HHS
  grantid: R24AI054953
– fundername: NCRR NIH HHS
  grantid: UL1 RR024160
– fundername: NCATS NIH HHS
  grantid: UL1 TR000042
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c5285-cf95765ea8b5d9979c37a040c94c8671148fb418889fa5bf0447abd686b205cd3
IEDL.DBID 24P
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334607500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-4922
1552-4930
IngestDate Thu Aug 21 13:52:52 EDT 2025
Tue Oct 07 09:41:44 EDT 2025
Fri Jul 11 09:42:46 EDT 2025
Thu Apr 03 06:58:10 EDT 2025
Sat Nov 29 08:01:46 EST 2025
Tue Nov 18 22:12:51 EST 2025
Tue Nov 11 03:14:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords SWIFT
ground truth data
automated analysis
EM algorithm
flow cytometry clustering
Language English
License Attribution-NonCommercial
http://creativecommons.org/licenses/by-nc/3.0
2014 The Authors. Published by Wiley Periodicals Inc.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5285-cf95765ea8b5d9979c37a040c94c8671148fb418889fa5bf0447abd686b205cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.22445
PMID 24532172
PQID 1518621017
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4238823
proquest_miscellaneous_1524397054
proquest_miscellaneous_1518621017
pubmed_primary_24532172
crossref_citationtrail_10_1002_cyto_a_22445
crossref_primary_10_1002_cyto_a_22445
wiley_primary_10_1002_cyto_a_22445_CYTOA22445
PublicationCentury 2000
PublicationDate May 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford, UK
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2014
Publisher BlackWell Publishing Ltd
Publisher_xml – name: BlackWell Publishing Ltd
References 2010; 11
2009; 75A
2002; 15
2008; 74B
2009; 42
2009; 81
2010; 19
2010
1991; 77
1997; 175
2002; 7
1985; 6
2011; 79A
2004; 4
2009
2006; 176
2007
2010; 361
2006
2008; 125
2003
2012; 16
2013; 8
2005; 27
2008; 73
2012; 30
2001; 42
2013; 9
1995; 86
2010; 77A
2010; 43
2009; 2009
2009; 76B
2010; 78B (Suppl 1)
1987; 20
2008; 73A
2009; 51
2009; 10
1988; 9
2013; 10
2009; 341
2005; 6
2014
2010; 2
2010; 5
1989; 19
2009; 106
2000; 181
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
Tantrum J (e_1_2_5_35_1) 2003
Pangborn A (e_1_2_5_16_1) 2010
e_1_2_5_29_1
e_1_2_5_15_1
e_1_2_5_17_1
e_1_2_5_36_1
Luxburg U (e_1_2_5_41_1) 2010; 2
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
Shamir O (e_1_2_5_45_1)
e_1_2_5_30_1
e_1_2_5_53_1
Vitaladevuni SN (e_1_2_5_50_1) 2010
e_1_2_5_51_1
Finak G (e_1_2_5_22_1) 2009
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_24_1
e_1_2_5_43_1
e_1_2_5_20_1
Shai B‐D (e_1_2_5_40_1) 2007
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
Kleinberg J (e_1_2_5_38_1) 2002; 15
e_1_2_5_2_1
e_1_2_5_18_1
Caruana R (e_1_2_5_47_1) 2006
Ben‐Hur A (e_1_2_5_42_1) 2002; 7
e_1_2_5_31_1
e_1_2_5_52_1
23396282 - Nat Methods. 2013 Mar;10(3):228-38
20667133 - BMC Bioinformatics. 2010;11:403
19443687 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8519-24
2481588 - Eur J Immunol. 1989 Dec;19(12):2237-42
19137647 - Immunology. 2008 Dec;125(4):441-9
15978127 - BMC Immunol. 2005;6:13
23526940 - PLoS One. 2013;8(3):e57275
20953302 - J Comput Graph Stat. 2010 Jun 1;9(2):332-353
20049163 - Adv Bioinformatics. 2009;:584603
4017796 - Cytometry. 1985 Jul;6(4):302-9
19084613 - J Biomed Inform. 2009 Apr;42(2):251-61
24677621 - Cytometry A. 2014 May;85(5):408-21
20655312 - J Immunol Methods. 2010 Sep 30;361(1-2):1-20
18642311 - Cytometry B Clin Cytom. 2009 Jan;76(1):1-7
19006067 - Cytometry A. 2009 Apr;75(4):362-70
20839340 - Cytometry B Clin Cytom. 2010;78 Suppl 1:S69-82
10720523 - J Infect Dis. 2000 Mar;181(3):1001-9
23874174 - PLoS Comput Biol. 2013;9(7):e1003130
22554464 - Vaccine. 2012 Jun 29;30(31):4581-4
20049161 - Adv Bioinformatics. 2009;:247646
19442304 - BMC Bioinformatics. 2009;10:145
16424174 - J Immunol. 2006 Feb 1;176(3):1465-73
9203659 - J Infect Dis. 1997 Feb;175(2):382-91
18612990 - Cytometry A. 2008 Nov;73(11):984-91
20865145 - Bayesian Anal. 2010;5(3):1-22
1710512 - Blood. 1991 Jun 15;77(12):2591-6
21182178 - Cytometry A. 2011 Jan;79(1):6-13
16355656 - IEEE Trans Pattern Anal Mach Intell. 2005 Dec;27(12):1866-81
7632949 - Blood. 1995 Aug 15;86(4):1408-19
19588456 - Biom J. 2009 Jun;51(3):504-21
11928511 - Pac Symp Biocomput. 2002;:6-17
19601617 - Anal Chem. 2009 Aug 15;81(16):6813-22
15286731 - Nat Rev Immunol. 2004 Aug;4(8):648-55
18548617 - Cytometry B Clin Cytom. 2008 Nov;74(6):331-40
18496851 - Cytometry A. 2008 Aug;73(8):693-701
20877443 - J Comput Graph Stat. 2010 Jun 1;19(2):419-438
19049809 - J Immunol Methods. 2009 Feb 28;341(1-2):106-16
3261233 - Cytometry. 1988 Jul;9(4):405-8
19899135 - Cytometry A. 2010 Feb;77(2):121-31
References_xml – volume: 361
  start-page: 1
  year: 2010
  end-page: 20
  article-title: Highly multiparametric analysis by mass cytometry
  publication-title: J Immunol Methods
– volume: 76B
  start-page: 1
  year: 2009
  end-page: 7
  article-title: Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: Treating flow cytometry data as high‐dimensional objects
  publication-title: Cytom Part B: Clin Cytom
– volume: 75A
  start-page: 362
  year: 2009
  end-page: 370
  article-title: A versatile platform for comprehensive chip‐based explorative cytometry
  publication-title: Cytometry Part A
– volume: 30
  start-page: 4581
  year: 2012
  end-page: 4584
  article-title: Ki‐67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination
  publication-title: Vaccine
– volume: 77
  start-page: 2591
  year: 1991
  end-page: 2596
  article-title: Identification and comparison of CD34‐positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry
  publication-title: Blood
– start-page: 5
  year: 2006
  end-page: 19
– volume: 175
  start-page: 382
  year: 1997
  end-page: 91
  article-title: Epitope repertoire of human CD4+ T cells on tetanus toxin: Identification of immunodominant sequence segments
  publication-title: J Infect Dis
– volume: 19
  start-page: 332
  year: 2010
  end-page: 353
  article-title: Combining mixture components for clustering
  publication-title: J Comput Graph Stat
– volume: 79A
  start-page: 6
  year: 2011
  end-page: 13
  article-title: Rapid cell population identification in flow cytometry data
  publication-title: Cytometry Part A
– volume: 73
  start-page: 984
  year: 2008
  end-page: 991
  article-title: Standardization and optimization of multiparameter intracellular cytokine staining
  publication-title: Cytometry A
– volume: 4
  start-page: 648
  year: 2004
  end-page: 655
  article-title: Seventeen‐colour flow cytometry: Unravelling the immune system
  publication-title: Nat Rev Immunol
– start-page: 1465
  end-page: 1472
– volume: 78B (Suppl 1)
  start-page: S69
  year: 2010
  end-page: S82
  article-title: Elucidation of seventeen human peripheral blood B‐cell subsets and quantification of the tetanus response using a density‐based method for the automated identification of cell populations in multidimensional flow cytometry data
  publication-title: Cytom B: Clin Cytom
– volume: 2
  start-page: 235
  year: 2010
  end-page: 274
  article-title: Clustering stability: An overview
  publication-title: Found Trends Machine Learn
– volume: 86
  start-page: 1408
  year: 1995
  end-page: 1419
  article-title: Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry
  publication-title: Blood
– volume: 51
  start-page: 504
  year: 2009
  end-page: 521
  article-title: Highest density difference region estimation with application to flow cytometric data
  publication-title: Biom J
– volume: 5
  start-page: 429
  year: 2010
  end-page: 450
  article-title: Selection Sampling from large data sets for targeted inference in mixture modeling
  publication-title: Bayesian Anal
– volume: 9
  start-page: e1003130
  year: 2013
  article-title: Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples
  publication-title: PLoS Comput Biol
– start-page: 247646
  year: 2009
  article-title: Merging mixture components for cell population identification in flow cytometry
  publication-title: Adv Bioinform
– volume: 176
  start-page: 1465
  year: 2006
  end-page: 1473
  article-title: Protein vaccines induce uncommitted IL‐2‐secreting human and mouse CD4 T cells, whereas infections induce more IFN‐gamma‐secreting cells
  publication-title: J Immunol
– volume: 341
  start-page: 106
  year: 2009
  end-page: 116
  article-title: An 11‐color flow cytometric assay for identifying, phenotyping, and assessing endocytic ability of peripheral blood dendritic cell subsets in a single platform
  publication-title: J Immunol Methods
– volume: 16
  start-page: 436
  year: 2012
  end-page: 452
  article-title: How the initialization affects the stability of the k‐means algorithm
  publication-title: ESAIM: Probability and Statistics
– volume: 181
  start-page: 1001
  year: 2000
  end-page: 1009
  article-title: Universal epitopes for human CD4+ cells on tetanus and diphtheria toxins
  publication-title: J Infect Dis
– volume: 73A
  start-page: 693
  year: 2008
  end-page: 701
  article-title: Statistical mixture modeling for cell subtype identification in flow cytometry
  publication-title: Cytometry A
– volume: 7
  start-page: 6
  year: 2002
  end-page: 17
  article-title: A stability based method for discovering structure in clustered data
  publication-title: Pacific Symp Biocomput
– volume: 77A
  start-page: 121
  year: 2010
  end-page: 131
  article-title: Per‐channel basis normalization methods for flow cytometry data
  publication-title: Cytometry A
– volume: 27
  start-page: 1866
  year: 2005
  end-page: 1881
  article-title: Clustering ensembles: models of consensus and weak partitions
  publication-title: Pattern Anal Machine Intell: IEEE Trans
– volume: 9
  start-page: 405
  year: 1988
  end-page: 408
  article-title: An interactive multivariate analysis of FCM data
  publication-title: Cytometry
– volume: 6
  start-page: 302
  year: 1985
  end-page: 309
  article-title: Automated identification of subpopulations in flow cytometric list mode data using cluster analysis
  publication-title: Cytometry Part A
– volume: 11
  start-page: 403
  year: 2010
  article-title: Data reduction for spectral clustering to analyze high throughput flow cytometry data
  publication-title: BMC Bioinforms
– year: 2007
– volume: 43
  start-page: 3674
  year: 2010
  end-page: 3682
  article-title: Quasi‐supervised learning for biomedical data analysis
  publication-title: Pattern Recogn
– volume: 42
  start-page: 251
  year: 2009
  end-page: 261
  article-title: Bayesian clustering of flow cytometry data for the diagnosis of B‐chronic lymphocytic leukemia
  publication-title: J Biomed Inform
– year: 2003
– start-page: 2203
  year: 2010
  end-page: 2210
  article-title: Co‐clustering of image segments using convex optimization applied to EM neuronal reconstruction
  publication-title: Comput Vision Pattern Recogn (CVPR)
– volume: 10
  start-page: 228
  year: 2013
  end-page: 238
  article-title: Critical assessment of automated flow cytometry data analysis techniques
  publication-title: Nat Methods
– volume: 74B
  start-page: 331
  year: 2008
  end-page: 340
  article-title: Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: Multicentric assessment is feasible
  publication-title: Cytom B: Clin Cytom
– volume: 19
  start-page: 2237
  year: 1989
  end-page: 2242
  article-title: Universally immunogenic T cell epitopes: Promiscuous binding to human MHC class II and promiscuous recognition by T cells
  publication-title: Eur J Immunol
– volume: 10
  start-page: 145
  year: 2009
  article-title: flowClust: a Bioconductor package for automated gating of flow cytometry data
  publication-title: BMC Bioinform
– start-page: 226
  year: 2009
  end-page: 233
– start-page: 509
  year: 2010
  end-page: 512
– start-page: 107
  year: 2006
  end-page: 118
  publication-title: Meta Cluster
– volume: 42
  start-page: 9
  year: 2001
  end-page: 29
  article-title: An experimental comparison of model‐based clustering methods
  publication-title: Machine Learn
– volume: 2009
  start-page: 19
  year: 2009
  article-title: A survey of flow cytometry data analysis methods
  publication-title: Adv Bioinform
– volume: 20
  start-page: 229
  year: 1987
  end-page: 235
  article-title: A rapid, non‐parametric clustering scheme for flow cytometric data
  publication-title: Pattern Recogn
– volume: 81
  start-page: 6813
  year: 2009
  end-page: 6822
  article-title: Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time‐of‐flight mass spectrometry
  publication-title: Anal Chem
– year: 2014
  article-title: SWIFT—Scalable clustering for automated identification of rare cell populations in large, high‐dimensional flow cytometry datasets. Part 1: Algorithm design
  publication-title: Cytometry A
– volume: 19
  start-page: 419
  year: 2010
  end-page: 438
  article-title: Understanding GPU programming for statistical computation: Studies in massively parallel massive mixtures
  publication-title: J Comput Graph Stat
– volume: 8
  start-page: e57275
  year: 2013
  article-title: Increase in IFNgamma(−)IL‐2(+) cells in recent human CD4 T cell responses to 2009 pandemic H1N1 influenza
  publication-title: PLoS One
– start-page: 127
  year: 2010
– volume: 106
  start-page: 8519
  year: 2009
  end-page: 8524
  article-title: Automated high‐dimensional flow cytometric data analysis
  publication-title: Proc Natl Acad Sci U S A
– volume: 6
  start-page: 13
  year: 2005
  article-title: Standardization of cytokine flow cytometry assays
  publication-title: BMC Immunol
– volume: 125
  start-page: 441
  year: 2008
  end-page: 449
  article-title: A chromatic explosion: The development and future of multiparameter flow cytometry
  publication-title: Immunology
– volume: 15
  year: 2002
  article-title: An Impossibility Theorem for Clustering
  publication-title: Adv Neural Inform Process Syst (NIPS)
– ident: e_1_2_5_33_1
  doi: 10.1016/j.jim.2008.11.002
– ident: e_1_2_5_12_1
  doi: 10.1016/j.jbi.2008.11.003
– ident: e_1_2_5_53_1
  doi: 10.1016/j.jim.2010.07.002
– ident: e_1_2_5_23_1
  doi: 10.1016/j.vaccine.2012.04.059
– ident: e_1_2_5_37_1
  doi: 10.4049/jimmunol.176.3.1465
– ident: e_1_2_5_26_1
  doi: 10.1002/cyto.b.20430
– ident: e_1_2_5_48_1
  doi: 10.1002/bimj.200800201
– start-page: 2203
  year: 2010
  ident: e_1_2_5_50_1
  article-title: Co‐clustering of image segments using convex optimization applied to EM neuronal reconstruction
  publication-title: Comput Vision Pattern Recogn (CVPR)
– ident: e_1_2_5_7_1
  doi: 10.1002/cyto.990090419
– volume: 7
  start-page: 6
  year: 2002
  ident: e_1_2_5_42_1
  article-title: A stability based method for discovering structure in clustered data
  publication-title: Pacific Symp Biocomput
– ident: e_1_2_5_14_1
  doi: 10.1016/j.patcog.2010.04.024
– ident: e_1_2_5_11_1
  doi: 10.1002/cyto.b.20435
– volume: 15
  year: 2002
  ident: e_1_2_5_38_1
  article-title: An Impossibility Theorem for Clustering
  publication-title: Adv Neural Inform Process Syst (NIPS)
– ident: e_1_2_5_3_1
  doi: 10.1111/j.1365-2567.2008.02989.x
– ident: e_1_2_5_43_1
  doi: 10.1051/ps/2012013
– start-page: 107
  year: 2006
  ident: e_1_2_5_47_1
  publication-title: Meta Cluster
– ident: e_1_2_5_30_1
  doi: 10.1093/infdis/175.2.382
– ident: e_1_2_5_32_1
  doi: 10.1002/eji.1830191209
– ident: e_1_2_5_15_1
  doi: 10.1109/ICASSP.2010.5495653
– ident: e_1_2_5_8_1
  doi: 10.1073/pnas.0903028106
– ident: e_1_2_5_9_1
  doi: 10.1155/2009/584603
– ident: e_1_2_5_6_1
  doi: 10.1016/0031-3203(87)90056-2
– ident: e_1_2_5_4_1
  doi: 10.1186/1471-2172-6-13
– volume-title: Assessment and pruning of hierarchical model based clustering. Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining
  year: 2003
  ident: e_1_2_5_35_1
– ident: e_1_2_5_2_1
  doi: 10.1038/nri1416
– ident: e_1_2_5_44_1
  doi: 10.1023/A:1007648401407
– ident: e_1_2_5_25_1
  doi: 10.1182/blood.V77.12.2591.2591
– ident: e_1_2_5_49_1
  doi: 10.1214/10-BA517
– ident: e_1_2_5_46_1
  doi: 10.1109/TPAMI.2005.237
– ident: e_1_2_5_34_1
  doi: 10.1198/jcgs.2010.08111
– ident: e_1_2_5_24_1
  doi: 10.1182/blood.V86.4.1408.bloodjournal8641408
– start-page: 247646
  year: 2009
  ident: e_1_2_5_22_1
  article-title: Merging mixture components for cell population identification in flow cytometry
  publication-title: Adv Bioinform
– ident: e_1_2_5_36_1
  doi: 10.1002/cyto.a.20668
– ident: e_1_2_5_10_1
  doi: 10.1109/ISPA.2009.29
– ident: e_1_2_5_21_1
  doi: 10.1002/cyto.a.21007
– ident: e_1_2_5_13_1
  doi: 10.1002/cyto.b.20554
– ident: e_1_2_5_31_1
  doi: 10.1086/315324
– ident: e_1_2_5_51_1
  doi: 10.1002/cyto.a.20823
– start-page: 1465
  volume-title: Advances in Neural Information Processing Systems 21, Proceedings of the Twenty‐Second Annual Conference on Neural Information Processing Systems; 2008 December 8–11, 2008; Vancouver, British Columbia
  ident: e_1_2_5_45_1
– ident: e_1_2_5_5_1
  doi: 10.1002/cyto.990060405
– ident: e_1_2_5_17_1
  doi: 10.1186/1471-2105-11-403
– ident: e_1_2_5_19_1
  doi: 10.1198/jcgs.2010.10016
– volume: 2
  start-page: 235
  year: 2010
  ident: e_1_2_5_41_1
  article-title: Clustering stability: An overview
  publication-title: Found Trends Machine Learn
– ident: e_1_2_5_29_1
  doi: 10.1371/journal.pone.0057275
– ident: e_1_2_5_28_1
  doi: 10.1002/cyto.a.22446
– ident: e_1_2_5_39_1
  doi: 10.1007/11776420_4
– ident: e_1_2_5_54_1
  doi: 10.1002/cyto.a.20602
– ident: e_1_2_5_20_1
  doi: 10.1186/1471-2105-10-145
– ident: e_1_2_5_27_1
  doi: 10.1021/ac901049w
– volume-title: Stability of k‐means clustering. Proceedings of the 20th annual conference on Learning theory
  year: 2007
  ident: e_1_2_5_40_1
– ident: e_1_2_5_52_1
  doi: 10.1371/journal.pcbi.1003130
– ident: e_1_2_5_18_1
  doi: 10.1002/cyto.a.20583
– ident: e_1_2_5_55_1
  doi: 10.1038/nmeth.2365
– start-page: 127
  volume-title: Scalable Data Clustering using GPUs
  year: 2010
  ident: e_1_2_5_16_1
– reference: 19601617 - Anal Chem. 2009 Aug 15;81(16):6813-22
– reference: 2481588 - Eur J Immunol. 1989 Dec;19(12):2237-42
– reference: 19006067 - Cytometry A. 2009 Apr;75(4):362-70
– reference: 18496851 - Cytometry A. 2008 Aug;73(8):693-701
– reference: 1710512 - Blood. 1991 Jun 15;77(12):2591-6
– reference: 4017796 - Cytometry. 1985 Jul;6(4):302-9
– reference: 18642311 - Cytometry B Clin Cytom. 2009 Jan;76(1):1-7
– reference: 3261233 - Cytometry. 1988 Jul;9(4):405-8
– reference: 23396282 - Nat Methods. 2013 Mar;10(3):228-38
– reference: 20865145 - Bayesian Anal. 2010;5(3):1-22
– reference: 20667133 - BMC Bioinformatics. 2010;11:403
– reference: 10720523 - J Infect Dis. 2000 Mar;181(3):1001-9
– reference: 19588456 - Biom J. 2009 Jun;51(3):504-21
– reference: 20839340 - Cytometry B Clin Cytom. 2010;78 Suppl 1:S69-82
– reference: 23874174 - PLoS Comput Biol. 2013;9(7):e1003130
– reference: 16355656 - IEEE Trans Pattern Anal Mach Intell. 2005 Dec;27(12):1866-81
– reference: 7632949 - Blood. 1995 Aug 15;86(4):1408-19
– reference: 19899135 - Cytometry A. 2010 Feb;77(2):121-31
– reference: 19084613 - J Biomed Inform. 2009 Apr;42(2):251-61
– reference: 20877443 - J Comput Graph Stat. 2010 Jun 1;19(2):419-438
– reference: 21182178 - Cytometry A. 2011 Jan;79(1):6-13
– reference: 15286731 - Nat Rev Immunol. 2004 Aug;4(8):648-55
– reference: 22554464 - Vaccine. 2012 Jun 29;30(31):4581-4
– reference: 20049163 - Adv Bioinformatics. 2009;:584603
– reference: 20049161 - Adv Bioinformatics. 2009;:247646
– reference: 20655312 - J Immunol Methods. 2010 Sep 30;361(1-2):1-20
– reference: 16424174 - J Immunol. 2006 Feb 1;176(3):1465-73
– reference: 9203659 - J Infect Dis. 1997 Feb;175(2):382-91
– reference: 18548617 - Cytometry B Clin Cytom. 2008 Nov;74(6):331-40
– reference: 19442304 - BMC Bioinformatics. 2009;10:145
– reference: 19049809 - J Immunol Methods. 2009 Feb 28;341(1-2):106-16
– reference: 11928511 - Pac Symp Biocomput. 2002;:6-17
– reference: 19137647 - Immunology. 2008 Dec;125(4):441-9
– reference: 23526940 - PLoS One. 2013;8(3):e57275
– reference: 18612990 - Cytometry A. 2008 Nov;73(11):984-91
– reference: 19443687 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8519-24
– reference: 24677621 - Cytometry A. 2014 May;85(5):408-21
– reference: 15978127 - BMC Immunol. 2005;6:13
– reference: 20953302 - J Comput Graph Stat. 2010 Jun 1;9(2):332-353
SSID ssj0035032
Score 2.3209593
Snippet A multistage clustering and data processing method, SWIFT (detailed in a companion manuscript), has been developed to detect rare subpopulations in large,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 422
SubjectTerms Algorithms
Antigens - blood
Antigens - immunology
automated analysis
Blood Cells - cytology
Blood Cells - immunology
Cell Lineage
Cluster Analysis
Computational Biology
EM algorithm
Flow Cytometry - methods
flow cytometry clustering
ground truth data
Humans
Normal Distribution
Original
SWIFT
T-Lymphocytes - cytology
T-Lymphocytes - immunology
Title SWIFT—scalable clustering for automated identification of rare cell populations in large, high‐dimensional flow cytometry datasets, Part 2: Biological evaluation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.22445
https://www.ncbi.nlm.nih.gov/pubmed/24532172
https://www.proquest.com/docview/1518621017
https://www.proquest.com/docview/1524397054
https://pubmed.ncbi.nlm.nih.gov/PMC4238823
Volume 85
WOSCitedRecordID wos000334607500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1552-4930
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035032
  issn: 1552-4922
  databaseCode: DRFUL
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1552-4930
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035032
  issn: 1552-4922
  databaseCode: WIN
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagBYkL_4XwUxkJTjRt1rETh1tVWFEJLSvYqsspcvwjVgpJtcmC9tZH4MAr8GJ9EmaSbNpVRSXEJUqUiWLHY8831uT7CHmp4khjWPGFcChhFkg_iyPuWx0ywQIVSqcbsYl4NJLTaTLuNtzwX5iWH6LfcMOZ0azXOMFVVu2dk4bqZV3uql0IQVxcJ5uDQShRuoHx8WolDkXQCJQhyxg0g7Gu8B2e37v49HpIuoQzL5dLXoSxTRwa3vnfHtwltzsESvdbl7lHrtniPrnZalIuH5Dfn48Ph5Oz018VjB7-V0V1vkA2BYhxFBAuVYu6BJhrDZ2ZrtSoGV1aOgqNAXub5_SkFwar6KygORac71AkRz47_WlQUqClA6EuL39QbOM3W8-XFCtWK1tXO3QMTk3ZG9q2DH2JnlOTPyRHw3eTg_d-p-Xga8Gk8LVLILMRVslMmCSJEx3GChYQnXCNFHuQlbmMDyAfT5wSmQs4j1VmIhllLBDahFtkoygL-5hQow2kfZobLmLuHJNSCwC5kR4YMbAu8cjr1XCmuiM6R72NPG0pmlmKnUpV2nx4j7zqrU9ago-_2L1YeUYKMxA_pSpsuahSwEyQFuLSdpUNQ-QH-Ngjj1pv6t_GuAhRJswj8Zqf9QbIAL5-p5h9bZjAAQtDhhR6xG_87MoOpAdfJh_3m9Mn_2j_lNwCnMjbOs9nZKOeL-xzckN_r2fVfLuZc3CMp3KbbL79NDz6AFfHh6M_WV054Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEG1BAMGFfTFhaSQ4ESeedrcXblHEKCPCEIlBCSer3YsYydjR2AOaWz6BA7_Aj-VLUtX2OBlFRELcLLks91Ld9apV_R4hr2UcKQwrvhAWJcyCxM_jiPtGhUywQIaJVU5sIh6Pk8PDdL_TOcW7MC0_RH_ghivD7de4wPFAeuuMNVQtmmpTbkIM4uIqucYBa6B2w8FovNyKQxE4hTKkGYN2MNZVvsP3W-e_Xo1JF4DmxXrJ8zjWBaLhnf_uwl1yu8OgdLt1mnvkiinvkxutKuXiAfnz-WA0nJwc_65h_vBmFVXFHPkUIMpRwLhUzpsKgK7RdKq7YiM3v7SyFFoD9qYo6FEvDVbTaUkLLDnfoEiPfHL8S6OoQEsIQm1R_aTYxu-mmS0o1qzWpqk36D64NWXvaNsy9CZ6Rk7-kHwZvp_s7PqdmoOvBEuEr2wKuY0wMsmFTtM4VWEsYQtRKVdIsgd5mc35ADLy1EqR24DzWOY6SqKcBULp8BFZK6vSPCFUKw2Jn-Kai5hby5JECYC5kRpoMTA29cjb5XxmqqM6R8WNImtJmlmGncpk5gbeI29666OW4uMvdq-WrpHBGsShlKWp5nUGqAkSQ9zcLrNhiP0AIXvkcetO_d8YFyEKhXkkXnG03gA5wFfflNNvjgsc0DDkSKFHfOdol3Yg2_k6-bTtHp_-o_1LcnN38nEv2xuNP6yTW4AaeVv1-YysNbO5eU6uqx_NtJ69cAvwFBAhOqI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEG3BBBAX9sWsjQQn4sTT7vbCLUqwiIiGEUxEOFntXsRIxh6NPaC55RM48Av8WL6EKtvjZBQRCXGz5LLdS3XXK6v6PUJeyjBQGFZcISxKmHmRm4UBd43ymWCe9COrGrGJcDSKjo7icadzimdhWn6I_ocbroxmv8YFbmbabp-yhqplXW7JLYhBXFwmGxx1ZAZkY-9jcniw2ox94TUaZUg0Bi1hrKt9hzdsn31-PSqdg5rnKybPItkmFCU3_7sTt8iNDoXSndZtbpNLprhDrra6lMu75Penz_vJ5OT4VwUziGerqMoXyKgAcY4CyqVyUZcAdY2mU92VGzUzTEtLoTVgb_KcznpxsIpOC5pj0fkmRYLkk-OfGmUFWkoQavPyB8U2fjP1fEmxarUydbVJx-DYlL2hbcvQn-gpPfk9cpi8ney-czs9B1cJFglX2RiyG2FklAkdx2Gs_FDCJqJirpBmDzIzm_Eh5OSxlSKzHuehzHQQBRnzhNL-fTIoysI8JFQrDamf4pqLkFvLokgJALqBGmoxNDZ2yOvVfKaqIztHzY08bWmaWYqdSmXaDLxDXvXWs5bk4y92L1aukcIqxKGUhSkXVQq4CVJD3N4usmGI_gAjO-RB60791xgXPkqFOSRcc7TeAFnA1-8U068NGzjgYciSfIe4jaNd2IF098vkw05z-egf7Z-Ta-O9JD3YH71_TK4DbORt2ecTMqjnC_OUXFHf62k1f9atwD8s9jtL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SWIFT-scalable+clustering+for+automated+identification+of+rare+cell+populations+in+large%2C+high-dimensional+flow+cytometry+datasets%2C+Part+2%3A+Biological+evaluation&rft.jtitle=Cytometry.+Part+A&rft.au=Mosmann%2C+Tim+R&rft.au=Naim%2C+Iftekhar&rft.au=Rebhahn%2C+Jonathan&rft.au=Datta%2C+Suprakash&rft.date=2014-05-01&rft.issn=1552-4922&rft.eissn=1552-4930&rft.volume=85&rft.issue=5&rft.spage=422&rft.epage=433&rft_id=info:doi/10.1002%2Fcyto.a.22445&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon