Sparse coding-based multiframe superresolution for efficient synchrotron radiation microspectroscopy
In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation mic...
Gespeichert in:
| Veröffentlicht in: | Discover nano Jg. 20; H. 1; S. 102 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
03.07.2025
Springer Nature B.V Springer |
| Schlagworte: | |
| ISSN: | 2731-9229, 1931-7573, 2731-9229, 1556-276X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over
, highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging. |
|---|---|
| AbstractList | In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over [Formula: see text], highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging. In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over $$40\%$$ , highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging. Abstract In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over $$40\%$$ , highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging. In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over [Formula: see text], highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over [Formula: see text], highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging. In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over , highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging. In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over , highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging. |
| ArticleNumber | 102 |
| Author | Okada, Masato Igarashi, Yasuhiko Sekine, Masahiro Nagamura, Naoka Fukidome, Hirokazu Hino, Hideitsu |
| Author_xml | – sequence: 1 givenname: Yasuhiko surname: Igarashi fullname: Igarashi, Yasuhiko email: igayasu1219@cs.tsukuba.ac.jp organization: Institute of Engineering, Information and Systems, University of Tsukuba, Photoemission Group, National Institute for Materials Science – sequence: 2 givenname: Naoka surname: Nagamura fullname: Nagamura, Naoka email: NAGAMURA.Naoka@nims.go.jp organization: Photoemission Group, National Institute for Materials Science, Graduate School of Advanced Engineering, Tokyo University of Science, Research Institute of Electrical Communication, Tohoku University – sequence: 3 givenname: Masahiro surname: Sekine fullname: Sekine, Masahiro organization: Institute of Engineering, Information and Systems, University of Tsukuba – sequence: 4 givenname: Hirokazu surname: Fukidome fullname: Fukidome, Hirokazu organization: Research Institute of Electrical Communication, Tohoku University – sequence: 5 givenname: Hideitsu surname: Hino fullname: Hino, Hideitsu organization: Department of Advanced Data Science, Research Center for Statistical Machine Learning, The Institute of Statistical Mathematics – sequence: 6 givenname: Masato surname: Okada fullname: Okada, Masato organization: Photoemission Group, National Institute for Materials Science, Graduate School of Frontier Sciences, The University of Tokyo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40608206$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhi1UREvpH-CAInHpJWCPk9g5IVRRqFSJA3C2HHu89SqJg51U3X-Pd1NKywFxsjXzzDufL8nRGEYk5DWj7xiTzfvEWCNYSaEuaQUtK--ekRMQnJUtQHv06H9MzlLaUkpBCpB1_YIcV7ShEmhzQuy3SceEhQnWj5uy0wltMSz97F3UAxZpmTBGTKFfZh_GwoVYoHPeeBznIu1GcxPDHLMnauv1gRm8iSFNaLI9mTDtXpHnTvcJz-7fU_Lj8tP3iy_l9dfPVxcfr0tTg5hLg1XLOwZO11Qg51Jq5xqJwra2E4A1R9lhpdFZIamzyCvDqaicaI1ASfkpuVp1bdBbNUU_6LhTQXt1MIS4UTrO3vSoDEVXY9cgMl51VrSaMUM5goFWgGNZ68OqNS3dgNbkdqPun4g-9Yz-Rm3CrWKQZ85FnRXO7xVi-LlgmtXgk8G-1yOGJSkOgsnciGz_A4VGABX1vse3f6HbsMQxj_VASeCS7XO_eVz9Q9m_F58BWIH9qlJE94AwqvYHptYDU_nA1OHA1F0O4mtQyvC4wfgn9z-ifgFy3tY2 |
| Cites_doi | 10.1002/aenm.201600025 10.1109/TPAMI.2015.2439281 10.1021/acsami.0c13233 10.1039/C6NR06541D 10.1039/B816543B 10.1002/adma.200390100 10.1063/1.1370563 10.1038/nphoton.2010.267 10.1109/CMSP.2011.79 10.1063/1.3657156 10.1006/jvci.1993.1030 10.1109/LGRS.2019.2940483 10.1088/2632-959X/aca0af 10.1109/JPROC.2020.3004555 10.1109/CVPR52688.2022.01695 10.1107/S0909049597014283 10.1038/381607a0 10.1109/TSP.2006.881199 10.1038/s41598-019-48842-6 10.1038/nnano.2015.340 10.1016/j.neunet.2015.02.009 10.1109/MSP.2018.2820224 10.3390/rs12142207 10.1016/j.elspec.2017.06.006 10.1103/RevModPhys.90.025007 10.1016/S0079-6816(02)00007-2 10.1109/TIP.2006.881969 10.1109/TIP.2017.2662206 10.58496/MJBD/2023/004 10.1016/j.neucom.2017.02.043 10.1109/CVPRW53098.2021.00058 10.1126/science.aac9439 10.1007/978-1-4419-7011-4 10.1109/CVPR.2008.4587647 10.1016/j.ultramic.2019.112818 10.7551/mitpress/7503.003.0105 10.1016/j.carbon.2019.06.038 10.1109/T-C.1974.223784 10.1109/TKDE.2009.191 10.1016/S0168-9002(01)00516-2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
| DOI | 10.1186/s11671-025-04291-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2731-9229 1556-276X |
| EndPage | 102 |
| ExternalDocumentID | oai_doaj_org_article_c0ef5eb6ee134bd79a11c03e2c2972f1 PMC12229375 40608206 10_1186_s11671_025_04291_x |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 24K02995; 21H04696; 24K01243 funderid: http://dx.doi.org/10.13039/501100001691 – fundername: Innovative Science and Technology Initiative for Security of ATLA Japan grantid: JPJ004596; JPJ004596 – fundername: Japan Science and Technology Agency grantid: CREST: JPMJCR1761; JPMJCR21O1; JPMJCR2235 ; PRESTO: 590 JPMJPR17N2,; JPMJPR17N2; JPMJPR20T7 funderid: http://dx.doi.org/10.13039/501100002241 – fundername: National Institute of Information and Communications Technology grantid: Beyond 5G Research and Development Project(05901) funderid: https://doi.org/10.13039/501100012389 – fundername: Japan Society for the Promotion of Science grantid: 24K01243 – fundername: Japan Science and Technology Agency grantid: JPMJPR20T7 – fundername: Innovative Science and Technology Initiative for Security of ATLA Japan grantid: JPJ004596 – fundername: Japan Science and Technology Agency grantid: PRESTO: 590 JPMJPR17N2, – fundername: Japan Society for the Promotion of Science grantid: 24K02995 – fundername: Japan Science and Technology Agency grantid: JPMJPR17N2 – fundername: National Institute of Information and Communications Technology grantid: Beyond 5G Research and Development Project(05901) – fundername: Japan Science and Technology Agency grantid: CREST: JPMJCR1761 – fundername: Japan Science and Technology Agency grantid: JPMJCR21O1 – fundername: Japan Science and Technology Agency grantid: JPMJCR2235 |
| GroupedDBID | .4S 0R~ AAJSJ AAKKN AASML ABEEZ ACACY ACULB ACVER AFGXO ALMA_UNASSIGNED_HOLDINGS ARCSS C24 C6C EBLON EBS EDO GROUPED_DOAJ MM. M~E PGMZT RPM SOJ TUS AAYXX CITATION NPM .86 .DC 123 29M 2WC 4.4 40G 5VS 6NX 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH AAFWJ ABJCF ABMNI ABUWG ACGFO ACGFS ACIWK ACPRK ADBBV ADRAZ AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHYZX AMKLP AMTXH AOIJS AZQEC BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI CAG CCPQU CS3 D1I DU5 DWQXO F28 F5P FR3 GNUQQ GX1 H8D H8G HCIFZ HH5 HYE HZ~ I09 IZQ JG9 JQ2 KB. KDC KQ8 KR7 L7M LK8 L~C L~D M7P O5R O5S OK1 OVT P2P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RNS RPX SCM SDH TR2 U2A ~KM 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c527t-ce493b12fa507e3388aff68e7d9db72e53e8be4aefd780fde34c3074f79c7e803 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001522712700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2731-9229 1931-7573 |
| IngestDate | Fri Oct 03 12:47:37 EDT 2025 Tue Sep 30 17:02:00 EDT 2025 Fri Nov 14 18:41:20 EST 2025 Thu Jul 03 19:14:55 EDT 2025 Wed Oct 08 14:21:44 EDT 2025 Thu Jul 10 06:24:07 EDT 2025 Sat Nov 29 07:46:28 EST 2025 Fri Jul 04 01:18:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Nanostructure image enhancement Radiation damage reduction Sparse coding superresolution Synchrotron image reconstruction High-resolution microscopy Measurement image analysis |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c527t-ce493b12fa507e3388aff68e7d9db72e53e8be4aefd780fde34c3074f79c7e803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3226823815?pq-origsite=%requestingapplication% |
| PMID | 40608206 |
| PQID | 3226823815 |
| PQPubID | 2034687 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c0ef5eb6ee134bd79a11c03e2c2972f1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12229375 proquest_miscellaneous_3271878089 proquest_miscellaneous_3226720750 proquest_journals_3226823815 pubmed_primary_40608206 crossref_primary_10_1186_s11671_025_04291_x springer_journals_10_1186_s11671_025_04291_x |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-03 |
| PublicationDateYYYYMMDD | 2025-07-03 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Switzerland – name: Heidelberg |
| PublicationTitle | Discover nano |
| PublicationTitleAbbrev | Discover Nano |
| PublicationTitleAlternate | Discov Nano |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V Springer |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer |
| References | 4291_CR15 J Avila (4291_CR7) 2013; 425 M Aharon (4291_CR1) 2006; 54 M Elad (4291_CR11) 2010 E Sakai (4291_CR35) 2016; 8 4291_CR14 M Elad (4291_CR12) 2006; 15 L Peng (4291_CR34) 2016; 6 S Shi (4291_CR39) 2022; 35 D Deng (4291_CR8) 2016; 11 I Hong (4291_CR16) 2001; 467 M Kawulok (4291_CR21) 2019; 17 K Nakamura (4291_CR28) 2020; 12 4291_CR9 K Novoselov (4291_CR29) 2016; 353 T Kato (4291_CR19) 2015; 66 M Irani (4291_CR18) 1993; 4 F Salvetti (4291_CR37) 2020; 12 G Shen (4291_CR38) 2009; 19 BA Olshausen (4291_CR30) 1996; 381 C Dong (4291_CR10) 2015; 38 A Sakdinawat (4291_CR36) 2010; 4 M Amati (4291_CR5) 2018; 224 N Nagamura (4291_CR26) 2019; 152 S Günther (4291_CR13) 2002; 70 4291_CR22 4291_CR44 4291_CR24 S Anada (4291_CR6) 2019; 206 N Nagamura (4291_CR27) 2022; 3 SJ Pan (4291_CR31) 2009; 22 L Mino (4291_CR25) 2018; 90 4291_CR40 T Warwick (4291_CR42) 1998; 5 4291_CR43 K Horiba (4291_CR17) 2011; 82 K Zhang (4291_CR45) 2017; 26 V Papyan (4291_CR33) 2018; 35 K Akada (4291_CR3) 2019; 9 T Kato (4291_CR20) 2017; 240 F Zhuang (4291_CR46) 2020; 109 Z Wang (4291_CR41) 2003; 15 N Ahmed (4291_CR2) 1974; 100 AH Ali (4291_CR4) 2023; 2023 M Lee (4291_CR23) 2001; 72 V Papyan (4291_CR32) 2017; 18 |
| References_xml | – volume: 6 start-page: 1600025 issue: 11 year: 2016 ident: 4291_CR34 publication-title: Adv Energy Mater doi: 10.1002/aenm.201600025 – volume: 38 start-page: 295 issue: 2 year: 2015 ident: 4291_CR10 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2439281 – volume: 12 start-page: 51598 issue: 46 year: 2020 ident: 4291_CR28 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c13233 – volume: 18 start-page: 1 issue: 83 year: 2017 ident: 4291_CR32 publication-title: J Mach Learn Res – volume: 8 start-page: 18893 issue: 45 year: 2016 ident: 4291_CR35 publication-title: Nanoscale doi: 10.1039/C6NR06541D – volume: 19 start-page: 828 issue: 7 year: 2009 ident: 4291_CR38 publication-title: J Mater Chem doi: 10.1039/B816543B – ident: 4291_CR9 – volume: 15 start-page: 432 issue: 5 year: 2003 ident: 4291_CR41 publication-title: Adv Mater doi: 10.1002/adma.200390100 – volume: 72 start-page: 2605 issue: 6 year: 2001 ident: 4291_CR23 publication-title: Rev Sci Instrum doi: 10.1063/1.1370563 – volume: 4 start-page: 840 year: 2010 ident: 4291_CR36 publication-title: Nat Photon doi: 10.1038/nphoton.2010.267 – ident: 4291_CR40 doi: 10.1109/CMSP.2011.79 – volume: 82 issue: 11 year: 2011 ident: 4291_CR17 publication-title: Rev Sci Instrum doi: 10.1063/1.3657156 – volume: 4 start-page: 324 issue: 4 year: 1993 ident: 4291_CR18 publication-title: J Vis Commun Image Represent doi: 10.1006/jvci.1993.1030 – volume: 17 start-page: 1062 issue: 6 year: 2019 ident: 4291_CR21 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2019.2940483 – volume: 3 issue: 4 year: 2022 ident: 4291_CR27 publication-title: Nano Express doi: 10.1088/2632-959X/aca0af – volume: 35 start-page: 36081 year: 2022 ident: 4291_CR39 publication-title: Adv Neural Inf Process Syst – volume: 109 start-page: 43 issue: 1 year: 2020 ident: 4291_CR46 publication-title: Proc IEEE doi: 10.1109/JPROC.2020.3004555 – ident: 4291_CR14 doi: 10.1109/CVPR52688.2022.01695 – volume: 5 start-page: 1090 year: 1998 ident: 4291_CR42 publication-title: J Synchrotron Radiat doi: 10.1107/S0909049597014283 – ident: 4291_CR44 – volume: 381 start-page: 607 issue: 6583 year: 1996 ident: 4291_CR30 publication-title: Nature doi: 10.1038/381607a0 – volume: 54 start-page: 4311 issue: 11 year: 2006 ident: 4291_CR1 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.881199 – volume: 9 start-page: 12452 issue: 1 year: 2019 ident: 4291_CR3 publication-title: Sci Rep doi: 10.1038/s41598-019-48842-6 – volume: 11 start-page: 218 year: 2016 ident: 4291_CR8 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2015.340 – ident: 4291_CR15 – volume: 66 start-page: 64 year: 2015 ident: 4291_CR19 publication-title: Neural Netw doi: 10.1016/j.neunet.2015.02.009 – volume: 35 start-page: 72 issue: 4 year: 2018 ident: 4291_CR33 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2018.2820224 – volume: 12 start-page: 2207 issue: 14 year: 2020 ident: 4291_CR37 publication-title: Remote Sens doi: 10.3390/rs12142207 – volume: 224 start-page: 59 year: 2018 ident: 4291_CR5 publication-title: J Electron Spectrosc Relat Phenom doi: 10.1016/j.elspec.2017.06.006 – volume: 90 issue: 2 year: 2018 ident: 4291_CR25 publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.90.025007 – volume: 70 start-page: 187 year: 2002 ident: 4291_CR13 publication-title: Prog Surf Sci doi: 10.1016/S0079-6816(02)00007-2 – volume: 15 start-page: 3736 issue: 12 year: 2006 ident: 4291_CR12 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.881969 – volume: 26 start-page: 3142 issue: 7 year: 2017 ident: 4291_CR45 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2662206 – volume: 2023 start-page: 29 year: 2023 ident: 4291_CR4 publication-title: Mesop J Big Data doi: 10.58496/MJBD/2023/004 – volume: 240 start-page: 115 year: 2017 ident: 4291_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.043 – ident: 4291_CR24 doi: 10.1109/CVPRW53098.2021.00058 – volume: 353 start-page: aac9439 issue: 6298 year: 2016 ident: 4291_CR29 publication-title: Science doi: 10.1126/science.aac9439 – volume-title: Sparse and redundant representations: from theory to applications in signal and image processing year: 2010 ident: 4291_CR11 doi: 10.1007/978-1-4419-7011-4 – ident: 4291_CR43 doi: 10.1109/CVPR.2008.4587647 – volume: 206 year: 2019 ident: 4291_CR6 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2019.112818 – ident: 4291_CR22 doi: 10.7551/mitpress/7503.003.0105 – volume: 152 start-page: 680 year: 2019 ident: 4291_CR26 publication-title: Carbon doi: 10.1016/j.carbon.2019.06.038 – volume: 100 start-page: 90 issue: 1 year: 1974 ident: 4291_CR2 publication-title: IEEE Trans Comput doi: 10.1109/T-C.1974.223784 – volume: 22 start-page: 1345 issue: 10 year: 2009 ident: 4291_CR31 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – volume: 467 start-page: 905 year: 2001 ident: 4291_CR16 publication-title: Nucl Inst Methods Phys Res A doi: 10.1016/S0168-9002(01)00516-2 – volume: 425 start-page: 1 issue: 192023 year: 2013 ident: 4291_CR7 publication-title: J Phys: Conf Ser |
| SSID | ssj0002872855 ssj0047076 |
| Score | 2.4175866 |
| Snippet | In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging... Abstract In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 102 |
| SubjectTerms | Algorithms Chemical analysis Chemistry and Materials Science Coding data collection Datasets Deep learning Degradation Dictionaries Electron microscopy Exposure exposure duration High resolution High-resolution microscopy Image quality Image reconstruction Image resolution Materials Science Measurement image analysis Measurement techniques Methods Microscopes Microscopy Misalignment Molecular Medicine Nanochemistry nanomaterials Nanoscale Science and Technology Nanostructure Nanostructure image enhancement Nanotechnology Nanotechnology and Microengineering Neural networks Radiation Radiation damage Radiation damage reduction Radiation effects Sparse coding superresolution Spatial discrimination learning Spatial resolution Spectroscopy Spectrum analysis Synchrotron image reconstruction Synchrotron radiation Time measurement X-rays |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiDehBQWJG1hN7Di2jwVRcaqQAKk3K7bHapFIVptd1P57ZpzsssvzwjV2lMl47PnGHn_D2EtZiaDQsXDdCcWJkYobBYlr36iYvAWwU7EJfXZmzs_th51SX5QTNtEDT4o7DhUkBb4FqGXjo7ZdXYdKggjCapFy4IOoZyeY-pK3jLQwSm1uyZj2eKQDB4ycUSJag2t-teeJMmH_71Dmr8mSP52YZkd0epfdmRFkeTJJfo_dgP4-u73DK_iAxY8LjFehDAN5Jk6eKpY5dTBRLlY5rhdARTlmsysRuJaQuSTw6-V43YeL5UB75OWSqAtyn6-UuZfvZRL_5bC4fsg-n7779PY9n8spcBwNveIBGit9LVKHGBAwNDVdSq0BHW30WoCSYDw0HaSoTZUiyCbgCtAkbYMGU8lH7KAfenjCShs6bwJiEyWrRgZjPH4heq8rE1OlRcFebVTrFhNrhsvRhmndNBAO33V5INxVwd6Q9rc9ifE6P0A7cLMduH_ZQcGONmPn5mk4OlytWkOgRBXsxbYZJxCdinQ9DOupjxaEnP7WB104KsXYgj2ezGErLSIiglFtwcyeoez9zn5Lf3mRibxrKqYuNQr3emNTP2T_s76e_g99HbJbIk8GzSt5xA5WyzU8YzfDt9XluHyeZ9N3RQonJA priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nj9UgECdm9aAHvz-qq6mJNyVSKAWOunHjaWOiJnsjBQZ3TWxf2vc2u_-9A22fPl1N9FqGdgozzA8YfhDyQjDuJQYWqlouaWKkolpCpMrVMkRnAMx02YQ6OtLHx-bDfChsXLLdly3JPFJnt9bN6zHtGODUF1-ZBtGKInK8Kittkl0fzGccvublIsW1lMsJmUur7kShTNZ_GcL8PVHyl93SHIQOb_2f-rfJzRl0lm8mK7lDrkB3l9z4iYrwHgkfVzjFhdL3KZjRFNxCmbMNY0rfKsfNCtI9HrOlloh1S8j0E6h0OV50_mTo07J6OSS2gyzzLSX75aOciTKzX13cJ58P3306eE_nGxgodqBaUw-1Ea7isUXYCDib1W2MjQYVTHCKgxSgHdQtxKA0iwFE7XHQqKMyXoFm4gHZ6_oOHpHS-NZpj3BGClYLr7XDLwTnFNMhMsUL8nLpEbuaiDZsnqDoxk5tZ7GuzW1nzwvyNnXaVjKRZOcH_fDFzj5nPYMowTUAlahdUKatKs8EcM-N4rEqyP7S5Xb23NHiANfohGNkQZ5vi9Hn0kZK20G_mWQUT2DrbzIY9bFRtCnIw8mKttoiiErIqymI3rGvnd_ZLelOTzL3d5XuXxcKlXu1mNkP3f_cXo__TfwJuc6zpSrKxD7ZWw8beEqu-bP16Tg8y-72Ha8OKrs priority: 102 providerName: Springer Nature |
| Title | Sparse coding-based multiframe superresolution for efficient synchrotron radiation microspectroscopy |
| URI | https://link.springer.com/article/10.1186/s11671-025-04291-x https://www.ncbi.nlm.nih.gov/pubmed/40608206 https://www.proquest.com/docview/3226823815 https://www.proquest.com/docview/3226720750 https://www.proquest.com/docview/3271878089 https://pubmed.ncbi.nlm.nih.gov/PMC12229375 https://doaj.org/article/c0ef5eb6ee134bd79a11c03e2c2972f1 |
| Volume | 20 |
| WOSCitedRecordID | wos001522712700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2731-9229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002872855 issn: 2731-9229 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2731-9229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047076 issn: 2731-9229 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2731-9229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002872855 issn: 2731-9229 databaseCode: M~E dateStart: 20230101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2731-9229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047076 issn: 2731-9229 databaseCode: M7P dateStart: 20250101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2731-9229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047076 issn: 2731-9229 databaseCode: KB. dateStart: 20250101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2731-9229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047076 issn: 2731-9229 databaseCode: BENPR dateStart: 20250101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2731-9229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047076 issn: 2731-9229 databaseCode: PIMPY dateStart: 20250101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2731-9229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002872855 issn: 2731-9229 databaseCode: C24 dateStart: 20060601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoywEOvB-BsgoSNzBN7CR2ToitWoEQqxUPaTlFiT2mPZAsyS5q_z0zTrJlefTCZaWsHWWcmfF8tiffMPZMRsKkGFi4KkXKiZGK6xQcV1WSWlflAHlfbELNZnqxyOfDhls3pFWOc6KfqG1jaI_8AA0v0xRf0lfL75yqRtHp6lBCY4ftEUuC9Kl783EmTlTki8shRkFZUiXHj2Z0dtDR-QMupFFAmpJjfrYVmDx__99A55-5k78doPq4dHzzf0d0i90YEGn4ujeh2-wK1HfY9V94Cu8y-3GJ618ITUORjlPks6FPRXSU2xV26yVQkY_BjEMEwiF4bgoUP-zOa3PSNrTnHrZEheD7fKNMQP-dJ_FpNsvze-zz8dGnwzd8KM_AUbtqxQ0kuaxi4UrElIBLXV06l2lQNreVEpBK0BUkJTirdOQsyMTgjJI4lRsFOpL32W7d1PCQhbkpK20Q66QySqTRusIn2KpSkbYuUiJgz0fdFMuehaPwqxedFb0mC7y38JoszgI2JfVtehKDtv-jab8Wg0MWJgKXQpUBxDKprMrLODaRBGFEroSLA7Y_aq0Y3LorLlQWsKebZnRIOmUpa2jWfR8lCIld1gchAb4UnQfsQW9PG2kRYREsywKmtyxtazjbLfXpiScGj6k4u1Qo3IvRKC9k__f7enT5UB-za8L7ieKR3Ge7q3YNT9hV82N12rUTtqMWesL2pkez-Qe8OhTJxG9s4O-76cuJ90hsn799P__yE3tKPIY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4YChgJTmDV3rW96wNCvKpGbaNIFKk9LfZ6lvaAHeIEmj_Fb2R2baeER289cI03ye7km5lvMrMzAE95yHRCjiUQOUsC25EqkAmaQBRxUpoiQ8zaYRNiNJIHB9l4DX70d2FsWWVvE52hLmtt_yPfJOCl0vqX5NXka2CnRtnsaj9Co4XFDi6-U8jWvBy-o9_3GWNb7_ffbgfdVIGANiVmgcY440XETE5UCClCk7kxqURRZmUhGCYcZYFxjqYUMjQl8liTIsRGZFqgDDl97gVYjwnscgDr4-He-LC3_bEI3Tg7YkV0-kTw_pqOTDcbm_Gg0J1EYp1AFJysuEI3MeBvNPfPas3fUrbOE25d-99keB2udpzbf90qyQ1Yw-omXPmlE-MtKD9MKMJHX9fWlwfWt5e-K7Y0tnrNb-YTtGNMOkX1ier76LpvkLj8ZlHpo2ltswr-1DZ7cGu-2FpHd5PVdgytJ4vb8PFcjnkHBlVd4T3wM50XUhObS3gYcy1lQd9QFoUIZWlCwTx43mNBTdo-I8rFZzJVLXIUvVc55KgTD95YuCxX2h7h7oV6-ll1JkfpEE2CRYoY8bgoRZZHkQ45Ms0ywUzkwUaPEtUZrkadQsSDJ8vHZHJsHimvsJ63awSzXPOsNUR6SCgy8-Bui9_lbolDWuKZeiBXkL1ynNUn1fGRa30e2fHzXNDmXvRKcLr3f8vr_tlHfQyXtvf3dtXucLTzAC4zp6MiCPkGDGbTOT6Ei_rb7LiZPur03YdP560ePwFOdZZ- |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VghAceD8MBYwEJ7Bi79re9QEhoFRURVEkQOrN9e7O0h6wQ5xA89f4dcys7ZTw6K0HrvEm2Z18M_NNZnaGsSci5iZDxxLJimcRdaSKVAYukjrNrNMFQNENm5DjsdrfLyYb7MdwF4bKKgeb6A21bQz9Rz5C4OWK_Es2cn1ZxGR75-X0a0QTpCjTOozT6CCyB8vvGL61L3a38bd-yvnO249v3kX9hIEINyjnkYG0EDrhrkJaBBitqcq5XIG0hdWSQyZAaUgrcFaq2FkQqUGlSJ0sjAQVC_zcc-y8pKblvmxwMniBVMZ-sB3yI5RDJsVwYUflo5ZyHxjEo3DIHSTR8ZpT9LMD_kZ4_6zb_C15633iztX_WZrX2JWeiYevOtW5zjagvsEu_9Kf8SazH6YY90NoGvLwEXl8G_oSTEc1bWG7mAINN-nVN8QAIATfkwNFF7bL2hzOGso1hDNqAeHXfKEKSH-_lfqINtPlLfbpTI55m23WTQ13WViYSiuDHC8TcSqMUhq_wWotY2VdLHnAng24KKdd95HSR20qLzsUlfje0qOoPA7Ya4LOaiV1DvcvNLPPZW-IShODy0DnAIlItZVFlSQmFsANLyR3ScC2BsSUvTlryxO4BOzx6jEaIsouVTU0i26N5MRAT1uDVAiFooqA3emwvNotMkuio3nA1BrK146z_qQ-OvQN0RMaSi8kbu75oBAne_-3vO6dftRH7CLqRPl-d7x3n13iXl1lFIsttjmfLeABu2C-zY_a2UOv-CE7OGvd-Al-Q529 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+coding-based+multiframe+superresolution+for+efficient+synchrotron+radiation+microspectroscopy&rft.jtitle=Nanoscale+research+letters&rft.au=Igarashi%2C+Yasuhiko&rft.au=Nagamura%2C+Naoka&rft.au=Sekine%2C+Masahiro&rft.au=Fukidome%2C+Hirokazu&rft.date=2025-07-03&rft.pub=Springer+Nature+B.V&rft.issn=1931-7573&rft.eissn=1556-276X&rft.volume=20&rft.issue=1&rft.spage=102&rft_id=info:doi/10.1186%2Fs11671-025-04291-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-9229&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-9229&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-9229&client=summon |