Combating the Infodemic: A Chinese Infodemic Dataset for Misinformation Identification
Misinformation posted on social media during COVID-19 is one main example of infodemic data. This phenomenon was prominent in China when COVID-19 happened at the beginning. While a lot of data can be collected from various social media platforms, publicly available infodemic detection data remains r...
Gespeichert in:
| Veröffentlicht in: | Healthcare (Basel) Jg. 9; H. 9; S. 1094 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
24.08.2021
MDPI |
| Schlagworte: | |
| ISSN: | 2227-9032, 2227-9032 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Misinformation posted on social media during COVID-19 is one main example of infodemic data. This phenomenon was prominent in China when COVID-19 happened at the beginning. While a lot of data can be collected from various social media platforms, publicly available infodemic detection data remains rare and is not easy to construct manually. Therefore, instead of developing techniques for infodemic detection, this paper aims at constructing a Chinese infodemic dataset, “infodemic 2019”, by collecting widely spread Chinese infodemic during the COVID-19 outbreak. Each record is labeled as true, false or questionable. After a four-time adjustment, the original imbalanced dataset is converted into a balanced dataset by exploring the properties of the collected records. The final labels achieve high intercoder reliability with healthcare workers’ annotations and the high-frequency words show a strong relationship between the proposed dataset and pandemic diseases. Finally, numerical experiments are carried out with RNN, CNN and fastText. All of them achieve reasonable performance and present baselines for future works. |
|---|---|
| AbstractList | Misinformation posted on social media during COVID-19 is one main example of infodemic data. This phenomenon was prominent in China when COVID-19 happened at the beginning. While a lot of data can be collected from various social media platforms, publicly available infodemic detection data remains rare and is not easy to construct manually. Therefore, instead of developing techniques for infodemic detection, this paper aims at constructing a Chinese infodemic dataset, “infodemic 2019”, by collecting widely spread Chinese infodemic during the COVID-19 outbreak. Each record is labeled as true, false or questionable. After a four-time adjustment, the original imbalanced dataset is converted into a balanced dataset by exploring the properties of the collected records. The final labels achieve high intercoder reliability with healthcare workers’ annotations and the high-frequency words show a strong relationship between the proposed dataset and pandemic diseases. Finally, numerical experiments are carried out with RNN, CNN and fastText. All of them achieve reasonable performance and present baselines for future works. Misinformation posted on social media during COVID-19 is one main example of infodemic data. This phenomenon was prominent in China when COVID-19 happened at the beginning. While a lot of data can be collected from various social media platforms, publicly available infodemic detection data remains rare and is not easy to construct manually. Therefore, instead of developing techniques for infodemic detection, this paper aims at constructing a Chinese infodemic dataset, "infodemic 2019", by collecting widely spread Chinese infodemic during the COVID-19 outbreak. Each record is labeled as true, false or questionable. After a four-time adjustment, the original imbalanced dataset is converted into a balanced dataset by exploring the properties of the collected records. The final labels achieve high intercoder reliability with healthcare workers' annotations and the high-frequency words show a strong relationship between the proposed dataset and pandemic diseases. Finally, numerical experiments are carried out with RNN, CNN and fastText. All of them achieve reasonable performance and present baselines for future works.Misinformation posted on social media during COVID-19 is one main example of infodemic data. This phenomenon was prominent in China when COVID-19 happened at the beginning. While a lot of data can be collected from various social media platforms, publicly available infodemic detection data remains rare and is not easy to construct manually. Therefore, instead of developing techniques for infodemic detection, this paper aims at constructing a Chinese infodemic dataset, "infodemic 2019", by collecting widely spread Chinese infodemic during the COVID-19 outbreak. Each record is labeled as true, false or questionable. After a four-time adjustment, the original imbalanced dataset is converted into a balanced dataset by exploring the properties of the collected records. The final labels achieve high intercoder reliability with healthcare workers' annotations and the high-frequency words show a strong relationship between the proposed dataset and pandemic diseases. Finally, numerical experiments are carried out with RNN, CNN and fastText. All of them achieve reasonable performance and present baselines for future works. |
| Author | Luo, Jia Hu, Jinglu El Baz, Didier Xue, Rui |
| AuthorAffiliation | 3 LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France; elbaz@laas.fr 1 College of Economics and Management, Beijing University of Technology, Beijing 100124, China; luo.jia.621125@gmail.com 2 Graduate School of Information, Production and Systems, Waseda University, Kitakyushu 808-0135, Japan; jinglu@waseda.jp |
| AuthorAffiliation_xml | – name: 3 LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France; elbaz@laas.fr – name: 1 College of Economics and Management, Beijing University of Technology, Beijing 100124, China; luo.jia.621125@gmail.com – name: 2 Graduate School of Information, Production and Systems, Waseda University, Kitakyushu 808-0135, Japan; jinglu@waseda.jp |
| Author_xml | – sequence: 1 givenname: Jia orcidid: 0000-0003-3914-8865 surname: Luo fullname: Luo, Jia – sequence: 2 givenname: Rui surname: Xue fullname: Xue, Rui – sequence: 3 givenname: Jinglu surname: Hu fullname: Hu, Jinglu – sequence: 4 givenname: Didier orcidid: 0000-0003-0427-0692 surname: El Baz fullname: El Baz, Didier |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34574868$$D View this record in MEDLINE/PubMed https://laas.hal.science/hal-03380543$$DView record in HAL |
| BookMark | eNp1Uk1vGyEQRVWiJk3zA3qpVuqlPbiBHVigh0qW-xFLrnppe0UshizRLqSAI_XfF8dJ5ToKEmKYee_NMMwLdBRisAi9Ivg9gMQXg9VjGYxOVmJJsKTP0GnbtnwmMbRHe_YJOs_5GtclCQhgz9EJUMap6MQp-rWIU6-LD1dNGWyzDC6u7eTNh2beLAYfbN5zNp900dmWxsXUfPPZ10CaKjuGZrm2oXjnzd31JTp2esz2_P48Qz-_fP6xuJytvn9dLuarmWEtLzNrOKHggBADzgDFhPGO4bbXlOk1kYRSA8SZHmMHdUvXOdP2DDiTEiyFM_Rxp3uz6Se7NrWGpEd1k_yk0x8VtVf_R4If1FW8VYJ2knSiCrzbCQwHtMv5Sm19GEBgRuGWVOzb-2Qp_t7YXNTks7HjqIONm6xaxjntQBBZoW8OoNdxk0JtxRbVUSyI2CZ_vV_9v_wP31MBfAcwKeacrFPGl7sG18f4URGstrOgHs1CZZID5oP405y_JTC45w |
| CitedBy_id | crossref_primary_10_3389_fpubh_2023_1281259 crossref_primary_10_5812_archcid_127022 crossref_primary_10_1016_j_ipm_2024_103751 crossref_primary_10_1109_TAFFC_2023_3295806 crossref_primary_10_3390_ijerph19116751 crossref_primary_10_1155_2023_6667492 crossref_primary_10_1515_libri_2022_0064 crossref_primary_10_1108_LHT_08_2023_0363 crossref_primary_10_1177_20552076241284773 crossref_primary_10_1145_3533431 crossref_primary_10_2478_mmcks_2025_0003 crossref_primary_10_1007_s10796_022_10329_7 crossref_primary_10_1016_j_socscimed_2025_118051 |
| Cites_doi | 10.24963/ijcai.2017/545 10.1162/tacl_a_00051 10.2196/jmir.1157 10.1007/s10489-020-01862-6 10.18653/v1/S17-2006 10.1111/j.1468-2958.2002.tb00826.x 10.1145/3340531.3412880 10.1108/IntR-05-2012-0095 10.1145/3123266.3123454 10.1145/2567948.2579323 10.1109/ICDM.2013.61 10.1145/3219819.3219903 10.1007/978-3-642-37210-0_48 10.1145/3137597.3137600 10.1177/0020294020967035 10.1016/j.cose.2019.02.003 10.2196/19556 10.7326/M20-1236 10.1097/MEJ.0000000000000713 10.1109/TAI.2020.3020521 10.1109/BigData50022.2020.9378472 10.1109/ICDE.2015.7113322 10.1177/0956797620939054 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION NPM 3V. 7RV 7XB 8C1 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH GNUQQ GUQSH KB0 M2O MBDVC NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM |
| DOI | 10.3390/healthcare9091094 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Central (purchase pre-March 2016) Public Health Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep Nursing & Allied Health Database (Alumni Edition) Research Library Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central Health Research Premium Collection ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Public Health ProQuest Central Basic ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Computer Science |
| EISSN | 2227-9032 |
| ExternalDocumentID | PMC8469168 oai:HAL:hal-03380543v1 34574868 10_3390_healthcare9091094 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: International Research Cooperation Seed Fund of Beijing University of Technology grantid: B38 – fundername: Beijing Municipal Education Commission grantid: SM202010005004 – fundername: Japan Society for the Promotion of Science grantid: P19800 – fundername: Beijing Municipal Education Commission grantid: SM202110005011 |
| GroupedDBID | 53G 5VS 7RV 8C1 8FI 8FJ 8G5 AAFWJ AAHBH AAYXX ABUWG ADBBV AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ CCPQU CITATION DIK DWQXO FYUFA GNUQQ GUQSH GX1 HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E NAPCQ OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC RNS RPM UKHRP 3V. ALIPV GROUPED_DOAJ NPM 7XB 8FK COVID MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 1XC ADRAZ EIHBH IPNFZ RIG VOOES 5PM |
| ID | FETCH-LOGICAL-c527t-ec7143f311c3fc3401576502ba45ad19144c31fcb00f300f9f6fc2b5375993e43 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000700678800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-9032 |
| IngestDate | Tue Nov 04 02:01:51 EST 2025 Sat Oct 25 06:46:39 EDT 2025 Thu Sep 04 19:08:28 EDT 2025 Sun Nov 09 07:03:33 EST 2025 Thu Jan 02 22:39:58 EST 2025 Sat Nov 29 07:16:51 EST 2025 Tue Nov 18 21:49:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | COVID-19 deep learning misinformation identification infodemic data |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c527t-ec7143f311c3fc3401576502ba45ad19144c31fcb00f300f9f6fc2b5375993e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3914-8865 0000-0003-0427-0692 |
| OpenAccessLink | https://www.proquest.com/docview/2576408188?pq-origsite=%requestingapplication% |
| PMID | 34574868 |
| PQID | 2576408188 |
| PQPubID | 2032390 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8469168 hal_primary_oai_HAL_hal_03380543v1 proquest_miscellaneous_2577463819 proquest_journals_2576408188 pubmed_primary_34574868 crossref_citationtrail_10_3390_healthcare9091094 crossref_primary_10_3390_healthcare9091094 |
| PublicationCentury | 2000 |
| PublicationDate | 20210824 |
| PublicationDateYYYYMMDD | 2021-08-24 |
| PublicationDate_xml | – month: 8 year: 2021 text: 20210824 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Healthcare (Basel) |
| PublicationTitleAlternate | Healthcare (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Yu (ref_9) 2019; 83 ref_14 ref_13 ref_35 ref_12 ref_33 ref_10 ref_31 Ahmad (ref_3) 2020; 22 Orso (ref_5) 2020; 27 ref_18 ref_17 ref_16 ref_15 Luo (ref_26) 2020; 53 Pennycook (ref_4) 2020; 31 Wu (ref_2) 2020; 172 Shu (ref_32) 2017; 19 Castillo (ref_11) 2013; 23 ref_24 ref_23 ref_22 ref_21 ref_1 Latif (ref_19) 2020; 1 Shuja (ref_20) 2020; 51 ref_29 ref_28 ref_27 ref_8 Bojanowski (ref_34) 2017; 5 Lombard (ref_30) 2002; 28 ref_7 ref_6 Eysenbach (ref_25) 2009; 11 |
| References_xml | – ident: ref_6 doi: 10.24963/ijcai.2017/545 – ident: ref_28 – volume: 5 start-page: 135 year: 2017 ident: ref_34 article-title: Enriching word vectors with subword information publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00051 – volume: 11 start-page: e11 year: 2009 ident: ref_25 article-title: Infodemiology and infoveillance: Framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet publication-title: J. Med. Internet Res. doi: 10.2196/jmir.1157 – volume: 51 start-page: 1296 year: 2020 ident: ref_20 article-title: COVID-19 open source data sets: A comprehensive survey publication-title: Appl. Intell. doi: 10.1007/s10489-020-01862-6 – ident: ref_15 doi: 10.18653/v1/S17-2006 – volume: 28 start-page: 587 year: 2002 ident: ref_30 article-title: Content analysis in mass communication: Assessment and reporting of intercoder reliability publication-title: Hum. Commun. Res. doi: 10.1111/j.1468-2958.2002.tb00826.x – ident: ref_16 – ident: ref_22 doi: 10.1145/3340531.3412880 – volume: 23 start-page: 560 year: 2013 ident: ref_11 article-title: Predicting information credibility in time-sensitive social media publication-title: Internet Res. doi: 10.1108/IntR-05-2012-0095 – ident: ref_1 – ident: ref_35 – ident: ref_23 – ident: ref_7 doi: 10.1145/3123266.3123454 – ident: ref_14 doi: 10.1145/2567948.2579323 – ident: ref_21 – ident: ref_13 doi: 10.1109/ICDM.2013.61 – ident: ref_8 doi: 10.1145/3219819.3219903 – ident: ref_12 doi: 10.1007/978-3-642-37210-0_48 – ident: ref_31 – ident: ref_29 – ident: ref_33 – ident: ref_27 – ident: ref_10 – volume: 19 start-page: 22 year: 2017 ident: ref_32 article-title: Fake news detection on social media: A data mining perspective publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/3137597.3137600 – volume: 53 start-page: 2070 year: 2020 ident: ref_26 article-title: COVID-19 infodemic on Chinese social media: A 4P framework, selective review and research directions publication-title: Meas. Control doi: 10.1177/0020294020967035 – volume: 83 start-page: 106 year: 2019 ident: ref_9 article-title: Attention-based convolutional approach for misinformation identification from massive and noisy microblog posts publication-title: Comput. Secur. doi: 10.1016/j.cose.2019.02.003 – volume: 22 start-page: e19556 year: 2020 ident: ref_3 article-title: The impact of social media on panic during the COVID-19 pandemic in Iraqi Kurdistan: Online questionnaire study publication-title: J. Med. Internet Res. doi: 10.2196/19556 – ident: ref_17 – volume: 172 start-page: 822 year: 2020 ident: ref_2 article-title: COVID-19: Peer support and crisis communication strategies to promote institutional resilience publication-title: Ann. Intern. Med. doi: 10.7326/M20-1236 – volume: 27 start-page: 327 year: 2020 ident: ref_5 article-title: Infodemic and the spread of fake news in the COVID-19-era publication-title: Eur. J. Emerg. Med. doi: 10.1097/MEJ.0000000000000713 – volume: 1 start-page: 85 year: 2020 ident: ref_19 article-title: Leveraging data science to combat COVID-19: A comprehensive review publication-title: IEEE Trans. Artif. Intell. doi: 10.1109/TAI.2020.3020521 – ident: ref_24 doi: 10.1109/BigData50022.2020.9378472 – ident: ref_18 doi: 10.1109/ICDE.2015.7113322 – volume: 31 start-page: 770 year: 2020 ident: ref_4 article-title: Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention publication-title: Psychol. Sci. doi: 10.1177/0956797620939054 |
| SSID | ssj0000913835 |
| Score | 2.2966864 |
| Snippet | Misinformation posted on social media during COVID-19 is one main example of infodemic data. This phenomenon was prominent in China when COVID-19 happened at... |
| SourceID | pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1094 |
| SubjectTerms | Annotations Artificial Intelligence Computer Science Coronaviruses COVID-19 Credibility Data collection Datasets Deep learning Disease transmission Distributed, Parallel, and Cluster Computing Experiments False information Gossip Machine Learning Pandemics Social and Information Networks Social networks |
| Title | Combating the Infodemic: A Chinese Infodemic Dataset for Misinformation Identification |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34574868 https://www.proquest.com/docview/2576408188 https://www.proquest.com/docview/2577463819 https://laas.hal.science/hal-03380543 https://pubmed.ncbi.nlm.nih.gov/PMC8469168 |
| Volume | 9 |
| WOSCitedRecordID | wos000700678800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: 7RV dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: PIMPY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: 8C1 dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: M2O dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RjgckxPcgMCaDeEKK1sR27fCCytg0JFqqCabyFDmOrVZC6Viy_f3cJW5YmbQXHmIp_lAcnT9-dz7_DuCdFWNeFDqLS-lULEo7jjNn09hbWaYGVa4yMW2wCTWb6cUimweDWx3cKjdrYrtQl2tLNvIDAsaC-Nf0x_PfMUWNotPVEEJjADvEVCaGsPPpaDY_7a0sxHqJGKM7zuSo3x8se7eqjLbKTGxtSIMluUPexJr_ukxe24OOH_5v7x_Bg4A-2aQbLo_hjquewP3OdMe6G0lP4QzXiMKQOzRDdMjoXKp1of_AJozCbbv6Wib7bBrcCBuG4JdNV3UgYiVxs-4SsA9WwWfw4_jo--FJHMIvxFamqomdpdjonieJ5d5yVMTwJ-QoLYyQpiReOGF54i1OXM_xyfzY27SQXEkEPU7wXRhW68q9AJYIY7y2SsqCiNFVVhheCmWdEoUoUx3BaCOD3AZucgqR8StHHYXElt8QWwTv-ybnHTHHbZXfomD7ekSpfTL5mlPeCHV0hK38KolgbyO7PEzkOv8ruAje9MU4BelcxVRufdnWUTjkEVtF8LwbJv2nuJBK6DG2VlsDaKsv2yXVatnSfCMyROyuX97erVdwLyU3mxEueGIPhs3FpXsNd-1Vs6ov9mGgTs8oXWhM9WGyH2YIvk3Tb_g2_zKd__wDc-wdZg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQmkijclUMAguFSKmsT2OkFCaEWptup2hVCpeguOY2tXqrKlSVv1T_U3MpMXXSr11gOHXBLn_XnmG3v8DcAHIwY8y-LEz6VVvsjNwE-siXxnZB5pDLnyUNfFJtRkEh8eJt-X4LJbC0NplZ1NrA11Pjc0Rr5JxFiQ_lr85fi3T1WjaHa1K6HRwGLXXpxjyFZ-3tnC__sxira_7X8d-W1VAd_ISFW-NVTy2_EwNNwZjvEFXlkGUaaF1DnJnQnDQ0eV6x3HLXEDZ6JMciXRl1vB8brLcAfteEgpZOrHQT-mQxqbyGiayVPOk2Bz2idxJeSYE7Hg_panlHx5ndn-m6B5xeNtP_zfvtUjeNByazZsOsNjWLLFE1htBiZZs97qKRygBcw0JXsz5L6MZt3qBQKf2JBRMXFbXtnJtnSFbr5iSO3Z3qxsZWYJzKxZ4uzaMc9n8PNWXu05rBTzwr4AFgqtXWyUlBnJvqsk0zwXylglMpFHsQdB989T0yqvUwGQoxQjMIJJeg0mHmz0pxw3siM3NX6PQOrbkWD4aDhOaV_AeYyknJ-FHqx3WElbM1Wmf4Hiwbv-MBoYmjXShZ2f1m0Udmhkjh6sNbDsb8WFVCIe4NlqAbALz7J4pJhNaxFz5L0YmcQvb36st3BvtL83Tsc7k91XcD-ihKIATbtYh5Xq5NS-hrvmrJqVJ2_qnsjg123D-Q9pY3GE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB21BSEkxGcpLgUWBJdKVmzvbtZGQihqiFq1RD0A6s1dr3eVSJVTareIv8av64y_aKjUWw8ccrHXsRO_nXmzO_MG4L0RQ55lceLn0ipf5GboJ9ZEvjMyjzSGXHmo62YTajqNj46SwxX409XCUFplZxNrQ50vDK2RD4gYC9JfiweuTYs4HE8-n_70qYMU7bR27TQaiOzb378wfCs_7Y3xXX-IosmXbzu7ftthwDcyUpVvDbX_djwMDXeGY6yBd5FBlGkhdU7SZ8Lw0FEXe8fxk7ihM1EmuZLo163g-L2rcEdxRDFVqe-E_foO6W0iu2k2UjlPgsGsT-hKyEknYskVrs4oEfM6y_03WfOK95s8-p__t8fwsOXcbNRMkiewYoun8KBZsGRNHdYz-IGWMdOUBM6QEzPajasLBz6yEaMm47a8cpCNdYXuv2JI-dnXednKzxLIWVP67Nq10HX4fis_7TmsFYvCvgAWCq1dbJSUGcnBqyTTPBfKWCUykUexB0H3_lPTKrJTY5CTFCMzgkx6DTIebPeXnDZyJDcNfoeg6seRkPju6CClYwHnMZJ1fhF6sNXhJm3NV5n-BY0Hb_vTaHhoN0kXdnFej1E40ZFRerDRQLS_FRdSiXiIV6sl8C49y_KZYj6rxc2RD2PEEm_e_Fhv4B6iOD3Ym-6_hPsR5RkFaPHFFqxVZ-f2Fdw1F9W8PHtdT0oGx7eN5kurKHnf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combating+the+Infodemic%3A+A+Chinese+Infodemic+Dataset+for+Misinformation+Identification&rft.jtitle=Healthcare+%28Basel%29&rft.au=Luo%2C+Jia&rft.au=Xue%2C+Rui&rft.au=Hu%2C+Jinglu&rft.au=El+Baz%2C+Didier&rft.date=2021-08-24&rft.pub=MDPI&rft.issn=2227-9032&rft.eissn=2227-9032&rft.volume=9&rft.issue=9&rft_id=info:doi/10.3390%2Fhealthcare9091094&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03380543v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon |