Combating the Infodemic: A Chinese Infodemic Dataset for Misinformation Identification

Misinformation posted on social media during COVID-19 is one main example of infodemic data. This phenomenon was prominent in China when COVID-19 happened at the beginning. While a lot of data can be collected from various social media platforms, publicly available infodemic detection data remains r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Healthcare (Basel) Jg. 9; H. 9; S. 1094
Hauptverfasser: Luo, Jia, Xue, Rui, Hu, Jinglu, El Baz, Didier
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 24.08.2021
MDPI
Schlagworte:
ISSN:2227-9032, 2227-9032
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Misinformation posted on social media during COVID-19 is one main example of infodemic data. This phenomenon was prominent in China when COVID-19 happened at the beginning. While a lot of data can be collected from various social media platforms, publicly available infodemic detection data remains rare and is not easy to construct manually. Therefore, instead of developing techniques for infodemic detection, this paper aims at constructing a Chinese infodemic dataset, “infodemic 2019”, by collecting widely spread Chinese infodemic during the COVID-19 outbreak. Each record is labeled as true, false or questionable. After a four-time adjustment, the original imbalanced dataset is converted into a balanced dataset by exploring the properties of the collected records. The final labels achieve high intercoder reliability with healthcare workers’ annotations and the high-frequency words show a strong relationship between the proposed dataset and pandemic diseases. Finally, numerical experiments are carried out with RNN, CNN and fastText. All of them achieve reasonable performance and present baselines for future works.
AbstractList Misinformation posted on social media during COVID-19 is one main example of infodemic data. This phenomenon was prominent in China when COVID-19 happened at the beginning. While a lot of data can be collected from various social media platforms, publicly available infodemic detection data remains rare and is not easy to construct manually. Therefore, instead of developing techniques for infodemic detection, this paper aims at constructing a Chinese infodemic dataset, “infodemic 2019”, by collecting widely spread Chinese infodemic during the COVID-19 outbreak. Each record is labeled as true, false or questionable. After a four-time adjustment, the original imbalanced dataset is converted into a balanced dataset by exploring the properties of the collected records. The final labels achieve high intercoder reliability with healthcare workers’ annotations and the high-frequency words show a strong relationship between the proposed dataset and pandemic diseases. Finally, numerical experiments are carried out with RNN, CNN and fastText. All of them achieve reasonable performance and present baselines for future works.
Misinformation posted on social media during COVID-19 is one main example of infodemic data. This phenomenon was prominent in China when COVID-19 happened at the beginning. While a lot of data can be collected from various social media platforms, publicly available infodemic detection data remains rare and is not easy to construct manually. Therefore, instead of developing techniques for infodemic detection, this paper aims at constructing a Chinese infodemic dataset, "infodemic 2019", by collecting widely spread Chinese infodemic during the COVID-19 outbreak. Each record is labeled as true, false or questionable. After a four-time adjustment, the original imbalanced dataset is converted into a balanced dataset by exploring the properties of the collected records. The final labels achieve high intercoder reliability with healthcare workers' annotations and the high-frequency words show a strong relationship between the proposed dataset and pandemic diseases. Finally, numerical experiments are carried out with RNN, CNN and fastText. All of them achieve reasonable performance and present baselines for future works.Misinformation posted on social media during COVID-19 is one main example of infodemic data. This phenomenon was prominent in China when COVID-19 happened at the beginning. While a lot of data can be collected from various social media platforms, publicly available infodemic detection data remains rare and is not easy to construct manually. Therefore, instead of developing techniques for infodemic detection, this paper aims at constructing a Chinese infodemic dataset, "infodemic 2019", by collecting widely spread Chinese infodemic during the COVID-19 outbreak. Each record is labeled as true, false or questionable. After a four-time adjustment, the original imbalanced dataset is converted into a balanced dataset by exploring the properties of the collected records. The final labels achieve high intercoder reliability with healthcare workers' annotations and the high-frequency words show a strong relationship between the proposed dataset and pandemic diseases. Finally, numerical experiments are carried out with RNN, CNN and fastText. All of them achieve reasonable performance and present baselines for future works.
Author Luo, Jia
Hu, Jinglu
El Baz, Didier
Xue, Rui
AuthorAffiliation 3 LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France; elbaz@laas.fr
1 College of Economics and Management, Beijing University of Technology, Beijing 100124, China; luo.jia.621125@gmail.com
2 Graduate School of Information, Production and Systems, Waseda University, Kitakyushu 808-0135, Japan; jinglu@waseda.jp
AuthorAffiliation_xml – name: 3 LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France; elbaz@laas.fr
– name: 1 College of Economics and Management, Beijing University of Technology, Beijing 100124, China; luo.jia.621125@gmail.com
– name: 2 Graduate School of Information, Production and Systems, Waseda University, Kitakyushu 808-0135, Japan; jinglu@waseda.jp
Author_xml – sequence: 1
  givenname: Jia
  orcidid: 0000-0003-3914-8865
  surname: Luo
  fullname: Luo, Jia
– sequence: 2
  givenname: Rui
  surname: Xue
  fullname: Xue, Rui
– sequence: 3
  givenname: Jinglu
  surname: Hu
  fullname: Hu, Jinglu
– sequence: 4
  givenname: Didier
  orcidid: 0000-0003-0427-0692
  surname: El Baz
  fullname: El Baz, Didier
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34574868$$D View this record in MEDLINE/PubMed
https://laas.hal.science/hal-03380543$$DView record in HAL
BookMark eNp1Uk1vGyEQRVWiJk3zA3qpVuqlPbiBHVigh0qW-xFLrnppe0UshizRLqSAI_XfF8dJ5ToKEmKYee_NMMwLdBRisAi9Ivg9gMQXg9VjGYxOVmJJsKTP0GnbtnwmMbRHe_YJOs_5GtclCQhgz9EJUMap6MQp-rWIU6-LD1dNGWyzDC6u7eTNh2beLAYfbN5zNp900dmWxsXUfPPZ10CaKjuGZrm2oXjnzd31JTp2esz2_P48Qz-_fP6xuJytvn9dLuarmWEtLzNrOKHggBADzgDFhPGO4bbXlOk1kYRSA8SZHmMHdUvXOdP2DDiTEiyFM_Rxp3uz6Se7NrWGpEd1k_yk0x8VtVf_R4If1FW8VYJ2knSiCrzbCQwHtMv5Sm19GEBgRuGWVOzb-2Qp_t7YXNTks7HjqIONm6xaxjntQBBZoW8OoNdxk0JtxRbVUSyI2CZ_vV_9v_wP31MBfAcwKeacrFPGl7sG18f4URGstrOgHs1CZZID5oP405y_JTC45w
CitedBy_id crossref_primary_10_3389_fpubh_2023_1281259
crossref_primary_10_5812_archcid_127022
crossref_primary_10_1016_j_ipm_2024_103751
crossref_primary_10_1109_TAFFC_2023_3295806
crossref_primary_10_3390_ijerph19116751
crossref_primary_10_1155_2023_6667492
crossref_primary_10_1515_libri_2022_0064
crossref_primary_10_1108_LHT_08_2023_0363
crossref_primary_10_1177_20552076241284773
crossref_primary_10_1145_3533431
crossref_primary_10_2478_mmcks_2025_0003
crossref_primary_10_1007_s10796_022_10329_7
crossref_primary_10_1016_j_socscimed_2025_118051
Cites_doi 10.24963/ijcai.2017/545
10.1162/tacl_a_00051
10.2196/jmir.1157
10.1007/s10489-020-01862-6
10.18653/v1/S17-2006
10.1111/j.1468-2958.2002.tb00826.x
10.1145/3340531.3412880
10.1108/IntR-05-2012-0095
10.1145/3123266.3123454
10.1145/2567948.2579323
10.1109/ICDM.2013.61
10.1145/3219819.3219903
10.1007/978-3-642-37210-0_48
10.1145/3137597.3137600
10.1177/0020294020967035
10.1016/j.cose.2019.02.003
10.2196/19556
10.7326/M20-1236
10.1097/MEJ.0000000000000713
10.1109/TAI.2020.3020521
10.1109/BigData50022.2020.9378472
10.1109/ICDE.2015.7113322
10.1177/0956797620939054
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7RV
7XB
8C1
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
KB0
M2O
MBDVC
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOI 10.3390/healthcare9091094
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Central (purchase pre-March 2016)
Public Health Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
Nursing & Allied Health Database (Alumni Edition)
Research Library
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Health Research Premium Collection
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Computer Science
EISSN 2227-9032
ExternalDocumentID PMC8469168
oai:HAL:hal-03380543v1
34574868
10_3390_healthcare9091094
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: International Research Cooperation Seed Fund of Beijing University of Technology
  grantid: B38
– fundername: Beijing Municipal Education Commission
  grantid: SM202010005004
– fundername: Japan Society for the Promotion of Science
  grantid: P19800
– fundername: Beijing Municipal Education Commission
  grantid: SM202110005011
GroupedDBID 53G
5VS
7RV
8C1
8FI
8FJ
8G5
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
FYUFA
GNUQQ
GUQSH
GX1
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
NAPCQ
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
RNS
RPM
UKHRP
3V.
ALIPV
GROUPED_DOAJ
NPM
7XB
8FK
COVID
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
1XC
ADRAZ
EIHBH
IPNFZ
RIG
VOOES
5PM
ID FETCH-LOGICAL-c527t-ec7143f311c3fc3401576502ba45ad19144c31fcb00f300f9f6fc2b5375993e43
IEDL.DBID BENPR
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000700678800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9032
IngestDate Tue Nov 04 02:01:51 EST 2025
Sat Oct 25 06:46:39 EDT 2025
Thu Sep 04 19:08:28 EDT 2025
Sun Nov 09 07:03:33 EST 2025
Thu Jan 02 22:39:58 EST 2025
Sat Nov 29 07:16:51 EST 2025
Tue Nov 18 21:49:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords COVID-19
deep learning
misinformation identification
infodemic data
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-ec7143f311c3fc3401576502ba45ad19144c31fcb00f300f9f6fc2b5375993e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3914-8865
0000-0003-0427-0692
OpenAccessLink https://www.proquest.com/docview/2576408188?pq-origsite=%requestingapplication%
PMID 34574868
PQID 2576408188
PQPubID 2032390
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8469168
hal_primary_oai_HAL_hal_03380543v1
proquest_miscellaneous_2577463819
proquest_journals_2576408188
pubmed_primary_34574868
crossref_citationtrail_10_3390_healthcare9091094
crossref_primary_10_3390_healthcare9091094
PublicationCentury 2000
PublicationDate 20210824
PublicationDateYYYYMMDD 2021-08-24
PublicationDate_xml – month: 8
  year: 2021
  text: 20210824
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Healthcare (Basel)
PublicationTitleAlternate Healthcare (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yu (ref_9) 2019; 83
ref_14
ref_13
ref_35
ref_12
ref_33
ref_10
ref_31
Ahmad (ref_3) 2020; 22
Orso (ref_5) 2020; 27
ref_18
ref_17
ref_16
ref_15
Luo (ref_26) 2020; 53
Pennycook (ref_4) 2020; 31
Wu (ref_2) 2020; 172
Shu (ref_32) 2017; 19
Castillo (ref_11) 2013; 23
ref_24
ref_23
ref_22
ref_21
ref_1
Latif (ref_19) 2020; 1
Shuja (ref_20) 2020; 51
ref_29
ref_28
ref_27
ref_8
Bojanowski (ref_34) 2017; 5
Lombard (ref_30) 2002; 28
ref_7
ref_6
Eysenbach (ref_25) 2009; 11
References_xml – ident: ref_6
  doi: 10.24963/ijcai.2017/545
– ident: ref_28
– volume: 5
  start-page: 135
  year: 2017
  ident: ref_34
  article-title: Enriching word vectors with subword information
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00051
– volume: 11
  start-page: e11
  year: 2009
  ident: ref_25
  article-title: Infodemiology and infoveillance: Framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet
  publication-title: J. Med. Internet Res.
  doi: 10.2196/jmir.1157
– volume: 51
  start-page: 1296
  year: 2020
  ident: ref_20
  article-title: COVID-19 open source data sets: A comprehensive survey
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01862-6
– ident: ref_15
  doi: 10.18653/v1/S17-2006
– volume: 28
  start-page: 587
  year: 2002
  ident: ref_30
  article-title: Content analysis in mass communication: Assessment and reporting of intercoder reliability
  publication-title: Hum. Commun. Res.
  doi: 10.1111/j.1468-2958.2002.tb00826.x
– ident: ref_16
– ident: ref_22
  doi: 10.1145/3340531.3412880
– volume: 23
  start-page: 560
  year: 2013
  ident: ref_11
  article-title: Predicting information credibility in time-sensitive social media
  publication-title: Internet Res.
  doi: 10.1108/IntR-05-2012-0095
– ident: ref_1
– ident: ref_35
– ident: ref_23
– ident: ref_7
  doi: 10.1145/3123266.3123454
– ident: ref_14
  doi: 10.1145/2567948.2579323
– ident: ref_21
– ident: ref_13
  doi: 10.1109/ICDM.2013.61
– ident: ref_8
  doi: 10.1145/3219819.3219903
– ident: ref_12
  doi: 10.1007/978-3-642-37210-0_48
– ident: ref_31
– ident: ref_29
– ident: ref_33
– ident: ref_27
– ident: ref_10
– volume: 19
  start-page: 22
  year: 2017
  ident: ref_32
  article-title: Fake news detection on social media: A data mining perspective
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/3137597.3137600
– volume: 53
  start-page: 2070
  year: 2020
  ident: ref_26
  article-title: COVID-19 infodemic on Chinese social media: A 4P framework, selective review and research directions
  publication-title: Meas. Control
  doi: 10.1177/0020294020967035
– volume: 83
  start-page: 106
  year: 2019
  ident: ref_9
  article-title: Attention-based convolutional approach for misinformation identification from massive and noisy microblog posts
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2019.02.003
– volume: 22
  start-page: e19556
  year: 2020
  ident: ref_3
  article-title: The impact of social media on panic during the COVID-19 pandemic in Iraqi Kurdistan: Online questionnaire study
  publication-title: J. Med. Internet Res.
  doi: 10.2196/19556
– ident: ref_17
– volume: 172
  start-page: 822
  year: 2020
  ident: ref_2
  article-title: COVID-19: Peer support and crisis communication strategies to promote institutional resilience
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M20-1236
– volume: 27
  start-page: 327
  year: 2020
  ident: ref_5
  article-title: Infodemic and the spread of fake news in the COVID-19-era
  publication-title: Eur. J. Emerg. Med.
  doi: 10.1097/MEJ.0000000000000713
– volume: 1
  start-page: 85
  year: 2020
  ident: ref_19
  article-title: Leveraging data science to combat COVID-19: A comprehensive review
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2020.3020521
– ident: ref_24
  doi: 10.1109/BigData50022.2020.9378472
– ident: ref_18
  doi: 10.1109/ICDE.2015.7113322
– volume: 31
  start-page: 770
  year: 2020
  ident: ref_4
  article-title: Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention
  publication-title: Psychol. Sci.
  doi: 10.1177/0956797620939054
SSID ssj0000913835
Score 2.2966864
Snippet Misinformation posted on social media during COVID-19 is one main example of infodemic data. This phenomenon was prominent in China when COVID-19 happened at...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1094
SubjectTerms Annotations
Artificial Intelligence
Computer Science
Coronaviruses
COVID-19
Credibility
Data collection
Datasets
Deep learning
Disease transmission
Distributed, Parallel, and Cluster Computing
Experiments
False information
Gossip
Machine Learning
Pandemics
Social and Information Networks
Social networks
Title Combating the Infodemic: A Chinese Infodemic Dataset for Misinformation Identification
URI https://www.ncbi.nlm.nih.gov/pubmed/34574868
https://www.proquest.com/docview/2576408188
https://www.proquest.com/docview/2577463819
https://laas.hal.science/hal-03380543
https://pubmed.ncbi.nlm.nih.gov/PMC8469168
Volume 9
WOSCitedRecordID wos000700678800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: 7RV
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: PIMPY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: 8C1
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: M2O
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RjgckxPcgMCaDeEKK1sR27fCCytg0JFqqCabyFDmOrVZC6Viy_f3cJW5YmbQXHmIp_lAcnT9-dz7_DuCdFWNeFDqLS-lULEo7jjNn09hbWaYGVa4yMW2wCTWb6cUimweDWx3cKjdrYrtQl2tLNvIDAsaC-Nf0x_PfMUWNotPVEEJjADvEVCaGsPPpaDY_7a0sxHqJGKM7zuSo3x8se7eqjLbKTGxtSIMluUPexJr_ukxe24OOH_5v7x_Bg4A-2aQbLo_hjquewP3OdMe6G0lP4QzXiMKQOzRDdMjoXKp1of_AJozCbbv6Wib7bBrcCBuG4JdNV3UgYiVxs-4SsA9WwWfw4_jo--FJHMIvxFamqomdpdjonieJ5d5yVMTwJ-QoLYyQpiReOGF54i1OXM_xyfzY27SQXEkEPU7wXRhW68q9AJYIY7y2SsqCiNFVVhheCmWdEoUoUx3BaCOD3AZucgqR8StHHYXElt8QWwTv-ybnHTHHbZXfomD7ekSpfTL5mlPeCHV0hK38KolgbyO7PEzkOv8ruAje9MU4BelcxVRufdnWUTjkEVtF8LwbJv2nuJBK6DG2VlsDaKsv2yXVatnSfCMyROyuX97erVdwLyU3mxEueGIPhs3FpXsNd-1Vs6ov9mGgTs8oXWhM9WGyH2YIvk3Tb_g2_zKd__wDc-wdZg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQmkijclUMAguFSKmsT2OkFCaEWptup2hVCpeguOY2tXqrKlSVv1T_U3MpMXXSr11gOHXBLn_XnmG3v8DcAHIwY8y-LEz6VVvsjNwE-siXxnZB5pDLnyUNfFJtRkEh8eJt-X4LJbC0NplZ1NrA11Pjc0Rr5JxFiQ_lr85fi3T1WjaHa1K6HRwGLXXpxjyFZ-3tnC__sxira_7X8d-W1VAd_ISFW-NVTy2_EwNNwZjvEFXlkGUaaF1DnJnQnDQ0eV6x3HLXEDZ6JMciXRl1vB8brLcAfteEgpZOrHQT-mQxqbyGiayVPOk2Bz2idxJeSYE7Hg_panlHx5ndn-m6B5xeNtP_zfvtUjeNByazZsOsNjWLLFE1htBiZZs97qKRygBcw0JXsz5L6MZt3qBQKf2JBRMXFbXtnJtnSFbr5iSO3Z3qxsZWYJzKxZ4uzaMc9n8PNWXu05rBTzwr4AFgqtXWyUlBnJvqsk0zwXylglMpFHsQdB989T0yqvUwGQoxQjMIJJeg0mHmz0pxw3siM3NX6PQOrbkWD4aDhOaV_AeYyknJ-FHqx3WElbM1Wmf4Hiwbv-MBoYmjXShZ2f1m0Udmhkjh6sNbDsb8WFVCIe4NlqAbALz7J4pJhNaxFz5L0YmcQvb36st3BvtL83Tsc7k91XcD-ihKIATbtYh5Xq5NS-hrvmrJqVJ2_qnsjg123D-Q9pY3GE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB21BSEkxGcpLgUWBJdKVmzvbtZGQihqiFq1RD0A6s1dr3eVSJVTareIv8av64y_aKjUWw8ccrHXsRO_nXmzO_MG4L0RQ55lceLn0ipf5GboJ9ZEvjMyjzSGXHmo62YTajqNj46SwxX409XCUFplZxNrQ50vDK2RD4gYC9JfiweuTYs4HE8-n_70qYMU7bR27TQaiOzb378wfCs_7Y3xXX-IosmXbzu7ftthwDcyUpVvDbX_djwMDXeGY6yBd5FBlGkhdU7SZ8Lw0FEXe8fxk7ihM1EmuZLo163g-L2rcEdxRDFVqe-E_foO6W0iu2k2UjlPgsGsT-hKyEknYskVrs4oEfM6y_03WfOK95s8-p__t8fwsOXcbNRMkiewYoun8KBZsGRNHdYz-IGWMdOUBM6QEzPajasLBz6yEaMm47a8cpCNdYXuv2JI-dnXednKzxLIWVP67Nq10HX4fis_7TmsFYvCvgAWCq1dbJSUGcnBqyTTPBfKWCUykUexB0H3_lPTKrJTY5CTFCMzgkx6DTIebPeXnDZyJDcNfoeg6seRkPju6CClYwHnMZJ1fhF6sNXhJm3NV5n-BY0Hb_vTaHhoN0kXdnFej1E40ZFRerDRQLS_FRdSiXiIV6sl8C49y_KZYj6rxc2RD2PEEm_e_Fhv4B6iOD3Ym-6_hPsR5RkFaPHFFqxVZ-f2Fdw1F9W8PHtdT0oGx7eN5kurKHnf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combating+the+Infodemic%3A+A+Chinese+Infodemic+Dataset+for+Misinformation+Identification&rft.jtitle=Healthcare+%28Basel%29&rft.au=Luo%2C+Jia&rft.au=Xue%2C+Rui&rft.au=Hu%2C+Jinglu&rft.au=El+Baz%2C+Didier&rft.date=2021-08-24&rft.pub=MDPI&rft.issn=2227-9032&rft.eissn=2227-9032&rft.volume=9&rft.issue=9&rft_id=info:doi/10.3390%2Fhealthcare9091094&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03380543v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon