Hypergeometric generating functions for values of Dirichlet and other L functions

Although there is vast literature on the values of L functions at nonpositive integers, the recent appearance of some of these values as the coefficients of specializations of knot invariants comes as a surprise. Using work of G. E. Andrews [(1981) Adv. Math. 41, 173-185; (1986) q-Series: Their Deve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 100; číslo 12; s. 6904
Hlavní autoři: Lovejoy, Jeremy, Ono, Ken
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 10.06.2003
ISSN:0027-8424
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Although there is vast literature on the values of L functions at nonpositive integers, the recent appearance of some of these values as the coefficients of specializations of knot invariants comes as a surprise. Using work of G. E. Andrews [(1981) Adv. Math. 41, 173-185; (1986) q-Series: Their Development and Application in Analysis, Combinatories, Physics, and Computer Algebra, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics 66 (Am. Math. Soc, Providence, RI); (1975) Problems and Prospects for Basic Hypergeometric Series: The Theory and Application of Special Functions (Academic, New York); and (1992) Illinois J. Math. 36, 251-274], we revisit this old subject and provide uniform and general results giving such generating functions as specializations of basic hypergeometric functions. For example, we obtain such generating functions for all nontrivial Dirichlet L functions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0027-8424
DOI:10.1073/pnas.1131697100