Sparse coding-based multiframe superresolution for efficient synchrotron radiation microspectroscopy

In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discover nano Jg. 20; H. 1; S. 102
Hauptverfasser: Igarashi, Yasuhiko, Nagamura, Naoka, Sekine, Masahiro, Fukidome, Hirokazu, Hino, Hideitsu, Okada, Masato
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 03.07.2025
Springer Nature B.V
Springer
Schlagworte:
ISSN:2731-9229, 1931-7573, 2731-9229, 1556-276X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over , highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.
AbstractList In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over [Formula: see text], highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.
In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over $$40\%$$ , highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.
Abstract In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over $$40\%$$ , highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.
In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over [Formula: see text], highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over [Formula: see text], highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.
In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over , highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.
In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging artifacts from long exposure times. This study presents a multiframe superresolution method using sparse coding to enhance synchrotron radiation microspectroscopy images. By reconstructing high-resolution images from multiple low-resolution ones, exposure time is minimized, reducing radiation effects, thermal drift, and sample degradation while preserving spatial resolution. Unlike deep learning-based superresolution methods, which overlook positional misalignment, our approach treats positional shifts as known control parameters, enhancing superresolution accuracy with a small, noisy dataset. Additionally, our sparse coding method learns an optimal dictionary tailored for nanostructure extraction, fine-tuning the SR process to the unique characteristics of the data, even with noise and limited samples. Applied to 3D nanoscale electron spectroscopy for chemical analysis (nano-ESCA) data, our method, utilizing a high-resolution dictionary learned from 3D nano-ESCA datasets, significantly improves image quality, preserving structural details. Unlike state-of-the-art deep learning techniques that require large datasets, our method excels with limited data, making it ideal for real-world scenarios with constrained sample sizes. High-resolution quality can be maintained while reducing the measurement time by over , highlighting the efficiency of our approach. The results underscore the potential of this superresolution technique to not only advance synchrotron radiation microspectroscopy but also to be adapted for other high-resolution imaging modalities, such as electron microscopy. This approach offers enhanced image quality, reduced exposure times, and improved interpretability of scientific data, making it a versatile tool for overcoming the challenges associated with radiation damage and sample degradation in nanoscale imaging.
ArticleNumber 102
Author Okada, Masato
Igarashi, Yasuhiko
Sekine, Masahiro
Nagamura, Naoka
Fukidome, Hirokazu
Hino, Hideitsu
Author_xml – sequence: 1
  givenname: Yasuhiko
  surname: Igarashi
  fullname: Igarashi, Yasuhiko
  email: igayasu1219@cs.tsukuba.ac.jp
  organization: Institute of Engineering, Information and Systems, University of Tsukuba, Photoemission Group, National Institute for Materials Science
– sequence: 2
  givenname: Naoka
  surname: Nagamura
  fullname: Nagamura, Naoka
  email: NAGAMURA.Naoka@nims.go.jp
  organization: Photoemission Group, National Institute for Materials Science, Graduate School of Advanced Engineering, Tokyo University of Science, Research Institute of Electrical Communication, Tohoku University
– sequence: 3
  givenname: Masahiro
  surname: Sekine
  fullname: Sekine, Masahiro
  organization: Institute of Engineering, Information and Systems, University of Tsukuba
– sequence: 4
  givenname: Hirokazu
  surname: Fukidome
  fullname: Fukidome, Hirokazu
  organization: Research Institute of Electrical Communication, Tohoku University
– sequence: 5
  givenname: Hideitsu
  surname: Hino
  fullname: Hino, Hideitsu
  organization: Department of Advanced Data Science, Research Center for Statistical Machine Learning, The Institute of Statistical Mathematics
– sequence: 6
  givenname: Masato
  surname: Okada
  fullname: Okada, Masato
  organization: Photoemission Group, National Institute for Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40608206$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1UREvpH-CAInHpJWCPk9g5IVRRqFSJA3C2HHu89SqJg51U3X-Pd1NKywFxsjXzzDufL8nRGEYk5DWj7xiTzfvEWCNYSaEuaQUtK--ekRMQnJUtQHv06H9MzlLaUkpBCpB1_YIcV7ShEmhzQuy3SceEhQnWj5uy0wltMSz97F3UAxZpmTBGTKFfZh_GwoVYoHPeeBznIu1GcxPDHLMnauv1gRm8iSFNaLI9mTDtXpHnTvcJz-7fU_Lj8tP3iy_l9dfPVxcfr0tTg5hLg1XLOwZO11Qg51Jq5xqJwra2E4A1R9lhpdFZIamzyCvDqaicaI1ASfkpuVp1bdBbNUU_6LhTQXt1MIS4UTrO3vSoDEVXY9cgMl51VrSaMUM5goFWgGNZ68OqNS3dgNbkdqPun4g-9Yz-Rm3CrWKQZ85FnRXO7xVi-LlgmtXgk8G-1yOGJSkOgsnciGz_A4VGABX1vse3f6HbsMQxj_VASeCS7XO_eVz9Q9m_F58BWIH9qlJE94AwqvYHptYDU_nA1OHA1F0O4mtQyvC4wfgn9z-ifgFy3tY2
Cites_doi 10.1002/aenm.201600025
10.1109/TPAMI.2015.2439281
10.1021/acsami.0c13233
10.1039/C6NR06541D
10.1039/B816543B
10.1002/adma.200390100
10.1063/1.1370563
10.1038/nphoton.2010.267
10.1109/CMSP.2011.79
10.1063/1.3657156
10.1006/jvci.1993.1030
10.1109/LGRS.2019.2940483
10.1088/2632-959X/aca0af
10.1109/JPROC.2020.3004555
10.1109/CVPR52688.2022.01695
10.1107/S0909049597014283
10.1038/381607a0
10.1109/TSP.2006.881199
10.1038/s41598-019-48842-6
10.1038/nnano.2015.340
10.1016/j.neunet.2015.02.009
10.1109/MSP.2018.2820224
10.3390/rs12142207
10.1016/j.elspec.2017.06.006
10.1103/RevModPhys.90.025007
10.1016/S0079-6816(02)00007-2
10.1109/TIP.2006.881969
10.1109/TIP.2017.2662206
10.58496/MJBD/2023/004
10.1016/j.neucom.2017.02.043
10.1109/CVPRW53098.2021.00058
10.1126/science.aac9439
10.1007/978-1-4419-7011-4
10.1109/CVPR.2008.4587647
10.1016/j.ultramic.2019.112818
10.7551/mitpress/7503.003.0105
10.1016/j.carbon.2019.06.038
10.1109/T-C.1974.223784
10.1109/TKDE.2009.191
10.1016/S0168-9002(01)00516-2
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s11671-025-04291-x
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed


AGRICOLA
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2731-9229
1556-276X
EndPage 102
ExternalDocumentID oai_doaj_org_article_c0ef5eb6ee134bd79a11c03e2c2972f1
PMC12229375
40608206
10_1186_s11671_025_04291_x
Genre Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 24K02995; 21H04696; 24K01243
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Innovative Science and Technology Initiative for Security of ATLA Japan
  grantid: JPJ004596; JPJ004596
– fundername: Japan Science and Technology Agency
  grantid: CREST: JPMJCR1761; JPMJCR21O1; JPMJCR2235 ; PRESTO: 590 JPMJPR17N2,; JPMJPR17N2; JPMJPR20T7
  funderid: http://dx.doi.org/10.13039/501100002241
– fundername: National Institute of Information and Communications Technology
  grantid: Beyond 5G Research and Development Project(05901)
  funderid: https://doi.org/10.13039/501100012389
– fundername: Japan Society for the Promotion of Science
  grantid: 24K01243
– fundername: Japan Science and Technology Agency
  grantid: JPMJPR20T7
– fundername: Innovative Science and Technology Initiative for Security of ATLA Japan
  grantid: JPJ004596
– fundername: Japan Science and Technology Agency
  grantid: PRESTO: 590 JPMJPR17N2,
– fundername: Japan Society for the Promotion of Science
  grantid: 24K02995
– fundername: Japan Science and Technology Agency
  grantid: JPMJPR17N2
– fundername: National Institute of Information and Communications Technology
  grantid: Beyond 5G Research and Development Project(05901)
– fundername: Japan Science and Technology Agency
  grantid: CREST: JPMJCR1761
– fundername: Japan Science and Technology Agency
  grantid: JPMJCR21O1
– fundername: Japan Science and Technology Agency
  grantid: JPMJCR2235
GroupedDBID .4S
0R~
AAJSJ
AAKKN
AASML
ABEEZ
ACACY
ACULB
ACVER
AFGXO
ALMA_UNASSIGNED_HOLDINGS
ARCSS
C24
C6C
EBLON
EBS
EDO
GROUPED_DOAJ
MM.
M~E
PGMZT
RPM
SOJ
TUS
AAYXX
CITATION
NPM
.86
.DC
123
29M
2WC
4.4
40G
5VS
6NX
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
AAFWJ
ABJCF
ABMNI
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADRAZ
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHYZX
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CAG
CCPQU
CS3
D1I
DU5
DWQXO
F28
F5P
FR3
GNUQQ
GX1
H8D
H8G
HCIFZ
HH5
HYE
HZ~
I09
IZQ
JG9
JQ2
KB.
KDC
KQ8
KR7
L7M
LK8
L~C
L~D
M7P
O5R
O5S
OK1
OVT
P2P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RNS
RPX
SCM
SDH
TR2
U2A
~KM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c527t-ce493b12fa507e3388aff68e7d9db72e53e8be4aefd780fde34c3074f79c7e803
IEDL.DBID M7P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001522712700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2731-9229
1931-7573
IngestDate Fri Oct 03 12:47:37 EDT 2025
Tue Sep 30 17:02:00 EDT 2025
Fri Nov 14 18:41:20 EST 2025
Thu Jul 03 19:14:55 EDT 2025
Wed Oct 08 14:21:44 EDT 2025
Thu Jul 10 06:24:07 EDT 2025
Sat Nov 29 07:46:28 EST 2025
Fri Jul 04 01:18:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nanostructure image enhancement
Radiation damage reduction
Sparse coding superresolution
Synchrotron image reconstruction
High-resolution microscopy
Measurement image analysis
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-ce493b12fa507e3388aff68e7d9db72e53e8be4aefd780fde34c3074f79c7e803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3226823815?pq-origsite=%requestingapplication%
PMID 40608206
PQID 3226823815
PQPubID 2034687
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_c0ef5eb6ee134bd79a11c03e2c2972f1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12229375
proquest_miscellaneous_3271878089
proquest_miscellaneous_3226720750
proquest_journals_3226823815
pubmed_primary_40608206
crossref_primary_10_1186_s11671_025_04291_x
springer_journals_10_1186_s11671_025_04291_x
PublicationCentury 2000
PublicationDate 2025-07-03
PublicationDateYYYYMMDD 2025-07-03
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-03
  day: 03
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Switzerland
– name: Heidelberg
PublicationTitle Discover nano
PublicationTitleAbbrev Discover Nano
PublicationTitleAlternate Discov Nano
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References 4291_CR15
J Avila (4291_CR7) 2013; 425
M Aharon (4291_CR1) 2006; 54
M Elad (4291_CR11) 2010
E Sakai (4291_CR35) 2016; 8
4291_CR14
M Elad (4291_CR12) 2006; 15
L Peng (4291_CR34) 2016; 6
S Shi (4291_CR39) 2022; 35
D Deng (4291_CR8) 2016; 11
I Hong (4291_CR16) 2001; 467
M Kawulok (4291_CR21) 2019; 17
K Nakamura (4291_CR28) 2020; 12
4291_CR9
K Novoselov (4291_CR29) 2016; 353
T Kato (4291_CR19) 2015; 66
M Irani (4291_CR18) 1993; 4
F Salvetti (4291_CR37) 2020; 12
G Shen (4291_CR38) 2009; 19
BA Olshausen (4291_CR30) 1996; 381
C Dong (4291_CR10) 2015; 38
A Sakdinawat (4291_CR36) 2010; 4
M Amati (4291_CR5) 2018; 224
N Nagamura (4291_CR26) 2019; 152
S Günther (4291_CR13) 2002; 70
4291_CR22
4291_CR44
4291_CR24
S Anada (4291_CR6) 2019; 206
N Nagamura (4291_CR27) 2022; 3
SJ Pan (4291_CR31) 2009; 22
L Mino (4291_CR25) 2018; 90
4291_CR40
T Warwick (4291_CR42) 1998; 5
4291_CR43
K Horiba (4291_CR17) 2011; 82
K Zhang (4291_CR45) 2017; 26
V Papyan (4291_CR33) 2018; 35
K Akada (4291_CR3) 2019; 9
T Kato (4291_CR20) 2017; 240
F Zhuang (4291_CR46) 2020; 109
Z Wang (4291_CR41) 2003; 15
N Ahmed (4291_CR2) 1974; 100
AH Ali (4291_CR4) 2023; 2023
M Lee (4291_CR23) 2001; 72
V Papyan (4291_CR32) 2017; 18
References_xml – volume: 6
  start-page: 1600025
  issue: 11
  year: 2016
  ident: 4291_CR34
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201600025
– volume: 38
  start-page: 295
  issue: 2
  year: 2015
  ident: 4291_CR10
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2439281
– volume: 12
  start-page: 51598
  issue: 46
  year: 2020
  ident: 4291_CR28
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c13233
– volume: 18
  start-page: 1
  issue: 83
  year: 2017
  ident: 4291_CR32
  publication-title: J Mach Learn Res
– volume: 8
  start-page: 18893
  issue: 45
  year: 2016
  ident: 4291_CR35
  publication-title: Nanoscale
  doi: 10.1039/C6NR06541D
– volume: 19
  start-page: 828
  issue: 7
  year: 2009
  ident: 4291_CR38
  publication-title: J Mater Chem
  doi: 10.1039/B816543B
– ident: 4291_CR9
– volume: 15
  start-page: 432
  issue: 5
  year: 2003
  ident: 4291_CR41
  publication-title: Adv Mater
  doi: 10.1002/adma.200390100
– volume: 72
  start-page: 2605
  issue: 6
  year: 2001
  ident: 4291_CR23
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.1370563
– volume: 4
  start-page: 840
  year: 2010
  ident: 4291_CR36
  publication-title: Nat Photon
  doi: 10.1038/nphoton.2010.267
– ident: 4291_CR40
  doi: 10.1109/CMSP.2011.79
– volume: 82
  issue: 11
  year: 2011
  ident: 4291_CR17
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.3657156
– volume: 4
  start-page: 324
  issue: 4
  year: 1993
  ident: 4291_CR18
  publication-title: J Vis Commun Image Represent
  doi: 10.1006/jvci.1993.1030
– volume: 17
  start-page: 1062
  issue: 6
  year: 2019
  ident: 4291_CR21
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2019.2940483
– volume: 3
  issue: 4
  year: 2022
  ident: 4291_CR27
  publication-title: Nano Express
  doi: 10.1088/2632-959X/aca0af
– volume: 35
  start-page: 36081
  year: 2022
  ident: 4291_CR39
  publication-title: Adv Neural Inf Process Syst
– volume: 109
  start-page: 43
  issue: 1
  year: 2020
  ident: 4291_CR46
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2020.3004555
– ident: 4291_CR14
  doi: 10.1109/CVPR52688.2022.01695
– volume: 5
  start-page: 1090
  year: 1998
  ident: 4291_CR42
  publication-title: J Synchrotron Radiat
  doi: 10.1107/S0909049597014283
– ident: 4291_CR44
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  ident: 4291_CR30
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 4291_CR1
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.881199
– volume: 9
  start-page: 12452
  issue: 1
  year: 2019
  ident: 4291_CR3
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-48842-6
– volume: 11
  start-page: 218
  year: 2016
  ident: 4291_CR8
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2015.340
– ident: 4291_CR15
– volume: 66
  start-page: 64
  year: 2015
  ident: 4291_CR19
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2015.02.009
– volume: 35
  start-page: 72
  issue: 4
  year: 2018
  ident: 4291_CR33
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2018.2820224
– volume: 12
  start-page: 2207
  issue: 14
  year: 2020
  ident: 4291_CR37
  publication-title: Remote Sens
  doi: 10.3390/rs12142207
– volume: 224
  start-page: 59
  year: 2018
  ident: 4291_CR5
  publication-title: J Electron Spectrosc Relat Phenom
  doi: 10.1016/j.elspec.2017.06.006
– volume: 90
  issue: 2
  year: 2018
  ident: 4291_CR25
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.90.025007
– volume: 70
  start-page: 187
  year: 2002
  ident: 4291_CR13
  publication-title: Prog Surf Sci
  doi: 10.1016/S0079-6816(02)00007-2
– volume: 15
  start-page: 3736
  issue: 12
  year: 2006
  ident: 4291_CR12
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2006.881969
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 4291_CR45
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2662206
– volume: 2023
  start-page: 29
  year: 2023
  ident: 4291_CR4
  publication-title: Mesop J Big Data
  doi: 10.58496/MJBD/2023/004
– volume: 240
  start-page: 115
  year: 2017
  ident: 4291_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.043
– ident: 4291_CR24
  doi: 10.1109/CVPRW53098.2021.00058
– volume: 353
  start-page: aac9439
  issue: 6298
  year: 2016
  ident: 4291_CR29
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume-title: Sparse and redundant representations: from theory to applications in signal and image processing
  year: 2010
  ident: 4291_CR11
  doi: 10.1007/978-1-4419-7011-4
– ident: 4291_CR43
  doi: 10.1109/CVPR.2008.4587647
– volume: 206
  year: 2019
  ident: 4291_CR6
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2019.112818
– ident: 4291_CR22
  doi: 10.7551/mitpress/7503.003.0105
– volume: 152
  start-page: 680
  year: 2019
  ident: 4291_CR26
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.06.038
– volume: 100
  start-page: 90
  issue: 1
  year: 1974
  ident: 4291_CR2
  publication-title: IEEE Trans Comput
  doi: 10.1109/T-C.1974.223784
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  ident: 4291_CR31
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– volume: 467
  start-page: 905
  year: 2001
  ident: 4291_CR16
  publication-title: Nucl Inst Methods Phys Res A
  doi: 10.1016/S0168-9002(01)00516-2
– volume: 425
  start-page: 1
  issue: 192023
  year: 2013
  ident: 4291_CR7
  publication-title: J Phys: Conf Ser
SSID ssj0002872855
ssj0047076
Score 2.4175866
Snippet In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and charging...
Abstract In nanostructure extraction, advanced techniques like synchrotron radiation and electron microscopy are often hindered by radiation damage and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 102
SubjectTerms Algorithms
Chemical analysis
Chemistry and Materials Science
Coding
data collection
Datasets
Deep learning
Degradation
Dictionaries
Electron microscopy
Exposure
exposure duration
High resolution
High-resolution microscopy
Image quality
Image reconstruction
Image resolution
Materials Science
Measurement image analysis
Measurement techniques
Methods
Microscopes
Microscopy
Misalignment
Molecular Medicine
Nanochemistry
nanomaterials
Nanoscale Science and Technology
Nanostructure
Nanostructure image enhancement
Nanotechnology
Nanotechnology and Microengineering
Neural networks
Radiation
Radiation damage
Radiation damage reduction
Radiation effects
Sparse coding superresolution
Spatial discrimination learning
Spatial resolution
Spectroscopy
Spectrum analysis
Synchrotron image reconstruction
Synchrotron radiation
Time measurement
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiDehBQWJG1hN7Di2jwVRcaqQAKk3K7bHapFIVptd1P57ZpzsssvzwjV2lMl47PnGHn_D2EtZiaDQsXDdCcWJkYobBYlr36iYvAWwU7EJfXZmzs_th51SX5QTNtEDT4o7DhUkBb4FqGXjo7ZdXYdKggjCapFy4IOoZyeY-pK3jLQwSm1uyZj2eKQDB4ycUSJag2t-teeJMmH_71Dmr8mSP52YZkd0epfdmRFkeTJJfo_dgP4-u73DK_iAxY8LjFehDAN5Jk6eKpY5dTBRLlY5rhdARTlmsysRuJaQuSTw6-V43YeL5UB75OWSqAtyn6-UuZfvZRL_5bC4fsg-n7779PY9n8spcBwNveIBGit9LVKHGBAwNDVdSq0BHW30WoCSYDw0HaSoTZUiyCbgCtAkbYMGU8lH7KAfenjCShs6bwJiEyWrRgZjPH4heq8rE1OlRcFebVTrFhNrhsvRhmndNBAO33V5INxVwd6Q9rc9ifE6P0A7cLMduH_ZQcGONmPn5mk4OlytWkOgRBXsxbYZJxCdinQ9DOupjxaEnP7WB104KsXYgj2ezGErLSIiglFtwcyeoez9zn5Lf3mRibxrKqYuNQr3emNTP2T_s76e_g99HbJbIk8GzSt5xA5WyzU8YzfDt9XluHyeZ9N3RQonJA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nj9UgECdm9aAHvz-qq6mJNyVSKAWOunHjaWOiJnsjBQZ3TWxf2vc2u_-9A22fPl1N9FqGdgozzA8YfhDyQjDuJQYWqlouaWKkolpCpMrVMkRnAMx02YQ6OtLHx-bDfChsXLLdly3JPFJnt9bN6zHtGODUF1-ZBtGKInK8Kittkl0fzGccvublIsW1lMsJmUur7kShTNZ_GcL8PVHyl93SHIQOb_2f-rfJzRl0lm8mK7lDrkB3l9z4iYrwHgkfVzjFhdL3KZjRFNxCmbMNY0rfKsfNCtI9HrOlloh1S8j0E6h0OV50_mTo07J6OSS2gyzzLSX75aOciTKzX13cJ58P3306eE_nGxgodqBaUw-1Ea7isUXYCDib1W2MjQYVTHCKgxSgHdQtxKA0iwFE7XHQqKMyXoFm4gHZ6_oOHpHS-NZpj3BGClYLr7XDLwTnFNMhMsUL8nLpEbuaiDZsnqDoxk5tZ7GuzW1nzwvyNnXaVjKRZOcH_fDFzj5nPYMowTUAlahdUKatKs8EcM-N4rEqyP7S5Xb23NHiANfohGNkQZ5vi9Hn0kZK20G_mWQUT2DrbzIY9bFRtCnIw8mKttoiiErIqymI3rGvnd_ZLelOTzL3d5XuXxcKlXu1mNkP3f_cXo__TfwJuc6zpSrKxD7ZWw8beEqu-bP16Tg8y-72Ha8OKrs
  priority: 102
  providerName: Springer Nature
Title Sparse coding-based multiframe superresolution for efficient synchrotron radiation microspectroscopy
URI https://link.springer.com/article/10.1186/s11671-025-04291-x
https://www.ncbi.nlm.nih.gov/pubmed/40608206
https://www.proquest.com/docview/3226823815
https://www.proquest.com/docview/3226720750
https://www.proquest.com/docview/3271878089
https://pubmed.ncbi.nlm.nih.gov/PMC12229375
https://doaj.org/article/c0ef5eb6ee134bd79a11c03e2c2972f1
Volume 20
WOSCitedRecordID wos001522712700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2731-9229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002872855
  issn: 2731-9229
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2731-9229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047076
  issn: 2731-9229
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2731-9229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002872855
  issn: 2731-9229
  databaseCode: M~E
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2731-9229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047076
  issn: 2731-9229
  databaseCode: M7P
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2731-9229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047076
  issn: 2731-9229
  databaseCode: KB.
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2731-9229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047076
  issn: 2731-9229
  databaseCode: BENPR
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2731-9229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047076
  issn: 2731-9229
  databaseCode: PIMPY
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2731-9229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002872855
  issn: 2731-9229
  databaseCode: C24
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoywEOvB-BsgoSNzBN7CR2ToitWoEQqxUPaTlFiT2mPZAsyS5q_z0zTrJlefTCZaWsHWWcmfF8tiffMPZMRsKkGFi4KkXKiZGK6xQcV1WSWlflAHlfbELNZnqxyOfDhls3pFWOc6KfqG1jaI_8AA0v0xRf0lfL75yqRtHp6lBCY4ftEUuC9Kl783EmTlTki8shRkFZUiXHj2Z0dtDR-QMupFFAmpJjfrYVmDx__99A55-5k78doPq4dHzzf0d0i90YEGn4ujeh2-wK1HfY9V94Cu8y-3GJ618ITUORjlPks6FPRXSU2xV26yVQkY_BjEMEwiF4bgoUP-zOa3PSNrTnHrZEheD7fKNMQP-dJ_FpNsvze-zz8dGnwzd8KM_AUbtqxQ0kuaxi4UrElIBLXV06l2lQNreVEpBK0BUkJTirdOQsyMTgjJI4lRsFOpL32W7d1PCQhbkpK20Q66QySqTRusIn2KpSkbYuUiJgz0fdFMuehaPwqxedFb0mC7y38JoszgI2JfVtehKDtv-jab8Wg0MWJgKXQpUBxDKprMrLODaRBGFEroSLA7Y_aq0Y3LorLlQWsKebZnRIOmUpa2jWfR8lCIld1gchAb4UnQfsQW9PG2kRYREsywKmtyxtazjbLfXpiScGj6k4u1Qo3IvRKC9k__f7enT5UB-za8L7ieKR3Ge7q3YNT9hV82N12rUTtqMWesL2pkez-Qe8OhTJxG9s4O-76cuJ90hsn799P__yE3tKPIY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4YChgJTmDV3rW96wNCvKpGbaNIFKk9LfZ6lvaAHeIEmj_Fb2R2baeER289cI03ye7km5lvMrMzAE95yHRCjiUQOUsC25EqkAmaQBRxUpoiQ8zaYRNiNJIHB9l4DX70d2FsWWVvE52hLmtt_yPfJOCl0vqX5NXka2CnRtnsaj9Co4XFDi6-U8jWvBy-o9_3GWNb7_ffbgfdVIGANiVmgcY440XETE5UCClCk7kxqURRZmUhGCYcZYFxjqYUMjQl8liTIsRGZFqgDDl97gVYjwnscgDr4-He-LC3_bEI3Tg7YkV0-kTw_pqOTDcbm_Gg0J1EYp1AFJysuEI3MeBvNPfPas3fUrbOE25d-99keB2udpzbf90qyQ1Yw-omXPmlE-MtKD9MKMJHX9fWlwfWt5e-K7Y0tnrNb-YTtGNMOkX1ier76LpvkLj8ZlHpo2ltswr-1DZ7cGu-2FpHd5PVdgytJ4vb8PFcjnkHBlVd4T3wM50XUhObS3gYcy1lQd9QFoUIZWlCwTx43mNBTdo-I8rFZzJVLXIUvVc55KgTD95YuCxX2h7h7oV6-ll1JkfpEE2CRYoY8bgoRZZHkQ45Ms0ywUzkwUaPEtUZrkadQsSDJ8vHZHJsHimvsJ63awSzXPOsNUR6SCgy8-Bui9_lbolDWuKZeiBXkL1ynNUn1fGRa30e2fHzXNDmXvRKcLr3f8vr_tlHfQyXtvf3dtXucLTzAC4zp6MiCPkGDGbTOT6Ei_rb7LiZPur03YdP560ePwFOdZZ-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VghAceD8MBYwEJ7Bi79re9QEhoFRURVEkQOrN9e7O0h6wQ5xA89f4dcys7ZTw6K0HrvEm2Z18M_NNZnaGsSci5iZDxxLJimcRdaSKVAYukjrNrNMFQNENm5DjsdrfLyYb7MdwF4bKKgeb6A21bQz9Rz5C4OWK_Es2cn1ZxGR75-X0a0QTpCjTOozT6CCyB8vvGL61L3a38bd-yvnO249v3kX9hIEINyjnkYG0EDrhrkJaBBitqcq5XIG0hdWSQyZAaUgrcFaq2FkQqUGlSJ0sjAQVC_zcc-y8pKblvmxwMniBVMZ-sB3yI5RDJsVwYUflo5ZyHxjEo3DIHSTR8ZpT9LMD_kZ4_6zb_C15633iztX_WZrX2JWeiYevOtW5zjagvsEu_9Kf8SazH6YY90NoGvLwEXl8G_oSTEc1bWG7mAINN-nVN8QAIATfkwNFF7bL2hzOGso1hDNqAeHXfKEKSH-_lfqINtPlLfbpTI55m23WTQ13WViYSiuDHC8TcSqMUhq_wWotY2VdLHnAng24KKdd95HSR20qLzsUlfje0qOoPA7Ya4LOaiV1DvcvNLPPZW-IShODy0DnAIlItZVFlSQmFsANLyR3ScC2BsSUvTlryxO4BOzx6jEaIsouVTU0i26N5MRAT1uDVAiFooqA3emwvNotMkuio3nA1BrK146z_qQ-OvQN0RMaSi8kbu75oBAne_-3vO6dftRH7CLqRPl-d7x3n13iXl1lFIsttjmfLeABu2C-zY_a2UOv-CE7OGvd-Al-Q529
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+coding-based+multiframe+superresolution+for+efficient+synchrotron+radiation+microspectroscopy&rft.jtitle=Nanoscale+research+letters&rft.au=Igarashi%2C+Yasuhiko&rft.au=Nagamura%2C+Naoka&rft.au=Sekine%2C+Masahiro&rft.au=Fukidome%2C+Hirokazu&rft.date=2025-07-03&rft.pub=Springer+Nature+B.V&rft.issn=1931-7573&rft.eissn=1556-276X&rft.volume=20&rft.issue=1&rft.spage=102&rft_id=info:doi/10.1186%2Fs11671-025-04291-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-9229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-9229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-9229&client=summon