Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways

[Display omitted] •Berberine represses human gastric cancer cell growth in vitro and in vivo without toxicity to Human peripheral blood mononuclear cells and nude mice.•Berberine induces cytostatic autophagy in BGC-823 cells via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways.•Autophagy ex...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biomedicine & pharmacotherapy Ročník 128; s. 110245
Hlavní autori: Zhang, Qiang, Wang, Xiaobing, Cao, Shijie, Sun, Yujie, He, Xinya, Jiang, Benke, Yu, Yaqin, Duan, Jingshi, Qiu, Feng, Kang, Ning
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: France Elsevier Masson SAS 01.08.2020
Predmet:
ISSN:0753-3322, 1950-6007, 1950-6007
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •Berberine represses human gastric cancer cell growth in vitro and in vivo without toxicity to Human peripheral blood mononuclear cells and nude mice.•Berberine induces cytostatic autophagy in BGC-823 cells via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways.•Autophagy exerts a negative feedback on mTOR/p70S6K, Akt and MAPK signaling in berberine induced cell death. Berberine, an isoquinoline alkaloid from Coptidis Rhizoma, has been characterized as a potential anticancer drug due to its good anti-tumor effects. However, the molecular mechanisms involved in anti-gastric cancer remain poorly understood. Herein, the role of berberine in gastric cancer suppression by inducing cytostatic autophagy in vitro and in vivo was first investigated. Results showed that berberine induced an obvious growth inhibitory effect on gastric cancer BGC-823 cells without toxicity to human peripheral blood mononuclear cells. Treatment with berberine triggered cell autophagy, as demonstrated by the punctuate distribution of monodansylcadaverine staining and GFP-LC3, as well as the LC3-II, Beclin-1 and p-ULK1 promotion, and p62 degradation. Inhibition of autophagy by 3-MA, CQ, Baf-A1 and BECN1 siRNA obviously increased cell viability of berberine-exposed gastric cancer cells, which confirmed the anti-cancer role of autophagy induced by berberine. Mechanistic studies showed that berberine inhibited mTOR, Akt and MAPK (ERK, JNK and p38) pathways thereby inducing autophagy. Inhibition of above pathways increases berberine induced autophagy and cytotoxicity. Interestingly, mTOR/p70S6K was inhibited by the MAPK but not Akt. Furthermore, inhibition of autophagy reversed berberine down-regulated mTOR, Akt and MAPK. In xenografts, the berberine induced autophagy leads to suppression of tumor proliferation with no side-effect, and western blotting displayed an apparent attenuation of p-mTOR, p-p70S6K, p-Akt, p-ERK, p-JNK and p-p38 in tumors from berberine treated mice. Briefly, these results indicated that berberine repressed human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt, and provided a molecular basis for the treatment of gastric cancer.
AbstractList Berberine, an isoquinoline alkaloid from Coptidis Rhizoma, has been characterized as a potential anticancer drug due to its good anti-tumor effects. However, the molecular mechanisms involved in anti-gastric cancer remain poorly understood. Herein, the role of berberine in gastric cancer suppression by inducing cytostatic autophagy in vitro and in vivo was first investigated. Results showed that berberine induced an obvious growth inhibitory effect on gastric cancer BGC-823 cells without toxicity to human peripheral blood mononuclear cells. Treatment with berberine triggered cell autophagy, as demonstrated by the punctuate distribution of monodansylcadaverine staining and GFP-LC3, as well as the LC3-II, Beclin-1 and p-ULK1 promotion, and p62 degradation. Inhibition of autophagy by 3-MA, CQ, Baf-A1 and BECN1 siRNA obviously increased cell viability of berberine-exposed gastric cancer cells, which confirmed the anti-cancer role of autophagy induced by berberine. Mechanistic studies showed that berberine inhibited mTOR, Akt and MAPK (ERK, JNK and p38) pathways thereby inducing autophagy. Inhibition of above pathways increases berberine induced autophagy and cytotoxicity. Interestingly, mTOR/p70S6K was inhibited by the MAPK but not Akt. Furthermore, inhibition of autophagy reversed berberine down-regulated mTOR, Akt and MAPK. In xenografts, the berberine induced autophagy leads to suppression of tumor proliferation with no side-effect, and western blotting displayed an apparent attenuation of p-mTOR, p-p70S6K, p-Akt, p-ERK, p-JNK and p-p38 in tumors from berberine treated mice. Briefly, these results indicated that berberine repressed human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt, and provided a molecular basis for the treatment of gastric cancer.Berberine, an isoquinoline alkaloid from Coptidis Rhizoma, has been characterized as a potential anticancer drug due to its good anti-tumor effects. However, the molecular mechanisms involved in anti-gastric cancer remain poorly understood. Herein, the role of berberine in gastric cancer suppression by inducing cytostatic autophagy in vitro and in vivo was first investigated. Results showed that berberine induced an obvious growth inhibitory effect on gastric cancer BGC-823 cells without toxicity to human peripheral blood mononuclear cells. Treatment with berberine triggered cell autophagy, as demonstrated by the punctuate distribution of monodansylcadaverine staining and GFP-LC3, as well as the LC3-II, Beclin-1 and p-ULK1 promotion, and p62 degradation. Inhibition of autophagy by 3-MA, CQ, Baf-A1 and BECN1 siRNA obviously increased cell viability of berberine-exposed gastric cancer cells, which confirmed the anti-cancer role of autophagy induced by berberine. Mechanistic studies showed that berberine inhibited mTOR, Akt and MAPK (ERK, JNK and p38) pathways thereby inducing autophagy. Inhibition of above pathways increases berberine induced autophagy and cytotoxicity. Interestingly, mTOR/p70S6K was inhibited by the MAPK but not Akt. Furthermore, inhibition of autophagy reversed berberine down-regulated mTOR, Akt and MAPK. In xenografts, the berberine induced autophagy leads to suppression of tumor proliferation with no side-effect, and western blotting displayed an apparent attenuation of p-mTOR, p-p70S6K, p-Akt, p-ERK, p-JNK and p-p38 in tumors from berberine treated mice. Briefly, these results indicated that berberine repressed human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt, and provided a molecular basis for the treatment of gastric cancer.
[Display omitted] •Berberine represses human gastric cancer cell growth in vitro and in vivo without toxicity to Human peripheral blood mononuclear cells and nude mice.•Berberine induces cytostatic autophagy in BGC-823 cells via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways.•Autophagy exerts a negative feedback on mTOR/p70S6K, Akt and MAPK signaling in berberine induced cell death. Berberine, an isoquinoline alkaloid from Coptidis Rhizoma, has been characterized as a potential anticancer drug due to its good anti-tumor effects. However, the molecular mechanisms involved in anti-gastric cancer remain poorly understood. Herein, the role of berberine in gastric cancer suppression by inducing cytostatic autophagy in vitro and in vivo was first investigated. Results showed that berberine induced an obvious growth inhibitory effect on gastric cancer BGC-823 cells without toxicity to human peripheral blood mononuclear cells. Treatment with berberine triggered cell autophagy, as demonstrated by the punctuate distribution of monodansylcadaverine staining and GFP-LC3, as well as the LC3-II, Beclin-1 and p-ULK1 promotion, and p62 degradation. Inhibition of autophagy by 3-MA, CQ, Baf-A1 and BECN1 siRNA obviously increased cell viability of berberine-exposed gastric cancer cells, which confirmed the anti-cancer role of autophagy induced by berberine. Mechanistic studies showed that berberine inhibited mTOR, Akt and MAPK (ERK, JNK and p38) pathways thereby inducing autophagy. Inhibition of above pathways increases berberine induced autophagy and cytotoxicity. Interestingly, mTOR/p70S6K was inhibited by the MAPK but not Akt. Furthermore, inhibition of autophagy reversed berberine down-regulated mTOR, Akt and MAPK. In xenografts, the berberine induced autophagy leads to suppression of tumor proliferation with no side-effect, and western blotting displayed an apparent attenuation of p-mTOR, p-p70S6K, p-Akt, p-ERK, p-JNK and p-p38 in tumors from berberine treated mice. Briefly, these results indicated that berberine repressed human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt, and provided a molecular basis for the treatment of gastric cancer.
Berberine, an isoquinoline alkaloid from Coptidis Rhizoma, has been characterized as a potential anticancer drug due to its good anti-tumor effects. However, the molecular mechanisms involved in anti-gastric cancer remain poorly understood. Herein, the role of berberine in gastric cancer suppression by inducing cytostatic autophagy in vitro and in vivo was first investigated. Results showed that berberine induced an obvious growth inhibitory effect on gastric cancer BGC-823 cells without toxicity to human peripheral blood mononuclear cells. Treatment with berberine triggered cell autophagy, as demonstrated by the punctuate distribution of monodansylcadaverine staining and GFP-LC3, as well as the LC3-II, Beclin-1 and p-ULK1 promotion, and p62 degradation. Inhibition of autophagy by 3-MA, CQ, Baf-A1 and BECN1 siRNA obviously increased cell viability of berberine-exposed gastric cancer cells, which confirmed the anti-cancer role of autophagy induced by berberine. Mechanistic studies showed that berberine inhibited mTOR, Akt and MAPK (ERK, JNK and p38) pathways thereby inducing autophagy. Inhibition of above pathways increases berberine induced autophagy and cytotoxicity. Interestingly, mTOR/p70S6K was inhibited by the MAPK but not Akt. Furthermore, inhibition of autophagy reversed berberine down-regulated mTOR, Akt and MAPK. In xenografts, the berberine induced autophagy leads to suppression of tumor proliferation with no side-effect, and western blotting displayed an apparent attenuation of p-mTOR, p-p70S6K, p-Akt, p-ERK, p-JNK and p-p38 in tumors from berberine treated mice. Briefly, these results indicated that berberine repressed human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt, and provided a molecular basis for the treatment of gastric cancer.
ArticleNumber 110245
Author Cao, Shijie
Kang, Ning
Zhang, Qiang
Wang, Xiaobing
He, Xinya
Sun, Yujie
Yu, Yaqin
Jiang, Benke
Qiu, Feng
Duan, Jingshi
Author_xml – sequence: 1
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
– sequence: 2
  givenname: Xiaobing
  surname: Wang
  fullname: Wang, Xiaobing
  organization: Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang, China
– sequence: 3
  givenname: Shijie
  surname: Cao
  fullname: Cao, Shijie
  organization: Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
– sequence: 4
  givenname: Yujie
  surname: Sun
  fullname: Sun, Yujie
  organization: School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
– sequence: 5
  givenname: Xinya
  surname: He
  fullname: He, Xinya
  organization: School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
– sequence: 6
  givenname: Benke
  surname: Jiang
  fullname: Jiang, Benke
  organization: Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang, China
– sequence: 7
  givenname: Yaqin
  surname: Yu
  fullname: Yu, Yaqin
  organization: School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
– sequence: 8
  givenname: Jingshi
  surname: Duan
  fullname: Duan, Jingshi
  organization: School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
– sequence: 9
  givenname: Feng
  surname: Qiu
  fullname: Qiu, Feng
  organization: Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
– sequence: 10
  givenname: Ning
  surname: Kang
  fullname: Kang, Ning
  email: kangndd@163.com
  organization: School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32454290$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URNPCGyDkJZskvsw4CUJIoeKmFhVBWVsez3HidGIPtifVvFEfsx6msOgmK1_0_b_s852hE-cdIPSakhklVMx3s8r6dqtmjLB8RQkrymdoQlclmQpCFidoQhYln3LO2Ck6i3FHCCkFX75ApzyzBVuRCbr_CKGCYB3gAG2AGCHibbdXDm9UTMFqrJXTELCGpsGb4O_SFluHDzYFj5Wrx8PB46rP27rT1m2w7pOPSaUcV10anrnpM6UysbWVTdY77A3-vv5xOd_fXP-ctwvyS1z-7VvfJhztxqlmaGpV2t6pPr5Ez41qIrx6XM_R78-fbi6-Tq-uv3y7WF9NdckWaaqKQpRLs1wCY9RorqE2yxJoIYQxghuoKxBmxYSqaqFXhipTcWXKolZQU17zc_R27G2D_9NBTHJv4_B35cB3UbKCLDhlXIiMvnlEu2oPtWyD3avQy3_TzUAxAjr4GAOY_wglcpAod3KUKAeJcpSYY--exLQdZuldCso2x8IfxjDkIR0sBBm1hWywtgF0krW3xwrePynQWYTVqrmF_nj8AdmS0X0
CitedBy_id crossref_primary_10_1155_2022_7251450
crossref_primary_10_3389_fphar_2021_719694
crossref_primary_10_1007_s00253_023_12601_5
crossref_primary_10_1186_s41065_025_00419_2
crossref_primary_10_1016_j_biopha_2023_115511
crossref_primary_10_1016_j_arabjc_2022_104162
crossref_primary_10_3390_cells13030287
crossref_primary_10_3390_molecules28155759
crossref_primary_10_1155_2022_2156204
crossref_primary_10_1007_s40199_023_00480_0
crossref_primary_10_3390_molecules26237368
crossref_primary_10_1111_ajco_13941
crossref_primary_10_1128_iai_00103_23
crossref_primary_10_1016_j_phrs_2024_107127
crossref_primary_10_1038_s41598_025_98214_6
crossref_primary_10_3390_ijms21218307
crossref_primary_10_3390_pharmaceutics14112377
crossref_primary_10_1007_s11655_022_3671_z
crossref_primary_10_1038_s41598_023_39627_z
crossref_primary_10_3389_fphar_2022_884822
crossref_primary_10_3390_molecules27144523
crossref_primary_10_1016_j_phrs_2022_106440
crossref_primary_10_2174_1381612826666200928155728
crossref_primary_10_1186_s12967_024_05656_z
crossref_primary_10_1016_j_heliyon_2024_e27218
crossref_primary_10_1186_s12935_025_03957_x
crossref_primary_10_1080_15548627_2024_2353497
crossref_primary_10_3389_fphar_2022_856777
crossref_primary_10_3389_fimmu_2022_1083788
crossref_primary_10_1002_ptr_8255
crossref_primary_10_3390_molecules27185889
crossref_primary_10_1002_cbin_70038
crossref_primary_10_1186_s12967_024_05998_8
crossref_primary_10_1186_s13020_025_01124_y
crossref_primary_10_1016_j_ejphar_2020_173660
crossref_primary_10_3390_ijms22041653
crossref_primary_10_3390_ijms25158375
crossref_primary_10_1016_j_jep_2022_115737
crossref_primary_10_1016_j_tranon_2025_102380
crossref_primary_10_1038_s41392_025_02167_1
crossref_primary_10_1016_j_fitote_2020_104771
crossref_primary_10_3390_ijms22189807
crossref_primary_10_1016_j_omto_2022_07_007
crossref_primary_10_1016_j_jare_2024_11_004
crossref_primary_10_3390_ijms24076588
crossref_primary_10_3390_bioengineering12010007
crossref_primary_10_1016_j_biopha_2023_114883
crossref_primary_10_3389_fphar_2025_1548672
crossref_primary_10_1007_s12013_023_01179_4
crossref_primary_10_1002_jbt_23280
crossref_primary_10_1097_MD_0000000000035070
crossref_primary_10_1002_ptr_8524
crossref_primary_10_1016_j_critrevonc_2025_104820
crossref_primary_10_3390_diagnostics12061502
crossref_primary_10_3389_fphar_2025_1604071
crossref_primary_10_1002_mrd_23768
crossref_primary_10_1002_advs_202404937
crossref_primary_10_1016_j_phrs_2023_106760
crossref_primary_10_3892_mmr_2021_12229
crossref_primary_10_4274_balkanmedj_galenos_2024_2024_7_9
crossref_primary_10_3390_molecules29215210
crossref_primary_10_3389_fnut_2025_1509086
crossref_primary_10_3390_biomedicines13092214
crossref_primary_10_7717_peerj_16130
crossref_primary_10_1016_j_canlet_2024_216857
crossref_primary_10_1080_01480545_2024_2326051
crossref_primary_10_3892_etm_2023_12207
crossref_primary_10_1016_j_jep_2023_117241
crossref_primary_10_1142_S0192415X25500557
crossref_primary_10_3390_molecules26061666
crossref_primary_10_5306_wjco_v14_i10_373
crossref_primary_10_3390_ijms232416091
crossref_primary_10_1631_jzus_B2100804
crossref_primary_10_2147_DDDT_S406354
crossref_primary_10_1186_s11658_024_00607_4
crossref_primary_10_1038_s41419_024_06782_8
crossref_primary_10_1002_jbt_70073
crossref_primary_10_1016_j_apsb_2021_05_027
crossref_primary_10_1016_j_procbio_2023_11_006
crossref_primary_10_1016_j_scitotenv_2024_174538
crossref_primary_10_3389_fphar_2024_1438161
crossref_primary_10_1080_1061186X_2021_1961792
crossref_primary_10_1016_j_clinsp_2024_100561
crossref_primary_10_1016_j_canlet_2024_217019
crossref_primary_10_3390_ph17121599
crossref_primary_10_1016_j_jep_2025_119357
crossref_primary_10_1002_hsr2_71251
crossref_primary_10_1038_s41598_024_85036_1
crossref_primary_10_3390_cells11162508
crossref_primary_10_2147_DDDT_S389764
crossref_primary_10_1007_s11033_023_08381_w
crossref_primary_10_3389_fphar_2023_1211719
crossref_primary_10_1002_bmc_5589
crossref_primary_10_1016_j_prp_2024_155323
crossref_primary_10_1155_2024_3429565
crossref_primary_10_1007_s00210_025_04058_2
crossref_primary_10_3389_fphar_2021_775084
crossref_primary_10_1016_j_intimp_2025_114473
crossref_primary_10_1093_jleuko_qiaf051
crossref_primary_10_3389_fonc_2022_841625
crossref_primary_10_3389_fneur_2022_905640
crossref_primary_10_1016_j_semcancer_2025_02_002
crossref_primary_10_3390_ph16010092
crossref_primary_10_1016_j_phrs_2025_107742
crossref_primary_10_3390_molecules29163778
crossref_primary_10_1038_s41598_022_12800_6
crossref_primary_10_3892_mmr_2024_13285
crossref_primary_10_1002_adtp_202400417
crossref_primary_10_1007_s10735_024_10186_5
crossref_primary_10_3390_antiox12101883
crossref_primary_10_1016_j_phymed_2024_156003
crossref_primary_10_3389_fonc_2024_1443686
crossref_primary_10_3389_fphar_2023_1122890
crossref_primary_10_1007_s12033_023_00978_7
crossref_primary_10_3389_fonc_2022_851300
crossref_primary_10_3389_fphar_2025_1579183
crossref_primary_10_1186_s10020_024_00812_z
crossref_primary_10_1111_nmo_14779
crossref_primary_10_1111_jcmm_70744
crossref_primary_10_2217_nnm_2023_0160
crossref_primary_10_3390_molecules28237797
crossref_primary_10_3389_fphar_2022_842295
crossref_primary_10_1038_s41389_022_00390_x
crossref_primary_10_3390_molecules26040816
crossref_primary_10_1007_s12672_024_01049_2
crossref_primary_10_1002_iub_2350
crossref_primary_10_1007_s10753_023_01963_7
crossref_primary_10_3389_fmicb_2022_869931
crossref_primary_10_3389_fphar_2022_882147
crossref_primary_10_3390_pharmaceutics14081576
crossref_primary_10_2174_0929867329666220224112811
crossref_primary_10_1016_j_bioorg_2024_107252
crossref_primary_10_1016_j_jep_2021_114771
crossref_primary_10_1016_j_jep_2023_116198
crossref_primary_10_3389_fphar_2022_803717
crossref_primary_10_1111_cns_70121
crossref_primary_10_1007_s00210_024_03199_0
crossref_primary_10_3390_ijms231810330
crossref_primary_10_1002_ptr_7866
Cites_doi 10.3748/wjg.v22.i15.4041
10.1158/0008-5472.CAN-13-2966
10.1074/jbc.M702824200
10.1186/1475-2867-14-49
10.1002/ptr.5693
10.1007/s00109-016-1487-z
10.4161/auto.6952
10.1158/1078-0432.CCR-10-2634
10.3389/fphar.2019.00009
10.1080/1061186X.2016.1236112
10.1530/JME-16-0139
10.3390/molecules190812349
10.18632/oncotarget.11396
10.1002/jcb.22384
10.1186/1749-8546-6-27
10.1172/JCI73938
10.2174/18715206113139990130
10.1158/0008-5472.CAN-15-2887
10.1172/JCI73939
10.1007/s10495-018-1497-0
10.1096/fj.201600698R
10.3390/cells8010018
10.18632/oncotarget.20059
10.3390/cancers11101599
10.1007/s10120-018-0813-2
10.1124/pr.112.007120
10.1016/j.fct.2012.09.012
10.1007/s40139-013-0028-5
10.1038/s41388-017-0046-6
10.1021/np400017k
10.1097/CAD.0b013e328330d95b
10.3389/fonc.2017.00296
10.1002/jcp.28325
10.1254/jphs.FPJ06004X
10.1016/j.canlet.2019.05.025
10.1007/s11515-015-1354-2
10.1080/01635581.2015.1004733
10.1016/j.ejphar.2015.05.068
10.3748/wjg.v22.i8.2403
10.3390/cells1030396
10.1002/jcb.22869
10.1016/j.canlet.2013.11.019
10.1186/s12929-016-0290-z
10.1042/BST20110609
10.3390/molecules23123175
10.2174/138955709788167592
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.biopha.2020.110245
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1950-6007
ExternalDocumentID 32454290
10_1016_j_biopha_2020_110245
S0753332220304376
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABMAC
ABMZM
ABWVN
ABXDB
ABZDS
ACDAQ
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OD~
OGGZJ
OK1
OO0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SDP
SEM
SES
SEW
SPT
SSH
SSP
SSZ
T5K
VH1
WUQ
Z5R
~02
~G-
~HD
0SF
6I.
AACTN
AAFTH
AAIAV
AATCM
ABLVK
ABYKQ
AFCTW
AFKWA
AFPKN
AJBFU
AJOXV
AMFUW
GROUPED_DOAJ
LCYCR
NCXOZ
RIG
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c527t-a44658f88e221fc3cedf85e1466ff63fedbe6f926abd6c9f1afb3af54daed13d3
ISICitedReferencesCount 177
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561740400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0753-3322
1950-6007
IngestDate Sun Sep 28 08:05:26 EDT 2025
Thu Apr 03 07:08:46 EDT 2025
Tue Nov 18 21:34:02 EST 2025
Sat Nov 29 07:18:34 EST 2025
Fri Feb 23 02:47:23 EST 2024
Tue Oct 14 19:35:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cytostatic autophagy
Berberine
Negative feedback
Signaling pathway
Gastric cancer
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c527t-a44658f88e221fc3cedf85e1466ff63fedbe6f926abd6c9f1afb3af54daed13d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S0753332220304376
PMID 32454290
PQID 2407312366
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2407312366
pubmed_primary_32454290
crossref_primary_10_1016_j_biopha_2020_110245
crossref_citationtrail_10_1016_j_biopha_2020_110245
elsevier_sciencedirect_doi_10_1016_j_biopha_2020_110245
elsevier_clinicalkey_doi_10_1016_j_biopha_2020_110245
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
2020-Aug
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle Biomedicine & pharmacotherapy
PublicationTitleAlternate Biomed Pharmacother
PublicationYear 2020
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Sun, Xun, Wang, Chen (bib0025) 2009; 20
Kumar, Ekavali, Chopra, Mukherjee, Pottabathini, Dhull (bib0060) 2015; 761
Liu, Meng, Wu, Qiu, Luo (bib0045) 2019; 10
Ai, Chen, Yu, Yang, Xu, Gui, Liu, Bai, Chen (bib0240) 2015; 8
Wang, Qi, Feng, Zhang, Huang, Chen, Prestegarden, Li, Wang (bib0185) 2016; 7
Zhao, Xu, Xu, Wang, Xu, Song, Yin, Liu, Miao (bib0020) 2018; 21
Rad, Rameshrad, Hosseinzadeh (bib0165) 2017; 20
Sui, Yao, Li, Jin, Shi, Li, Wang, Lin, Wu, Li, Huang, Liu, Lin (bib0255) 2017; 95
He, Mei, Sha, Fan, Wang, Dong (bib0265) 2016; 57
Perez-Hernandez, Arias, Martinez-Garcia, Perez-Tomas, Quesada, Soto-Cerrato (bib0275) 2019; 11
Sun, Wang, Yakisich (bib0115) 2013; 13
Brenkman, Haverkamp, Ruurda, van Hillegersberg (bib0150) 2016; 22
Wang, Feng, Zhu, Tsang, Man, Tong, Tsao (bib0190) 2010; 111
Lai, Devenish (bib0145) 2012; 1
Cao, Liao, Su, Huang, Jin, Cao (bib0225) 2019; 459
Huang, Wu, Tashiro, Onodera, Ikejima (bib0125) 2006; 102
Meng, Geng, Du, Yao, Zheng, Li, Zhang, Li, Duan, Du (bib0195) 2017; 8
Cao, Huang, Zhang, Lu, Donkor, Zhu, Qiu, Kang (bib0140) 2019; 24
Ortiz, Lombardi, Tillhon, Scovassi (bib0160) 2014; 19
Yi, Zhuang, Song, Zhang, Li, Hu (bib0055) 2015; 67
Siegel, Miller, Jemal (bib0010) 2019; 69
Sak (bib0155) 2012; 2012
Levy, Towers, Thorburn (bib0065) 2017; 17
Sui, Kong, Ye, Han, Zhou, Zhang, He, Pan (bib0110) 2014; 344
Levine, Packer, Codogno (bib0085) 2015; 125
Boutouja, Stiehm, Platta (bib0095) 2019; 8
Hyun, Hur, Mun, Kim, Woo (bib0230) 2010; 109
Cheng, Ren, Hait, Yang (bib0080) 2013; 65
Coseri (bib0030) 2009; 9
Sengupta, Raman, Chowdhury, Lohitesh, Saini, Mukherjee, Paul (bib0220) 2017; 7
Gewirtz (bib0075) 2014; 74
Schaaf, Keulers, Vooijs, Rouschop (bib0205) 2016; 30
Ashrafizadeh, Ahmadi, Mohammadinejad, Kaviyani, Tavakol (bib0050) 2019
Mohammadinejad, Ahmadi, Tavakol, Ashrafizadeh (bib0180) 2019
Chang, Lee, Lee, Lin, Chen, Shen, Huang (bib0245) 2016; 23
Aksamitiene, Kiyatkin, Kholodenko (bib0100) 2012; 40
Chen, Zheng, Baade, Zhang, Zeng, Bray, Jemal, Yu, He (bib0005) 2016; 66
Digklia, Wagner (bib0015) 2016; 22
Pan, Qin, Zhou, He, Zhang, Yang, Yang, Wang, Qiu, Zhou (bib0260) 2015; 9
Sun, Zou, Hu, Qin, Song, Lu, Guo (bib0120) 2013; 51
Imenshahidi, Hosseinzadeh (bib0040) 2016; 30
Singh, Vats, Chia, Tan, Deng, Ong, Arfuso, Yap, Goh, Sethi, Huang, Shen, Manjithaya, Kumar (bib0070) 2018; 37
Kim, Guan (bib0090) 2015; 125
Dou, Chen, Wang, Yuan, Lei, Li, Lan, Chen, Huang, Xie, Zhang, Xiang, Nice, Wei, Huang (bib0215) 2016; 76
Noguchi, Hirata, Suizu (bib0105) 2014; 1846
Tan, Lu, Huang, Li, Chen, Wu, Gong, Zhong, Xu, Dang, Guo, Chen, Wang (bib0035) 2011; 6
Amaravadi, Lippincott-Schwartz, Yin, Weiss, Takebe, Timmer, DiPaola, Lotze, White (bib0175) 2011; 17
Pankiv, Clausen, Lamark, Brech, Bruun, Outzen, Øvervatn, Bjørkøy, Johansen (bib0210) 2007; 282
He, Zang, Feng, Wang, Liu, Chen, Kang, Tashiro, Onodera, Qiu, Ikejima (bib0130) 2013; 76
McKnight, Zhenyu (bib0200) 2013; 1
Meschini, Condello, Calcabrini, Marra, Formisano, Lista, De Milito, Federici, Arancia (bib0135) 2008; 4
Yu, Zhang, Wang, Jiang, Cheng, Shen (bib0250) 2014; 14
Fan, Mao, Cao, Xia, Zhang, Zhang, Qiu, Kang (bib0170) 2018; 23
Rocchi, He (bib0270) 2015; 10
Roohi, Hojjat-Farsangi (bib0235) 2017; 25
Ortiz (10.1016/j.biopha.2020.110245_bib0160) 2014; 19
Cao (10.1016/j.biopha.2020.110245_bib0225) 2019; 459
Wang (10.1016/j.biopha.2020.110245_bib0190) 2010; 111
Sengupta (10.1016/j.biopha.2020.110245_bib0220) 2017; 7
Wang (10.1016/j.biopha.2020.110245_bib0185) 2016; 7
Fan (10.1016/j.biopha.2020.110245_bib0170) 2018; 23
Sui (10.1016/j.biopha.2020.110245_bib0255) 2017; 95
Sun (10.1016/j.biopha.2020.110245_bib0115) 2013; 13
He (10.1016/j.biopha.2020.110245_bib0130) 2013; 76
Liu (10.1016/j.biopha.2020.110245_bib0045) 2019; 10
Pankiv (10.1016/j.biopha.2020.110245_bib0210) 2007; 282
Huang (10.1016/j.biopha.2020.110245_bib0125) 2006; 102
Coseri (10.1016/j.biopha.2020.110245_bib0030) 2009; 9
Chen (10.1016/j.biopha.2020.110245_bib0005) 2016; 66
Meschini (10.1016/j.biopha.2020.110245_bib0135) 2008; 4
Tan (10.1016/j.biopha.2020.110245_bib0035) 2011; 6
Zhao (10.1016/j.biopha.2020.110245_bib0020) 2018; 21
Siegel (10.1016/j.biopha.2020.110245_bib0010) 2019; 69
Lai (10.1016/j.biopha.2020.110245_bib0145) 2012; 1
Imenshahidi (10.1016/j.biopha.2020.110245_bib0040) 2016; 30
Mohammadinejad (10.1016/j.biopha.2020.110245_bib0180) 2019
Cheng (10.1016/j.biopha.2020.110245_bib0080) 2013; 65
Levine (10.1016/j.biopha.2020.110245_bib0085) 2015; 125
Schaaf (10.1016/j.biopha.2020.110245_bib0205) 2016; 30
Pan (10.1016/j.biopha.2020.110245_bib0260) 2015; 9
Sui (10.1016/j.biopha.2020.110245_bib0110) 2014; 344
Ashrafizadeh (10.1016/j.biopha.2020.110245_bib0050) 2019
Dou (10.1016/j.biopha.2020.110245_bib0215) 2016; 76
Yu (10.1016/j.biopha.2020.110245_bib0250) 2014; 14
Kumar (10.1016/j.biopha.2020.110245_bib0060) 2015; 761
Boutouja (10.1016/j.biopha.2020.110245_bib0095) 2019; 8
Brenkman (10.1016/j.biopha.2020.110245_bib0150) 2016; 22
Kim (10.1016/j.biopha.2020.110245_bib0090) 2015; 125
Rocchi (10.1016/j.biopha.2020.110245_bib0270) 2015; 10
Sun (10.1016/j.biopha.2020.110245_bib0120) 2013; 51
Perez-Hernandez (10.1016/j.biopha.2020.110245_bib0275) 2019; 11
Cao (10.1016/j.biopha.2020.110245_bib0140) 2019; 24
Rad (10.1016/j.biopha.2020.110245_bib0165) 2017; 20
Gewirtz (10.1016/j.biopha.2020.110245_bib0075) 2014; 74
Noguchi (10.1016/j.biopha.2020.110245_bib0105) 2014; 1846
Meng (10.1016/j.biopha.2020.110245_bib0195) 2017; 8
McKnight (10.1016/j.biopha.2020.110245_bib0200) 2013; 1
Chang (10.1016/j.biopha.2020.110245_bib0245) 2016; 23
Sak (10.1016/j.biopha.2020.110245_bib0155) 2012; 2012
Digklia (10.1016/j.biopha.2020.110245_bib0015) 2016; 22
Aksamitiene (10.1016/j.biopha.2020.110245_bib0100) 2012; 40
Amaravadi (10.1016/j.biopha.2020.110245_bib0175) 2011; 17
Sun (10.1016/j.biopha.2020.110245_bib0025) 2009; 20
He (10.1016/j.biopha.2020.110245_bib0265) 2016; 57
Ai (10.1016/j.biopha.2020.110245_bib0240) 2015; 8
Singh (10.1016/j.biopha.2020.110245_bib0070) 2018; 37
Hyun (10.1016/j.biopha.2020.110245_bib0230) 2010; 109
Yi (10.1016/j.biopha.2020.110245_bib0055) 2015; 67
Levy (10.1016/j.biopha.2020.110245_bib0065) 2017; 17
Roohi (10.1016/j.biopha.2020.110245_bib0235) 2017; 25
References_xml – volume: 22
  start-page: 2403
  year: 2016
  end-page: 2414
  ident: bib0015
  article-title: Advanced gastric cancer: current treatment landscape and future perspectives
  publication-title: World J. Gastroenterol.
– volume: 1846
  start-page: 342
  year: 2014
  end-page: 352
  ident: bib0105
  article-title: The links between AKT and two intracellular proteolytic cascades: ubiquitination and autophagy
  publication-title: Biochim. Biophys. Acta
– volume: 23
  year: 2018
  ident: bib0170
  article-title: S5, a withanolide isolated from physalis
  publication-title: Molecules
– volume: 69
  start-page: 7
  year: 2019
  end-page: 34
  ident: bib0010
  article-title: Cancer statistics, 2019
  publication-title: CA Cancer J. Clin.
– volume: 67
  start-page: 523
  year: 2015
  end-page: 531
  ident: bib0055
  article-title: Akt signaling is associated with the berberine-induced apoptosis of human gastric cancer cells
  publication-title: Nutr. Cancer
– volume: 1
  start-page: 396
  year: 2012
  end-page: 408
  ident: bib0145
  article-title: LC3-associated phagocytosis (LAP): connections with host autophagy
  publication-title: Cells
– volume: 57
  start-page: 251
  year: 2016
  end-page: 260
  ident: bib0265
  article-title: ERK-dependent mTOR pathway is involved in berberine-induced autophagy in hepatic steatosis
  publication-title: J. Mol. Endocrinol.
– volume: 21
  start-page: 361
  year: 2018
  end-page: 371
  ident: bib0020
  article-title: The efficacy and safety of targeted therapy with or without chemotherapy in advanced gastric cancer treatment: a network meta-analysis of well-designed randomized controlled trials
  publication-title: Gastric Cancer
– volume: 17
  start-page: 528
  year: 2017
  end-page: 542
  ident: bib0065
  article-title: Targeting autophagy in cancer, Nature reviews
  publication-title: Cancer
– volume: 125
  start-page: 25
  year: 2015
  end-page: 32
  ident: bib0090
  article-title: mTOR: a pharmacologic target for autophagy regulation
  publication-title: J. Clin. Invest.
– volume: 65
  start-page: 1162
  year: 2013
  end-page: 1197
  ident: bib0080
  article-title: Therapeutic targeting of autophagy in disease: biology and pharmacology
  publication-title: Pharmacol. Rev.
– volume: 19
  start-page: 12349
  year: 2014
  end-page: 12367
  ident: bib0160
  article-title: Berberine, an epiphany against cancer
  publication-title: Molecules
– volume: 10
  start-page: 9
  year: 2019
  ident: bib0045
  article-title: A natural isoquinoline alkaloid with antitumor activity: studies of the biological activities of berberine
  publication-title: Front. Pharmacol.
– volume: 459
  start-page: 30
  year: 2019
  end-page: 40
  ident: bib0225
  article-title: AKT and ERK dual inhibitors: the way forward?
  publication-title: Cancer Lett.
– year: 2019
  ident: bib0050
  article-title: Monoterpenes modulating autophagy: a review study
  publication-title: Basic Clin. Pharmacol. Toxicol.
– volume: 282
  start-page: 24131
  year: 2007
  end-page: 24145
  ident: bib0210
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J. Biol. Chem.
– volume: 125
  start-page: 14
  year: 2015
  end-page: 24
  ident: bib0085
  article-title: Development of autophagy inducers in clinical medicine
  publication-title: J. Clin. Invest.
– volume: 8
  start-page: 12509
  year: 2015
  end-page: 12516
  ident: bib0240
  article-title: Berberine regulates proliferation, collagen synthesis and cytokine secretion of cardiac fibroblasts via AMPK-mTOR-p70S6K signaling pathway
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 1
  start-page: 231
  year: 2013
  end-page: 238
  ident: bib0200
  article-title: Beclin 1, an essential component and master regulator of PI3K-III in health and disease
  publication-title: Curr. Pathobiol. Rep.
– volume: 30
  start-page: 1745
  year: 2016
  end-page: 1764
  ident: bib0040
  article-title: Berberis vulgaris and berberine: an update review
  publication-title: Phytother. Res.
– volume: 344
  start-page: 174
  year: 2014
  end-page: 179
  ident: bib0110
  article-title: p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents
  publication-title: Cancer Lett.
– volume: 109
  start-page: 329
  year: 2010
  end-page: 338
  ident: bib0230
  article-title: BBR induces apoptosis in HepG2 cell through an Akt-ASK1-ROS-p38MAPKs-linked cascade
  publication-title: J. Cell. Biochem.
– volume: 102
  start-page: 305
  year: 2006
  end-page: 313
  ident: bib0125
  article-title: Fibroblast growth factor-2 suppresses oridonin-induced L929 apoptosis through extracellular signal-regulated kinase-dependent and phosphatidylinositol 3-kinase-independent pathway
  publication-title: J. Pharmacol. Sci.
– volume: 111
  start-page: 1426
  year: 2010
  end-page: 1436
  ident: bib0190
  article-title: Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism
  publication-title: J. Cell. Biochem.
– volume: 13
  start-page: 1048
  year: 2013
  end-page: 1056
  ident: bib0115
  article-title: Natural products targeting autophagy via the PI3K/Akt/mTOR pathway as anticancer agents
  publication-title: Anticancer Agents Med. Chem.
– volume: 30
  start-page: 3961
  year: 2016
  end-page: 3978
  ident: bib0205
  article-title: LC3/GABARAP family proteins: autophagy-(un)related functions
  publication-title: FASEB J.
– volume: 7
  start-page: 296
  year: 2017
  ident: bib0220
  article-title: Evaluation of apoptosis and autophagy inducing potential of Berberis aristata, Azadirachta indica, and their synergistic combinations in parental and resistant human osteosarcoma cells
  publication-title: Front. Oncol.
– volume: 22
  start-page: 4041
  year: 2016
  end-page: 4048
  ident: bib0150
  article-title: Worldwide practice in gastric cancer surgery
  publication-title: World J. Gastroenterol.
– volume: 4
  start-page: 1020
  year: 2008
  end-page: 1033
  ident: bib0135
  article-title: The plant alkaloid voacamine induces apoptosis-independent autophagic cell death on both sensitive and multidrug resistant human osteosarcoma cells
  publication-title: Autophagy
– volume: 51
  start-page: 53
  year: 2013
  end-page: 60
  ident: bib0120
  article-title: Wogonoside induces autophagy in MDA-MB-231 cells by regulating MAPK-mTOR pathway
  publication-title: Food Chem. Toxicol.
– volume: 8
  start-page: 76385
  year: 2017
  end-page: 76397
  ident: bib0195
  article-title: Berberine and cinnamaldehyde together prevent lung carcinogenesis
  publication-title: Oncotarget
– volume: 14
  start-page: 49
  year: 2014
  ident: bib0250
  article-title: Berberine-induced apoptotic and autophagic death of HepG2 cells requires AMPK activation
  publication-title: Cancer Cell Int.
– volume: 25
  start-page: 189
  year: 2017
  end-page: 201
  ident: bib0235
  article-title: Recent advances in targeting mTOR signaling pathway using small molecule inhibitors
  publication-title: J. Drug Target.
– volume: 23
  start-page: 72
  year: 2016
  ident: bib0245
  article-title: Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS
  publication-title: J. Biomed. Sci.
– volume: 24
  start-page: 33
  year: 2019
  end-page: 45
  ident: bib0140
  article-title: Molecular mechanisms of apoptosis and autophagy elicited by combined treatment with oridonin and cetuximab in laryngeal squamous cell carcinoma
  publication-title: Apoptosis
– volume: 76
  start-page: 880
  year: 2013
  end-page: 888
  ident: bib0130
  article-title: Physalin A induces apoptotic cell death and protective autophagy in HT1080 human fibrosarcoma cells
  publication-title: J. Nat. Prod.
– volume: 66
  start-page: 115
  year: 2016
  end-page: 132
  ident: bib0005
  article-title: Cancer statistics in China, 2015
  publication-title: CA Cancer J. Clin.
– year: 2019
  ident: bib0180
  article-title: Berberine as a potential autophagy modulator
  publication-title: J. Cell. Physiol.
– volume: 9
  start-page: 560
  year: 2009
  end-page: 571
  ident: bib0030
  article-title: Natural products and their analogues as efficient anticancer drugs
  publication-title: Mini Rev. Med. Chem.
– volume: 20
  start-page: 757
  year: 2009
  end-page: 769
  ident: bib0025
  article-title: A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs
  publication-title: Anticancer Drugs
– volume: 95
  start-page: 311
  year: 2017
  end-page: 322
  ident: bib0255
  article-title: Delicaflavone induces autophagic cell death in lung cancer via Akt/mTOR/p70S6K signaling pathway
  publication-title: J. Mol. Med.
– volume: 9
  start-page: 1601
  year: 2015
  end-page: 1626
  ident: bib0260
  article-title: Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells
  publication-title: Drug Des. Devel. Ther.
– volume: 6
  start-page: 27
  year: 2011
  ident: bib0035
  article-title: Anti-cancer natural products isolated from chinese medicinal herbs
  publication-title: Chin. Med.
– volume: 2012
  year: 2012
  ident: bib0155
  article-title: Chemotherapy and dietary phytochemical agents
  publication-title: Chemother. Res. Pract.
– volume: 40
  start-page: 139
  year: 2012
  end-page: 146
  ident: bib0100
  article-title: Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance
  publication-title: Biochem. Soc. Trans.
– volume: 17
  start-page: 654
  year: 2011
  end-page: 666
  ident: bib0175
  article-title: Principles and current strategies for targeting autophagy for cancer treatment
  publication-title: Clin. Cancer Res.
– volume: 8
  year: 2019
  ident: bib0095
  article-title: mTOR: a cellular regulator interface in health and disease
  publication-title: Cells
– volume: 761
  start-page: 288
  year: 2015
  end-page: 297
  ident: bib0060
  article-title: Current knowledge and pharmacological profile of berberine: an update
  publication-title: Eur. J. Pharmacol.
– volume: 37
  start-page: 1142
  year: 2018
  end-page: 1158
  ident: bib0070
  article-title: Dual role of autophagy in hallmarks of cancer
  publication-title: Oncogene
– volume: 20
  start-page: 516
  year: 2017
  end-page: 529
  ident: bib0165
  article-title: Toxicology effects of Berberis vulgaris (barberry) and its active constituent, berberine: a review
  publication-title: Iran. J. Basic Med. Sci.
– volume: 10
  start-page: 154
  year: 2015
  end-page: 164
  ident: bib0270
  article-title: Emerging roles of autophagy in metabolism and metabolic disorders
  publication-title: Front. Biol. (Beijing)
– volume: 74
  start-page: 647
  year: 2014
  end-page: 651
  ident: bib0075
  article-title: The four faces of autophagy: implications for cancer therapy
  publication-title: Cancer Res.
– volume: 11
  year: 2019
  ident: bib0275
  article-title: Targeting autophagy for cancer treatment and tumor chemosensitization
  publication-title: Cancers
– volume: 7
  start-page: 66944
  year: 2016
  end-page: 66958
  ident: bib0185
  article-title: Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway
  publication-title: Oncotarget
– volume: 76
  start-page: 4457
  year: 2016
  end-page: 4469
  ident: bib0215
  article-title: Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer
  publication-title: Cancer Res.
– volume: 22
  start-page: 4041
  issue: 15
  year: 2016
  ident: 10.1016/j.biopha.2020.110245_bib0150
  article-title: Worldwide practice in gastric cancer surgery
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v22.i15.4041
– volume: 74
  start-page: 647
  issue: 3
  year: 2014
  ident: 10.1016/j.biopha.2020.110245_bib0075
  article-title: The four faces of autophagy: implications for cancer therapy
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-2966
– volume: 282
  start-page: 24131
  issue: 33
  year: 2007
  ident: 10.1016/j.biopha.2020.110245_bib0210
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702824200
– volume: 14
  start-page: 49
  year: 2014
  ident: 10.1016/j.biopha.2020.110245_bib0250
  article-title: Berberine-induced apoptotic and autophagic death of HepG2 cells requires AMPK activation
  publication-title: Cancer Cell Int.
  doi: 10.1186/1475-2867-14-49
– volume: 30
  start-page: 1745
  issue: 11
  year: 2016
  ident: 10.1016/j.biopha.2020.110245_bib0040
  article-title: Berberis vulgaris and berberine: an update review
  publication-title: Phytother. Res.
  doi: 10.1002/ptr.5693
– volume: 95
  start-page: 311
  issue: 3
  year: 2017
  ident: 10.1016/j.biopha.2020.110245_bib0255
  article-title: Delicaflavone induces autophagic cell death in lung cancer via Akt/mTOR/p70S6K signaling pathway
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-016-1487-z
– volume: 4
  start-page: 1020
  issue: 8
  year: 2008
  ident: 10.1016/j.biopha.2020.110245_bib0135
  article-title: The plant alkaloid voacamine induces apoptosis-independent autophagic cell death on both sensitive and multidrug resistant human osteosarcoma cells
  publication-title: Autophagy
  doi: 10.4161/auto.6952
– volume: 17
  start-page: 528
  issue: 9
  year: 2017
  ident: 10.1016/j.biopha.2020.110245_bib0065
  article-title: Targeting autophagy in cancer, Nature reviews
  publication-title: Cancer
– volume: 17
  start-page: 654
  issue: 4
  year: 2011
  ident: 10.1016/j.biopha.2020.110245_bib0175
  article-title: Principles and current strategies for targeting autophagy for cancer treatment
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-10-2634
– volume: 2012
  year: 2012
  ident: 10.1016/j.biopha.2020.110245_bib0155
  article-title: Chemotherapy and dietary phytochemical agents
  publication-title: Chemother. Res. Pract.
– volume: 10
  start-page: 9
  year: 2019
  ident: 10.1016/j.biopha.2020.110245_bib0045
  article-title: A natural isoquinoline alkaloid with antitumor activity: studies of the biological activities of berberine
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.00009
– volume: 25
  start-page: 189
  issue: 3
  year: 2017
  ident: 10.1016/j.biopha.2020.110245_bib0235
  article-title: Recent advances in targeting mTOR signaling pathway using small molecule inhibitors
  publication-title: J. Drug Target.
  doi: 10.1080/1061186X.2016.1236112
– volume: 57
  start-page: 251
  issue: 4
  year: 2016
  ident: 10.1016/j.biopha.2020.110245_bib0265
  article-title: ERK-dependent mTOR pathway is involved in berberine-induced autophagy in hepatic steatosis
  publication-title: J. Mol. Endocrinol.
  doi: 10.1530/JME-16-0139
– volume: 19
  start-page: 12349
  issue: 8
  year: 2014
  ident: 10.1016/j.biopha.2020.110245_bib0160
  article-title: Berberine, an epiphany against cancer
  publication-title: Molecules
  doi: 10.3390/molecules190812349
– volume: 7
  start-page: 66944
  issue: 41
  year: 2016
  ident: 10.1016/j.biopha.2020.110245_bib0185
  article-title: Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11396
– volume: 109
  start-page: 329
  issue: 2
  year: 2010
  ident: 10.1016/j.biopha.2020.110245_bib0230
  article-title: BBR induces apoptosis in HepG2 cell through an Akt-ASK1-ROS-p38MAPKs-linked cascade
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.22384
– volume: 6
  start-page: 27
  issue: 1
  year: 2011
  ident: 10.1016/j.biopha.2020.110245_bib0035
  article-title: Anti-cancer natural products isolated from chinese medicinal herbs
  publication-title: Chin. Med.
  doi: 10.1186/1749-8546-6-27
– volume: 125
  start-page: 14
  issue: 1
  year: 2015
  ident: 10.1016/j.biopha.2020.110245_bib0085
  article-title: Development of autophagy inducers in clinical medicine
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI73938
– volume: 1846
  start-page: 342
  issue: 2
  year: 2014
  ident: 10.1016/j.biopha.2020.110245_bib0105
  article-title: The links between AKT and two intracellular proteolytic cascades: ubiquitination and autophagy
  publication-title: Biochim. Biophys. Acta
– volume: 13
  start-page: 1048
  issue: 7
  year: 2013
  ident: 10.1016/j.biopha.2020.110245_bib0115
  article-title: Natural products targeting autophagy via the PI3K/Akt/mTOR pathway as anticancer agents
  publication-title: Anticancer Agents Med. Chem.
  doi: 10.2174/18715206113139990130
– volume: 76
  start-page: 4457
  issue: 15
  year: 2016
  ident: 10.1016/j.biopha.2020.110245_bib0215
  article-title: Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-2887
– volume: 125
  start-page: 25
  issue: 1
  year: 2015
  ident: 10.1016/j.biopha.2020.110245_bib0090
  article-title: mTOR: a pharmacologic target for autophagy regulation
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI73939
– volume: 24
  start-page: 33
  issue: 1-2
  year: 2019
  ident: 10.1016/j.biopha.2020.110245_bib0140
  article-title: Molecular mechanisms of apoptosis and autophagy elicited by combined treatment with oridonin and cetuximab in laryngeal squamous cell carcinoma
  publication-title: Apoptosis
  doi: 10.1007/s10495-018-1497-0
– volume: 30
  start-page: 3961
  issue: 12
  year: 2016
  ident: 10.1016/j.biopha.2020.110245_bib0205
  article-title: LC3/GABARAP family proteins: autophagy-(un)related functions
  publication-title: FASEB J.
  doi: 10.1096/fj.201600698R
– volume: 66
  start-page: 115
  issue: 2
  year: 2016
  ident: 10.1016/j.biopha.2020.110245_bib0005
  article-title: Cancer statistics in China, 2015
  publication-title: CA Cancer J. Clin.
– volume: 8
  issue: 1
  year: 2019
  ident: 10.1016/j.biopha.2020.110245_bib0095
  article-title: mTOR: a cellular regulator interface in health and disease
  publication-title: Cells
  doi: 10.3390/cells8010018
– volume: 8
  start-page: 76385
  issue: 44
  year: 2017
  ident: 10.1016/j.biopha.2020.110245_bib0195
  article-title: Berberine and cinnamaldehyde together prevent lung carcinogenesis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20059
– volume: 11
  issue: 10
  year: 2019
  ident: 10.1016/j.biopha.2020.110245_bib0275
  article-title: Targeting autophagy for cancer treatment and tumor chemosensitization
  publication-title: Cancers
  doi: 10.3390/cancers11101599
– volume: 9
  start-page: 1601
  year: 2015
  ident: 10.1016/j.biopha.2020.110245_bib0260
  article-title: Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells
  publication-title: Drug Des. Devel. Ther.
– volume: 21
  start-page: 361
  issue: 3
  year: 2018
  ident: 10.1016/j.biopha.2020.110245_bib0020
  article-title: The efficacy and safety of targeted therapy with or without chemotherapy in advanced gastric cancer treatment: a network meta-analysis of well-designed randomized controlled trials
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-018-0813-2
– volume: 65
  start-page: 1162
  issue: 4
  year: 2013
  ident: 10.1016/j.biopha.2020.110245_bib0080
  article-title: Therapeutic targeting of autophagy in disease: biology and pharmacology
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.112.007120
– volume: 51
  start-page: 53
  year: 2013
  ident: 10.1016/j.biopha.2020.110245_bib0120
  article-title: Wogonoside induces autophagy in MDA-MB-231 cells by regulating MAPK-mTOR pathway
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2012.09.012
– volume: 1
  start-page: 231
  issue: 4
  year: 2013
  ident: 10.1016/j.biopha.2020.110245_bib0200
  article-title: Beclin 1, an essential component and master regulator of PI3K-III in health and disease
  publication-title: Curr. Pathobiol. Rep.
  doi: 10.1007/s40139-013-0028-5
– year: 2019
  ident: 10.1016/j.biopha.2020.110245_bib0050
  article-title: Monoterpenes modulating autophagy: a review study
  publication-title: Basic Clin. Pharmacol. Toxicol.
– volume: 37
  start-page: 1142
  issue: 9
  year: 2018
  ident: 10.1016/j.biopha.2020.110245_bib0070
  article-title: Dual role of autophagy in hallmarks of cancer
  publication-title: Oncogene
  doi: 10.1038/s41388-017-0046-6
– volume: 76
  start-page: 880
  issue: 5
  year: 2013
  ident: 10.1016/j.biopha.2020.110245_bib0130
  article-title: Physalin A induces apoptotic cell death and protective autophagy in HT1080 human fibrosarcoma cells
  publication-title: J. Nat. Prod.
  doi: 10.1021/np400017k
– volume: 20
  start-page: 757
  issue: 9
  year: 2009
  ident: 10.1016/j.biopha.2020.110245_bib0025
  article-title: A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs
  publication-title: Anticancer Drugs
  doi: 10.1097/CAD.0b013e328330d95b
– volume: 7
  start-page: 296
  year: 2017
  ident: 10.1016/j.biopha.2020.110245_bib0220
  article-title: Evaluation of apoptosis and autophagy inducing potential of Berberis aristata, Azadirachta indica, and their synergistic combinations in parental and resistant human osteosarcoma cells
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2017.00296
– year: 2019
  ident: 10.1016/j.biopha.2020.110245_bib0180
  article-title: Berberine as a potential autophagy modulator
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.28325
– volume: 102
  start-page: 305
  issue: 3
  year: 2006
  ident: 10.1016/j.biopha.2020.110245_bib0125
  article-title: Fibroblast growth factor-2 suppresses oridonin-induced L929 apoptosis through extracellular signal-regulated kinase-dependent and phosphatidylinositol 3-kinase-independent pathway
  publication-title: J. Pharmacol. Sci.
  doi: 10.1254/jphs.FPJ06004X
– volume: 459
  start-page: 30
  year: 2019
  ident: 10.1016/j.biopha.2020.110245_bib0225
  article-title: AKT and ERK dual inhibitors: the way forward?
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.05.025
– volume: 8
  start-page: 12509
  issue: 10
  year: 2015
  ident: 10.1016/j.biopha.2020.110245_bib0240
  article-title: Berberine regulates proliferation, collagen synthesis and cytokine secretion of cardiac fibroblasts via AMPK-mTOR-p70S6K signaling pathway
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 10
  start-page: 154
  issue: 2
  year: 2015
  ident: 10.1016/j.biopha.2020.110245_bib0270
  article-title: Emerging roles of autophagy in metabolism and metabolic disorders
  publication-title: Front. Biol. (Beijing)
  doi: 10.1007/s11515-015-1354-2
– volume: 67
  start-page: 523
  issue: 3
  year: 2015
  ident: 10.1016/j.biopha.2020.110245_bib0055
  article-title: Akt signaling is associated with the berberine-induced apoptosis of human gastric cancer cells
  publication-title: Nutr. Cancer
  doi: 10.1080/01635581.2015.1004733
– volume: 761
  start-page: 288
  year: 2015
  ident: 10.1016/j.biopha.2020.110245_bib0060
  article-title: Current knowledge and pharmacological profile of berberine: an update
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2015.05.068
– volume: 22
  start-page: 2403
  issue: 8
  year: 2016
  ident: 10.1016/j.biopha.2020.110245_bib0015
  article-title: Advanced gastric cancer: current treatment landscape and future perspectives
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v22.i8.2403
– volume: 1
  start-page: 396
  issue: 3
  year: 2012
  ident: 10.1016/j.biopha.2020.110245_bib0145
  article-title: LC3-associated phagocytosis (LAP): connections with host autophagy
  publication-title: Cells
  doi: 10.3390/cells1030396
– volume: 20
  start-page: 516
  issue: 5
  year: 2017
  ident: 10.1016/j.biopha.2020.110245_bib0165
  article-title: Toxicology effects of Berberis vulgaris (barberry) and its active constituent, berberine: a review
  publication-title: Iran. J. Basic Med. Sci.
– volume: 69
  start-page: 7
  issue: 1
  year: 2019
  ident: 10.1016/j.biopha.2020.110245_bib0010
  article-title: Cancer statistics, 2019
  publication-title: CA Cancer J. Clin.
– volume: 111
  start-page: 1426
  issue: 6
  year: 2010
  ident: 10.1016/j.biopha.2020.110245_bib0190
  article-title: Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.22869
– volume: 344
  start-page: 174
  issue: 2
  year: 2014
  ident: 10.1016/j.biopha.2020.110245_bib0110
  article-title: p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2013.11.019
– volume: 23
  start-page: 72
  issue: 1
  year: 2016
  ident: 10.1016/j.biopha.2020.110245_bib0245
  article-title: Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS
  publication-title: J. Biomed. Sci.
  doi: 10.1186/s12929-016-0290-z
– volume: 40
  start-page: 139
  issue: 1
  year: 2012
  ident: 10.1016/j.biopha.2020.110245_bib0100
  article-title: Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20110609
– volume: 23
  issue: 12
  year: 2018
  ident: 10.1016/j.biopha.2020.110245_bib0170
  article-title: S5, a withanolide isolated from physalis Pubescens L., induces G2/M cell cycle arrest via the EGFR/P38 pathway in human melanoma A375 cells
  publication-title: Molecules
  doi: 10.3390/molecules23123175
– volume: 9
  start-page: 560
  issue: 5
  year: 2009
  ident: 10.1016/j.biopha.2020.110245_bib0030
  article-title: Natural products and their analogues as efficient anticancer drugs
  publication-title: Mini Rev. Med. Chem.
  doi: 10.2174/138955709788167592
SSID ssj0005638
Score 2.6217718
Snippet [Display omitted] •Berberine represses human gastric cancer cell growth in vitro and in vivo without toxicity to Human peripheral blood mononuclear cells and...
Berberine, an isoquinoline alkaloid from Coptidis Rhizoma, has been characterized as a potential anticancer drug due to its good anti-tumor effects. However,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110245
SubjectTerms Animals
Antineoplastic Agents - pharmacology
Autophagy - drug effects
Autophagy-Related Proteins - genetics
Autophagy-Related Proteins - metabolism
Berberine
Berberine - pharmacology
Cell Line, Tumor
Cell Proliferation - drug effects
Cytostatic Agents - pharmacology
Cytostatic autophagy
Female
Gastric cancer
Humans
Mice, Inbred BALB C
Mice, Nude
Mitogen-Activated Protein Kinases - metabolism
Negative feedback
Proto-Oncogene Proteins c-akt - metabolism
Ribosomal Protein S6 Kinases, 70-kDa - metabolism
Signal Transduction
Signaling pathway
Stomach Neoplasms - drug therapy
Stomach Neoplasms - enzymology
Stomach Neoplasms - genetics
Stomach Neoplasms - pathology
TOR Serine-Threonine Kinases - metabolism
Xenograft Model Antitumor Assays
Title Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0753332220304376
https://dx.doi.org/10.1016/j.biopha.2020.110245
https://www.ncbi.nlm.nih.gov/pubmed/32454290
https://www.proquest.com/docview/2407312366
Volume 128
WOSCitedRecordID wos000561740400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1950-6007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005638
  issn: 0753-3322
  databaseCode: AIEXJ
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3db9MwEMCtbkOIFwTja3xMRmJ76dJ1SfP1WMYmYFtXaIfKU-QkdpcxktKmZf2P-Hf4j7iz40TVmFYeeIkay07S3C_2-ey7I-SNzWDcaPLQaHkCD8wzwpYjDAs6RmaHLnOkb9WXY7fT8QYDv1ur_da-MLNLN029qyt_9F9FDWUgbHSd_QdxlxeFAvgNQocjiB2OSwn-Lbwo6dNXH6tdrnxSZOIbMkzSEeFGr4iP62izrw9hGp5Lq8csycdZEYwJTmYZaqYwY59G0i93nmfofIThXacYjIAN51CLQY3zJEy03nnS7h7Bo3_vn37GtL5us-ccyWu2v-V13CvClPs76J0_2XyysKQsAwHIhX7J46gIqp0vxj0oLdyfAOxhtR6gCgcJQ4e2snyfSVNw7zy5SEqEe1PZ1X6d6rLC6mFWe-50R-3bMO1tqoy5Df6XMt27F77nqn8GZcdU4SuvDR3KinHRCBN8hw28aaOqvhipu3MaHJ4dHwf9g0F_yzoc_TAwjRku929Z7xRSK2TNdG0fOtq19oeDwcdq35Ej06uXD6v9OeWmw-s3v0lfumk-JPWi_gNyv5jQ0LYC8SGp8XSd3D0pJLlOtrtKjvMd2q98_SY7dJt2q7Dp80fkVwkuLcGlElxagEsVuBTBpQpcmqRUgksBMnUyy2g4pxpcWoFLS3ChFqMVuDQTFMHdRWx3FbTyegAtLaGlGtrH5OzwoL__3ijyiBiRbbq5wTAooCc8j5vmnoisiMfCsznoCI4QjiV4HHJH-KbDwtiJfLHHRGgxYbdixuM9K7aekNU0S_kzQnmMBiXmhKHNW54fQy0Ww7XsEKYdthAbxNLSCqIiyD7merkM9G7Ki0DJOEAZB0rGG8QoW41UkJlb6tsahEA7UMOQHwDKt7Rzy3aFgq0U5yVavta8BTD-oJxZyrPpJECLkIUhnJwN8lSBWP4HmKxhOrzm8yVavyD3qu_8JVnNx1P-ityJZnkyGW-SFXfgbRaf0h-JoAwa
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Berberine+represses+human+gastric+cancer+cell+growth+in+vitro+and+in+vivo+by+inducing+cytostatic+autophagy+via+inhibition+of+MAPK%2FmTOR%2Fp70S6K+and+Akt+signaling+pathways&rft.jtitle=Biomedicine+%26+pharmacotherapy&rft.au=Zhang%2C+Qiang&rft.au=Wang%2C+Xiaobing&rft.au=Cao%2C+Shijie&rft.au=Sun%2C+Yujie&rft.date=2020-08-01&rft.issn=1950-6007&rft.eissn=1950-6007&rft.volume=128&rft.spage=110245&rft_id=info:doi/10.1016%2Fj.biopha.2020.110245&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0753-3322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0753-3322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0753-3322&client=summon