Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing

Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials Jg. 122; S. 34 - 47
Hauptverfasser: Zhao, Xin, Wu, Hao, Guo, Baolin, Dong, Ruonan, Qiu, Yusheng, Ma, Peter X.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier Ltd 01.04.2017
Schlagworte:
ISSN:0142-9612, 1878-5905, 1878-5905
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing.
AbstractList Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing.
Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing.
Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing.Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing.
Abstract Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing.
Author Dong, Ruonan
Wu, Hao
Zhao, Xin
Guo, Baolin
Ma, Peter X.
Qiu, Yusheng
Author_xml – sequence: 1
  givenname: Xin
  surname: Zhao
  fullname: Zhao, Xin
  organization: Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
– sequence: 2
  givenname: Hao
  surname: Wu
  fullname: Wu, Hao
  organization: Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
– sequence: 3
  givenname: Baolin
  surname: Guo
  fullname: Guo, Baolin
  email: baoling@mail.xjtu.edu.cn, guobl2004@163.com
  organization: Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
– sequence: 4
  givenname: Ruonan
  surname: Dong
  fullname: Dong, Ruonan
  organization: Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
– sequence: 5
  givenname: Yusheng
  surname: Qiu
  fullname: Qiu, Yusheng
  organization: Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
– sequence: 6
  givenname: Peter X.
  surname: Ma
  fullname: Ma, Peter X.
  organization: Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28107663$$D View this record in MEDLINE/PubMed
BookMark eNqNktuKFDEQhoOsuAd9BQleedNjVfrshbi7HmHBC_U6pJPqnYw9yZqkV-dNfFwzzizIgjgQSIr89aVSf52yI-cdMfYMYYGAzYvVYrB-rRIFq6a4EIDtAjAvfMBOsGu7ou6hPmIngJUo-gbFMTuNcQU5hko8YseiQ2ibpjxhv85dsoPSOxhXOSr8T2vygdNEOgWfL-0tcetWOVTDRHy5McFfU5ZHHmkaiyWpybpr_sPPznATKMY_oU1LvqS1j0lFGzPdcGWWFDPPZQ0ffeB6TsqRn-M-e896zB6O-Xf0ZL-fsa_v3n65_FBcfXr_8fL8qtC1aFPR6L4dhq4ahRFQQqfBoBmxNyV2PTQtUt1UpoK6G8oBRmyqtsUO2rotQVSqLs_Y8x33JvjvM8Uk1zZqmqZdUVIAgIC-rJr_SrFrsM7tB5GlT_fSeViTkTfBrlXYyLvGZ8HrnUAHH2OgUWqbVLLepaDsJBHk1mu5kn97LbdeS8C8MCNe3kPcvXJQ8ptdMuXe3loKMmpLTpOxIdssjbeHYV7dw-hsntVq-kYbiis_B7fNQRmFBPl5O5HbgcTcfsC-yoCLfwMOreI3C3f61A
CitedBy_id crossref_primary_10_1089_wound_2018_0843
crossref_primary_10_1016_j_ijbiomac_2021_04_114
crossref_primary_10_1007_s10965_020_02242_x
crossref_primary_10_1039_D3NR00807J
crossref_primary_10_1016_j_colsurfb_2024_114180
crossref_primary_10_2174_0113892010294727240502051954
crossref_primary_10_1002_smll_201900322
crossref_primary_10_1007_s42765_022_00153_8
crossref_primary_10_1007_s10570_019_02795_1
crossref_primary_10_1039_C9RA10666A
crossref_primary_10_1002_admi_201900761
crossref_primary_10_1016_j_cis_2025_103477
crossref_primary_10_17721_1728_2748_2021_86_23_27
crossref_primary_10_1002_adtp_201800088
crossref_primary_10_1016_j_eurpolymj_2019_109308
crossref_primary_10_1063_5_0046682
crossref_primary_10_1016_j_cej_2020_127429
crossref_primary_10_1007_s10856_021_06630_7
crossref_primary_10_1002_admi_202400647
crossref_primary_10_1016_j_intimp_2023_111164
crossref_primary_10_3390_polym15030571
crossref_primary_10_3390_gels9090694
crossref_primary_10_1080_10406638_2022_2097271
crossref_primary_10_3389_fbioe_2021_780187
crossref_primary_10_3390_ijms18050989
crossref_primary_10_1016_j_colsurfa_2024_133940
crossref_primary_10_1016_j_matdes_2022_111284
crossref_primary_10_3390_polym11050808
crossref_primary_10_1016_j_matdes_2022_111041
crossref_primary_10_1002_adhm_202303802
crossref_primary_10_1016_j_ijbiomac_2024_129752
crossref_primary_10_1016_j_ijbiomac_2025_147225
crossref_primary_10_1002_mabi_202400049
crossref_primary_10_3390_polym13122003
crossref_primary_10_1002_adfm_202105614
crossref_primary_10_1007_s11696_019_00967_8
crossref_primary_10_1016_j_cej_2020_126129
crossref_primary_10_1002_adma_202308701
crossref_primary_10_1002_jbm_a_37252
crossref_primary_10_1002_mabi_202000367
crossref_primary_10_3390_gels9030183
crossref_primary_10_3390_antibiotics9100648
crossref_primary_10_3389_fbioe_2022_1083763
crossref_primary_10_3390_gels9020138
crossref_primary_10_1002_adhm_202401490
crossref_primary_10_1002_adhm_202300742
crossref_primary_10_1039_C9RA06913E
crossref_primary_10_1002_adhm_202001571
crossref_primary_10_1016_j_colsurfb_2021_112175
crossref_primary_10_3390_gels8110726
crossref_primary_10_1016_j_ijbiomac_2020_11_014
crossref_primary_10_1016_j_inoche_2021_109092
crossref_primary_10_1007_s10934_022_01371_6
crossref_primary_10_1016_j_cej_2024_151418
crossref_primary_10_1016_j_ijbiomac_2024_130958
crossref_primary_10_1002_admi_202001873
crossref_primary_10_1016_j_heliyon_2022_e12063
crossref_primary_10_1016_j_ijbiomac_2019_08_087
crossref_primary_10_3390_ijms19082198
crossref_primary_10_1016_j_biomaterials_2023_122240
crossref_primary_10_1002_adfm_202310845
crossref_primary_10_1016_j_biomaterials_2024_122936
crossref_primary_10_1016_j_ijbiomac_2024_135177
crossref_primary_10_1016_j_bios_2020_112105
crossref_primary_10_1080_10601325_2020_1772672
crossref_primary_10_1016_j_apmt_2024_102478
crossref_primary_10_1039_C9NR03095F
crossref_primary_10_1016_j_indcrop_2024_118811
crossref_primary_10_3390_gels11080619
crossref_primary_10_1016_j_cej_2023_147095
crossref_primary_10_1016_j_jconrel_2023_09_010
crossref_primary_10_1016_j_carbpol_2021_118428
crossref_primary_10_1007_s10965_021_02688_7
crossref_primary_10_1016_j_cej_2020_126353
crossref_primary_10_1016_j_ijbiomac_2020_05_099
crossref_primary_10_1016_j_jddst_2023_105163
crossref_primary_10_1016_j_cej_2020_125059
crossref_primary_10_3389_fbioe_2019_00360
crossref_primary_10_1080_10717544_2020_1853280
crossref_primary_10_1021_acsbiomaterials_7b00860
crossref_primary_10_1016_j_ijbiomac_2023_125911
crossref_primary_10_3390_ijms23158778
crossref_primary_10_1016_j_ijbiomac_2024_138673
crossref_primary_10_1016_j_jcis_2023_05_009
crossref_primary_10_1002_adfm_201806200
crossref_primary_10_1016_j_cej_2024_156087
crossref_primary_10_1016_j_eurpolymj_2022_111617
crossref_primary_10_1002_btm2_10398
crossref_primary_10_3390_gels8050315
crossref_primary_10_1002_adhm_202300324
crossref_primary_10_1016_j_actbio_2019_10_012
crossref_primary_10_34133_bmr_0156
crossref_primary_10_1016_j_actbio_2024_04_035
crossref_primary_10_1002_adfm_202001820
crossref_primary_10_1016_j_ijbiomac_2023_129042
crossref_primary_10_1016_j_ijbiomac_2025_145237
crossref_primary_10_1016_j_electacta_2021_139730
crossref_primary_10_1016_j_ejps_2020_105255
crossref_primary_10_1007_s10118_019_2212_5
crossref_primary_10_1016_j_cclet_2020_12_003
crossref_primary_10_1039_D4BM01347F
crossref_primary_10_1016_j_compositesb_2021_109047
crossref_primary_10_1016_j_ijbiomac_2022_07_017
crossref_primary_10_1016_j_ijbiomac_2025_144162
crossref_primary_10_1016_j_jcis_2018_04_093
crossref_primary_10_1002_mame_202100878
crossref_primary_10_1016_j_ijbiomac_2024_137570
crossref_primary_10_1016_j_ijpharm_2021_120698
crossref_primary_10_1002_admt_202202159
crossref_primary_10_1016_j_ijpharm_2019_118632
crossref_primary_10_1080_15583724_2020_1858871
crossref_primary_10_3389_fbioe_2021_796361
crossref_primary_10_3389_fbioe_2023_1335211
crossref_primary_10_1016_j_carbpol_2022_119631
crossref_primary_10_1002_adtp_202200349
crossref_primary_10_1016_j_ijbiomac_2025_146576
crossref_primary_10_1016_j_mtcomm_2024_109593
crossref_primary_10_1016_j_biomaterials_2025_123284
crossref_primary_10_1016_j_ijbiomac_2024_129932
crossref_primary_10_1002_marc_202400015
crossref_primary_10_1007_s10965_021_02492_3
crossref_primary_10_1016_j_carbon_2017_09_071
crossref_primary_10_1590_s0102_865020200050000007
crossref_primary_10_1016_j_jcis_2018_02_036
crossref_primary_10_3389_fbioe_2023_1154301
crossref_primary_10_1016_j_ijbiomac_2020_08_109
crossref_primary_10_1016_j_polymer_2025_129060
crossref_primary_10_1016_j_carbpol_2021_118482
crossref_primary_10_1016_j_ijbiomac_2020_08_108
crossref_primary_10_1177_0885328218810552
crossref_primary_10_1002_mabi_202300224
crossref_primary_10_1088_1742_6596_2557_1_012085
crossref_primary_10_22207_JPAM_19_3_20
crossref_primary_10_3892_mmr_2018_9477
crossref_primary_10_1002_adhm_202100012
crossref_primary_10_1016_j_actbio_2022_10_003
crossref_primary_10_1016_j_mtcomm_2022_104551
crossref_primary_10_1016_j_eml_2022_101687
crossref_primary_10_1007_s40820_023_01074_w
crossref_primary_10_1093_nsr_nwac162
crossref_primary_10_3389_fphar_2020_00899
crossref_primary_10_1002_adhm_202303817
crossref_primary_10_1002_admi_202500256
crossref_primary_10_1007_s11465_024_0787_1
crossref_primary_10_1016_j_bioactmat_2022_11_019
crossref_primary_10_1007_s11427_019_1710_8
crossref_primary_10_1016_j_cej_2018_07_187
crossref_primary_10_1038_s41428_020_0315_z
crossref_primary_10_1039_C8BM01198B
crossref_primary_10_1016_j_foodchem_2024_142737
crossref_primary_10_3390_ijms26073428
crossref_primary_10_1002_adfm_202419037
crossref_primary_10_3390_coatings12101467
crossref_primary_10_1016_j_carbpol_2024_122135
crossref_primary_10_1007_s11431_021_1843_3
crossref_primary_10_1002_adhm_202001122
crossref_primary_10_1186_s40824_023_00340_7
crossref_primary_10_1016_j_bioactmat_2022_11_023
crossref_primary_10_1016_j_cej_2024_158478
crossref_primary_10_1002_adhm_202301885
crossref_primary_10_1016_j_actbio_2021_07_012
crossref_primary_10_1016_j_mtchem_2025_102615
crossref_primary_10_1016_j_ijbiomac_2021_02_104
crossref_primary_10_1016_j_cej_2023_143126
crossref_primary_10_1039_D0BM00442A
crossref_primary_10_1016_j_actbio_2019_03_018
crossref_primary_10_1016_j_jcis_2018_10_056
crossref_primary_10_1016_j_biomaterials_2018_09_045
crossref_primary_10_1016_j_heliyon_2023_e22330
crossref_primary_10_1002_adhm_202302790
crossref_primary_10_1089_ten_teb_2019_0100
crossref_primary_10_1002_adhm_202200516
crossref_primary_10_1002_adhm_202303876
crossref_primary_10_1186_s13568_023_01533_y
crossref_primary_10_3389_fchem_2021_787886
crossref_primary_10_1016_j_bioadv_2024_214157
crossref_primary_10_1016_j_foodchem_2025_145033
crossref_primary_10_1016_j_carbpol_2021_117767
crossref_primary_10_1016_j_carbpol_2021_118615
crossref_primary_10_1016_j_cej_2023_143362
crossref_primary_10_1002_pi_5876
crossref_primary_10_3389_fbioe_2022_1001616
crossref_primary_10_1186_s40580_024_00447_0
crossref_primary_10_1016_j_compositesb_2021_109402
crossref_primary_10_2217_rme_2020_0086
crossref_primary_10_1016_j_actbio_2023_08_026
crossref_primary_10_3390_pharmaceutics14122723
crossref_primary_10_1002_admi_202101855
crossref_primary_10_1002_EXP_20220173
crossref_primary_10_3390_gels10010003
crossref_primary_10_3390_polym13213782
crossref_primary_10_1016_j_ijbiomac_2020_01_255
crossref_primary_10_1016_j_colsurfa_2025_137964
crossref_primary_10_1016_j_ijbiomac_2017_06_071
crossref_primary_10_1007_s11051_021_05213_5
crossref_primary_10_1016_j_ijbiomac_2025_143264
crossref_primary_10_1002_smll_202205292
crossref_primary_10_1016_j_cej_2020_126525
crossref_primary_10_3390_jfb14110553
crossref_primary_10_1007_s40820_025_01834_w
crossref_primary_10_3390_ijms25105249
crossref_primary_10_1016_j_cej_2019_05_229
crossref_primary_10_1002_smll_201901834
crossref_primary_10_1016_j_burns_2023_02_003
crossref_primary_10_1016_j_ijbiomac_2024_135577
crossref_primary_10_1016_j_ijbiomac_2023_127918
crossref_primary_10_1002_adfm_202006454
crossref_primary_10_1016_j_ijbiomac_2022_05_064
crossref_primary_10_1016_j_ijbiomac_2024_137752
crossref_primary_10_3390_pharmaceutics15122735
crossref_primary_10_1186_s12951_021_00973_7
crossref_primary_10_1002_adhm_202300105
crossref_primary_10_1016_j_ijbiomac_2022_03_214
crossref_primary_10_1038_s43246_024_00579_0
crossref_primary_10_3390_gels9100772
crossref_primary_10_1002_adfm_201908098
crossref_primary_10_1016_j_carbpol_2021_117989
crossref_primary_10_3390_coatings14030256
crossref_primary_10_1016_j_biomaterials_2024_122548
crossref_primary_10_20935_AcadMatSci7810
crossref_primary_10_1088_1742_6596_1899_1_012071
crossref_primary_10_1039_D0BM00770F
crossref_primary_10_3390_ph18050752
crossref_primary_10_1016_j_colsurfb_2019_01_058
crossref_primary_10_1007_s11426_025_2654_5
crossref_primary_10_1016_j_jtv_2021_09_003
crossref_primary_10_1039_D4RA08123D
crossref_primary_10_1089_ten_teb_2019_0337
crossref_primary_10_1016_j_cej_2020_125668
crossref_primary_10_1016_j_jcis_2021_08_104
crossref_primary_10_1002_adhm_201801092
crossref_primary_10_1177_0885328219831095
crossref_primary_10_1016_j_bioactmat_2021_06_015
crossref_primary_10_1016_j_carbpol_2020_117040
crossref_primary_10_1016_j_carbpol_2022_120198
crossref_primary_10_1016_j_ijbiomac_2019_08_007
crossref_primary_10_1016_j_ijbiomac_2017_07_087
crossref_primary_10_3390_pharmaceutics11050200
crossref_primary_10_1002_adhm_202000872
crossref_primary_10_1002_mame_201700590
crossref_primary_10_1002_pc_26334
crossref_primary_10_1002_adfm_201901474
crossref_primary_10_1002_adhm_202301206
crossref_primary_10_1002_advs_201801664
crossref_primary_10_1002_adma_202300840
crossref_primary_10_1016_j_foodchem_2024_140746
crossref_primary_10_1016_j_mehy_2019_109389
crossref_primary_10_1007_s11426_022_1322_5
crossref_primary_10_1016_j_cej_2020_127638
crossref_primary_10_1016_j_ijbiomac_2022_12_037
crossref_primary_10_1016_j_cej_2019_04_001
crossref_primary_10_1016_j_jddst_2022_103944
crossref_primary_10_1002_adhm_202200717
crossref_primary_10_1016_j_nantod_2022_101467
crossref_primary_10_3389_fmats_2019_00137
crossref_primary_10_1016_j_ijbiomac_2020_01_221
crossref_primary_10_1016_j_matpr_2022_06_237
crossref_primary_10_1155_2017_8407249
crossref_primary_10_1002_biot_202100231
crossref_primary_10_1002_adhm_202404388
crossref_primary_10_1002_adhm_202302588
crossref_primary_10_1016_j_cej_2021_132039
crossref_primary_10_1016_j_apmt_2024_102206
crossref_primary_10_1002_term_3238
crossref_primary_10_1016_j_matdes_2023_111701
crossref_primary_10_3389_fphar_2019_01401
crossref_primary_10_3390_gels9050381
crossref_primary_10_1038_s41598_021_82963_1
crossref_primary_10_1515_polyeng_2023_0148
crossref_primary_10_1016_j_bioactmat_2021_04_007
crossref_primary_10_1002_advs_202305918
crossref_primary_10_1007_s42250_023_00649_9
crossref_primary_10_1016_j_matdes_2020_108916
crossref_primary_10_1007_s42114_023_00764_8
crossref_primary_10_1016_j_carbpol_2020_116360
crossref_primary_10_1016_j_ijbiomac_2024_136877
crossref_primary_10_1016_j_colsurfb_2019_110441
crossref_primary_10_1002_app_54665
crossref_primary_10_1016_j_ijbiomac_2025_140199
crossref_primary_10_1016_j_ijbiomac_2025_144313
crossref_primary_10_37349_ebmx_2025_101336
crossref_primary_10_1039_D2BM00558A
crossref_primary_10_1016_j_ijbiomac_2023_124365
crossref_primary_10_1016_j_cej_2019_05_043
crossref_primary_10_1039_D1BM00411E
crossref_primary_10_1016_j_ijbiomac_2021_10_166
crossref_primary_10_1016_j_mtchem_2022_101272
crossref_primary_10_1016_j_ijbiomac_2023_123271
crossref_primary_10_1016_j_yexcr_2023_113821
crossref_primary_10_1016_j_polymertesting_2019_106283
crossref_primary_10_1007_s10570_022_04909_8
crossref_primary_10_1007_s12221_024_00786_z
crossref_primary_10_1016_j_cej_2020_126329
crossref_primary_10_1016_j_ijbiomac_2024_134686
crossref_primary_10_1016_j_polymer_2019_121994
crossref_primary_10_1039_D2BM00646D
crossref_primary_10_1002_smll_201907309
crossref_primary_10_1016_j_carbpol_2021_118871
crossref_primary_10_1016_j_bioadv_2025_214214
crossref_primary_10_3389_fbioe_2021_732461
crossref_primary_10_3389_fddev_2025_1598145
crossref_primary_10_1038_s41598_022_11282_w
crossref_primary_10_1007_s00396_021_04882_x
crossref_primary_10_1002_cbdv_202300622
crossref_primary_10_1002_jbm_a_36756
crossref_primary_10_1002_mame_201900326
crossref_primary_10_1016_j_bioadv_2025_214219
crossref_primary_10_1007_s12274_023_5527_z
crossref_primary_10_1080_15583724_2024_2427184
crossref_primary_10_1016_j_cclet_2024_110072
crossref_primary_10_1016_j_ijbiomac_2022_05_008
crossref_primary_10_1016_j_ijbiomac_2023_128815
crossref_primary_10_1016_j_jcis_2020_08_080
crossref_primary_10_1016_j_cej_2023_144865
crossref_primary_10_1016_j_ijbiomac_2022_05_007
crossref_primary_10_3390_molecules24163005
crossref_primary_10_1002_osi2_1077
crossref_primary_10_3390_colloids6040078
crossref_primary_10_1039_D5TB01029B
crossref_primary_10_1016_j_ijbiomac_2019_08_202
crossref_primary_10_3390_molecules27207090
crossref_primary_10_1002_adhm_202300161
crossref_primary_10_1002_slct_202502598
crossref_primary_10_1016_j_biomaterials_2019_03_016
crossref_primary_10_3389_fbioe_2020_629452
crossref_primary_10_1016_j_jconrel_2021_11_027
crossref_primary_10_1016_j_actbio_2019_03_057
crossref_primary_10_1039_D3MH00813D
crossref_primary_10_1016_j_ijbiomac_2023_127612
crossref_primary_10_1016_j_apmt_2018_09_009
crossref_primary_10_3390_ma13143070
crossref_primary_10_1016_j_heliyon_2024_e37031
crossref_primary_10_1177_08853282221150685
crossref_primary_10_1016_j_apmt_2022_101396
crossref_primary_10_3390_gels11010048
crossref_primary_10_3390_md20050306
crossref_primary_10_1002_adhm_202302394
crossref_primary_10_1016_j_ijbiomac_2024_132120
crossref_primary_10_1039_D5TB00134J
crossref_primary_10_1007_s10965_025_04443_8
crossref_primary_10_1016_j_ijbiomac_2022_11_156
crossref_primary_10_1038_s41428_021_00470_6
crossref_primary_10_3390_polym15204067
crossref_primary_10_1039_C9NH00317G
crossref_primary_10_1016_j_bioactmat_2023_07_015
crossref_primary_10_1016_j_ijpharm_2022_122280
crossref_primary_10_3390_life11101016
crossref_primary_10_1016_j_cej_2021_130219
crossref_primary_10_1016_j_ijbiomac_2022_12_185
crossref_primary_10_1016_j_carbpol_2022_119161
crossref_primary_10_1039_D4RA01168F
crossref_primary_10_1021_acs_chemmater_5c00589
crossref_primary_10_3389_fmats_2022_994265
crossref_primary_10_1093_burnst_tkac001
crossref_primary_10_3390_bios13080815
crossref_primary_10_3389_fbioe_2022_1006584
crossref_primary_10_1016_j_carbpol_2017_11_029
crossref_primary_10_1039_D1BM01179K
crossref_primary_10_3390_molecules27185800
crossref_primary_10_1016_j_cej_2024_158615
crossref_primary_10_1088_1748_605X_ad5482
crossref_primary_10_3389_fbioe_2022_902894
crossref_primary_10_1016_j_ijbiomac_2025_142693
crossref_primary_10_2174_0113816128264103231030093124
crossref_primary_10_1016_j_ijbiomac_2023_128960
crossref_primary_10_3390_polym11111846
crossref_primary_10_1016_j_cej_2025_162382
crossref_primary_10_1016_j_ijbiomac_2023_125454
crossref_primary_10_1016_j_molstruc_2021_131141
crossref_primary_10_1007_s00726_023_03243_y
crossref_primary_10_1177_0885328221998033
crossref_primary_10_3389_fbioe_2022_817391
crossref_primary_10_1016_j_jcis_2024_05_142
crossref_primary_10_1016_j_addr_2018_04_008
crossref_primary_10_1016_j_matdes_2022_110669
crossref_primary_10_1016_j_matlet_2020_128415
crossref_primary_10_1002_advs_202207407
crossref_primary_10_3390_polym10101078
crossref_primary_10_1016_j_jtv_2024_05_006
crossref_primary_10_1021_acsbiomaterials_8b00972
crossref_primary_10_1080_14712598_2022_2008353
crossref_primary_10_1002_app_48668
crossref_primary_10_1002_SMMD_20220033
crossref_primary_10_1088_1748_605X_abc0b3
crossref_primary_10_3390_ijms24032210
crossref_primary_10_1002_inf2_12113
crossref_primary_10_1088_1742_6596_1965_1_012059
crossref_primary_10_1002_adhm_202303456
crossref_primary_10_1002_jbm_a_36952
crossref_primary_10_1016_j_colsurfb_2019_03_044
crossref_primary_10_1016_j_ijbiomac_2023_126796
crossref_primary_10_1039_C7PY01218G
crossref_primary_10_1016_j_ijpharm_2020_119349
crossref_primary_10_1007_s40820_020_00585_0
crossref_primary_10_1016_j_ijbiomac_2018_01_217
crossref_primary_10_3390_molecules25225296
crossref_primary_10_1002_adhm_202304321
crossref_primary_10_1016_j_actbio_2019_06_035
crossref_primary_10_1080_14686996_2020_1795431
crossref_primary_10_1088_1748_605X_aba878
crossref_primary_10_1016_j_cej_2018_10_117
crossref_primary_10_1016_j_mtcomm_2025_113281
crossref_primary_10_1093_rb_rbaa039
crossref_primary_10_1016_j_carbpol_2023_121508
crossref_primary_10_1002_mabi_202100103
crossref_primary_10_1039_D2BM01369J
crossref_primary_10_1002_ange_201910979
crossref_primary_10_1016_j_ijbiomac_2021_09_019
crossref_primary_10_3390_biomimetics9010023
crossref_primary_10_1039_C8CC05659E
crossref_primary_10_1002_slct_202405175
crossref_primary_10_1016_j_colsurfb_2020_111116
crossref_primary_10_1016_j_bioactmat_2023_01_021
crossref_primary_10_1016_j_bioactmat_2023_01_020
crossref_primary_10_1016_j_ijbiomac_2024_135838
crossref_primary_10_1016_j_pnsc_2023_11_002
crossref_primary_10_1002_smll_202506259
crossref_primary_10_1039_D1NR01148K
crossref_primary_10_1007_s42765_022_00223_x
crossref_primary_10_3389_fbioe_2021_716035
crossref_primary_10_1155_2021_6668209
crossref_primary_10_1002_mabi_202200111
crossref_primary_10_3390_polym14091844
crossref_primary_10_1016_j_cej_2024_152288
crossref_primary_10_1016_j_polymer_2025_128756
crossref_primary_10_3390_ma17225535
crossref_primary_10_1016_j_carbpol_2019_02_096
crossref_primary_10_1002_adfm_202106572
crossref_primary_10_1002_mabi_202100119
crossref_primary_10_1039_D5MA00335K
crossref_primary_10_1007_s00289_023_04863_w
crossref_primary_10_1080_17425247_2022_2152791
crossref_primary_10_1016_j_bioactmat_2021_03_034
crossref_primary_10_1016_j_carbpol_2021_117965
crossref_primary_10_1016_j_carbpol_2020_116754
crossref_primary_10_1039_D0QM00868K
crossref_primary_10_1155_2022_5446291
crossref_primary_10_1007_s10570_020_02967_4
crossref_primary_10_1016_j_cej_2023_146788
crossref_primary_10_1016_j_eurpolymj_2024_113521
crossref_primary_10_1016_j_carbpol_2022_120172
crossref_primary_10_3390_molecules26082364
crossref_primary_10_1002_adhm_201800144
crossref_primary_10_1016_j_apmt_2022_101362
crossref_primary_10_1016_j_matchemphys_2020_122902
crossref_primary_10_3892_ijmm_2020_4571
crossref_primary_10_1016_j_eurpolymj_2024_113527
crossref_primary_10_1016_j_cej_2024_156871
crossref_primary_10_1002_adfm_201800596
crossref_primary_10_1186_s11671_022_03687_3
crossref_primary_10_1016_j_ijpharm_2022_122257
crossref_primary_10_1016_j_actbio_2021_03_057
crossref_primary_10_1039_D1BM00637A
crossref_primary_10_1080_00914037_2018_1429438
crossref_primary_10_1016_j_cej_2021_129025
crossref_primary_10_1016_j_ijbiomac_2023_125250
crossref_primary_10_1039_D1QM00489A
crossref_primary_10_1038_s41427_021_00352_6
crossref_primary_10_1016_j_cej_2022_137180
crossref_primary_10_3390_polym16202876
crossref_primary_10_1007_s10570_021_04155_4
crossref_primary_10_1039_C9BM01886G
crossref_primary_10_1002_mabi_202200370
crossref_primary_10_1016_j_ijbiomac_2024_131694
crossref_primary_10_1016_j_ijbiomac_2019_04_195
crossref_primary_10_1016_j_colsurfb_2019_04_043
crossref_primary_10_1016_j_ijbiomac_2023_123308
crossref_primary_10_1039_C9BM00991D
crossref_primary_10_1002_pc_24765
crossref_primary_10_1016_j_carbpol_2019_115823
crossref_primary_10_1039_D2BM00347C
crossref_primary_10_1016_j_ijbiomac_2023_123780
crossref_primary_10_3390_polym14091816
crossref_primary_10_1016_j_cej_2023_144347
crossref_primary_10_1016_j_ijbiomac_2023_125028
crossref_primary_10_3390_polym13040613
crossref_primary_10_1016_j_ijbiomac_2023_125029
crossref_primary_10_1021_acsbiomaterials_8b00527
crossref_primary_10_1016_j_carbpol_2018_12_102
crossref_primary_10_1039_C9BM01754B
crossref_primary_10_1016_j_heliyon_2023_e22520
crossref_primary_10_1002_app_47522
crossref_primary_10_1016_j_cej_2021_132200
crossref_primary_10_1016_j_colsurfb_2022_113096
crossref_primary_10_1002_pat_5225
crossref_primary_10_1002_smll_202207057
crossref_primary_10_1016_j_ijbiomac_2023_124623
crossref_primary_10_1016_j_jddst_2022_103458
crossref_primary_10_1016_j_jhazmat_2020_124330
crossref_primary_10_1016_j_heliyon_2024_e38762
crossref_primary_10_1002_mame_201800305
crossref_primary_10_1016_j_cej_2021_130843
crossref_primary_10_1186_s12951_022_01634_z
crossref_primary_10_1021_acsapm_5c01489
crossref_primary_10_1016_j_compositesb_2021_109071
crossref_primary_10_1016_j_ijbiomac_2024_132521
crossref_primary_10_1080_17425247_2017_1360865
crossref_primary_10_3390_ijms26114987
crossref_primary_10_1016_j_cej_2019_02_030
crossref_primary_10_1016_j_seppur_2025_134834
crossref_primary_10_1002_smll_201900046
crossref_primary_10_1016_j_biomaterials_2020_120264
crossref_primary_10_1039_D3RA05046G
crossref_primary_10_1039_D2BM00935H
crossref_primary_10_1088_1748_605X_ad6966
crossref_primary_10_3390_ijms242015075
crossref_primary_10_1002_adfm_201910748
crossref_primary_10_1002_mco2_70181
crossref_primary_10_1016_j_cej_2021_130610
crossref_primary_10_1016_j_ijbiomac_2022_08_140
crossref_primary_10_1002_mabi_202000432
crossref_primary_10_1002_advs_202004627
crossref_primary_10_1039_D2BM01036D
crossref_primary_10_1016_j_fmre_2021_10_001
crossref_primary_10_1016_j_bioadv_2022_213055
crossref_primary_10_1016_j_cej_2019_03_091
crossref_primary_10_1016_j_carbpol_2022_119319
crossref_primary_10_1007_s10924_022_02624_w
crossref_primary_10_1016_j_matdes_2019_108166
crossref_primary_10_1016_j_biomaterials_2020_120019
crossref_primary_10_3390_polym15061365
crossref_primary_10_1002_adfm_202314024
crossref_primary_10_1002_adhm_202300817
crossref_primary_10_1016_j_cej_2019_123464
crossref_primary_10_1016_j_cej_2025_164166
crossref_primary_10_1016_j_ijbiomac_2021_07_026
crossref_primary_10_3390_polym14163287
crossref_primary_10_1016_j_cej_2021_130621
crossref_primary_10_1016_j_molstruc_2023_136118
crossref_primary_10_26599_NR_2025_94907719
crossref_primary_10_3390_gels9010055
crossref_primary_10_1016_j_carbpol_2018_08_090
crossref_primary_10_1016_j_ijbiomac_2019_10_029
crossref_primary_10_1002_adma_202412858
crossref_primary_10_1016_j_apmt_2022_101576
crossref_primary_10_1016_j_carbpol_2021_119000
crossref_primary_10_1016_j_cej_2023_147261
crossref_primary_10_1016_j_ijbiomac_2020_05_140
crossref_primary_10_1007_s10924_024_03398_z
crossref_primary_10_1016_j_jre_2021_10_007
crossref_primary_10_1002_mabi_202200565
crossref_primary_10_1016_j_genrep_2019_100429
crossref_primary_10_3390_medicines6010021
crossref_primary_10_3389_fchem_2024_1362482
crossref_primary_10_1016_j_cej_2019_02_044
crossref_primary_10_1016_j_fmre_2025_01_008
crossref_primary_10_1016_j_actbio_2018_12_008
crossref_primary_10_1016_j_cej_2022_135130
crossref_primary_10_1002_adhm_202000198
crossref_primary_10_1016_j_polymer_2025_128721
crossref_primary_10_1016_j_ijbiomac_2020_12_202
crossref_primary_10_1039_D0BM00714E
crossref_primary_10_1016_j_jconrel_2020_09_030
crossref_primary_10_1016_j_actbio_2021_02_035
crossref_primary_10_1016_j_reactfunctpolym_2025_106298
crossref_primary_10_1002_mabi_201900303
crossref_primary_10_2478_adms_2019_0015
crossref_primary_10_1002_mabi_202100186
crossref_primary_10_1002_mabi_202200514
crossref_primary_10_1016_j_bioactmat_2025_08_010
crossref_primary_10_1016_j_jcyt_2022_07_004
crossref_primary_10_1016_j_cej_2019_02_072
crossref_primary_10_1016_j_ijbiomac_2024_131879
crossref_primary_10_1021_acs_biomac_5c01183
crossref_primary_10_1016_j_actbio_2019_08_039
crossref_primary_10_1002_pat_6154
crossref_primary_10_1016_j_ijbiomac_2018_10_125
crossref_primary_10_1002_adfm_202008187
crossref_primary_10_1016_j_ijbiomac_2024_139364
crossref_primary_10_1002_adhm_202100793
crossref_primary_10_1016_j_ijbiomac_2019_10_009
crossref_primary_10_3390_biomedicines9050527
crossref_primary_10_1016_j_carbpol_2022_120103
crossref_primary_10_1039_D3MH00891F
crossref_primary_10_1016_j_mtbio_2025_102005
crossref_primary_10_3762_bjnano_16_90
crossref_primary_10_1177_20417314211067004
crossref_primary_10_3390_polym16101405
crossref_primary_10_1002_adhm_202203306
crossref_primary_10_1007_s10924_021_02175_6
crossref_primary_10_3390_gels10110682
crossref_primary_10_1049_bsbt_2019_0030
crossref_primary_10_1016_j_actbio_2020_07_001
crossref_primary_10_1016_j_mtbio_2025_102002
crossref_primary_10_1016_j_cej_2021_131506
crossref_primary_10_1016_j_mtchem_2024_102258
crossref_primary_10_3390_s24227124
crossref_primary_10_1007_s00289_022_04348_2
crossref_primary_10_1016_j_matchemphys_2024_129887
crossref_primary_10_1002_admt_202300669
crossref_primary_10_1016_j_ijbiomac_2018_04_025
crossref_primary_10_1016_j_ijbiomac_2019_10_236
crossref_primary_10_1080_14686996_2023_2175586
crossref_primary_10_1016_j_jclepro_2018_07_235
crossref_primary_10_1002_adfm_202305992
crossref_primary_10_1016_j_apmt_2021_101224
crossref_primary_10_1111_jocd_14882
crossref_primary_10_1016_j_ijbiomac_2024_139349
crossref_primary_10_1016_j_jcis_2021_10_131
crossref_primary_10_1002_adtp_202400016
crossref_primary_10_1093_rb_rbae024
crossref_primary_10_1016_j_cclet_2021_06_029
crossref_primary_10_1016_j_cej_2020_128278
crossref_primary_10_1016_j_cej_2021_131977
crossref_primary_10_1016_j_ijbiomac_2023_127033
crossref_primary_10_1016_j_eurpolymj_2022_111593
crossref_primary_10_1016_j_ijbiomac_2024_130764
crossref_primary_10_1088_2053_1591_abb154
crossref_primary_10_1016_j_jconrel_2018_11_024
crossref_primary_10_1016_j_carbpol_2021_119052
crossref_primary_10_1002_pol_20210916
crossref_primary_10_1016_j_bioadv_2023_213570
crossref_primary_10_1016_j_carbpol_2022_120324
crossref_primary_10_1016_j_eurpolymj_2022_111119
crossref_primary_10_1016_j_ijbiomac_2018_04_034
crossref_primary_10_1016_j_ijbiomac_2025_139614
crossref_primary_10_1016_j_bej_2022_108721
crossref_primary_10_1016_j_carbpol_2023_120609
crossref_primary_10_3389_fbioe_2022_901534
crossref_primary_10_1016_j_polymertesting_2018_10_029
crossref_primary_10_1016_j_mtbio_2025_102221
crossref_primary_10_3390_ani12192701
crossref_primary_10_3390_pharmaceutics15041168
crossref_primary_10_3390_pharmaceutics13010008
crossref_primary_10_1016_j_cej_2021_130677
crossref_primary_10_1016_j_actbio_2018_12_048
crossref_primary_10_1016_j_actbio_2021_01_038
crossref_primary_10_1016_j_ijbiomac_2022_02_077
crossref_primary_10_1016_j_cej_2024_157300
crossref_primary_10_1016_j_ijbiomac_2025_139872
crossref_primary_10_1002_agt2_70047
crossref_primary_10_1016_j_bioactmat_2021_01_039
crossref_primary_10_1016_j_biomaterials_2025_123568
crossref_primary_10_1016_j_ijbiomac_2019_12_046
crossref_primary_10_1111_srt_70164
crossref_primary_10_1016_j_carbpol_2022_119336
crossref_primary_10_1016_j_ijbiomac_2020_07_164
crossref_primary_10_1038_s41428_024_00957_y
crossref_primary_10_3390_polym11101679
crossref_primary_10_1002_adma_202106175
crossref_primary_10_1002_mabi_201800424
crossref_primary_10_1039_D0RA09106E
crossref_primary_10_1016_j_ijbiomac_2024_132802
crossref_primary_10_1016_j_carbpol_2018_03_099
crossref_primary_10_3390_polym14163346
crossref_primary_10_3390_pharmaceutics13101666
crossref_primary_10_1002_adhm_202401105
crossref_primary_10_1002_adfm_202308437
crossref_primary_10_1016_j_biomaterials_2024_122849
crossref_primary_10_1016_j_cej_2022_136835
crossref_primary_10_1016_j_carbpol_2024_122209
crossref_primary_10_1016_j_compscitech_2017_12_032
crossref_primary_10_1016_j_biomaterials_2024_122841
crossref_primary_10_1016_j_bioactmat_2020_05_008
crossref_primary_10_1093_rb_rbad081
crossref_primary_10_1016_j_mattod_2019_12_005
crossref_primary_10_1007_s10570_025_06372_7
crossref_primary_10_1016_j_polymer_2021_123786
crossref_primary_10_1002_jbm_b_35630
crossref_primary_10_1039_D1PY00282A
crossref_primary_10_1016_j_ijbiomac_2024_131700
crossref_primary_10_1016_j_colsurfb_2020_110803
crossref_primary_10_1016_j_carbpol_2023_121083
crossref_primary_10_1016_j_colsurfb_2020_110806
crossref_primary_10_1016_j_matdes_2024_112812
crossref_primary_10_1002_mabi_202000036
crossref_primary_10_1016_j_coco_2023_101728
crossref_primary_10_3389_fbioe_2020_00345
crossref_primary_10_1016_j_apsusc_2022_155290
crossref_primary_10_1016_j_eurpolymj_2022_111548
crossref_primary_10_1111_iwj_14644
crossref_primary_10_1080_00914037_2025_2495144
crossref_primary_10_3390_nu15061319
crossref_primary_10_3390_pharmaceutics15020634
crossref_primary_10_1002_adma_201806712
crossref_primary_10_1021_acsbiomaterials_9b00604
crossref_primary_10_1016_j_biomaterials_2021_120838
crossref_primary_10_3390_gels8040205
crossref_primary_10_1016_j_jcis_2021_02_107
crossref_primary_10_1016_j_compositesb_2021_109134
crossref_primary_10_1016_j_matdes_2024_112805
crossref_primary_10_1002_slct_202402444
crossref_primary_10_1002_smll_202101356
crossref_primary_10_3390_molecules29163732
crossref_primary_10_1002_mame_202100724
crossref_primary_10_1590_s2175_97902023e21159
crossref_primary_10_1002_slct_202405715
crossref_primary_10_1016_j_eurpolymj_2018_05_025
crossref_primary_10_1016_j_pnsc_2020_08_001
crossref_primary_10_1002_mabi_201800209
crossref_primary_10_1097_MD_0000000000043008
crossref_primary_10_1016_j_bioactmat_2023_11_012
crossref_primary_10_1016_j_bioactmat_2023_03_011
crossref_primary_10_1016_j_heliyon_2024_e33693
crossref_primary_10_1016_j_cis_2024_103099
crossref_primary_10_1016_j_jiec_2018_10_022
crossref_primary_10_1093_nsr_nwae426
crossref_primary_10_1007_s13738_021_02374_x
crossref_primary_10_1016_j_jddst_2025_106911
crossref_primary_10_3390_gels11040226
crossref_primary_10_1016_j_carbpol_2021_118557
crossref_primary_10_1002_ctm2_70402
crossref_primary_10_1002_mabi_202000252
crossref_primary_10_1016_j_eurpolymj_2024_113026
crossref_primary_10_1016_j_mtcomm_2020_101695
crossref_primary_10_1016_j_ccr_2021_214368
crossref_primary_10_1016_j_hsr_2022_100026
crossref_primary_10_1177_08853282231154672
crossref_primary_10_1016_j_colsurfb_2024_114068
crossref_primary_10_1016_j_bej_2023_108895
crossref_primary_10_1016_j_carbpol_2021_118782
crossref_primary_10_1016_j_eurpolymj_2024_113260
crossref_primary_10_1016_j_cej_2019_121999
crossref_primary_10_1007_s10853_024_09493_9
crossref_primary_10_1016_j_carbpol_2019_115378
crossref_primary_10_1002_smll_202103997
crossref_primary_10_1016_j_ijbiomac_2020_02_302
crossref_primary_10_1038_s41598_020_57860_8
crossref_primary_10_1016_j_jtv_2021_10_004
crossref_primary_10_1016_j_bioactmat_2022_08_014
crossref_primary_10_1016_j_colsurfb_2017_12_054
crossref_primary_10_1016_j_ijbiomac_2024_138792
crossref_primary_10_3390_jfb14040222
crossref_primary_10_1002_adhm_202101247
crossref_primary_10_1016_j_cej_2022_134690
crossref_primary_10_1007_s40820_021_00751_y
crossref_primary_10_1186_s12893_025_03058_6
crossref_primary_10_1016_j_burns_2022_01_019
crossref_primary_10_1016_j_matchemphys_2019_122053
crossref_primary_10_1016_j_ijbiomac_2025_147535
crossref_primary_10_1039_D1BM00379H
crossref_primary_10_1007_s10118_020_2382_1
crossref_primary_10_1016_j_reactfunctpolym_2020_104749
crossref_primary_10_1016_j_actbio_2022_09_006
crossref_primary_10_1080_09205063_2025_2504709
crossref_primary_10_1002_adfm_202009442
crossref_primary_10_1016_j_colsurfa_2022_129803
crossref_primary_10_1007_s10118_021_2506_2
crossref_primary_10_1016_j_ijbiomac_2021_06_053
crossref_primary_10_1080_09205063_2021_1992877
crossref_primary_10_1111_wrr_12881
crossref_primary_10_1002_pol_20210896
crossref_primary_10_1007_s00289_019_02752_9
crossref_primary_10_1016_j_ijbiomac_2024_133094
crossref_primary_10_1016_j_ijbiomac_2024_137209
crossref_primary_10_3390_coatings14040381
crossref_primary_10_3390_gels9040278
crossref_primary_10_1002_adhm_202400071
crossref_primary_10_1002_adfm_202505669
crossref_primary_10_1016_j_eurpolymj_2020_110094
crossref_primary_10_1016_j_matdes_2023_111662
crossref_primary_10_1016_j_carbpol_2021_118129
crossref_primary_10_1016_j_cis_2024_103267
crossref_primary_10_1016_j_jddst_2022_104093
crossref_primary_10_1016_j_progpolymsci_2021_101472
crossref_primary_10_3390_gels11090732
crossref_primary_10_1177_08853282221137609
crossref_primary_10_1016_j_carbpol_2018_10_067
crossref_primary_10_1016_j_carbpol_2019_115391
crossref_primary_10_1016_j_carbpol_2018_10_068
crossref_primary_10_1021_acsaenm_5c00469
crossref_primary_10_1080_87559129_2020_1858313
crossref_primary_10_1177_08839115211073155
crossref_primary_10_1016_j_matdes_2020_108863
crossref_primary_10_3390_ijms25147839
crossref_primary_10_1016_j_carbpol_2018_04_085
crossref_primary_10_1016_j_ijbiomac_2022_08_149
crossref_primary_10_1016_j_cej_2023_146092
crossref_primary_10_1080_00914037_2019_1581200
crossref_primary_10_1016_j_carbpol_2020_116096
crossref_primary_10_1016_j_bioactmat_2020_12_014
crossref_primary_10_1016_j_cej_2020_125194
crossref_primary_10_1039_D1BM00135C
crossref_primary_10_1016_j_jddst_2023_105026
crossref_primary_10_1016_j_mtchem_2025_102727
crossref_primary_10_1016_j_bioactmat_2021_10_043
crossref_primary_10_1002_app_57430
crossref_primary_10_1016_j_ijbiomac_2025_147771
crossref_primary_10_1007_s10853_019_03438_3
crossref_primary_10_1016_j_cej_2023_141630
crossref_primary_10_1021_acsomega_5c02315
crossref_primary_10_1016_j_ijbiomac_2020_08_239
crossref_primary_10_3389_fchem_2018_00449
crossref_primary_10_1016_j_eurpolymj_2023_111820
crossref_primary_10_1016_j_ijbiomac_2022_08_166
crossref_primary_10_1016_j_actbio_2017_06_036
crossref_primary_10_5812_jssc_67394
crossref_primary_10_1002_mabi_202300339
crossref_primary_10_1007_s10965_020_02363_3
crossref_primary_10_1016_j_ijpharm_2023_123187
crossref_primary_10_34133_bmr_0247
crossref_primary_10_1016_j_ijbiomac_2020_11_168
crossref_primary_10_1039_D0BM00188K
crossref_primary_10_1002_adma_202108325
crossref_primary_10_1002_smll_202309568
crossref_primary_10_1007_s10570_023_05669_9
crossref_primary_10_1039_D0BM00055H
crossref_primary_10_1007_s13233_022_0062_4
crossref_primary_10_1016_j_bbrc_2023_03_027
crossref_primary_10_3389_fchem_2022_838920
crossref_primary_10_1016_j_actbio_2023_01_021
crossref_primary_10_1016_j_ijbiomac_2023_124984
crossref_primary_10_1016_j_eurpolymj_2018_07_018
crossref_primary_10_1016_j_cej_2021_131017
crossref_primary_10_1016_j_compscitech_2020_108071
crossref_primary_10_1016_j_matdes_2020_108843
crossref_primary_10_1002_marc_201800058
crossref_primary_10_1038_s41467_018_04998_9
crossref_primary_10_1016_j_ijbiomac_2023_126929
crossref_primary_10_1016_j_molliq_2025_128126
crossref_primary_10_3390_gels10020152
crossref_primary_10_1016_j_carbpol_2023_121235
crossref_primary_10_1016_j_ijbiomac_2018_07_031
crossref_primary_10_1016_j_progpolymsci_2019_02_007
crossref_primary_10_1002_anbr_202200115
crossref_primary_10_1016_j_biomaterials_2022_121597
crossref_primary_10_1016_j_compositesb_2023_110991
crossref_primary_10_1016_j_heliyon_2023_e13506
crossref_primary_10_1016_j_bioadv_2022_212776
crossref_primary_10_1016_j_cej_2024_152249
crossref_primary_10_1080_17425247_2023_2217377
crossref_primary_10_3390_polym9120727
crossref_primary_10_1016_j_jece_2024_113136
crossref_primary_10_1016_j_compositesb_2020_108139
crossref_primary_10_1002_mame_201900045
crossref_primary_10_3389_fbioe_2020_00742
crossref_primary_10_1016_j_carbpol_2019_115161
crossref_primary_10_1016_j_carbpol_2021_117630
crossref_primary_10_1002_pen_26184
crossref_primary_10_1016_j_actbio_2025_04_002
crossref_primary_10_1002_adfm_202211182
crossref_primary_10_1177_0885328218754615
crossref_primary_10_1016_j_actbio_2025_05_047
crossref_primary_10_1016_j_ijbiomac_2025_145325
crossref_primary_10_1007_s10570_024_06335_4
crossref_primary_10_3390_c9010008
crossref_primary_10_1016_j_carbpol_2021_117878
crossref_primary_10_1007_s12274_022_5129_1
crossref_primary_10_1016_j_addr_2017_08_001
crossref_primary_10_1016_j_heliyon_2024_e32311
crossref_primary_10_3390_ijms241512358
crossref_primary_10_1016_j_cej_2020_125795
crossref_primary_10_1016_j_jddst_2023_105062
crossref_primary_10_3390_gels8100646
crossref_primary_10_1002_app_54751
crossref_primary_10_1039_D2RA02674K
crossref_primary_10_1016_j_actbio_2017_06_001
crossref_primary_10_1002_pol_20220008
crossref_primary_10_1016_j_matpr_2019_07_406
crossref_primary_10_1002_app_51249
crossref_primary_10_1016_j_actbio_2022_07_066
crossref_primary_10_1021_acs_biomac_5c00748
crossref_primary_10_1007_s10965_018_1568_5
crossref_primary_10_1080_09205063_2018_1549771
crossref_primary_10_1016_j_actbio_2018_02_028
crossref_primary_10_1016_j_eurpolymj_2020_110024
crossref_primary_10_1016_j_carbpol_2021_118718
crossref_primary_10_18632_oncotarget_17327
crossref_primary_10_1016_j_ijbiomac_2025_143117
crossref_primary_10_3390_polym12102261
crossref_primary_10_1016_j_foodchem_2025_146466
crossref_primary_10_1002_adhm_201700973
crossref_primary_10_1080_00914037_2018_1525547
crossref_primary_10_1002_app_52100
crossref_primary_10_1016_j_cej_2021_131049
crossref_primary_10_1186_s12951_023_01879_2
crossref_primary_10_1021_acsami_5c13677
crossref_primary_10_1088_1742_6596_1980_1_012016
crossref_primary_10_1016_j_mtcomm_2021_103019
crossref_primary_10_1016_j_jmbbm_2023_106079
crossref_primary_10_1039_D3MH00056G
crossref_primary_10_1016_j_carres_2019_05_006
crossref_primary_10_1002_mame_202000479
crossref_primary_10_1186_s40824_023_00392_9
crossref_primary_10_1016_j_jcis_2021_09_092
crossref_primary_10_1016_j_mtcomm_2024_109218
crossref_primary_10_1016_j_bioadv_2024_214003
crossref_primary_10_1016_j_bioadv_2022_212784
crossref_primary_10_1016_j_jcis_2019_08_083
crossref_primary_10_3390_coatings14030363
crossref_primary_10_1039_C9BM00661C
crossref_primary_10_1016_j_nantod_2021_101290
crossref_primary_10_1002_app_55859
crossref_primary_10_1016_j_cej_2020_127512
crossref_primary_10_1002_mabi_202300520
crossref_primary_10_1155_2020_8868618
crossref_primary_10_1016_j_biopha_2021_111349
crossref_primary_10_1016_j_bioactmat_2021_11_030
crossref_primary_10_1016_j_jmst_2020_02_071
crossref_primary_10_1016_j_colsurfb_2021_112071
crossref_primary_10_2174_0929867326666190227192527
crossref_primary_10_1016_j_carbpol_2020_116470
crossref_primary_10_1016_j_carbpol_2021_118770
crossref_primary_10_1016_j_bioadv_2022_212974
crossref_primary_10_3390_cells14141076
crossref_primary_10_1177_08853282241238409
crossref_primary_10_1016_j_progpolymsci_2024_101856
crossref_primary_10_1038_s41570_021_00323_z
crossref_primary_10_1016_j_ijbiomac_2022_11_115
crossref_primary_10_1080_1023666X_2020_1789382
crossref_primary_10_1016_j_talanta_2025_128690
crossref_primary_10_1186_s40824_023_00426_2
crossref_primary_10_3389_fbioe_2024_1375784
crossref_primary_10_1016_j_bioadv_2022_212728
crossref_primary_10_1039_D0RA05692H
crossref_primary_10_1080_00914037_2020_1809403
crossref_primary_10_1002_marc_202100025
crossref_primary_10_3390_gels3030027
crossref_primary_10_1007_s40843_021_1724_8
crossref_primary_10_1016_j_compositesb_2022_109661
crossref_primary_10_1016_j_ijbiomac_2024_134578
crossref_primary_10_1002_mabi_202200067
crossref_primary_10_3390_pharmaceutics15030874
crossref_primary_10_1016_j_cej_2025_164717
crossref_primary_10_1016_j_addr_2023_114753
crossref_primary_10_1089_ten_teb_2019_0281
crossref_primary_10_1186_s12967_025_06528_w
crossref_primary_10_1016_j_ijbiomac_2022_11_100
crossref_primary_10_1016_j_ijpharm_2022_122410
crossref_primary_10_3389_fbioe_2021_755777
crossref_primary_10_1016_j_jmst_2023_04_015
crossref_primary_10_1016_j_ijbiomac_2025_144436
crossref_primary_10_1016_j_biomaterials_2024_122632
crossref_primary_10_1007_s12010_021_03764_w
crossref_primary_10_1016_j_carbpol_2020_116249
crossref_primary_10_3390_gels8050280
crossref_primary_10_1007_s00253_024_13021_9
crossref_primary_10_1016_j_eurpolymj_2024_113214
crossref_primary_10_1016_j_ijbiomac_2023_125652
crossref_primary_10_1080_00914037_2021_1962876
crossref_primary_10_1002_admi_202000057
crossref_primary_10_1002_mame_202000285
crossref_primary_10_1016_j_scitotenv_2021_147430
crossref_primary_10_1016_j_carbpol_2024_122426
crossref_primary_10_1002_mame_202000045
crossref_primary_10_1016_j_ijbiomac_2024_135896
crossref_primary_10_1177_00031348251350983
crossref_primary_10_1016_j_carbpol_2021_118996
crossref_primary_10_1002_pol_20210249
crossref_primary_10_1002_app_54312
crossref_primary_10_1016_j_bioadv_2022_212753
crossref_primary_10_1016_j_ijbiomac_2023_123149
crossref_primary_10_1016_j_ijbiomac_2020_03_170
crossref_primary_10_1016_j_porgcoat_2019_105372
crossref_primary_10_1016_j_cej_2020_125352
crossref_primary_10_1002_bip_70007
crossref_primary_10_1016_j_carbpol_2021_118998
crossref_primary_10_1038_s41598_024_73610_6
crossref_primary_10_1016_j_matdes_2023_111604
crossref_primary_10_1016_j_carbpol_2024_122898
crossref_primary_10_1002_admt_202001012
crossref_primary_10_1016_j_ijbiomac_2022_12_169
crossref_primary_10_1088_1748_605X_adf67b
crossref_primary_10_1039_D5BM00133A
crossref_primary_10_1002_smll_202101384
crossref_primary_10_1016_j_cej_2024_149493
crossref_primary_10_1002_mabi_202100302
crossref_primary_10_1016_j_cej_2019_04_107
crossref_primary_10_1016_j_ijbiomac_2025_145505
crossref_primary_10_1007_s10570_020_03479_x
crossref_primary_10_1002_adma_202007663
crossref_primary_10_1039_D2RA07195A
crossref_primary_10_1016_j_bioactmat_2021_11_008
crossref_primary_10_1016_j_bios_2018_08_018
crossref_primary_10_1016_j_ijbiomac_2019_09_113
crossref_primary_10_1002_EXP_20210083
crossref_primary_10_1039_D5BM00375J
crossref_primary_10_1016_j_ijbiomac_2020_03_182
crossref_primary_10_1039_D3MH00849E
crossref_primary_10_1002_adfm_202422150
crossref_primary_10_1016_j_ijbiomac_2022_10_223
crossref_primary_10_1016_j_ijbiomac_2023_123494
crossref_primary_10_1016_j_ijbiomac_2022_10_224
crossref_primary_10_1039_D0BM00632G
crossref_primary_10_1016_j_ijbiomac_2024_135519
crossref_primary_10_1016_j_cej_2021_129578
crossref_primary_10_1016_j_ijbiomac_2023_125557
crossref_primary_10_1002_adhm_202000905
crossref_primary_10_1016_j_actbio_2018_03_018
crossref_primary_10_3389_fbioe_2021_718377
crossref_primary_10_1016_j_bioadv_2025_214287
crossref_primary_10_1016_j_ijbiomac_2019_11_134
crossref_primary_10_1016_j_ijbiomac_2024_134424
crossref_primary_10_1016_j_jmst_2024_08_054
crossref_primary_10_1016_j_cej_2024_154143
crossref_primary_10_1007_s13346_020_00731_6
crossref_primary_10_1186_s12951_023_01922_2
crossref_primary_10_1016_j_mtcomm_2024_109825
crossref_primary_10_1038_s41596_023_00878_9
crossref_primary_10_1016_j_ijbiomac_2025_145837
crossref_primary_10_1016_j_ijbiomac_2025_143418
crossref_primary_10_1002_VIW_20200112
crossref_primary_10_3389_fmats_2022_942957
crossref_primary_10_1016_j_ijbiomac_2020_08_093
crossref_primary_10_1016_j_jngse_2021_104250
crossref_primary_10_1016_j_ijbiomac_2021_10_180
crossref_primary_10_1039_C8BM01579A
crossref_primary_10_1039_C9NR09283H
crossref_primary_10_1002_adhm_202200115
crossref_primary_10_1016_j_ijbiomac_2025_144743
crossref_primary_10_1007_s10570_019_02942_8
crossref_primary_10_1039_D2BM00026A
crossref_primary_10_1016_j_ijbiomac_2023_125568
crossref_primary_10_1002_smll_201803200
crossref_primary_10_1016_j_ijbiomac_2024_135987
crossref_primary_10_1002_mabi_201700147
crossref_primary_10_1016_j_carbpol_2023_121640
crossref_primary_10_1007_s10853_018_2977_x
crossref_primary_10_1002_adfm_201905697
crossref_primary_10_1016_j_colsurfa_2024_133145
crossref_primary_10_1002_adma_202106842
crossref_primary_10_1016_j_actbio_2018_03_011
crossref_primary_10_1007_s10853_020_05751_8
crossref_primary_10_1016_j_bioactmat_2022_05_017
crossref_primary_10_1016_j_ijbiomac_2023_124321
crossref_primary_10_1007_s10570_019_02419_8
crossref_primary_10_1016_j_ijbiomac_2023_123231
crossref_primary_10_1007_s00289_024_05595_1
crossref_primary_10_1007_s40199_023_00475_x
crossref_primary_10_1039_D1RA04992E
crossref_primary_10_1177_22808000231176202
crossref_primary_10_3390_polym13081291
crossref_primary_10_3390_gels7040204
crossref_primary_10_1155_2023_9630168
crossref_primary_10_1016_j_ijbiomac_2024_133558
crossref_primary_10_1016_j_eurpolymj_2021_110981
crossref_primary_10_1039_D2QM00469K
crossref_primary_10_1039_D3SC00145H
crossref_primary_10_1002_mame_201800603
crossref_primary_10_1002_mabi_202200051
crossref_primary_10_1002_macp_202400491
crossref_primary_10_1016_j_ijpharm_2022_122385
crossref_primary_10_1002_adfm_202002370
crossref_primary_10_3390_molecules25010222
crossref_primary_10_1016_j_cjche_2020_12_005
crossref_primary_10_1016_j_ijbiomac_2017_07_130
crossref_primary_10_1016_j_cclet_2020_02_032
crossref_primary_10_1177_0040517519896753
crossref_primary_10_1016_j_ijbiomac_2022_12_086
crossref_primary_10_1016_j_jconrel_2022_03_014
crossref_primary_10_1016_j_ijbiomac_2022_10_255
crossref_primary_10_1016_j_ijbiomac_2023_125347
crossref_primary_10_1002_mabi_202500205
crossref_primary_10_1016_j_addr_2018_12_014
crossref_primary_10_1002_app_51770
crossref_primary_10_1016_j_ijbiomac_2024_133303
crossref_primary_10_1016_j_mtcomm_2022_104801
crossref_primary_10_1016_j_ijbiomac_2020_06_211
crossref_primary_10_3390_nano10081518
crossref_primary_10_1002_advs_202308538
crossref_primary_10_1016_j_ijbiomac_2022_11_288
crossref_primary_10_1002_pat_4452
crossref_primary_10_1016_j_carbpol_2022_119254
crossref_primary_10_3390_polym15040986
crossref_primary_10_1007_s40496_025_00405_7
crossref_primary_10_1016_j_cej_2023_143173
crossref_primary_10_1016_j_ijbiomac_2021_01_051
crossref_primary_10_1002_pen_27092
crossref_primary_10_1016_j_biomaterials_2019_119584
crossref_primary_10_1007_s13534_024_00417_9
crossref_primary_10_1016_j_jmst_2020_06_001
crossref_primary_10_1039_D2BM00224H
crossref_primary_10_1016_j_progpolymsci_2022_101573
crossref_primary_10_1002_advs_202203587
crossref_primary_10_1007_s42452_024_06058_y
crossref_primary_10_1016_j_carbpol_2024_121952
crossref_primary_10_1016_j_cej_2020_124888
crossref_primary_10_3389_fchem_2023_1257915
crossref_primary_10_1007_s11431_019_9522_4
crossref_primary_10_1016_j_cej_2019_122043
crossref_primary_10_1002_adfm_201904156
crossref_primary_10_1002_mabi_202100477
crossref_primary_10_1002_pat_6424
crossref_primary_10_1016_j_cej_2022_140698
crossref_primary_10_1016_j_biomaterials_2018_08_044
crossref_primary_10_1002_gch2_201900068
crossref_primary_10_1016_j_polymertesting_2018_01_016
crossref_primary_10_3390_polym14091716
crossref_primary_10_1016_j_cej_2025_163581
crossref_primary_10_1016_j_colsurfb_2022_112902
crossref_primary_10_1039_D4MH00837E
crossref_primary_10_1016_j_rineng_2025_105944
crossref_primary_10_1038_s41427_019_0124_z
crossref_primary_10_1016_j_actbio_2022_04_020
crossref_primary_10_1016_j_apmt_2021_101186
crossref_primary_10_1016_j_ijbiomac_2021_03_068
crossref_primary_10_1002_mabi_202100248
crossref_primary_10_1186_s13036_024_00435_2
crossref_primary_10_1016_j_ijbiomac_2022_03_128
crossref_primary_10_1016_j_ijbiomac_2022_11_065
crossref_primary_10_1088_1758_5090_ac42de
crossref_primary_10_1002_bmm2_12055
crossref_primary_10_1016_j_polymer_2020_122624
crossref_primary_10_1177_15533506251367251
crossref_primary_10_3390_polym14214539
crossref_primary_10_3390_pharmaceutics11100505
crossref_primary_10_1016_j_cej_2020_125994
crossref_primary_10_1016_j_matchemphys_2019_121972
crossref_primary_10_1002_adbi_202400358
crossref_primary_10_1039_D0RA04457A
crossref_primary_10_1016_j_eurpolymj_2023_112003
crossref_primary_10_1002_bab_2432
crossref_primary_10_1016_j_carbpol_2024_122822
crossref_primary_10_1016_j_cclet_2021_10_022
crossref_primary_10_1002_adma_201901580
crossref_primary_10_1038_s41427_019_0168_0
crossref_primary_10_1002_wnan_1889
crossref_primary_10_1002_mame_202500232
crossref_primary_10_3390_jcm10163558
crossref_primary_10_1093_burnst_tkab019
crossref_primary_10_3390_gels8020122
crossref_primary_10_1007_s40820_020_00507_0
crossref_primary_10_1016_j_ijbiomac_2019_04_075
crossref_primary_10_1007_s43939_024_00111_8
crossref_primary_10_1002_adfm_202110720
crossref_primary_10_1007_s13346_018_0510_z
crossref_primary_10_1088_1361_665X_acd505
crossref_primary_10_2147_IJN_S382796
crossref_primary_10_1016_j_ijbiomac_2025_142981
crossref_primary_10_1007_s40843_024_3262_y
crossref_primary_10_1002_jbm_b_35012
crossref_primary_10_1016_j_ijbiomac_2021_09_100
crossref_primary_10_1016_j_eurpolymj_2022_111086
crossref_primary_10_3390_polym16030344
crossref_primary_10_1016_j_cej_2020_125984
crossref_primary_10_1016_j_cej_2021_131005
crossref_primary_10_1088_1758_5090_acb6b8
crossref_primary_10_3389_fbioe_2022_1033827
crossref_primary_10_1093_rb_rbab048
crossref_primary_10_3390_jfb14080403
crossref_primary_10_1016_j_ijbiomac_2022_02_110
crossref_primary_10_1016_j_ijbiomac_2022_03_147
crossref_primary_10_1080_09205063_2020_1783595
crossref_primary_10_1002_adhm_201801568
crossref_primary_10_1063_5_0038364
crossref_primary_10_1016_j_ijbiomac_2023_127331
crossref_primary_10_1002_mabi_202100022
crossref_primary_10_1002_mame_201800664
crossref_primary_10_1007_s00396_025_05437_0
crossref_primary_10_1016_j_actbio_2019_11_014
crossref_primary_10_1177_00405175241300344
crossref_primary_10_1016_j_jddst_2025_107140
crossref_primary_10_1002_mabi_202500294
crossref_primary_10_1016_j_clay_2021_106291
crossref_primary_10_1016_j_biomaterials_2020_120149
crossref_primary_10_1016_j_cej_2020_126182
crossref_primary_10_1021_acsbiomaterials_9b01547
crossref_primary_10_1002_app_49250
crossref_primary_10_1016_j_actbio_2021_09_056
crossref_primary_10_1016_j_ijbiomac_2023_126014
crossref_primary_10_2217_nnm_2017_0173
crossref_primary_10_1002_adhm_202101556
crossref_primary_10_1016_j_ijbiomac_2024_131549
crossref_primary_10_1007_s13346_024_01520_1
crossref_primary_10_1016_j_carbpol_2024_122397
crossref_primary_10_1016_j_colsurfb_2021_112208
crossref_primary_10_1002_anie_201910979
crossref_primary_10_1016_j_ijbiomac_2023_126019
crossref_primary_10_1039_D3MH01403G
crossref_primary_10_1002_pat_4286
crossref_primary_10_1016_j_cej_2023_141856
crossref_primary_10_1007_s42765_024_00421_9
crossref_primary_10_1039_D1BM01604K
crossref_primary_10_1016_j_ijbiomac_2025_142738
crossref_primary_10_1002_adhm_202001384
crossref_primary_10_1016_j_ijbiomac_2023_123631
crossref_primary_10_1016_j_jcis_2023_09_196
crossref_primary_10_1016_j_jcis_2017_12_062
crossref_primary_10_1016_j_biomaterials_2019_119398
crossref_primary_10_1016_j_carbpol_2018_11_001
crossref_primary_10_1002_mame_201800200
crossref_primary_10_3390_pharmaceutics11090447
crossref_primary_10_1016_j_ijbiomac_2022_10_086
crossref_primary_10_1016_j_cej_2024_156381
crossref_primary_10_1016_j_ijbiomac_2024_131772
crossref_primary_10_1002_advs_202003627
crossref_primary_10_1016_j_ijpharm_2024_124767
crossref_primary_10_1039_D1BM01293B
crossref_primary_10_1002_adhm_202002026
crossref_primary_10_1002_pola_28936
crossref_primary_10_1557_jmr_2019_77
crossref_primary_10_1016_j_compositesb_2019_03_006
crossref_primary_10_1016_j_bios_2019_04_001
crossref_primary_10_1016_j_ijpx_2025_100334
crossref_primary_10_1016_j_bios_2023_115386
crossref_primary_10_1016_j_ijbiomac_2023_128458
crossref_primary_10_1134_S2635167622020045
crossref_primary_10_1016_j_jcis_2020_09_105
crossref_primary_10_1007_s40200_021_00868_2
crossref_primary_10_1016_j_carbpol_2021_118272
crossref_primary_10_1016_j_cobme_2022_100443
crossref_primary_10_1093_rb_rbad028
crossref_primary_10_1002_mabi_202200442
crossref_primary_10_1016_j_actbio_2022_04_041
crossref_primary_10_1016_j_ijpharm_2025_125910
crossref_primary_10_1021_acssuschemeng_5c00713
crossref_primary_10_3389_fcimb_2023_1295593
crossref_primary_10_1088_2043_6262_ac2b98
crossref_primary_10_3390_ma13215038
crossref_primary_10_1016_j_cej_2019_122238
crossref_primary_10_1016_j_ijbiomac_2023_127371
crossref_primary_10_1002_advs_201802077
crossref_primary_10_1016_j_ijbiomac_2023_126282
crossref_primary_10_1016_j_ijbiomac_2023_125198
crossref_primary_10_1016_j_jconrel_2022_03_027
crossref_primary_10_3389_fphys_2023_1206211
crossref_primary_10_1039_D2BM00397J
crossref_primary_10_1080_24701556_2021_1956964
crossref_primary_10_1155_2020_8747639
crossref_primary_10_1016_j_bioelechem_2022_108261
crossref_primary_10_3390_gels10040241
crossref_primary_10_3389_fchem_2018_00497
crossref_primary_10_1007_s11705_022_2149_z
crossref_primary_10_1111_srt_70018
crossref_primary_10_1016_j_cej_2024_155037
crossref_primary_10_1016_j_colsurfb_2020_111263
crossref_primary_10_1016_j_colsurfb_2020_111264
crossref_primary_10_1016_j_ijbiomac_2023_126051
crossref_primary_10_1016_j_talanta_2023_125101
crossref_primary_10_1016_j_cej_2019_123775
crossref_primary_10_1016_j_colsurfb_2018_05_021
crossref_primary_10_1016_j_ijbiomac_2020_11_119
crossref_primary_10_1590_acb399024
crossref_primary_10_3389_fchem_2018_00490
crossref_primary_10_1016_j_ijbiomac_2021_07_115
crossref_primary_10_1002_rpm_20250021
crossref_primary_10_1016_j_apsusc_2018_04_122
crossref_primary_10_1016_j_carbpol_2022_120450
crossref_primary_10_1016_j_cclet_2023_108276
crossref_primary_10_3390_gels8070437
crossref_primary_10_1016_j_foodchem_2025_145922
crossref_primary_10_1016_j_jddst_2020_101894
crossref_primary_10_1016_j_bioadv_2022_213130
crossref_primary_10_2217_nnm_2020_0193
crossref_primary_10_1016_j_reth_2025_08_002
crossref_primary_10_1016_j_mser_2025_101098
crossref_primary_10_1016_j_colsurfb_2022_112987
crossref_primary_10_1002_adfm_202011230
crossref_primary_10_1088_1748_605X_abb2d7
crossref_primary_10_3390_bioengineering10020165
crossref_primary_10_1016_j_colsurfa_2024_133719
crossref_primary_10_1007_s00289_023_05130_8
crossref_primary_10_3390_ma13204572
crossref_primary_10_1016_j_carbpol_2025_123350
crossref_primary_10_1016_j_cej_2021_130302
crossref_primary_10_1002_adhm_202403983
crossref_primary_10_1016_j_matlet_2020_127401
crossref_primary_10_1016_j_bioadv_2022_213172
crossref_primary_10_1002_macp_201900399
crossref_primary_10_1007_s40195_021_01335_w
crossref_primary_10_1016_j_pmatsci_2024_101249
crossref_primary_10_1016_j_biomaterials_2020_120164
crossref_primary_10_1021_acs_chemrev_5c00069
crossref_primary_10_1016_j_carbpol_2019_115302
crossref_primary_10_1016_j_ijbiomac_2020_05_220
crossref_primary_10_1002_adhm_202100402
crossref_primary_10_1038_s41598_024_84416_x
crossref_primary_10_1016_j_cej_2021_129329
crossref_primary_10_1016_j_nanoen_2022_107393
crossref_primary_10_1016_j_cej_2023_147577
crossref_primary_10_1016_j_ijbiomac_2023_128019
crossref_primary_10_1016_j_carbpol_2025_124453
crossref_primary_10_1016_j_matchemphys_2025_130835
crossref_primary_10_1039_D1BM00053E
crossref_primary_10_1088_1361_6528_aad7a7
crossref_primary_10_1016_j_msec_2021_112584
crossref_primary_10_1016_j_eurpolymj_2022_111004
crossref_primary_10_1016_j_jcis_2022_06_058
crossref_primary_10_1039_D4QM00405A
crossref_primary_10_1002_app_57037
crossref_primary_10_1016_j_eurpolymj_2022_111486
crossref_primary_10_1002_pat_6286
crossref_primary_10_1002_mabi_202500247
crossref_primary_10_1016_j_foodchem_2023_135981
crossref_primary_10_1016_j_mtbio_2025_102114
crossref_primary_10_1016_j_cej_2022_140886
crossref_primary_10_1016_j_carbpol_2021_118065
crossref_primary_10_3390_pharmaceutics15071914
crossref_primary_10_1016_j_msec_2021_112577
crossref_primary_10_1016_j_jcis_2022_05_013
crossref_primary_10_1016_j_carbpol_2022_119696
crossref_primary_10_1038_s41578_020_0202_4
crossref_primary_10_1016_j_carbpol_2022_119456
crossref_primary_10_1016_j_ijbiomac_2024_129653
Cites_doi 10.1021/acsami.5b10829
10.1016/j.biomaterials.2015.08.042
10.1096/fasebj.8.11.8070631
10.1016/j.actbio.2016.09.019
10.1016/j.biomaterials.2014.10.077
10.1002/adfm.201503248
10.1080/027263401752246199
10.1021/am300292v
10.1039/c2py20627g
10.1016/j.actbio.2016.03.011
10.1016/j.actbio.2011.10.004
10.1021/cm103498s
10.1016/j.biomaterials.2016.07.011
10.1016/j.lfs.2006.09.018
10.1016/j.actbio.2013.12.045
10.1039/c3tb21716g
10.1039/c3tb20795a
10.1016/j.biomaterials.2008.12.063
10.1016/j.progpolymsci.2013.06.003
10.1159/000339613
10.1002/mabi.201300366
10.1016/j.jare.2010.05.004
10.1002/adhm.201500093
10.1016/0003-9861(61)90291-0
10.1111/wrr.12244
10.1016/j.biomaterials.2012.05.018
10.1016/j.addr.2003.08.003
10.1016/j.ijbiomac.2016.02.036
10.1039/C4CS00332B
10.1002/adma.201500762
10.1021/bm0701550
10.1021/bm4018963
10.1021/acsami.5b08376
10.1007/s11426-014-5086-y
10.1016/j.biotechadv.2011.01.005
10.1021/acsami.5b00191
10.1111/j.1524-475X.2008.00410.x
10.1016/j.actbio.2015.08.006
10.1002/adfm.201401502
10.1021/mz500498y
10.1002/adfm.201304202
10.1182/blood.V90.10.4153
10.1016/j.actbio.2012.05.001
10.1016/S0142-9612(02)00540-9
10.1016/j.ejmech.2006.11.010
10.1021/cr030441b
10.1039/C6TB01776B
10.1126/science.1176667
10.1074/jbc.272.32.19738
10.1039/C5TB01899D
10.1021/bm200326g
10.1016/0738-081X(94)90266-6
10.1038/nature05300
10.1006/exer.1998.0603
10.1021/acsami.6b04911
10.1021/bm300897j
10.1039/c2cc34701f
10.1021/bm050754b
10.1002/adma.201405166
10.1016/j.ejmech.2015.04.042
10.1016/j.biomaterials.2014.10.024
10.1016/j.synthmet.2005.07.170
10.1002/adfm.201100871
10.1056/NEJM199909023411006
10.1021/bm200464x
10.1016/j.biomaterials.2016.02.010
10.1016/j.biomaterials.2016.01.067
10.1016/j.biomaterials.2013.05.005
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2017.01.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 47
ExternalDocumentID 28107663
10_1016_j_biomaterials_2017_01_011
S0142961217300194
1_s2_0_S0142961217300194
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
9DU
AAYXX
CITATION
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c527t-6c97bb84f2d20308c0d1df19d31890671e564d4058b3b0f164771807573024a53
ISICitedReferencesCount 1720
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394472500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
1878-5905
IngestDate Sat Sep 27 23:42:50 EDT 2025
Wed Oct 01 13:44:42 EDT 2025
Mon Jul 21 05:55:48 EDT 2025
Sat Nov 29 07:26:07 EST 2025
Tue Nov 18 22:36:59 EST 2025
Fri Feb 23 02:31:39 EST 2024
Tue Feb 25 19:57:25 EST 2025
Tue Oct 14 19:32:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Full thickness skin defect model
Self-healing
Wound healing
Antibacterial
Conductive hydrogel dressing
Electroactivity
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c527t-6c97bb84f2d20308c0d1df19d31890671e564d4058b3b0f164771807573024a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28107663
PQID 1861587802
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2000209346
proquest_miscellaneous_1861587802
pubmed_primary_28107663
crossref_citationtrail_10_1016_j_biomaterials_2017_01_011
crossref_primary_10_1016_j_biomaterials_2017_01_011
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2017_01_011
elsevier_clinicalkeyesjournals_1_s2_0_S0142961217300194
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2017_01_011
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dong, Hassan, Kennedy, Greiser, Pandit, Garcia (bib8) 2014; 10
Kumar, Muzzarelli, Muzzarelli, Sashiwa, Domb (bib56) 2004; 104
da Silva, da Silva, Modolo, Alves, de Resende, Martins (bib49) 2011; 2
Wu, Wang, Guo, P (bib40) 2014; 2
Shi, Ge, Tan, Li, Song, Zhu (bib51) 2007; 42
Zhao, Zhang, Guo, Ma (bib15) 2016; 4
Xie, Wang, Guo, Wang, Chen, Ma (bib35) 2015; 71
Gong, Wu, Wang, Zhang, Luo, Zhao (bib2) 2013; 34
Chen, Chang, Lu, Huang, Harroun, Tseng (bib22) 2015; 25
Jayakumar, Prabaharan, Kumar, Nair, Tamura (bib23) 2011; 29
Spitzer (bib30) 2006; 444
Guo, Ma (bib37) 2014; 57
Greenwel, Inagaki, Hu, Walsh, Ramirez (bib66) 1997; 272
Gharibi, Yeganeh, Rezapour-Lactoee, Hassan (bib20) 2015; 7
Wei, Yang, Liu, Xu, Zhou, Zrínyi (bib47) 2015; 25
Tran, Joung, Lih, Park (bib9) 2011; 12
Pavinatto, Pavinatto, Caseli, dos Santos, Nobre, Zaniquelli (bib55) 2007; 8
Chen, Wang, Chen, Ho, Sheu (bib61) 2006; 7
Arul, Kartha, Jayakumar (bib60) 2007; 80
Li, Zhai, Lv, Yu, Ma, Yin (bib5) 2016; 36
Wu, Wang, Zhao, Hou, Guo, Ma (bib13) 2016; 104
Wu, Wang, Guo, Shao, Ma (bib34) 2016; 87
Deng, Guo, Zhao, Li, Dong, Guo (bib36) 2016; 46
Wu, Guo, Ma (bib12) 2014; 3
Zhao, Li, Guo, Ma (bib26) 2015; 26
Xia, Xia, Huang, Xiao, Lou, Liu (bib50) 2015; 97
Tran, Hamood, Souza, Schultz, Liesenfeld, Mehta (bib4) 2015; 23
Duck (bib27) 2013
Xu, Strandman, Zhu, Barralet, Cerruti (bib24) 2015; 37
Cui, Liu, Cheng, Zhang, Zhang, Chen (bib46) 2014; 15
Dong, Zhao, Guo, Ma (bib14) 2016; 8
Guo, Finne-Wistrand, Albertsson (bib44) 2011; 23
Fan, Liu, Wang, Zhang, Lin, Gong (bib6) 2014; 24
Ruszczak (bib3) 2003; 55
Ghobril, Grinstaff (bib53) 2015; 44
Guo, Glavas, Albertsson (bib32) 2013; 38
Fischbach, Walsh (bib17) 2009; 325
Xie, Wang, Ge, Guo, Ma (bib62) 2015; 7
Hou, Wang, Park, Jin, Ma (bib16) 2015; 4
Sudheesh Kumar, Lakshmanan, Anilkumar, Ramya, Reshmi, Unnikrishnan (bib18) 2012; 4
Ku, Lee, Park (bib31) 2012; 33
Barrientos, Stojadinovic, Golinko, Brem, Tomic-Canic (bib69) 2008; 16
Fiebrig, Harding, Davis (bib54) 1994
Cui, Liu, Deng, Pang, Zhang, Wang (bib72) 2012; 13
Jun, Jeong, Shin (bib29) 2009; 30
Woessner (bib67) 1961; 93
Raghow (bib64) 1994; 8
Wilson, Chen, Mohan, Liang, Liu (bib68) 1999; 68
Nissen, Polverini, Koch, Volin, Gamelli, DiPietro (bib70) 1998; 152
Cui, Cui, Zhang, Huang, Wei, Chen (bib39) 2014; 14
Gaudry, Brégerie, Andrieu, El Benna, Pocidalo, Hakim (bib71) 1997; 90
Cui, del Campo (bib11) 2012; 48
Kilmartin, Gizdavic-Nikolaidis, Zujovic, Travas-Sejdic, Bowmaker, Cooney (bib38) 2005; 153
Zhou, Yan, Cheng, Kong, Liu, Feng (bib59) 2016; 89
Tseng, Tao, Hsieh, Wei, Chiu, Hsu (bib25) 2015; 27
Lih, Lee, Park, Park (bib41) 2012; 8
Song, Rane, Christman (bib19) 2012; 8
Li, Yu, Ma, Guo (bib33) 2016; 4
Xu, Luo, Xia, He, Zhao, Liu (bib1) 2015; 40
Moseley, Walker, Waddington, Chen (bib45) 2003; 24
Li, Yan, Yang, Chen, Zeng (bib10) 2015; 27
Mi, Xue, Li, Jiang (bib21) 2011; 21
Peters, GS, Hendriks (bib28) 2001; 21
Yang, Zhang, Zhang, Tao, Li, Wei (bib48) 2012; 3
Chen, Dong, Ge, Guo, Ma (bib63) 2015; 7
Wen, Weinhart, Lai, Kizhakkedathu, Brooks (bib58) 2016; 86
Kenawy, Abdel-Hay, Mohy Eldin, Tamer, Ibrahim (bib52) 2015; 3
Lawrence, Diegelmann (bib65) 1994; 12
Rieger, Birch, Schiffman (bib7) 2013; 1
Reinke, Sorg (bib42) 2012; 49
Ryu, Lee, Kong, Kim, Park, Lee (bib57) 2011; 12
Singer, Clark (bib43) 1999; 341
Xie (10.1016/j.biomaterials.2017.01.011_bib62) 2015; 7
Guo (10.1016/j.biomaterials.2017.01.011_bib32) 2013; 38
Yang (10.1016/j.biomaterials.2017.01.011_bib48) 2012; 3
Jayakumar (10.1016/j.biomaterials.2017.01.011_bib23) 2011; 29
Dong (10.1016/j.biomaterials.2017.01.011_bib8) 2014; 10
da Silva (10.1016/j.biomaterials.2017.01.011_bib49) 2011; 2
Cui (10.1016/j.biomaterials.2017.01.011_bib46) 2014; 15
Zhao (10.1016/j.biomaterials.2017.01.011_bib15) 2016; 4
Lawrence (10.1016/j.biomaterials.2017.01.011_bib65) 1994; 12
Wu (10.1016/j.biomaterials.2017.01.011_bib40) 2014; 2
Barrientos (10.1016/j.biomaterials.2017.01.011_bib69) 2008; 16
Fischbach (10.1016/j.biomaterials.2017.01.011_bib17) 2009; 325
Fan (10.1016/j.biomaterials.2017.01.011_bib6) 2014; 24
Tran (10.1016/j.biomaterials.2017.01.011_bib9) 2011; 12
Mi (10.1016/j.biomaterials.2017.01.011_bib21) 2011; 21
Xia (10.1016/j.biomaterials.2017.01.011_bib50) 2015; 97
Li (10.1016/j.biomaterials.2017.01.011_bib33) 2016; 4
Guo (10.1016/j.biomaterials.2017.01.011_bib37) 2014; 57
Cui (10.1016/j.biomaterials.2017.01.011_bib11) 2012; 48
Raghow (10.1016/j.biomaterials.2017.01.011_bib64) 1994; 8
Sudheesh Kumar (10.1016/j.biomaterials.2017.01.011_bib18) 2012; 4
Tseng (10.1016/j.biomaterials.2017.01.011_bib25) 2015; 27
Wilson (10.1016/j.biomaterials.2017.01.011_bib68) 1999; 68
Gong (10.1016/j.biomaterials.2017.01.011_bib2) 2013; 34
Wu (10.1016/j.biomaterials.2017.01.011_bib13) 2016; 104
Spitzer (10.1016/j.biomaterials.2017.01.011_bib30) 2006; 444
Li (10.1016/j.biomaterials.2017.01.011_bib10) 2015; 27
Jun (10.1016/j.biomaterials.2017.01.011_bib29) 2009; 30
Wu (10.1016/j.biomaterials.2017.01.011_bib12) 2014; 3
Duck (10.1016/j.biomaterials.2017.01.011_bib27) 2013
Tran (10.1016/j.biomaterials.2017.01.011_bib4) 2015; 23
Woessner (10.1016/j.biomaterials.2017.01.011_bib67) 1961; 93
Dong (10.1016/j.biomaterials.2017.01.011_bib14) 2016; 8
Greenwel (10.1016/j.biomaterials.2017.01.011_bib66) 1997; 272
Gaudry (10.1016/j.biomaterials.2017.01.011_bib71) 1997; 90
Wen (10.1016/j.biomaterials.2017.01.011_bib58) 2016; 86
Kenawy (10.1016/j.biomaterials.2017.01.011_bib52) 2015; 3
Lih (10.1016/j.biomaterials.2017.01.011_bib41) 2012; 8
Wu (10.1016/j.biomaterials.2017.01.011_bib34) 2016; 87
Nissen (10.1016/j.biomaterials.2017.01.011_bib70) 1998; 152
Gharibi (10.1016/j.biomaterials.2017.01.011_bib20) 2015; 7
Xie (10.1016/j.biomaterials.2017.01.011_bib35) 2015; 71
Shi (10.1016/j.biomaterials.2017.01.011_bib51) 2007; 42
Chen (10.1016/j.biomaterials.2017.01.011_bib22) 2015; 25
Xu (10.1016/j.biomaterials.2017.01.011_bib1) 2015; 40
Rieger (10.1016/j.biomaterials.2017.01.011_bib7) 2013; 1
Wei (10.1016/j.biomaterials.2017.01.011_bib47) 2015; 25
Ghobril (10.1016/j.biomaterials.2017.01.011_bib53) 2015; 44
Hou (10.1016/j.biomaterials.2017.01.011_bib16) 2015; 4
Chen (10.1016/j.biomaterials.2017.01.011_bib61) 2006; 7
Ruszczak (10.1016/j.biomaterials.2017.01.011_bib3) 2003; 55
Deng (10.1016/j.biomaterials.2017.01.011_bib36) 2016; 46
Ryu (10.1016/j.biomaterials.2017.01.011_bib57) 2011; 12
Fiebrig (10.1016/j.biomaterials.2017.01.011_bib54) 1994
Cui (10.1016/j.biomaterials.2017.01.011_bib72) 2012; 13
Kumar (10.1016/j.biomaterials.2017.01.011_bib56) 2004; 104
Guo (10.1016/j.biomaterials.2017.01.011_bib44) 2011; 23
Song (10.1016/j.biomaterials.2017.01.011_bib19) 2012; 8
Cui (10.1016/j.biomaterials.2017.01.011_bib39) 2014; 14
Chen (10.1016/j.biomaterials.2017.01.011_bib63) 2015; 7
Singer (10.1016/j.biomaterials.2017.01.011_bib43) 1999; 341
Moseley (10.1016/j.biomaterials.2017.01.011_bib45) 2003; 24
Pavinatto (10.1016/j.biomaterials.2017.01.011_bib55) 2007; 8
Zhao (10.1016/j.biomaterials.2017.01.011_bib26) 2015; 26
Zhou (10.1016/j.biomaterials.2017.01.011_bib59) 2016; 89
Peters (10.1016/j.biomaterials.2017.01.011_bib28) 2001; 21
Xu (10.1016/j.biomaterials.2017.01.011_bib24) 2015; 37
Ku (10.1016/j.biomaterials.2017.01.011_bib31) 2012; 33
Li (10.1016/j.biomaterials.2017.01.011_bib5) 2016; 36
Reinke (10.1016/j.biomaterials.2017.01.011_bib42) 2012; 49
Arul (10.1016/j.biomaterials.2017.01.011_bib60) 2007; 80
Kilmartin (10.1016/j.biomaterials.2017.01.011_bib38) 2005; 153
References_xml – volume: 12
  start-page: 2872
  year: 2011
  end-page: 2880
  ident: bib9
  article-title: In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing
  publication-title: Biomacromolecules
– volume: 23
  start-page: 1254
  year: 2011
  end-page: 1262
  ident: bib44
  article-title: Degradable and electroactive hydrogels with tunable electrical conductivity and swelling behavior
  publication-title: Chem. Mater
– volume: 80
  start-page: 275
  year: 2007
  end-page: 284
  ident: bib60
  article-title: A therapeutic approach for diabetic wound healing using biotinylated GHK incorporated collagen matrices
  publication-title: Life Sci.
– volume: 444
  start-page: 707
  year: 2006
  end-page: 712
  ident: bib30
  article-title: Electrical activity in early neuronal development
  publication-title: Nature
– volume: 152
  start-page: 1445
  year: 1998
  ident: bib70
  article-title: Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing
  publication-title: Am. J. Pathol.
– volume: 1
  start-page: 4531
  year: 2013
  end-page: 4541
  ident: bib7
  article-title: Designing electrospun nanofiber mats to promote wound healing–a review
  publication-title: J. Mater Chem. B
– volume: 90
  start-page: 4153
  year: 1997
  end-page: 4161
  ident: bib71
  article-title: Intracellular pool of vascular endothelial growth factor in human neutrophils
  publication-title: Blood
– volume: 55
  start-page: 1595
  year: 2003
  end-page: 1611
  ident: bib3
  article-title: Effect of collagen matrices on dermal wound healing
  publication-title: Adv. Drug Deliv. Rev.
– volume: 29
  start-page: 322
  year: 2011
  end-page: 337
  ident: bib23
  article-title: Biomaterials based on chitin and chitosan in wound dressing applications
  publication-title: Biotechnol. Adv.
– volume: 3
  start-page: 3235
  year: 2012
  end-page: 3238
  ident: bib48
  article-title: Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier
  publication-title: Polym. Chem.
– volume: 12
  start-page: 2653
  year: 2011
  end-page: 2659
  ident: bib57
  article-title: Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials
  publication-title: Biomacromolecules
– volume: 4
  start-page: 471
  year: 2016
  end-page: 481
  ident: bib33
  article-title: Electroactive degradable copolymers enhancing osteogenic differentiation from bone marrow derived mesenchymal stem cells
  publication-title: J. Mater Chem. B
– volume: 15
  start-page: 1115
  year: 2014
  end-page: 1123
  ident: bib46
  article-title: In vitro study of electroactive tetraaniline-containing thermosensitive hydrogels for cardiac tissue engineering
  publication-title: Biomacromolecules
– volume: 104
  start-page: 6017
  year: 2004
  end-page: 6084
  ident: bib56
  article-title: Chitosan chemistry and pharmaceutical perspectives
  publication-title: Chem. Rev.
– volume: 8
  start-page: 823
  year: 1994
  end-page: 831
  ident: bib64
  article-title: The role of extracellular matrix in postinflammatory wound healing and fibrosis
  publication-title: FASEB J.
– volume: 21
  start-page: 4028
  year: 2011
  end-page: 4034
  ident: bib21
  article-title: A thermoresponsive antimicrobial wound dressing hydrogel based on a cationic betaine ester
  publication-title: Adv. Funct. Mater
– year: 2013
  ident: bib27
  article-title: Physical Properties of Tissues: a Comprehensive Reference Book
– volume: 341
  start-page: 738
  year: 1999
  end-page: 746
  ident: bib43
  article-title: Cutaneous wound healing
  publication-title: New Engl. J. Med.
– volume: 40
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib1
  article-title: Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction
  publication-title: Biomaterials
– volume: 33
  start-page: 6098
  year: 2012
  end-page: 6104
  ident: bib31
  article-title: Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation
  publication-title: Biomaterials
– volume: 97
  start-page: 83
  year: 2015
  end-page: 93
  ident: bib50
  article-title: Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure–microbicidal activity relationship
  publication-title: Eur. J. Med. Chem.
– volume: 24
  start-page: 1549
  year: 2003
  end-page: 1557
  ident: bib45
  article-title: Comparison of the antioxidant properties of wound dressing materials–carboxymethylcellulose, hyaluronan benzyl ester and hyaluronan, towards polymorphonuclear leukocyte-derived reactive oxygen species
  publication-title: Biomaterials
– volume: 7
  start-page: 6772
  year: 2015
  end-page: 6781
  ident: bib62
  article-title: Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering
  publication-title: ACS Appl. Mater Inter
– volume: 7
  start-page: 24296
  year: 2015
  end-page: 24311
  ident: bib20
  article-title: Stimulation of wound healing by electroactive, antibacterial, and antioxidant polyurethane/siloxane dressing membranes: in vitro and in vivo evaluations
  publication-title: ACS Appl. Mater Inter
– volume: 153
  start-page: 153
  year: 2005
  end-page: 156
  ident: bib38
  article-title: Free radical scavenging and antioxidant properties of conducting polymers examined using EPR and NMR spectroscopies
  publication-title: Synth. Met.
– volume: 93
  start-page: 440
  year: 1961
  end-page: 447
  ident: bib67
  article-title: The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid
  publication-title: Arch. Biochem. Biophys.
– volume: 21
  start-page: 545
  year: 2001
  end-page: 557
  ident: bib28
  article-title: Estimation of the electrical conductivity of human tissue
  publication-title: Electromagnetics
– volume: 48
  start-page: 9302
  year: 2012
  end-page: 9304
  ident: bib11
  article-title: Multivalent H-bonds for self-healing hydrogels
  publication-title: Chem. Commun.
– volume: 57
  start-page: 490
  year: 2014
  end-page: 500
  ident: bib37
  article-title: Synthetic biodegradable functional polymers for tissue engineering: a brief review
  publication-title: Sci. China Chem.
– volume: 44
  start-page: 1820
  year: 2015
  end-page: 1835
  ident: bib53
  article-title: The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 3933
  year: 2014
  end-page: 3943
  ident: bib6
  article-title: A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing
  publication-title: Adv. Funct. Mater
– volume: 2
  start-page: 1
  year: 2011
  end-page: 8
  ident: bib49
  article-title: Schiff bases: a short review of their antimicrobial activities
  publication-title: J. Adv. Res.
– volume: 36
  start-page: 254
  year: 2016
  end-page: 266
  ident: bib5
  article-title: Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing
  publication-title: Acta Biomater.
– volume: 25
  start-page: 7189
  year: 2015
  end-page: 7199
  ident: bib22
  article-title: Self-assembly of antimicrobial peptides on gold nanodots: against multidrug-resistant bacteria and wound-healing application
  publication-title: Adv. Funct. Mater
– volume: 8
  start-page: 1633
  year: 2007
  end-page: 1640
  ident: bib55
  article-title: Interaction of chitosan with cell membrane models at the air-water interface
  publication-title: Biomacromolecules
– volume: 23
  start-page: 74
  year: 2015
  end-page: 81
  ident: bib4
  article-title: A study on the ability of quaternary ammonium groups attached to a polyurethane foam wound dressing to inhibit bacterial attachment and biofilm formation
  publication-title: Wound Repair Regen.
– volume: 4
  start-page: 2618
  year: 2012
  end-page: 2629
  ident: bib18
  article-title: Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation
  publication-title: ACS Appl. Mater Inter
– volume: 7
  start-page: 1058
  year: 2006
  end-page: 1064
  ident: bib61
  article-title: Development of N, O-(carboxymethyl) chitosan/collagen matrixes as a wound dressing
  publication-title: Biomacromolecules
– volume: 46
  start-page: 234
  year: 2016
  end-page: 244
  ident: bib36
  article-title: Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation
  publication-title: Acta Biomater.
– volume: 68
  start-page: 377
  year: 1999
  end-page: 397
  ident: bib68
  article-title: Expression of HGF, KGF, EGF and receptor messenger RNAs following corneal epithelial wounding
  publication-title: Exp. Eye Res.
– volume: 38
  start-page: 1263
  year: 2013
  end-page: 1286
  ident: bib32
  article-title: Biodegradable and electrically conducting polymers for biomedical applications
  publication-title: Prog. Polym. Sci.
– volume: 325
  start-page: 1089
  year: 2009
  end-page: 1093
  ident: bib17
  article-title: Antibiotics for emerging pathogens
  publication-title: Science
– volume: 42
  start-page: 558
  year: 2007
  end-page: 564
  ident: bib51
  article-title: Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde
  publication-title: Eur. J. Med. Chem.
– volume: 4
  start-page: 6644
  year: 2016
  end-page: 6651
  ident: bib15
  article-title: Mussel-inspired injectable supramolecular and covalent bond crosslinked hydrogels with rapid self-healing and recovery properties via a facile approach under metal-free conditions
  publication-title: J. Mater Chem. B
– volume: 16
  start-page: 585
  year: 2008
  end-page: 601
  ident: bib69
  article-title: Growth factors and cytokines in wound healing
  publication-title: Wound Repair Regen.
– volume: 30
  start-page: 2038
  year: 2009
  end-page: 2047
  ident: bib29
  article-title: The stimulation of myoblast differentiation by electrically conductive sub-micron fibers
  publication-title: Biomaterials
– volume: 13
  start-page: 2881
  year: 2012
  end-page: 2889
  ident: bib72
  article-title: Synthesis of biodegradable and electroactive tetraaniline grafted poly (ester amide) copolymers for bone tissue engineering
  publication-title: Biomacromolecules
– volume: 2
  start-page: 3674
  year: 2014
  end-page: 3685
  ident: bib40
  article-title: Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation
  publication-title: J. Mater Chem. B
– volume: 71
  start-page: 158
  year: 2015
  end-page: 167
  ident: bib35
  article-title: Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation
  publication-title: Biomaterials
– volume: 3
  start-page: 1145
  year: 2014
  end-page: 1150
  ident: bib12
  article-title: Injectable electroactive hydrogels formed via host–guest interactions
  publication-title: ACS Macro Lett.
– volume: 87
  start-page: 18
  year: 2016
  end-page: 31
  ident: bib34
  article-title: Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering
  publication-title: Biomaterials
– volume: 4
  start-page: 1491
  year: 2015
  end-page: 1495
  ident: bib16
  article-title: Rapid self-integrating, injectable hydrogel for tissue complex regeneration
  publication-title: Adv. Healthc. Mater
– volume: 8
  start-page: 41
  year: 2012
  end-page: 50
  ident: bib19
  article-title: Antibacterial and cell-adhesive polypeptide and poly (ethylene glycol) hydrogel as a potential scaffold for wound healing
  publication-title: Acta Biomater.
– volume: 7
  start-page: 28273
  year: 2015
  end-page: 28285
  ident: bib63
  article-title: Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering
  publication-title: ACS Appl. Mater Inter
– volume: 8
  start-page: 17138
  year: 2016
  end-page: 17150
  ident: bib14
  article-title: Self-healing conductive injectable hydrogels with anti-bacterial activity as cell delivery carrier for cardiac cell therapy
  publication-title: ACS Appl. Mater Inter
– volume: 27
  start-page: 3518
  year: 2015
  end-page: 3524
  ident: bib25
  article-title: An injectable, self-healing hydrogel to repair the central nervous system
  publication-title: Adv. Mater
– volume: 34
  start-page: 6377
  year: 2013
  end-page: 6387
  ident: bib2
  article-title: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing
  publication-title: Biomaterials
– volume: 26
  start-page: 236
  year: 2015
  end-page: 248
  ident: bib26
  article-title: Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering
  publication-title: Acta Biomater.
– volume: 10
  start-page: 2076
  year: 2014
  end-page: 2085
  ident: bib8
  article-title: Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer
  publication-title: Acta Biomater.
– volume: 3
  start-page: 563
  year: 2015
  end-page: 572
  ident: bib52
  article-title: Novel aminated chitosan-aromatic aldehydes schiff bases: synthesis, characterization and bio-evaluation
  publication-title: Int. J. Adv. Res.
– volume: 14
  start-page: 440
  year: 2014
  end-page: 450
  ident: bib39
  article-title: In situ electroactive and antioxidant supramolecular hydrogel based on cyclodextrin/copolymer inclusion for tissue engineering repair
  publication-title: Macromol. Biosci.
– volume: 37
  start-page: 395
  year: 2015
  end-page: 404
  ident: bib24
  article-title: Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery
  publication-title: Biomaterials
– volume: 89
  start-page: 471
  year: 2016
  end-page: 476
  ident: bib59
  article-title: Biomaterials based on N, N, N-trimethyl chitosan fibers in wound dressing applications
  publication-title: Int. J. Biol. Macromol.
– volume: 104
  start-page: 18
  year: 2016
  end-page: 31
  ident: bib13
  article-title: Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly
  publication-title: Biomaterials
– volume: 25
  start-page: 1352
  year: 2015
  end-page: 1359
  ident: bib47
  article-title: Novel biocompatible polysaccharide-based self-healing hydrogel
  publication-title: Adv. Funct. Mater
– volume: 8
  start-page: 3261
  year: 2012
  end-page: 3269
  ident: bib41
  article-title: Rapidly curable chitosan–PEG hydrogels as tissue adhesives for hemostasis and wound healing
  publication-title: Acta Biomater.
– volume: 49
  start-page: 35
  year: 2012
  end-page: 43
  ident: bib42
  article-title: Wound repair and regeneration
  publication-title: Eur. Surg. Res.
– start-page: 66
  year: 1994
  end-page: 73
  ident: bib54
  article-title: Sedimentation Analysis of Potential Interactions between Mucins and a Putative Bioadhesive Polymer. Ultracentrifugation
– volume: 272
  start-page: 19738
  year: 1997
  end-page: 19745
  ident: bib66
  article-title: Sp1 is required for the early response of α2 (I) collagen to transforming growth factor-β1
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 1294
  year: 2015
  end-page: 1299
  ident: bib10
  article-title: Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property
  publication-title: Adv. Mater
– volume: 12
  start-page: 157
  year: 1994
  end-page: 169
  ident: bib65
  article-title: Growth factors in wound healing
  publication-title: Clin. Dermatol.
– volume: 86
  start-page: 42
  year: 2016
  end-page: 55
  ident: bib58
  article-title: Reversible hemostatic properties of sulfabetaine/quaternary ammonium modified hyperbranched polyglycerol
  publication-title: Biomaterials
– volume: 7
  start-page: 28273
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib63
  article-title: Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering
  publication-title: ACS Appl. Mater Inter
  doi: 10.1021/acsami.5b10829
– volume: 71
  start-page: 158
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib35
  article-title: Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.08.042
– volume: 8
  start-page: 823
  year: 1994
  ident: 10.1016/j.biomaterials.2017.01.011_bib64
  article-title: The role of extracellular matrix in postinflammatory wound healing and fibrosis
  publication-title: FASEB J.
  doi: 10.1096/fasebj.8.11.8070631
– volume: 46
  start-page: 234
  year: 2016
  ident: 10.1016/j.biomaterials.2017.01.011_bib36
  article-title: Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.09.019
– volume: 40
  start-page: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib1
  article-title: Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.10.077
– volume: 25
  start-page: 7189
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib22
  article-title: Self-assembly of antimicrobial peptides on gold nanodots: against multidrug-resistant bacteria and wound-healing application
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.201503248
– volume: 21
  start-page: 545
  year: 2001
  ident: 10.1016/j.biomaterials.2017.01.011_bib28
  article-title: Estimation of the electrical conductivity of human tissue
  publication-title: Electromagnetics
  doi: 10.1080/027263401752246199
– volume: 4
  start-page: 2618
  year: 2012
  ident: 10.1016/j.biomaterials.2017.01.011_bib18
  article-title: Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation
  publication-title: ACS Appl. Mater Inter
  doi: 10.1021/am300292v
– volume: 3
  start-page: 3235
  year: 2012
  ident: 10.1016/j.biomaterials.2017.01.011_bib48
  article-title: Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier
  publication-title: Polym. Chem.
  doi: 10.1039/c2py20627g
– volume: 36
  start-page: 254
  year: 2016
  ident: 10.1016/j.biomaterials.2017.01.011_bib5
  article-title: Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.03.011
– volume: 8
  start-page: 41
  year: 2012
  ident: 10.1016/j.biomaterials.2017.01.011_bib19
  article-title: Antibacterial and cell-adhesive polypeptide and poly (ethylene glycol) hydrogel as a potential scaffold for wound healing
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.10.004
– volume: 23
  start-page: 1254
  year: 2011
  ident: 10.1016/j.biomaterials.2017.01.011_bib44
  article-title: Degradable and electroactive hydrogels with tunable electrical conductivity and swelling behavior
  publication-title: Chem. Mater
  doi: 10.1021/cm103498s
– volume: 104
  start-page: 18
  year: 2016
  ident: 10.1016/j.biomaterials.2017.01.011_bib13
  article-title: Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.07.011
– volume: 80
  start-page: 275
  year: 2007
  ident: 10.1016/j.biomaterials.2017.01.011_bib60
  article-title: A therapeutic approach for diabetic wound healing using biotinylated GHK incorporated collagen matrices
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2006.09.018
– volume: 10
  start-page: 2076
  year: 2014
  ident: 10.1016/j.biomaterials.2017.01.011_bib8
  article-title: Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.12.045
– volume: 2
  start-page: 3674
  year: 2014
  ident: 10.1016/j.biomaterials.2017.01.011_bib40
  article-title: Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation
  publication-title: J. Mater Chem. B
  doi: 10.1039/c3tb21716g
– volume: 1
  start-page: 4531
  year: 2013
  ident: 10.1016/j.biomaterials.2017.01.011_bib7
  article-title: Designing electrospun nanofiber mats to promote wound healing–a review
  publication-title: J. Mater Chem. B
  doi: 10.1039/c3tb20795a
– volume: 30
  start-page: 2038
  year: 2009
  ident: 10.1016/j.biomaterials.2017.01.011_bib29
  article-title: The stimulation of myoblast differentiation by electrically conductive sub-micron fibers
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.12.063
– volume: 38
  start-page: 1263
  year: 2013
  ident: 10.1016/j.biomaterials.2017.01.011_bib32
  article-title: Biodegradable and electrically conducting polymers for biomedical applications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2013.06.003
– volume: 49
  start-page: 35
  year: 2012
  ident: 10.1016/j.biomaterials.2017.01.011_bib42
  article-title: Wound repair and regeneration
  publication-title: Eur. Surg. Res.
  doi: 10.1159/000339613
– volume: 14
  start-page: 440
  year: 2014
  ident: 10.1016/j.biomaterials.2017.01.011_bib39
  article-title: In situ electroactive and antioxidant supramolecular hydrogel based on cyclodextrin/copolymer inclusion for tissue engineering repair
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201300366
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.biomaterials.2017.01.011_bib49
  article-title: Schiff bases: a short review of their antimicrobial activities
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2010.05.004
– volume: 4
  start-page: 1491
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib16
  article-title: Rapid self-integrating, injectable hydrogel for tissue complex regeneration
  publication-title: Adv. Healthc. Mater
  doi: 10.1002/adhm.201500093
– volume: 93
  start-page: 440
  year: 1961
  ident: 10.1016/j.biomaterials.2017.01.011_bib67
  article-title: The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(61)90291-0
– volume: 23
  start-page: 74
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib4
  article-title: A study on the ability of quaternary ammonium groups attached to a polyurethane foam wound dressing to inhibit bacterial attachment and biofilm formation
  publication-title: Wound Repair Regen.
  doi: 10.1111/wrr.12244
– volume: 152
  start-page: 1445
  year: 1998
  ident: 10.1016/j.biomaterials.2017.01.011_bib70
  article-title: Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing
  publication-title: Am. J. Pathol.
– volume: 33
  start-page: 6098
  year: 2012
  ident: 10.1016/j.biomaterials.2017.01.011_bib31
  article-title: Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.05.018
– volume: 55
  start-page: 1595
  year: 2003
  ident: 10.1016/j.biomaterials.2017.01.011_bib3
  article-title: Effect of collagen matrices on dermal wound healing
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2003.08.003
– volume: 89
  start-page: 471
  year: 2016
  ident: 10.1016/j.biomaterials.2017.01.011_bib59
  article-title: Biomaterials based on N, N, N-trimethyl chitosan fibers in wound dressing applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.02.036
– volume: 44
  start-page: 1820
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib53
  article-title: The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00332B
– volume: 27
  start-page: 3518
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib25
  article-title: An injectable, self-healing hydrogel to repair the central nervous system
  publication-title: Adv. Mater
  doi: 10.1002/adma.201500762
– volume: 8
  start-page: 1633
  year: 2007
  ident: 10.1016/j.biomaterials.2017.01.011_bib55
  article-title: Interaction of chitosan with cell membrane models at the air-water interface
  publication-title: Biomacromolecules
  doi: 10.1021/bm0701550
– volume: 15
  start-page: 1115
  year: 2014
  ident: 10.1016/j.biomaterials.2017.01.011_bib46
  article-title: In vitro study of electroactive tetraaniline-containing thermosensitive hydrogels for cardiac tissue engineering
  publication-title: Biomacromolecules
  doi: 10.1021/bm4018963
– volume: 3
  start-page: 563
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib52
  article-title: Novel aminated chitosan-aromatic aldehydes schiff bases: synthesis, characterization and bio-evaluation
  publication-title: Int. J. Adv. Res.
– volume: 7
  start-page: 24296
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib20
  article-title: Stimulation of wound healing by electroactive, antibacterial, and antioxidant polyurethane/siloxane dressing membranes: in vitro and in vivo evaluations
  publication-title: ACS Appl. Mater Inter
  doi: 10.1021/acsami.5b08376
– volume: 57
  start-page: 490
  year: 2014
  ident: 10.1016/j.biomaterials.2017.01.011_bib37
  article-title: Synthetic biodegradable functional polymers for tissue engineering: a brief review
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-014-5086-y
– volume: 29
  start-page: 322
  year: 2011
  ident: 10.1016/j.biomaterials.2017.01.011_bib23
  article-title: Biomaterials based on chitin and chitosan in wound dressing applications
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2011.01.005
– volume: 7
  start-page: 6772
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib62
  article-title: Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering
  publication-title: ACS Appl. Mater Inter
  doi: 10.1021/acsami.5b00191
– volume: 16
  start-page: 585
  year: 2008
  ident: 10.1016/j.biomaterials.2017.01.011_bib69
  article-title: Growth factors and cytokines in wound healing
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1524-475X.2008.00410.x
– volume: 26
  start-page: 236
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib26
  article-title: Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.08.006
– volume: 25
  start-page: 1352
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib47
  article-title: Novel biocompatible polysaccharide-based self-healing hydrogel
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.201401502
– volume: 3
  start-page: 1145
  year: 2014
  ident: 10.1016/j.biomaterials.2017.01.011_bib12
  article-title: Injectable electroactive hydrogels formed via host–guest interactions
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz500498y
– volume: 24
  start-page: 3933
  year: 2014
  ident: 10.1016/j.biomaterials.2017.01.011_bib6
  article-title: A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.201304202
– start-page: 66
  year: 1994
  ident: 10.1016/j.biomaterials.2017.01.011_bib54
– volume: 90
  start-page: 4153
  year: 1997
  ident: 10.1016/j.biomaterials.2017.01.011_bib71
  article-title: Intracellular pool of vascular endothelial growth factor in human neutrophils
  publication-title: Blood
  doi: 10.1182/blood.V90.10.4153
– volume: 8
  start-page: 3261
  year: 2012
  ident: 10.1016/j.biomaterials.2017.01.011_bib41
  article-title: Rapidly curable chitosan–PEG hydrogels as tissue adhesives for hemostasis and wound healing
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.05.001
– volume: 24
  start-page: 1549
  year: 2003
  ident: 10.1016/j.biomaterials.2017.01.011_bib45
  article-title: Comparison of the antioxidant properties of wound dressing materials–carboxymethylcellulose, hyaluronan benzyl ester and hyaluronan, towards polymorphonuclear leukocyte-derived reactive oxygen species
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00540-9
– volume: 42
  start-page: 558
  year: 2007
  ident: 10.1016/j.biomaterials.2017.01.011_bib51
  article-title: Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2006.11.010
– volume: 104
  start-page: 6017
  year: 2004
  ident: 10.1016/j.biomaterials.2017.01.011_bib56
  article-title: Chitosan chemistry and pharmaceutical perspectives
  publication-title: Chem. Rev.
  doi: 10.1021/cr030441b
– volume: 4
  start-page: 6644
  year: 2016
  ident: 10.1016/j.biomaterials.2017.01.011_bib15
  article-title: Mussel-inspired injectable supramolecular and covalent bond crosslinked hydrogels with rapid self-healing and recovery properties via a facile approach under metal-free conditions
  publication-title: J. Mater Chem. B
  doi: 10.1039/C6TB01776B
– volume: 325
  start-page: 1089
  year: 2009
  ident: 10.1016/j.biomaterials.2017.01.011_bib17
  article-title: Antibiotics for emerging pathogens
  publication-title: Science
  doi: 10.1126/science.1176667
– volume: 272
  start-page: 19738
  year: 1997
  ident: 10.1016/j.biomaterials.2017.01.011_bib66
  article-title: Sp1 is required for the early response of α2 (I) collagen to transforming growth factor-β1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.32.19738
– volume: 4
  start-page: 471
  year: 2016
  ident: 10.1016/j.biomaterials.2017.01.011_bib33
  article-title: Electroactive degradable copolymers enhancing osteogenic differentiation from bone marrow derived mesenchymal stem cells
  publication-title: J. Mater Chem. B
  doi: 10.1039/C5TB01899D
– volume: 12
  start-page: 2872
  year: 2011
  ident: 10.1016/j.biomaterials.2017.01.011_bib9
  article-title: In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing
  publication-title: Biomacromolecules
  doi: 10.1021/bm200326g
– volume: 12
  start-page: 157
  year: 1994
  ident: 10.1016/j.biomaterials.2017.01.011_bib65
  article-title: Growth factors in wound healing
  publication-title: Clin. Dermatol.
  doi: 10.1016/0738-081X(94)90266-6
– volume: 444
  start-page: 707
  year: 2006
  ident: 10.1016/j.biomaterials.2017.01.011_bib30
  article-title: Electrical activity in early neuronal development
  publication-title: Nature
  doi: 10.1038/nature05300
– volume: 68
  start-page: 377
  year: 1999
  ident: 10.1016/j.biomaterials.2017.01.011_bib68
  article-title: Expression of HGF, KGF, EGF and receptor messenger RNAs following corneal epithelial wounding
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.1998.0603
– volume: 8
  start-page: 17138
  year: 2016
  ident: 10.1016/j.biomaterials.2017.01.011_bib14
  article-title: Self-healing conductive injectable hydrogels with anti-bacterial activity as cell delivery carrier for cardiac cell therapy
  publication-title: ACS Appl. Mater Inter
  doi: 10.1021/acsami.6b04911
– volume: 13
  start-page: 2881
  year: 2012
  ident: 10.1016/j.biomaterials.2017.01.011_bib72
  article-title: Synthesis of biodegradable and electroactive tetraaniline grafted poly (ester amide) copolymers for bone tissue engineering
  publication-title: Biomacromolecules
  doi: 10.1021/bm300897j
– volume: 48
  start-page: 9302
  year: 2012
  ident: 10.1016/j.biomaterials.2017.01.011_bib11
  article-title: Multivalent H-bonds for self-healing hydrogels
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc34701f
– volume: 7
  start-page: 1058
  year: 2006
  ident: 10.1016/j.biomaterials.2017.01.011_bib61
  article-title: Development of N, O-(carboxymethyl) chitosan/collagen matrixes as a wound dressing
  publication-title: Biomacromolecules
  doi: 10.1021/bm050754b
– volume: 27
  start-page: 1294
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib10
  article-title: Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property
  publication-title: Adv. Mater
  doi: 10.1002/adma.201405166
– year: 2013
  ident: 10.1016/j.biomaterials.2017.01.011_bib27
– volume: 97
  start-page: 83
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib50
  article-title: Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure–microbicidal activity relationship
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2015.04.042
– volume: 37
  start-page: 395
  year: 2015
  ident: 10.1016/j.biomaterials.2017.01.011_bib24
  article-title: Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.10.024
– volume: 153
  start-page: 153
  year: 2005
  ident: 10.1016/j.biomaterials.2017.01.011_bib38
  article-title: Free radical scavenging and antioxidant properties of conducting polymers examined using EPR and NMR spectroscopies
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2005.07.170
– volume: 21
  start-page: 4028
  year: 2011
  ident: 10.1016/j.biomaterials.2017.01.011_bib21
  article-title: A thermoresponsive antimicrobial wound dressing hydrogel based on a cationic betaine ester
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.201100871
– volume: 341
  start-page: 738
  year: 1999
  ident: 10.1016/j.biomaterials.2017.01.011_bib43
  article-title: Cutaneous wound healing
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJM199909023411006
– volume: 12
  start-page: 2653
  year: 2011
  ident: 10.1016/j.biomaterials.2017.01.011_bib57
  article-title: Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials
  publication-title: Biomacromolecules
  doi: 10.1021/bm200464x
– volume: 87
  start-page: 18
  year: 2016
  ident: 10.1016/j.biomaterials.2017.01.011_bib34
  article-title: Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.02.010
– volume: 86
  start-page: 42
  year: 2016
  ident: 10.1016/j.biomaterials.2017.01.011_bib58
  article-title: Reversible hemostatic properties of sulfabetaine/quaternary ammonium modified hyperbranched polyglycerol
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.067
– volume: 34
  start-page: 6377
  year: 2013
  ident: 10.1016/j.biomaterials.2017.01.011_bib2
  article-title: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.05.005
SSID ssj0014042
Score 2.7017603
Snippet Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing...
Abstract Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 34
SubjectTerms adhesion
Adhesiveness
Advanced Basic Science
Animals
Anti-Bacterial Agents - administration & dosage
Antibacterial
antibacterial properties
Antioxidants - administration & dosage
Bandages, Hydrocolloid
benzaldehyde
biocompatibility
blood coagulation
collagen
Conductive hydrogel dressing
Delayed-Action Preparations - administration & dosage
Delayed-Action Preparations - chemistry
Dentistry
Electric Conductivity
Electroactivity
ethylene glycol
free radical scavengers
Full thickness skin defect model
gene expression
glycerol
granulation tissue
hemostasis
Hemostasis - drug effects
hydrocolloids
Hydrogels - administration & dosage
Injections, Subcutaneous
Lacerations - pathology
Lacerations - physiopathology
Lacerations - therapy
longevity
Mice
polyethylene glycol
Self-healing
tissue repair
transforming growth factor beta
Treatment Outcome
vascular endothelial growth factors
Wound healing
Wound Healing - drug effects
Wound Healing - physiology
Title Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961217300194
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961217300194
https://dx.doi.org/10.1016/j.biomaterials.2017.01.011
https://www.ncbi.nlm.nih.gov/pubmed/28107663
https://www.proquest.com/docview/1861587802
https://www.proquest.com/docview/2000209346
Volume 122
WOSCitedRecordID wos000394472500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB66u-LlQbTe6mUZwbclS2ZymQziQ1krXnARWbFvQ5KZ2iw1WZp2qf_En-NP88wlacpaqIJQQgiZNMn5cuabM2e-g9CLkNFUi7x4QRz4XsjzyOO5yr1JGEsVZUCQSW6KTbDT02Q85p96vV_NWpjLGSvLZLXiF__V1HAMjK2Xzv6FuduLwgHYB6PDFswO250MPywXRWY1mI0OwKLwqlUhYefI1bxJjY87KkodgzFLp6Y_5Lz6pma66kytZhNP80cTptVVl46kSZZtorZT9b0CTqmVTIzSq5yquvGZOmkxXwLhVDq11rZ219qYPi4qYMr2bXRC1yZsOy5avH5dmp4xrdosoWVlJ0l0qaGWg7us4s9LGFWU3TAGdI3r7Jcmskk9HpNN12zXLDvn6qKetpu2Op1XOgAbizg_zjrPoRP4mBFndX59Q3V7dPKBeDU99j2d6Eb1LRAt4k94uHmyHTOJmgpfXDl1Dx1QFnHwqwfDd6Px-3YmK_RNAaf28RrhW5NjuO0ut5GkbYMgQ4bO7qDbbhSDhxZ9d1FPlX1047XOPNPFA_voVkfnso-uf3QZHPfQzw144i488QY88RqeuIEnTmvchSc2AMMNPLGGJ17DE64ucReeGOCJW3i61u5a99GXN6Ozk7eeqw7i5RFlCy_OOcuyJJxQSbXoUu5LIieES-ilOHAwoqI4lDAeSbIg8ydaNw94GDBksBgN0yh4gPbLqlSPEE50GTag8rEvNaElKYsZ9eM0VbHkVEUDxBtziNxJ5-sKLjPR5Eiei64phTal8An8yAAFbdsLKyCzU6uXjdVFs0QaOnUBMN-pNftTa1U7N1WLbTAeoFdtS0fBLbXe-Z-fNxAV0E_pyUdrUkESGDslDF719nOoSYzgQRgP0EOL7_ad0YT4DIZHj__52Z6gm2vH8xTtL-ZL9Qxdyy_h05gfoj02Tg7d1_sbf-gpng
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibacterial+anti-oxidant+electroactive+injectable+hydrogel+as+self-healing+wound+dressing+with+hemostasis+and+adhesiveness+for+cutaneous+wound+healing&rft.jtitle=Biomaterials&rft.au=Zhao%2C+Xin&rft.au=Wu%2C+Hao&rft.au=Guo%2C+Baolin&rft.au=Dong%2C+Ruonan&rft.date=2017-04-01&rft.issn=0142-9612&rft.volume=122&rft.spage=34&rft.epage=47&rft_id=info:doi/10.1016%2Fj.biomaterials.2017.01.011&rft.externalDBID=ECK1-s2.0-S0142961217300194&rft.externalDocID=1_s2_0_S0142961217300194
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961217X00033%2Fcov150h.gif