Hypergeometric generating functions for values of Dirichlet and other L functions

Although there is vast literature on the values of L functions at nonpositive integers, the recent appearance of some of these values as the coefficients of specializations of knot invariants comes as a surprise. Using work of G. E. Andrews [(1981) Adv. Math. 41, 173-185; (1986) q-Series: Their Deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 100; H. 12; S. 6904
Hauptverfasser: Lovejoy, Jeremy, Ono, Ken
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 10.06.2003
ISSN:0027-8424
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although there is vast literature on the values of L functions at nonpositive integers, the recent appearance of some of these values as the coefficients of specializations of knot invariants comes as a surprise. Using work of G. E. Andrews [(1981) Adv. Math. 41, 173-185; (1986) q-Series: Their Development and Application in Analysis, Combinatories, Physics, and Computer Algebra, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics 66 (Am. Math. Soc, Providence, RI); (1975) Problems and Prospects for Basic Hypergeometric Series: The Theory and Application of Special Functions (Academic, New York); and (1992) Illinois J. Math. 36, 251-274], we revisit this old subject and provide uniform and general results giving such generating functions as specializations of basic hypergeometric functions. For example, we obtain such generating functions for all nontrivial Dirichlet L functions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0027-8424
DOI:10.1073/pnas.1131697100