Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing
Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive...
Gespeichert in:
| Veröffentlicht in: | Biomaterials Jg. 122; S. 34 - 47 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier Ltd
01.04.2017
|
| Schlagworte: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing. |
|---|---|
| AbstractList | Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing. Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing. Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing.Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing. Abstract Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing. |
| Author | Dong, Ruonan Wu, Hao Zhao, Xin Guo, Baolin Ma, Peter X. Qiu, Yusheng |
| Author_xml | – sequence: 1 givenname: Xin surname: Zhao fullname: Zhao, Xin organization: Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China – sequence: 2 givenname: Hao surname: Wu fullname: Wu, Hao organization: Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China – sequence: 3 givenname: Baolin surname: Guo fullname: Guo, Baolin email: baoling@mail.xjtu.edu.cn, guobl2004@163.com organization: Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China – sequence: 4 givenname: Ruonan surname: Dong fullname: Dong, Ruonan organization: Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China – sequence: 5 givenname: Yusheng surname: Qiu fullname: Qiu, Yusheng organization: Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China – sequence: 6 givenname: Peter X. surname: Ma fullname: Ma, Peter X. organization: Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28107663$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNktuKFDEQhoOsuAd9BQleedNjVfrshbi7HmHBC_U6pJPqnYw9yZqkV-dNfFwzzizIgjgQSIr89aVSf52yI-cdMfYMYYGAzYvVYrB-rRIFq6a4EIDtAjAvfMBOsGu7ou6hPmIngJUo-gbFMTuNcQU5hko8YseiQ2ibpjxhv85dsoPSOxhXOSr8T2vygdNEOgWfL-0tcetWOVTDRHy5McFfU5ZHHmkaiyWpybpr_sPPznATKMY_oU1LvqS1j0lFGzPdcGWWFDPPZQ0ffeB6TsqRn-M-e896zB6O-Xf0ZL-fsa_v3n65_FBcfXr_8fL8qtC1aFPR6L4dhq4ahRFQQqfBoBmxNyV2PTQtUt1UpoK6G8oBRmyqtsUO2rotQVSqLs_Y8x33JvjvM8Uk1zZqmqZdUVIAgIC-rJr_SrFrsM7tB5GlT_fSeViTkTfBrlXYyLvGZ8HrnUAHH2OgUWqbVLLepaDsJBHk1mu5kn97LbdeS8C8MCNe3kPcvXJQ8ptdMuXe3loKMmpLTpOxIdssjbeHYV7dw-hsntVq-kYbiis_B7fNQRmFBPl5O5HbgcTcfsC-yoCLfwMOreI3C3f61A |
| CitedBy_id | crossref_primary_10_1089_wound_2018_0843 crossref_primary_10_1016_j_ijbiomac_2021_04_114 crossref_primary_10_1007_s10965_020_02242_x crossref_primary_10_1039_D3NR00807J crossref_primary_10_1016_j_colsurfb_2024_114180 crossref_primary_10_2174_0113892010294727240502051954 crossref_primary_10_1002_smll_201900322 crossref_primary_10_1007_s42765_022_00153_8 crossref_primary_10_1007_s10570_019_02795_1 crossref_primary_10_1039_C9RA10666A crossref_primary_10_1002_admi_201900761 crossref_primary_10_1016_j_cis_2025_103477 crossref_primary_10_17721_1728_2748_2021_86_23_27 crossref_primary_10_1002_adtp_201800088 crossref_primary_10_1016_j_eurpolymj_2019_109308 crossref_primary_10_1063_5_0046682 crossref_primary_10_1016_j_cej_2020_127429 crossref_primary_10_1007_s10856_021_06630_7 crossref_primary_10_1002_admi_202400647 crossref_primary_10_1016_j_intimp_2023_111164 crossref_primary_10_3390_polym15030571 crossref_primary_10_3390_gels9090694 crossref_primary_10_1080_10406638_2022_2097271 crossref_primary_10_3389_fbioe_2021_780187 crossref_primary_10_3390_ijms18050989 crossref_primary_10_1016_j_colsurfa_2024_133940 crossref_primary_10_1016_j_matdes_2022_111284 crossref_primary_10_3390_polym11050808 crossref_primary_10_1016_j_matdes_2022_111041 crossref_primary_10_1002_adhm_202303802 crossref_primary_10_1016_j_ijbiomac_2024_129752 crossref_primary_10_1016_j_ijbiomac_2025_147225 crossref_primary_10_1002_mabi_202400049 crossref_primary_10_3390_polym13122003 crossref_primary_10_1002_adfm_202105614 crossref_primary_10_1007_s11696_019_00967_8 crossref_primary_10_1016_j_cej_2020_126129 crossref_primary_10_1002_adma_202308701 crossref_primary_10_1002_jbm_a_37252 crossref_primary_10_1002_mabi_202000367 crossref_primary_10_3390_gels9030183 crossref_primary_10_3390_antibiotics9100648 crossref_primary_10_3389_fbioe_2022_1083763 crossref_primary_10_3390_gels9020138 crossref_primary_10_1002_adhm_202401490 crossref_primary_10_1002_adhm_202300742 crossref_primary_10_1039_C9RA06913E crossref_primary_10_1002_adhm_202001571 crossref_primary_10_1016_j_colsurfb_2021_112175 crossref_primary_10_3390_gels8110726 crossref_primary_10_1016_j_ijbiomac_2020_11_014 crossref_primary_10_1016_j_inoche_2021_109092 crossref_primary_10_1007_s10934_022_01371_6 crossref_primary_10_1016_j_cej_2024_151418 crossref_primary_10_1016_j_ijbiomac_2024_130958 crossref_primary_10_1002_admi_202001873 crossref_primary_10_1016_j_heliyon_2022_e12063 crossref_primary_10_1016_j_ijbiomac_2019_08_087 crossref_primary_10_3390_ijms19082198 crossref_primary_10_1016_j_biomaterials_2023_122240 crossref_primary_10_1002_adfm_202310845 crossref_primary_10_1016_j_biomaterials_2024_122936 crossref_primary_10_1016_j_ijbiomac_2024_135177 crossref_primary_10_1016_j_bios_2020_112105 crossref_primary_10_1080_10601325_2020_1772672 crossref_primary_10_1016_j_apmt_2024_102478 crossref_primary_10_1039_C9NR03095F crossref_primary_10_1016_j_indcrop_2024_118811 crossref_primary_10_3390_gels11080619 crossref_primary_10_1016_j_cej_2023_147095 crossref_primary_10_1016_j_jconrel_2023_09_010 crossref_primary_10_1016_j_carbpol_2021_118428 crossref_primary_10_1007_s10965_021_02688_7 crossref_primary_10_1016_j_cej_2020_126353 crossref_primary_10_1016_j_ijbiomac_2020_05_099 crossref_primary_10_1016_j_jddst_2023_105163 crossref_primary_10_1016_j_cej_2020_125059 crossref_primary_10_3389_fbioe_2019_00360 crossref_primary_10_1080_10717544_2020_1853280 crossref_primary_10_1021_acsbiomaterials_7b00860 crossref_primary_10_1016_j_ijbiomac_2023_125911 crossref_primary_10_3390_ijms23158778 crossref_primary_10_1016_j_ijbiomac_2024_138673 crossref_primary_10_1016_j_jcis_2023_05_009 crossref_primary_10_1002_adfm_201806200 crossref_primary_10_1016_j_cej_2024_156087 crossref_primary_10_1016_j_eurpolymj_2022_111617 crossref_primary_10_1002_btm2_10398 crossref_primary_10_3390_gels8050315 crossref_primary_10_1002_adhm_202300324 crossref_primary_10_1016_j_actbio_2019_10_012 crossref_primary_10_34133_bmr_0156 crossref_primary_10_1016_j_actbio_2024_04_035 crossref_primary_10_1002_adfm_202001820 crossref_primary_10_1016_j_ijbiomac_2023_129042 crossref_primary_10_1016_j_ijbiomac_2025_145237 crossref_primary_10_1016_j_electacta_2021_139730 crossref_primary_10_1016_j_ejps_2020_105255 crossref_primary_10_1007_s10118_019_2212_5 crossref_primary_10_1016_j_cclet_2020_12_003 crossref_primary_10_1039_D4BM01347F crossref_primary_10_1016_j_compositesb_2021_109047 crossref_primary_10_1016_j_ijbiomac_2022_07_017 crossref_primary_10_1016_j_ijbiomac_2025_144162 crossref_primary_10_1016_j_jcis_2018_04_093 crossref_primary_10_1002_mame_202100878 crossref_primary_10_1016_j_ijbiomac_2024_137570 crossref_primary_10_1016_j_ijpharm_2021_120698 crossref_primary_10_1002_admt_202202159 crossref_primary_10_1016_j_ijpharm_2019_118632 crossref_primary_10_1080_15583724_2020_1858871 crossref_primary_10_3389_fbioe_2021_796361 crossref_primary_10_3389_fbioe_2023_1335211 crossref_primary_10_1016_j_carbpol_2022_119631 crossref_primary_10_1002_adtp_202200349 crossref_primary_10_1016_j_ijbiomac_2025_146576 crossref_primary_10_1016_j_mtcomm_2024_109593 crossref_primary_10_1016_j_biomaterials_2025_123284 crossref_primary_10_1016_j_ijbiomac_2024_129932 crossref_primary_10_1002_marc_202400015 crossref_primary_10_1007_s10965_021_02492_3 crossref_primary_10_1016_j_carbon_2017_09_071 crossref_primary_10_1590_s0102_865020200050000007 crossref_primary_10_1016_j_jcis_2018_02_036 crossref_primary_10_3389_fbioe_2023_1154301 crossref_primary_10_1016_j_ijbiomac_2020_08_109 crossref_primary_10_1016_j_polymer_2025_129060 crossref_primary_10_1016_j_carbpol_2021_118482 crossref_primary_10_1016_j_ijbiomac_2020_08_108 crossref_primary_10_1177_0885328218810552 crossref_primary_10_1002_mabi_202300224 crossref_primary_10_1088_1742_6596_2557_1_012085 crossref_primary_10_22207_JPAM_19_3_20 crossref_primary_10_3892_mmr_2018_9477 crossref_primary_10_1002_adhm_202100012 crossref_primary_10_1016_j_actbio_2022_10_003 crossref_primary_10_1016_j_mtcomm_2022_104551 crossref_primary_10_1016_j_eml_2022_101687 crossref_primary_10_1007_s40820_023_01074_w crossref_primary_10_1093_nsr_nwac162 crossref_primary_10_3389_fphar_2020_00899 crossref_primary_10_1002_adhm_202303817 crossref_primary_10_1002_admi_202500256 crossref_primary_10_1007_s11465_024_0787_1 crossref_primary_10_1016_j_bioactmat_2022_11_019 crossref_primary_10_1007_s11427_019_1710_8 crossref_primary_10_1016_j_cej_2018_07_187 crossref_primary_10_1038_s41428_020_0315_z crossref_primary_10_1039_C8BM01198B crossref_primary_10_1016_j_foodchem_2024_142737 crossref_primary_10_3390_ijms26073428 crossref_primary_10_1002_adfm_202419037 crossref_primary_10_3390_coatings12101467 crossref_primary_10_1016_j_carbpol_2024_122135 crossref_primary_10_1007_s11431_021_1843_3 crossref_primary_10_1002_adhm_202001122 crossref_primary_10_1186_s40824_023_00340_7 crossref_primary_10_1016_j_bioactmat_2022_11_023 crossref_primary_10_1016_j_cej_2024_158478 crossref_primary_10_1002_adhm_202301885 crossref_primary_10_1016_j_actbio_2021_07_012 crossref_primary_10_1016_j_mtchem_2025_102615 crossref_primary_10_1016_j_ijbiomac_2021_02_104 crossref_primary_10_1016_j_cej_2023_143126 crossref_primary_10_1039_D0BM00442A crossref_primary_10_1016_j_actbio_2019_03_018 crossref_primary_10_1016_j_jcis_2018_10_056 crossref_primary_10_1016_j_biomaterials_2018_09_045 crossref_primary_10_1016_j_heliyon_2023_e22330 crossref_primary_10_1002_adhm_202302790 crossref_primary_10_1089_ten_teb_2019_0100 crossref_primary_10_1002_adhm_202200516 crossref_primary_10_1002_adhm_202303876 crossref_primary_10_1186_s13568_023_01533_y crossref_primary_10_3389_fchem_2021_787886 crossref_primary_10_1016_j_bioadv_2024_214157 crossref_primary_10_1016_j_foodchem_2025_145033 crossref_primary_10_1016_j_carbpol_2021_117767 crossref_primary_10_1016_j_carbpol_2021_118615 crossref_primary_10_1016_j_cej_2023_143362 crossref_primary_10_1002_pi_5876 crossref_primary_10_3389_fbioe_2022_1001616 crossref_primary_10_1186_s40580_024_00447_0 crossref_primary_10_1016_j_compositesb_2021_109402 crossref_primary_10_2217_rme_2020_0086 crossref_primary_10_1016_j_actbio_2023_08_026 crossref_primary_10_3390_pharmaceutics14122723 crossref_primary_10_1002_admi_202101855 crossref_primary_10_1002_EXP_20220173 crossref_primary_10_3390_gels10010003 crossref_primary_10_3390_polym13213782 crossref_primary_10_1016_j_ijbiomac_2020_01_255 crossref_primary_10_1016_j_colsurfa_2025_137964 crossref_primary_10_1016_j_ijbiomac_2017_06_071 crossref_primary_10_1007_s11051_021_05213_5 crossref_primary_10_1016_j_ijbiomac_2025_143264 crossref_primary_10_1002_smll_202205292 crossref_primary_10_1016_j_cej_2020_126525 crossref_primary_10_3390_jfb14110553 crossref_primary_10_1007_s40820_025_01834_w crossref_primary_10_3390_ijms25105249 crossref_primary_10_1016_j_cej_2019_05_229 crossref_primary_10_1002_smll_201901834 crossref_primary_10_1016_j_burns_2023_02_003 crossref_primary_10_1016_j_ijbiomac_2024_135577 crossref_primary_10_1016_j_ijbiomac_2023_127918 crossref_primary_10_1002_adfm_202006454 crossref_primary_10_1016_j_ijbiomac_2022_05_064 crossref_primary_10_1016_j_ijbiomac_2024_137752 crossref_primary_10_3390_pharmaceutics15122735 crossref_primary_10_1186_s12951_021_00973_7 crossref_primary_10_1002_adhm_202300105 crossref_primary_10_1016_j_ijbiomac_2022_03_214 crossref_primary_10_1038_s43246_024_00579_0 crossref_primary_10_3390_gels9100772 crossref_primary_10_1002_adfm_201908098 crossref_primary_10_1016_j_carbpol_2021_117989 crossref_primary_10_3390_coatings14030256 crossref_primary_10_1016_j_biomaterials_2024_122548 crossref_primary_10_20935_AcadMatSci7810 crossref_primary_10_1088_1742_6596_1899_1_012071 crossref_primary_10_1039_D0BM00770F crossref_primary_10_3390_ph18050752 crossref_primary_10_1016_j_colsurfb_2019_01_058 crossref_primary_10_1007_s11426_025_2654_5 crossref_primary_10_1016_j_jtv_2021_09_003 crossref_primary_10_1039_D4RA08123D crossref_primary_10_1089_ten_teb_2019_0337 crossref_primary_10_1016_j_cej_2020_125668 crossref_primary_10_1016_j_jcis_2021_08_104 crossref_primary_10_1002_adhm_201801092 crossref_primary_10_1177_0885328219831095 crossref_primary_10_1016_j_bioactmat_2021_06_015 crossref_primary_10_1016_j_carbpol_2020_117040 crossref_primary_10_1016_j_carbpol_2022_120198 crossref_primary_10_1016_j_ijbiomac_2019_08_007 crossref_primary_10_1016_j_ijbiomac_2017_07_087 crossref_primary_10_3390_pharmaceutics11050200 crossref_primary_10_1002_adhm_202000872 crossref_primary_10_1002_mame_201700590 crossref_primary_10_1002_pc_26334 crossref_primary_10_1002_adfm_201901474 crossref_primary_10_1002_adhm_202301206 crossref_primary_10_1002_advs_201801664 crossref_primary_10_1002_adma_202300840 crossref_primary_10_1016_j_foodchem_2024_140746 crossref_primary_10_1016_j_mehy_2019_109389 crossref_primary_10_1007_s11426_022_1322_5 crossref_primary_10_1016_j_cej_2020_127638 crossref_primary_10_1016_j_ijbiomac_2022_12_037 crossref_primary_10_1016_j_cej_2019_04_001 crossref_primary_10_1016_j_jddst_2022_103944 crossref_primary_10_1002_adhm_202200717 crossref_primary_10_1016_j_nantod_2022_101467 crossref_primary_10_3389_fmats_2019_00137 crossref_primary_10_1016_j_ijbiomac_2020_01_221 crossref_primary_10_1016_j_matpr_2022_06_237 crossref_primary_10_1155_2017_8407249 crossref_primary_10_1002_biot_202100231 crossref_primary_10_1002_adhm_202404388 crossref_primary_10_1002_adhm_202302588 crossref_primary_10_1016_j_cej_2021_132039 crossref_primary_10_1016_j_apmt_2024_102206 crossref_primary_10_1002_term_3238 crossref_primary_10_1016_j_matdes_2023_111701 crossref_primary_10_3389_fphar_2019_01401 crossref_primary_10_3390_gels9050381 crossref_primary_10_1038_s41598_021_82963_1 crossref_primary_10_1515_polyeng_2023_0148 crossref_primary_10_1016_j_bioactmat_2021_04_007 crossref_primary_10_1002_advs_202305918 crossref_primary_10_1007_s42250_023_00649_9 crossref_primary_10_1016_j_matdes_2020_108916 crossref_primary_10_1007_s42114_023_00764_8 crossref_primary_10_1016_j_carbpol_2020_116360 crossref_primary_10_1016_j_ijbiomac_2024_136877 crossref_primary_10_1016_j_colsurfb_2019_110441 crossref_primary_10_1002_app_54665 crossref_primary_10_1016_j_ijbiomac_2025_140199 crossref_primary_10_1016_j_ijbiomac_2025_144313 crossref_primary_10_37349_ebmx_2025_101336 crossref_primary_10_1039_D2BM00558A crossref_primary_10_1016_j_ijbiomac_2023_124365 crossref_primary_10_1016_j_cej_2019_05_043 crossref_primary_10_1039_D1BM00411E crossref_primary_10_1016_j_ijbiomac_2021_10_166 crossref_primary_10_1016_j_mtchem_2022_101272 crossref_primary_10_1016_j_ijbiomac_2023_123271 crossref_primary_10_1016_j_yexcr_2023_113821 crossref_primary_10_1016_j_polymertesting_2019_106283 crossref_primary_10_1007_s10570_022_04909_8 crossref_primary_10_1007_s12221_024_00786_z crossref_primary_10_1016_j_cej_2020_126329 crossref_primary_10_1016_j_ijbiomac_2024_134686 crossref_primary_10_1016_j_polymer_2019_121994 crossref_primary_10_1039_D2BM00646D crossref_primary_10_1002_smll_201907309 crossref_primary_10_1016_j_carbpol_2021_118871 crossref_primary_10_1016_j_bioadv_2025_214214 crossref_primary_10_3389_fbioe_2021_732461 crossref_primary_10_3389_fddev_2025_1598145 crossref_primary_10_1038_s41598_022_11282_w crossref_primary_10_1007_s00396_021_04882_x crossref_primary_10_1002_cbdv_202300622 crossref_primary_10_1002_jbm_a_36756 crossref_primary_10_1002_mame_201900326 crossref_primary_10_1016_j_bioadv_2025_214219 crossref_primary_10_1007_s12274_023_5527_z crossref_primary_10_1080_15583724_2024_2427184 crossref_primary_10_1016_j_cclet_2024_110072 crossref_primary_10_1016_j_ijbiomac_2022_05_008 crossref_primary_10_1016_j_ijbiomac_2023_128815 crossref_primary_10_1016_j_jcis_2020_08_080 crossref_primary_10_1016_j_cej_2023_144865 crossref_primary_10_1016_j_ijbiomac_2022_05_007 crossref_primary_10_3390_molecules24163005 crossref_primary_10_1002_osi2_1077 crossref_primary_10_3390_colloids6040078 crossref_primary_10_1039_D5TB01029B crossref_primary_10_1016_j_ijbiomac_2019_08_202 crossref_primary_10_3390_molecules27207090 crossref_primary_10_1002_adhm_202300161 crossref_primary_10_1002_slct_202502598 crossref_primary_10_1016_j_biomaterials_2019_03_016 crossref_primary_10_3389_fbioe_2020_629452 crossref_primary_10_1016_j_jconrel_2021_11_027 crossref_primary_10_1016_j_actbio_2019_03_057 crossref_primary_10_1039_D3MH00813D crossref_primary_10_1016_j_ijbiomac_2023_127612 crossref_primary_10_1016_j_apmt_2018_09_009 crossref_primary_10_3390_ma13143070 crossref_primary_10_1016_j_heliyon_2024_e37031 crossref_primary_10_1177_08853282221150685 crossref_primary_10_1016_j_apmt_2022_101396 crossref_primary_10_3390_gels11010048 crossref_primary_10_3390_md20050306 crossref_primary_10_1002_adhm_202302394 crossref_primary_10_1016_j_ijbiomac_2024_132120 crossref_primary_10_1039_D5TB00134J crossref_primary_10_1007_s10965_025_04443_8 crossref_primary_10_1016_j_ijbiomac_2022_11_156 crossref_primary_10_1038_s41428_021_00470_6 crossref_primary_10_3390_polym15204067 crossref_primary_10_1039_C9NH00317G crossref_primary_10_1016_j_bioactmat_2023_07_015 crossref_primary_10_1016_j_ijpharm_2022_122280 crossref_primary_10_3390_life11101016 crossref_primary_10_1016_j_cej_2021_130219 crossref_primary_10_1016_j_ijbiomac_2022_12_185 crossref_primary_10_1016_j_carbpol_2022_119161 crossref_primary_10_1039_D4RA01168F crossref_primary_10_1021_acs_chemmater_5c00589 crossref_primary_10_3389_fmats_2022_994265 crossref_primary_10_1093_burnst_tkac001 crossref_primary_10_3390_bios13080815 crossref_primary_10_3389_fbioe_2022_1006584 crossref_primary_10_1016_j_carbpol_2017_11_029 crossref_primary_10_1039_D1BM01179K crossref_primary_10_3390_molecules27185800 crossref_primary_10_1016_j_cej_2024_158615 crossref_primary_10_1088_1748_605X_ad5482 crossref_primary_10_3389_fbioe_2022_902894 crossref_primary_10_1016_j_ijbiomac_2025_142693 crossref_primary_10_2174_0113816128264103231030093124 crossref_primary_10_1016_j_ijbiomac_2023_128960 crossref_primary_10_3390_polym11111846 crossref_primary_10_1016_j_cej_2025_162382 crossref_primary_10_1016_j_ijbiomac_2023_125454 crossref_primary_10_1016_j_molstruc_2021_131141 crossref_primary_10_1007_s00726_023_03243_y crossref_primary_10_1177_0885328221998033 crossref_primary_10_3389_fbioe_2022_817391 crossref_primary_10_1016_j_jcis_2024_05_142 crossref_primary_10_1016_j_addr_2018_04_008 crossref_primary_10_1016_j_matdes_2022_110669 crossref_primary_10_1016_j_matlet_2020_128415 crossref_primary_10_1002_advs_202207407 crossref_primary_10_3390_polym10101078 crossref_primary_10_1016_j_jtv_2024_05_006 crossref_primary_10_1021_acsbiomaterials_8b00972 crossref_primary_10_1080_14712598_2022_2008353 crossref_primary_10_1002_app_48668 crossref_primary_10_1002_SMMD_20220033 crossref_primary_10_1088_1748_605X_abc0b3 crossref_primary_10_3390_ijms24032210 crossref_primary_10_1002_inf2_12113 crossref_primary_10_1088_1742_6596_1965_1_012059 crossref_primary_10_1002_adhm_202303456 crossref_primary_10_1002_jbm_a_36952 crossref_primary_10_1016_j_colsurfb_2019_03_044 crossref_primary_10_1016_j_ijbiomac_2023_126796 crossref_primary_10_1039_C7PY01218G crossref_primary_10_1016_j_ijpharm_2020_119349 crossref_primary_10_1007_s40820_020_00585_0 crossref_primary_10_1016_j_ijbiomac_2018_01_217 crossref_primary_10_3390_molecules25225296 crossref_primary_10_1002_adhm_202304321 crossref_primary_10_1016_j_actbio_2019_06_035 crossref_primary_10_1080_14686996_2020_1795431 crossref_primary_10_1088_1748_605X_aba878 crossref_primary_10_1016_j_cej_2018_10_117 crossref_primary_10_1016_j_mtcomm_2025_113281 crossref_primary_10_1093_rb_rbaa039 crossref_primary_10_1016_j_carbpol_2023_121508 crossref_primary_10_1002_mabi_202100103 crossref_primary_10_1039_D2BM01369J crossref_primary_10_1002_ange_201910979 crossref_primary_10_1016_j_ijbiomac_2021_09_019 crossref_primary_10_3390_biomimetics9010023 crossref_primary_10_1039_C8CC05659E crossref_primary_10_1002_slct_202405175 crossref_primary_10_1016_j_colsurfb_2020_111116 crossref_primary_10_1016_j_bioactmat_2023_01_021 crossref_primary_10_1016_j_bioactmat_2023_01_020 crossref_primary_10_1016_j_ijbiomac_2024_135838 crossref_primary_10_1016_j_pnsc_2023_11_002 crossref_primary_10_1002_smll_202506259 crossref_primary_10_1039_D1NR01148K crossref_primary_10_1007_s42765_022_00223_x crossref_primary_10_3389_fbioe_2021_716035 crossref_primary_10_1155_2021_6668209 crossref_primary_10_1002_mabi_202200111 crossref_primary_10_3390_polym14091844 crossref_primary_10_1016_j_cej_2024_152288 crossref_primary_10_1016_j_polymer_2025_128756 crossref_primary_10_3390_ma17225535 crossref_primary_10_1016_j_carbpol_2019_02_096 crossref_primary_10_1002_adfm_202106572 crossref_primary_10_1002_mabi_202100119 crossref_primary_10_1039_D5MA00335K crossref_primary_10_1007_s00289_023_04863_w crossref_primary_10_1080_17425247_2022_2152791 crossref_primary_10_1016_j_bioactmat_2021_03_034 crossref_primary_10_1016_j_carbpol_2021_117965 crossref_primary_10_1016_j_carbpol_2020_116754 crossref_primary_10_1039_D0QM00868K crossref_primary_10_1155_2022_5446291 crossref_primary_10_1007_s10570_020_02967_4 crossref_primary_10_1016_j_cej_2023_146788 crossref_primary_10_1016_j_eurpolymj_2024_113521 crossref_primary_10_1016_j_carbpol_2022_120172 crossref_primary_10_3390_molecules26082364 crossref_primary_10_1002_adhm_201800144 crossref_primary_10_1016_j_apmt_2022_101362 crossref_primary_10_1016_j_matchemphys_2020_122902 crossref_primary_10_3892_ijmm_2020_4571 crossref_primary_10_1016_j_eurpolymj_2024_113527 crossref_primary_10_1016_j_cej_2024_156871 crossref_primary_10_1002_adfm_201800596 crossref_primary_10_1186_s11671_022_03687_3 crossref_primary_10_1016_j_ijpharm_2022_122257 crossref_primary_10_1016_j_actbio_2021_03_057 crossref_primary_10_1039_D1BM00637A crossref_primary_10_1080_00914037_2018_1429438 crossref_primary_10_1016_j_cej_2021_129025 crossref_primary_10_1016_j_ijbiomac_2023_125250 crossref_primary_10_1039_D1QM00489A crossref_primary_10_1038_s41427_021_00352_6 crossref_primary_10_1016_j_cej_2022_137180 crossref_primary_10_3390_polym16202876 crossref_primary_10_1007_s10570_021_04155_4 crossref_primary_10_1039_C9BM01886G crossref_primary_10_1002_mabi_202200370 crossref_primary_10_1016_j_ijbiomac_2024_131694 crossref_primary_10_1016_j_ijbiomac_2019_04_195 crossref_primary_10_1016_j_colsurfb_2019_04_043 crossref_primary_10_1016_j_ijbiomac_2023_123308 crossref_primary_10_1039_C9BM00991D crossref_primary_10_1002_pc_24765 crossref_primary_10_1016_j_carbpol_2019_115823 crossref_primary_10_1039_D2BM00347C crossref_primary_10_1016_j_ijbiomac_2023_123780 crossref_primary_10_3390_polym14091816 crossref_primary_10_1016_j_cej_2023_144347 crossref_primary_10_1016_j_ijbiomac_2023_125028 crossref_primary_10_3390_polym13040613 crossref_primary_10_1016_j_ijbiomac_2023_125029 crossref_primary_10_1021_acsbiomaterials_8b00527 crossref_primary_10_1016_j_carbpol_2018_12_102 crossref_primary_10_1039_C9BM01754B crossref_primary_10_1016_j_heliyon_2023_e22520 crossref_primary_10_1002_app_47522 crossref_primary_10_1016_j_cej_2021_132200 crossref_primary_10_1016_j_colsurfb_2022_113096 crossref_primary_10_1002_pat_5225 crossref_primary_10_1002_smll_202207057 crossref_primary_10_1016_j_ijbiomac_2023_124623 crossref_primary_10_1016_j_jddst_2022_103458 crossref_primary_10_1016_j_jhazmat_2020_124330 crossref_primary_10_1016_j_heliyon_2024_e38762 crossref_primary_10_1002_mame_201800305 crossref_primary_10_1016_j_cej_2021_130843 crossref_primary_10_1186_s12951_022_01634_z crossref_primary_10_1021_acsapm_5c01489 crossref_primary_10_1016_j_compositesb_2021_109071 crossref_primary_10_1016_j_ijbiomac_2024_132521 crossref_primary_10_1080_17425247_2017_1360865 crossref_primary_10_3390_ijms26114987 crossref_primary_10_1016_j_cej_2019_02_030 crossref_primary_10_1016_j_seppur_2025_134834 crossref_primary_10_1002_smll_201900046 crossref_primary_10_1016_j_biomaterials_2020_120264 crossref_primary_10_1039_D3RA05046G crossref_primary_10_1039_D2BM00935H crossref_primary_10_1088_1748_605X_ad6966 crossref_primary_10_3390_ijms242015075 crossref_primary_10_1002_adfm_201910748 crossref_primary_10_1002_mco2_70181 crossref_primary_10_1016_j_cej_2021_130610 crossref_primary_10_1016_j_ijbiomac_2022_08_140 crossref_primary_10_1002_mabi_202000432 crossref_primary_10_1002_advs_202004627 crossref_primary_10_1039_D2BM01036D crossref_primary_10_1016_j_fmre_2021_10_001 crossref_primary_10_1016_j_bioadv_2022_213055 crossref_primary_10_1016_j_cej_2019_03_091 crossref_primary_10_1016_j_carbpol_2022_119319 crossref_primary_10_1007_s10924_022_02624_w crossref_primary_10_1016_j_matdes_2019_108166 crossref_primary_10_1016_j_biomaterials_2020_120019 crossref_primary_10_3390_polym15061365 crossref_primary_10_1002_adfm_202314024 crossref_primary_10_1002_adhm_202300817 crossref_primary_10_1016_j_cej_2019_123464 crossref_primary_10_1016_j_cej_2025_164166 crossref_primary_10_1016_j_ijbiomac_2021_07_026 crossref_primary_10_3390_polym14163287 crossref_primary_10_1016_j_cej_2021_130621 crossref_primary_10_1016_j_molstruc_2023_136118 crossref_primary_10_26599_NR_2025_94907719 crossref_primary_10_3390_gels9010055 crossref_primary_10_1016_j_carbpol_2018_08_090 crossref_primary_10_1016_j_ijbiomac_2019_10_029 crossref_primary_10_1002_adma_202412858 crossref_primary_10_1016_j_apmt_2022_101576 crossref_primary_10_1016_j_carbpol_2021_119000 crossref_primary_10_1016_j_cej_2023_147261 crossref_primary_10_1016_j_ijbiomac_2020_05_140 crossref_primary_10_1007_s10924_024_03398_z crossref_primary_10_1016_j_jre_2021_10_007 crossref_primary_10_1002_mabi_202200565 crossref_primary_10_1016_j_genrep_2019_100429 crossref_primary_10_3390_medicines6010021 crossref_primary_10_3389_fchem_2024_1362482 crossref_primary_10_1016_j_cej_2019_02_044 crossref_primary_10_1016_j_fmre_2025_01_008 crossref_primary_10_1016_j_actbio_2018_12_008 crossref_primary_10_1016_j_cej_2022_135130 crossref_primary_10_1002_adhm_202000198 crossref_primary_10_1016_j_polymer_2025_128721 crossref_primary_10_1016_j_ijbiomac_2020_12_202 crossref_primary_10_1039_D0BM00714E crossref_primary_10_1016_j_jconrel_2020_09_030 crossref_primary_10_1016_j_actbio_2021_02_035 crossref_primary_10_1016_j_reactfunctpolym_2025_106298 crossref_primary_10_1002_mabi_201900303 crossref_primary_10_2478_adms_2019_0015 crossref_primary_10_1002_mabi_202100186 crossref_primary_10_1002_mabi_202200514 crossref_primary_10_1016_j_bioactmat_2025_08_010 crossref_primary_10_1016_j_jcyt_2022_07_004 crossref_primary_10_1016_j_cej_2019_02_072 crossref_primary_10_1016_j_ijbiomac_2024_131879 crossref_primary_10_1021_acs_biomac_5c01183 crossref_primary_10_1016_j_actbio_2019_08_039 crossref_primary_10_1002_pat_6154 crossref_primary_10_1016_j_ijbiomac_2018_10_125 crossref_primary_10_1002_adfm_202008187 crossref_primary_10_1016_j_ijbiomac_2024_139364 crossref_primary_10_1002_adhm_202100793 crossref_primary_10_1016_j_ijbiomac_2019_10_009 crossref_primary_10_3390_biomedicines9050527 crossref_primary_10_1016_j_carbpol_2022_120103 crossref_primary_10_1039_D3MH00891F crossref_primary_10_1016_j_mtbio_2025_102005 crossref_primary_10_3762_bjnano_16_90 crossref_primary_10_1177_20417314211067004 crossref_primary_10_3390_polym16101405 crossref_primary_10_1002_adhm_202203306 crossref_primary_10_1007_s10924_021_02175_6 crossref_primary_10_3390_gels10110682 crossref_primary_10_1049_bsbt_2019_0030 crossref_primary_10_1016_j_actbio_2020_07_001 crossref_primary_10_1016_j_mtbio_2025_102002 crossref_primary_10_1016_j_cej_2021_131506 crossref_primary_10_1016_j_mtchem_2024_102258 crossref_primary_10_3390_s24227124 crossref_primary_10_1007_s00289_022_04348_2 crossref_primary_10_1016_j_matchemphys_2024_129887 crossref_primary_10_1002_admt_202300669 crossref_primary_10_1016_j_ijbiomac_2018_04_025 crossref_primary_10_1016_j_ijbiomac_2019_10_236 crossref_primary_10_1080_14686996_2023_2175586 crossref_primary_10_1016_j_jclepro_2018_07_235 crossref_primary_10_1002_adfm_202305992 crossref_primary_10_1016_j_apmt_2021_101224 crossref_primary_10_1111_jocd_14882 crossref_primary_10_1016_j_ijbiomac_2024_139349 crossref_primary_10_1016_j_jcis_2021_10_131 crossref_primary_10_1002_adtp_202400016 crossref_primary_10_1093_rb_rbae024 crossref_primary_10_1016_j_cclet_2021_06_029 crossref_primary_10_1016_j_cej_2020_128278 crossref_primary_10_1016_j_cej_2021_131977 crossref_primary_10_1016_j_ijbiomac_2023_127033 crossref_primary_10_1016_j_eurpolymj_2022_111593 crossref_primary_10_1016_j_ijbiomac_2024_130764 crossref_primary_10_1088_2053_1591_abb154 crossref_primary_10_1016_j_jconrel_2018_11_024 crossref_primary_10_1016_j_carbpol_2021_119052 crossref_primary_10_1002_pol_20210916 crossref_primary_10_1016_j_bioadv_2023_213570 crossref_primary_10_1016_j_carbpol_2022_120324 crossref_primary_10_1016_j_eurpolymj_2022_111119 crossref_primary_10_1016_j_ijbiomac_2018_04_034 crossref_primary_10_1016_j_ijbiomac_2025_139614 crossref_primary_10_1016_j_bej_2022_108721 crossref_primary_10_1016_j_carbpol_2023_120609 crossref_primary_10_3389_fbioe_2022_901534 crossref_primary_10_1016_j_polymertesting_2018_10_029 crossref_primary_10_1016_j_mtbio_2025_102221 crossref_primary_10_3390_ani12192701 crossref_primary_10_3390_pharmaceutics15041168 crossref_primary_10_3390_pharmaceutics13010008 crossref_primary_10_1016_j_cej_2021_130677 crossref_primary_10_1016_j_actbio_2018_12_048 crossref_primary_10_1016_j_actbio_2021_01_038 crossref_primary_10_1016_j_ijbiomac_2022_02_077 crossref_primary_10_1016_j_cej_2024_157300 crossref_primary_10_1016_j_ijbiomac_2025_139872 crossref_primary_10_1002_agt2_70047 crossref_primary_10_1016_j_bioactmat_2021_01_039 crossref_primary_10_1016_j_biomaterials_2025_123568 crossref_primary_10_1016_j_ijbiomac_2019_12_046 crossref_primary_10_1111_srt_70164 crossref_primary_10_1016_j_carbpol_2022_119336 crossref_primary_10_1016_j_ijbiomac_2020_07_164 crossref_primary_10_1038_s41428_024_00957_y crossref_primary_10_3390_polym11101679 crossref_primary_10_1002_adma_202106175 crossref_primary_10_1002_mabi_201800424 crossref_primary_10_1039_D0RA09106E crossref_primary_10_1016_j_ijbiomac_2024_132802 crossref_primary_10_1016_j_carbpol_2018_03_099 crossref_primary_10_3390_polym14163346 crossref_primary_10_3390_pharmaceutics13101666 crossref_primary_10_1002_adhm_202401105 crossref_primary_10_1002_adfm_202308437 crossref_primary_10_1016_j_biomaterials_2024_122849 crossref_primary_10_1016_j_cej_2022_136835 crossref_primary_10_1016_j_carbpol_2024_122209 crossref_primary_10_1016_j_compscitech_2017_12_032 crossref_primary_10_1016_j_biomaterials_2024_122841 crossref_primary_10_1016_j_bioactmat_2020_05_008 crossref_primary_10_1093_rb_rbad081 crossref_primary_10_1016_j_mattod_2019_12_005 crossref_primary_10_1007_s10570_025_06372_7 crossref_primary_10_1016_j_polymer_2021_123786 crossref_primary_10_1002_jbm_b_35630 crossref_primary_10_1039_D1PY00282A crossref_primary_10_1016_j_ijbiomac_2024_131700 crossref_primary_10_1016_j_colsurfb_2020_110803 crossref_primary_10_1016_j_carbpol_2023_121083 crossref_primary_10_1016_j_colsurfb_2020_110806 crossref_primary_10_1016_j_matdes_2024_112812 crossref_primary_10_1002_mabi_202000036 crossref_primary_10_1016_j_coco_2023_101728 crossref_primary_10_3389_fbioe_2020_00345 crossref_primary_10_1016_j_apsusc_2022_155290 crossref_primary_10_1016_j_eurpolymj_2022_111548 crossref_primary_10_1111_iwj_14644 crossref_primary_10_1080_00914037_2025_2495144 crossref_primary_10_3390_nu15061319 crossref_primary_10_3390_pharmaceutics15020634 crossref_primary_10_1002_adma_201806712 crossref_primary_10_1021_acsbiomaterials_9b00604 crossref_primary_10_1016_j_biomaterials_2021_120838 crossref_primary_10_3390_gels8040205 crossref_primary_10_1016_j_jcis_2021_02_107 crossref_primary_10_1016_j_compositesb_2021_109134 crossref_primary_10_1016_j_matdes_2024_112805 crossref_primary_10_1002_slct_202402444 crossref_primary_10_1002_smll_202101356 crossref_primary_10_3390_molecules29163732 crossref_primary_10_1002_mame_202100724 crossref_primary_10_1590_s2175_97902023e21159 crossref_primary_10_1002_slct_202405715 crossref_primary_10_1016_j_eurpolymj_2018_05_025 crossref_primary_10_1016_j_pnsc_2020_08_001 crossref_primary_10_1002_mabi_201800209 crossref_primary_10_1097_MD_0000000000043008 crossref_primary_10_1016_j_bioactmat_2023_11_012 crossref_primary_10_1016_j_bioactmat_2023_03_011 crossref_primary_10_1016_j_heliyon_2024_e33693 crossref_primary_10_1016_j_cis_2024_103099 crossref_primary_10_1016_j_jiec_2018_10_022 crossref_primary_10_1093_nsr_nwae426 crossref_primary_10_1007_s13738_021_02374_x crossref_primary_10_1016_j_jddst_2025_106911 crossref_primary_10_3390_gels11040226 crossref_primary_10_1016_j_carbpol_2021_118557 crossref_primary_10_1002_ctm2_70402 crossref_primary_10_1002_mabi_202000252 crossref_primary_10_1016_j_eurpolymj_2024_113026 crossref_primary_10_1016_j_mtcomm_2020_101695 crossref_primary_10_1016_j_ccr_2021_214368 crossref_primary_10_1016_j_hsr_2022_100026 crossref_primary_10_1177_08853282231154672 crossref_primary_10_1016_j_colsurfb_2024_114068 crossref_primary_10_1016_j_bej_2023_108895 crossref_primary_10_1016_j_carbpol_2021_118782 crossref_primary_10_1016_j_eurpolymj_2024_113260 crossref_primary_10_1016_j_cej_2019_121999 crossref_primary_10_1007_s10853_024_09493_9 crossref_primary_10_1016_j_carbpol_2019_115378 crossref_primary_10_1002_smll_202103997 crossref_primary_10_1016_j_ijbiomac_2020_02_302 crossref_primary_10_1038_s41598_020_57860_8 crossref_primary_10_1016_j_jtv_2021_10_004 crossref_primary_10_1016_j_bioactmat_2022_08_014 crossref_primary_10_1016_j_colsurfb_2017_12_054 crossref_primary_10_1016_j_ijbiomac_2024_138792 crossref_primary_10_3390_jfb14040222 crossref_primary_10_1002_adhm_202101247 crossref_primary_10_1016_j_cej_2022_134690 crossref_primary_10_1007_s40820_021_00751_y crossref_primary_10_1186_s12893_025_03058_6 crossref_primary_10_1016_j_burns_2022_01_019 crossref_primary_10_1016_j_matchemphys_2019_122053 crossref_primary_10_1016_j_ijbiomac_2025_147535 crossref_primary_10_1039_D1BM00379H crossref_primary_10_1007_s10118_020_2382_1 crossref_primary_10_1016_j_reactfunctpolym_2020_104749 crossref_primary_10_1016_j_actbio_2022_09_006 crossref_primary_10_1080_09205063_2025_2504709 crossref_primary_10_1002_adfm_202009442 crossref_primary_10_1016_j_colsurfa_2022_129803 crossref_primary_10_1007_s10118_021_2506_2 crossref_primary_10_1016_j_ijbiomac_2021_06_053 crossref_primary_10_1080_09205063_2021_1992877 crossref_primary_10_1111_wrr_12881 crossref_primary_10_1002_pol_20210896 crossref_primary_10_1007_s00289_019_02752_9 crossref_primary_10_1016_j_ijbiomac_2024_133094 crossref_primary_10_1016_j_ijbiomac_2024_137209 crossref_primary_10_3390_coatings14040381 crossref_primary_10_3390_gels9040278 crossref_primary_10_1002_adhm_202400071 crossref_primary_10_1002_adfm_202505669 crossref_primary_10_1016_j_eurpolymj_2020_110094 crossref_primary_10_1016_j_matdes_2023_111662 crossref_primary_10_1016_j_carbpol_2021_118129 crossref_primary_10_1016_j_cis_2024_103267 crossref_primary_10_1016_j_jddst_2022_104093 crossref_primary_10_1016_j_progpolymsci_2021_101472 crossref_primary_10_3390_gels11090732 crossref_primary_10_1177_08853282221137609 crossref_primary_10_1016_j_carbpol_2018_10_067 crossref_primary_10_1016_j_carbpol_2019_115391 crossref_primary_10_1016_j_carbpol_2018_10_068 crossref_primary_10_1021_acsaenm_5c00469 crossref_primary_10_1080_87559129_2020_1858313 crossref_primary_10_1177_08839115211073155 crossref_primary_10_1016_j_matdes_2020_108863 crossref_primary_10_3390_ijms25147839 crossref_primary_10_1016_j_carbpol_2018_04_085 crossref_primary_10_1016_j_ijbiomac_2022_08_149 crossref_primary_10_1016_j_cej_2023_146092 crossref_primary_10_1080_00914037_2019_1581200 crossref_primary_10_1016_j_carbpol_2020_116096 crossref_primary_10_1016_j_bioactmat_2020_12_014 crossref_primary_10_1016_j_cej_2020_125194 crossref_primary_10_1039_D1BM00135C crossref_primary_10_1016_j_jddst_2023_105026 crossref_primary_10_1016_j_mtchem_2025_102727 crossref_primary_10_1016_j_bioactmat_2021_10_043 crossref_primary_10_1002_app_57430 crossref_primary_10_1016_j_ijbiomac_2025_147771 crossref_primary_10_1007_s10853_019_03438_3 crossref_primary_10_1016_j_cej_2023_141630 crossref_primary_10_1021_acsomega_5c02315 crossref_primary_10_1016_j_ijbiomac_2020_08_239 crossref_primary_10_3389_fchem_2018_00449 crossref_primary_10_1016_j_eurpolymj_2023_111820 crossref_primary_10_1016_j_ijbiomac_2022_08_166 crossref_primary_10_1016_j_actbio_2017_06_036 crossref_primary_10_5812_jssc_67394 crossref_primary_10_1002_mabi_202300339 crossref_primary_10_1007_s10965_020_02363_3 crossref_primary_10_1016_j_ijpharm_2023_123187 crossref_primary_10_34133_bmr_0247 crossref_primary_10_1016_j_ijbiomac_2020_11_168 crossref_primary_10_1039_D0BM00188K crossref_primary_10_1002_adma_202108325 crossref_primary_10_1002_smll_202309568 crossref_primary_10_1007_s10570_023_05669_9 crossref_primary_10_1039_D0BM00055H crossref_primary_10_1007_s13233_022_0062_4 crossref_primary_10_1016_j_bbrc_2023_03_027 crossref_primary_10_3389_fchem_2022_838920 crossref_primary_10_1016_j_actbio_2023_01_021 crossref_primary_10_1016_j_ijbiomac_2023_124984 crossref_primary_10_1016_j_eurpolymj_2018_07_018 crossref_primary_10_1016_j_cej_2021_131017 crossref_primary_10_1016_j_compscitech_2020_108071 crossref_primary_10_1016_j_matdes_2020_108843 crossref_primary_10_1002_marc_201800058 crossref_primary_10_1038_s41467_018_04998_9 crossref_primary_10_1016_j_ijbiomac_2023_126929 crossref_primary_10_1016_j_molliq_2025_128126 crossref_primary_10_3390_gels10020152 crossref_primary_10_1016_j_carbpol_2023_121235 crossref_primary_10_1016_j_ijbiomac_2018_07_031 crossref_primary_10_1016_j_progpolymsci_2019_02_007 crossref_primary_10_1002_anbr_202200115 crossref_primary_10_1016_j_biomaterials_2022_121597 crossref_primary_10_1016_j_compositesb_2023_110991 crossref_primary_10_1016_j_heliyon_2023_e13506 crossref_primary_10_1016_j_bioadv_2022_212776 crossref_primary_10_1016_j_cej_2024_152249 crossref_primary_10_1080_17425247_2023_2217377 crossref_primary_10_3390_polym9120727 crossref_primary_10_1016_j_jece_2024_113136 crossref_primary_10_1016_j_compositesb_2020_108139 crossref_primary_10_1002_mame_201900045 crossref_primary_10_3389_fbioe_2020_00742 crossref_primary_10_1016_j_carbpol_2019_115161 crossref_primary_10_1016_j_carbpol_2021_117630 crossref_primary_10_1002_pen_26184 crossref_primary_10_1016_j_actbio_2025_04_002 crossref_primary_10_1002_adfm_202211182 crossref_primary_10_1177_0885328218754615 crossref_primary_10_1016_j_actbio_2025_05_047 crossref_primary_10_1016_j_ijbiomac_2025_145325 crossref_primary_10_1007_s10570_024_06335_4 crossref_primary_10_3390_c9010008 crossref_primary_10_1016_j_carbpol_2021_117878 crossref_primary_10_1007_s12274_022_5129_1 crossref_primary_10_1016_j_addr_2017_08_001 crossref_primary_10_1016_j_heliyon_2024_e32311 crossref_primary_10_3390_ijms241512358 crossref_primary_10_1016_j_cej_2020_125795 crossref_primary_10_1016_j_jddst_2023_105062 crossref_primary_10_3390_gels8100646 crossref_primary_10_1002_app_54751 crossref_primary_10_1039_D2RA02674K crossref_primary_10_1016_j_actbio_2017_06_001 crossref_primary_10_1002_pol_20220008 crossref_primary_10_1016_j_matpr_2019_07_406 crossref_primary_10_1002_app_51249 crossref_primary_10_1016_j_actbio_2022_07_066 crossref_primary_10_1021_acs_biomac_5c00748 crossref_primary_10_1007_s10965_018_1568_5 crossref_primary_10_1080_09205063_2018_1549771 crossref_primary_10_1016_j_actbio_2018_02_028 crossref_primary_10_1016_j_eurpolymj_2020_110024 crossref_primary_10_1016_j_carbpol_2021_118718 crossref_primary_10_18632_oncotarget_17327 crossref_primary_10_1016_j_ijbiomac_2025_143117 crossref_primary_10_3390_polym12102261 crossref_primary_10_1016_j_foodchem_2025_146466 crossref_primary_10_1002_adhm_201700973 crossref_primary_10_1080_00914037_2018_1525547 crossref_primary_10_1002_app_52100 crossref_primary_10_1016_j_cej_2021_131049 crossref_primary_10_1186_s12951_023_01879_2 crossref_primary_10_1021_acsami_5c13677 crossref_primary_10_1088_1742_6596_1980_1_012016 crossref_primary_10_1016_j_mtcomm_2021_103019 crossref_primary_10_1016_j_jmbbm_2023_106079 crossref_primary_10_1039_D3MH00056G crossref_primary_10_1016_j_carres_2019_05_006 crossref_primary_10_1002_mame_202000479 crossref_primary_10_1186_s40824_023_00392_9 crossref_primary_10_1016_j_jcis_2021_09_092 crossref_primary_10_1016_j_mtcomm_2024_109218 crossref_primary_10_1016_j_bioadv_2024_214003 crossref_primary_10_1016_j_bioadv_2022_212784 crossref_primary_10_1016_j_jcis_2019_08_083 crossref_primary_10_3390_coatings14030363 crossref_primary_10_1039_C9BM00661C crossref_primary_10_1016_j_nantod_2021_101290 crossref_primary_10_1002_app_55859 crossref_primary_10_1016_j_cej_2020_127512 crossref_primary_10_1002_mabi_202300520 crossref_primary_10_1155_2020_8868618 crossref_primary_10_1016_j_biopha_2021_111349 crossref_primary_10_1016_j_bioactmat_2021_11_030 crossref_primary_10_1016_j_jmst_2020_02_071 crossref_primary_10_1016_j_colsurfb_2021_112071 crossref_primary_10_2174_0929867326666190227192527 crossref_primary_10_1016_j_carbpol_2020_116470 crossref_primary_10_1016_j_carbpol_2021_118770 crossref_primary_10_1016_j_bioadv_2022_212974 crossref_primary_10_3390_cells14141076 crossref_primary_10_1177_08853282241238409 crossref_primary_10_1016_j_progpolymsci_2024_101856 crossref_primary_10_1038_s41570_021_00323_z crossref_primary_10_1016_j_ijbiomac_2022_11_115 crossref_primary_10_1080_1023666X_2020_1789382 crossref_primary_10_1016_j_talanta_2025_128690 crossref_primary_10_1186_s40824_023_00426_2 crossref_primary_10_3389_fbioe_2024_1375784 crossref_primary_10_1016_j_bioadv_2022_212728 crossref_primary_10_1039_D0RA05692H crossref_primary_10_1080_00914037_2020_1809403 crossref_primary_10_1002_marc_202100025 crossref_primary_10_3390_gels3030027 crossref_primary_10_1007_s40843_021_1724_8 crossref_primary_10_1016_j_compositesb_2022_109661 crossref_primary_10_1016_j_ijbiomac_2024_134578 crossref_primary_10_1002_mabi_202200067 crossref_primary_10_3390_pharmaceutics15030874 crossref_primary_10_1016_j_cej_2025_164717 crossref_primary_10_1016_j_addr_2023_114753 crossref_primary_10_1089_ten_teb_2019_0281 crossref_primary_10_1186_s12967_025_06528_w crossref_primary_10_1016_j_ijbiomac_2022_11_100 crossref_primary_10_1016_j_ijpharm_2022_122410 crossref_primary_10_3389_fbioe_2021_755777 crossref_primary_10_1016_j_jmst_2023_04_015 crossref_primary_10_1016_j_ijbiomac_2025_144436 crossref_primary_10_1016_j_biomaterials_2024_122632 crossref_primary_10_1007_s12010_021_03764_w crossref_primary_10_1016_j_carbpol_2020_116249 crossref_primary_10_3390_gels8050280 crossref_primary_10_1007_s00253_024_13021_9 crossref_primary_10_1016_j_eurpolymj_2024_113214 crossref_primary_10_1016_j_ijbiomac_2023_125652 crossref_primary_10_1080_00914037_2021_1962876 crossref_primary_10_1002_admi_202000057 crossref_primary_10_1002_mame_202000285 crossref_primary_10_1016_j_scitotenv_2021_147430 crossref_primary_10_1016_j_carbpol_2024_122426 crossref_primary_10_1002_mame_202000045 crossref_primary_10_1016_j_ijbiomac_2024_135896 crossref_primary_10_1177_00031348251350983 crossref_primary_10_1016_j_carbpol_2021_118996 crossref_primary_10_1002_pol_20210249 crossref_primary_10_1002_app_54312 crossref_primary_10_1016_j_bioadv_2022_212753 crossref_primary_10_1016_j_ijbiomac_2023_123149 crossref_primary_10_1016_j_ijbiomac_2020_03_170 crossref_primary_10_1016_j_porgcoat_2019_105372 crossref_primary_10_1016_j_cej_2020_125352 crossref_primary_10_1002_bip_70007 crossref_primary_10_1016_j_carbpol_2021_118998 crossref_primary_10_1038_s41598_024_73610_6 crossref_primary_10_1016_j_matdes_2023_111604 crossref_primary_10_1016_j_carbpol_2024_122898 crossref_primary_10_1002_admt_202001012 crossref_primary_10_1016_j_ijbiomac_2022_12_169 crossref_primary_10_1088_1748_605X_adf67b crossref_primary_10_1039_D5BM00133A crossref_primary_10_1002_smll_202101384 crossref_primary_10_1016_j_cej_2024_149493 crossref_primary_10_1002_mabi_202100302 crossref_primary_10_1016_j_cej_2019_04_107 crossref_primary_10_1016_j_ijbiomac_2025_145505 crossref_primary_10_1007_s10570_020_03479_x crossref_primary_10_1002_adma_202007663 crossref_primary_10_1039_D2RA07195A crossref_primary_10_1016_j_bioactmat_2021_11_008 crossref_primary_10_1016_j_bios_2018_08_018 crossref_primary_10_1016_j_ijbiomac_2019_09_113 crossref_primary_10_1002_EXP_20210083 crossref_primary_10_1039_D5BM00375J crossref_primary_10_1016_j_ijbiomac_2020_03_182 crossref_primary_10_1039_D3MH00849E crossref_primary_10_1002_adfm_202422150 crossref_primary_10_1016_j_ijbiomac_2022_10_223 crossref_primary_10_1016_j_ijbiomac_2023_123494 crossref_primary_10_1016_j_ijbiomac_2022_10_224 crossref_primary_10_1039_D0BM00632G crossref_primary_10_1016_j_ijbiomac_2024_135519 crossref_primary_10_1016_j_cej_2021_129578 crossref_primary_10_1016_j_ijbiomac_2023_125557 crossref_primary_10_1002_adhm_202000905 crossref_primary_10_1016_j_actbio_2018_03_018 crossref_primary_10_3389_fbioe_2021_718377 crossref_primary_10_1016_j_bioadv_2025_214287 crossref_primary_10_1016_j_ijbiomac_2019_11_134 crossref_primary_10_1016_j_ijbiomac_2024_134424 crossref_primary_10_1016_j_jmst_2024_08_054 crossref_primary_10_1016_j_cej_2024_154143 crossref_primary_10_1007_s13346_020_00731_6 crossref_primary_10_1186_s12951_023_01922_2 crossref_primary_10_1016_j_mtcomm_2024_109825 crossref_primary_10_1038_s41596_023_00878_9 crossref_primary_10_1016_j_ijbiomac_2025_145837 crossref_primary_10_1016_j_ijbiomac_2025_143418 crossref_primary_10_1002_VIW_20200112 crossref_primary_10_3389_fmats_2022_942957 crossref_primary_10_1016_j_ijbiomac_2020_08_093 crossref_primary_10_1016_j_jngse_2021_104250 crossref_primary_10_1016_j_ijbiomac_2021_10_180 crossref_primary_10_1039_C8BM01579A crossref_primary_10_1039_C9NR09283H crossref_primary_10_1002_adhm_202200115 crossref_primary_10_1016_j_ijbiomac_2025_144743 crossref_primary_10_1007_s10570_019_02942_8 crossref_primary_10_1039_D2BM00026A crossref_primary_10_1016_j_ijbiomac_2023_125568 crossref_primary_10_1002_smll_201803200 crossref_primary_10_1016_j_ijbiomac_2024_135987 crossref_primary_10_1002_mabi_201700147 crossref_primary_10_1016_j_carbpol_2023_121640 crossref_primary_10_1007_s10853_018_2977_x crossref_primary_10_1002_adfm_201905697 crossref_primary_10_1016_j_colsurfa_2024_133145 crossref_primary_10_1002_adma_202106842 crossref_primary_10_1016_j_actbio_2018_03_011 crossref_primary_10_1007_s10853_020_05751_8 crossref_primary_10_1016_j_bioactmat_2022_05_017 crossref_primary_10_1016_j_ijbiomac_2023_124321 crossref_primary_10_1007_s10570_019_02419_8 crossref_primary_10_1016_j_ijbiomac_2023_123231 crossref_primary_10_1007_s00289_024_05595_1 crossref_primary_10_1007_s40199_023_00475_x crossref_primary_10_1039_D1RA04992E crossref_primary_10_1177_22808000231176202 crossref_primary_10_3390_polym13081291 crossref_primary_10_3390_gels7040204 crossref_primary_10_1155_2023_9630168 crossref_primary_10_1016_j_ijbiomac_2024_133558 crossref_primary_10_1016_j_eurpolymj_2021_110981 crossref_primary_10_1039_D2QM00469K crossref_primary_10_1039_D3SC00145H crossref_primary_10_1002_mame_201800603 crossref_primary_10_1002_mabi_202200051 crossref_primary_10_1002_macp_202400491 crossref_primary_10_1016_j_ijpharm_2022_122385 crossref_primary_10_1002_adfm_202002370 crossref_primary_10_3390_molecules25010222 crossref_primary_10_1016_j_cjche_2020_12_005 crossref_primary_10_1016_j_ijbiomac_2017_07_130 crossref_primary_10_1016_j_cclet_2020_02_032 crossref_primary_10_1177_0040517519896753 crossref_primary_10_1016_j_ijbiomac_2022_12_086 crossref_primary_10_1016_j_jconrel_2022_03_014 crossref_primary_10_1016_j_ijbiomac_2022_10_255 crossref_primary_10_1016_j_ijbiomac_2023_125347 crossref_primary_10_1002_mabi_202500205 crossref_primary_10_1016_j_addr_2018_12_014 crossref_primary_10_1002_app_51770 crossref_primary_10_1016_j_ijbiomac_2024_133303 crossref_primary_10_1016_j_mtcomm_2022_104801 crossref_primary_10_1016_j_ijbiomac_2020_06_211 crossref_primary_10_3390_nano10081518 crossref_primary_10_1002_advs_202308538 crossref_primary_10_1016_j_ijbiomac_2022_11_288 crossref_primary_10_1002_pat_4452 crossref_primary_10_1016_j_carbpol_2022_119254 crossref_primary_10_3390_polym15040986 crossref_primary_10_1007_s40496_025_00405_7 crossref_primary_10_1016_j_cej_2023_143173 crossref_primary_10_1016_j_ijbiomac_2021_01_051 crossref_primary_10_1002_pen_27092 crossref_primary_10_1016_j_biomaterials_2019_119584 crossref_primary_10_1007_s13534_024_00417_9 crossref_primary_10_1016_j_jmst_2020_06_001 crossref_primary_10_1039_D2BM00224H crossref_primary_10_1016_j_progpolymsci_2022_101573 crossref_primary_10_1002_advs_202203587 crossref_primary_10_1007_s42452_024_06058_y crossref_primary_10_1016_j_carbpol_2024_121952 crossref_primary_10_1016_j_cej_2020_124888 crossref_primary_10_3389_fchem_2023_1257915 crossref_primary_10_1007_s11431_019_9522_4 crossref_primary_10_1016_j_cej_2019_122043 crossref_primary_10_1002_adfm_201904156 crossref_primary_10_1002_mabi_202100477 crossref_primary_10_1002_pat_6424 crossref_primary_10_1016_j_cej_2022_140698 crossref_primary_10_1016_j_biomaterials_2018_08_044 crossref_primary_10_1002_gch2_201900068 crossref_primary_10_1016_j_polymertesting_2018_01_016 crossref_primary_10_3390_polym14091716 crossref_primary_10_1016_j_cej_2025_163581 crossref_primary_10_1016_j_colsurfb_2022_112902 crossref_primary_10_1039_D4MH00837E crossref_primary_10_1016_j_rineng_2025_105944 crossref_primary_10_1038_s41427_019_0124_z crossref_primary_10_1016_j_actbio_2022_04_020 crossref_primary_10_1016_j_apmt_2021_101186 crossref_primary_10_1016_j_ijbiomac_2021_03_068 crossref_primary_10_1002_mabi_202100248 crossref_primary_10_1186_s13036_024_00435_2 crossref_primary_10_1016_j_ijbiomac_2022_03_128 crossref_primary_10_1016_j_ijbiomac_2022_11_065 crossref_primary_10_1088_1758_5090_ac42de crossref_primary_10_1002_bmm2_12055 crossref_primary_10_1016_j_polymer_2020_122624 crossref_primary_10_1177_15533506251367251 crossref_primary_10_3390_polym14214539 crossref_primary_10_3390_pharmaceutics11100505 crossref_primary_10_1016_j_cej_2020_125994 crossref_primary_10_1016_j_matchemphys_2019_121972 crossref_primary_10_1002_adbi_202400358 crossref_primary_10_1039_D0RA04457A crossref_primary_10_1016_j_eurpolymj_2023_112003 crossref_primary_10_1002_bab_2432 crossref_primary_10_1016_j_carbpol_2024_122822 crossref_primary_10_1016_j_cclet_2021_10_022 crossref_primary_10_1002_adma_201901580 crossref_primary_10_1038_s41427_019_0168_0 crossref_primary_10_1002_wnan_1889 crossref_primary_10_1002_mame_202500232 crossref_primary_10_3390_jcm10163558 crossref_primary_10_1093_burnst_tkab019 crossref_primary_10_3390_gels8020122 crossref_primary_10_1007_s40820_020_00507_0 crossref_primary_10_1016_j_ijbiomac_2019_04_075 crossref_primary_10_1007_s43939_024_00111_8 crossref_primary_10_1002_adfm_202110720 crossref_primary_10_1007_s13346_018_0510_z crossref_primary_10_1088_1361_665X_acd505 crossref_primary_10_2147_IJN_S382796 crossref_primary_10_1016_j_ijbiomac_2025_142981 crossref_primary_10_1007_s40843_024_3262_y crossref_primary_10_1002_jbm_b_35012 crossref_primary_10_1016_j_ijbiomac_2021_09_100 crossref_primary_10_1016_j_eurpolymj_2022_111086 crossref_primary_10_3390_polym16030344 crossref_primary_10_1016_j_cej_2020_125984 crossref_primary_10_1016_j_cej_2021_131005 crossref_primary_10_1088_1758_5090_acb6b8 crossref_primary_10_3389_fbioe_2022_1033827 crossref_primary_10_1093_rb_rbab048 crossref_primary_10_3390_jfb14080403 crossref_primary_10_1016_j_ijbiomac_2022_02_110 crossref_primary_10_1016_j_ijbiomac_2022_03_147 crossref_primary_10_1080_09205063_2020_1783595 crossref_primary_10_1002_adhm_201801568 crossref_primary_10_1063_5_0038364 crossref_primary_10_1016_j_ijbiomac_2023_127331 crossref_primary_10_1002_mabi_202100022 crossref_primary_10_1002_mame_201800664 crossref_primary_10_1007_s00396_025_05437_0 crossref_primary_10_1016_j_actbio_2019_11_014 crossref_primary_10_1177_00405175241300344 crossref_primary_10_1016_j_jddst_2025_107140 crossref_primary_10_1002_mabi_202500294 crossref_primary_10_1016_j_clay_2021_106291 crossref_primary_10_1016_j_biomaterials_2020_120149 crossref_primary_10_1016_j_cej_2020_126182 crossref_primary_10_1021_acsbiomaterials_9b01547 crossref_primary_10_1002_app_49250 crossref_primary_10_1016_j_actbio_2021_09_056 crossref_primary_10_1016_j_ijbiomac_2023_126014 crossref_primary_10_2217_nnm_2017_0173 crossref_primary_10_1002_adhm_202101556 crossref_primary_10_1016_j_ijbiomac_2024_131549 crossref_primary_10_1007_s13346_024_01520_1 crossref_primary_10_1016_j_carbpol_2024_122397 crossref_primary_10_1016_j_colsurfb_2021_112208 crossref_primary_10_1002_anie_201910979 crossref_primary_10_1016_j_ijbiomac_2023_126019 crossref_primary_10_1039_D3MH01403G crossref_primary_10_1002_pat_4286 crossref_primary_10_1016_j_cej_2023_141856 crossref_primary_10_1007_s42765_024_00421_9 crossref_primary_10_1039_D1BM01604K crossref_primary_10_1016_j_ijbiomac_2025_142738 crossref_primary_10_1002_adhm_202001384 crossref_primary_10_1016_j_ijbiomac_2023_123631 crossref_primary_10_1016_j_jcis_2023_09_196 crossref_primary_10_1016_j_jcis_2017_12_062 crossref_primary_10_1016_j_biomaterials_2019_119398 crossref_primary_10_1016_j_carbpol_2018_11_001 crossref_primary_10_1002_mame_201800200 crossref_primary_10_3390_pharmaceutics11090447 crossref_primary_10_1016_j_ijbiomac_2022_10_086 crossref_primary_10_1016_j_cej_2024_156381 crossref_primary_10_1016_j_ijbiomac_2024_131772 crossref_primary_10_1002_advs_202003627 crossref_primary_10_1016_j_ijpharm_2024_124767 crossref_primary_10_1039_D1BM01293B crossref_primary_10_1002_adhm_202002026 crossref_primary_10_1002_pola_28936 crossref_primary_10_1557_jmr_2019_77 crossref_primary_10_1016_j_compositesb_2019_03_006 crossref_primary_10_1016_j_bios_2019_04_001 crossref_primary_10_1016_j_ijpx_2025_100334 crossref_primary_10_1016_j_bios_2023_115386 crossref_primary_10_1016_j_ijbiomac_2023_128458 crossref_primary_10_1134_S2635167622020045 crossref_primary_10_1016_j_jcis_2020_09_105 crossref_primary_10_1007_s40200_021_00868_2 crossref_primary_10_1016_j_carbpol_2021_118272 crossref_primary_10_1016_j_cobme_2022_100443 crossref_primary_10_1093_rb_rbad028 crossref_primary_10_1002_mabi_202200442 crossref_primary_10_1016_j_actbio_2022_04_041 crossref_primary_10_1016_j_ijpharm_2025_125910 crossref_primary_10_1021_acssuschemeng_5c00713 crossref_primary_10_3389_fcimb_2023_1295593 crossref_primary_10_1088_2043_6262_ac2b98 crossref_primary_10_3390_ma13215038 crossref_primary_10_1016_j_cej_2019_122238 crossref_primary_10_1016_j_ijbiomac_2023_127371 crossref_primary_10_1002_advs_201802077 crossref_primary_10_1016_j_ijbiomac_2023_126282 crossref_primary_10_1016_j_ijbiomac_2023_125198 crossref_primary_10_1016_j_jconrel_2022_03_027 crossref_primary_10_3389_fphys_2023_1206211 crossref_primary_10_1039_D2BM00397J crossref_primary_10_1080_24701556_2021_1956964 crossref_primary_10_1155_2020_8747639 crossref_primary_10_1016_j_bioelechem_2022_108261 crossref_primary_10_3390_gels10040241 crossref_primary_10_3389_fchem_2018_00497 crossref_primary_10_1007_s11705_022_2149_z crossref_primary_10_1111_srt_70018 crossref_primary_10_1016_j_cej_2024_155037 crossref_primary_10_1016_j_colsurfb_2020_111263 crossref_primary_10_1016_j_colsurfb_2020_111264 crossref_primary_10_1016_j_ijbiomac_2023_126051 crossref_primary_10_1016_j_talanta_2023_125101 crossref_primary_10_1016_j_cej_2019_123775 crossref_primary_10_1016_j_colsurfb_2018_05_021 crossref_primary_10_1016_j_ijbiomac_2020_11_119 crossref_primary_10_1590_acb399024 crossref_primary_10_3389_fchem_2018_00490 crossref_primary_10_1016_j_ijbiomac_2021_07_115 crossref_primary_10_1002_rpm_20250021 crossref_primary_10_1016_j_apsusc_2018_04_122 crossref_primary_10_1016_j_carbpol_2022_120450 crossref_primary_10_1016_j_cclet_2023_108276 crossref_primary_10_3390_gels8070437 crossref_primary_10_1016_j_foodchem_2025_145922 crossref_primary_10_1016_j_jddst_2020_101894 crossref_primary_10_1016_j_bioadv_2022_213130 crossref_primary_10_2217_nnm_2020_0193 crossref_primary_10_1016_j_reth_2025_08_002 crossref_primary_10_1016_j_mser_2025_101098 crossref_primary_10_1016_j_colsurfb_2022_112987 crossref_primary_10_1002_adfm_202011230 crossref_primary_10_1088_1748_605X_abb2d7 crossref_primary_10_3390_bioengineering10020165 crossref_primary_10_1016_j_colsurfa_2024_133719 crossref_primary_10_1007_s00289_023_05130_8 crossref_primary_10_3390_ma13204572 crossref_primary_10_1016_j_carbpol_2025_123350 crossref_primary_10_1016_j_cej_2021_130302 crossref_primary_10_1002_adhm_202403983 crossref_primary_10_1016_j_matlet_2020_127401 crossref_primary_10_1016_j_bioadv_2022_213172 crossref_primary_10_1002_macp_201900399 crossref_primary_10_1007_s40195_021_01335_w crossref_primary_10_1016_j_pmatsci_2024_101249 crossref_primary_10_1016_j_biomaterials_2020_120164 crossref_primary_10_1021_acs_chemrev_5c00069 crossref_primary_10_1016_j_carbpol_2019_115302 crossref_primary_10_1016_j_ijbiomac_2020_05_220 crossref_primary_10_1002_adhm_202100402 crossref_primary_10_1038_s41598_024_84416_x crossref_primary_10_1016_j_cej_2021_129329 crossref_primary_10_1016_j_nanoen_2022_107393 crossref_primary_10_1016_j_cej_2023_147577 crossref_primary_10_1016_j_ijbiomac_2023_128019 crossref_primary_10_1016_j_carbpol_2025_124453 crossref_primary_10_1016_j_matchemphys_2025_130835 crossref_primary_10_1039_D1BM00053E crossref_primary_10_1088_1361_6528_aad7a7 crossref_primary_10_1016_j_msec_2021_112584 crossref_primary_10_1016_j_eurpolymj_2022_111004 crossref_primary_10_1016_j_jcis_2022_06_058 crossref_primary_10_1039_D4QM00405A crossref_primary_10_1002_app_57037 crossref_primary_10_1016_j_eurpolymj_2022_111486 crossref_primary_10_1002_pat_6286 crossref_primary_10_1002_mabi_202500247 crossref_primary_10_1016_j_foodchem_2023_135981 crossref_primary_10_1016_j_mtbio_2025_102114 crossref_primary_10_1016_j_cej_2022_140886 crossref_primary_10_1016_j_carbpol_2021_118065 crossref_primary_10_3390_pharmaceutics15071914 crossref_primary_10_1016_j_msec_2021_112577 crossref_primary_10_1016_j_jcis_2022_05_013 crossref_primary_10_1016_j_carbpol_2022_119696 crossref_primary_10_1038_s41578_020_0202_4 crossref_primary_10_1016_j_carbpol_2022_119456 crossref_primary_10_1016_j_ijbiomac_2024_129653 |
| Cites_doi | 10.1021/acsami.5b10829 10.1016/j.biomaterials.2015.08.042 10.1096/fasebj.8.11.8070631 10.1016/j.actbio.2016.09.019 10.1016/j.biomaterials.2014.10.077 10.1002/adfm.201503248 10.1080/027263401752246199 10.1021/am300292v 10.1039/c2py20627g 10.1016/j.actbio.2016.03.011 10.1016/j.actbio.2011.10.004 10.1021/cm103498s 10.1016/j.biomaterials.2016.07.011 10.1016/j.lfs.2006.09.018 10.1016/j.actbio.2013.12.045 10.1039/c3tb21716g 10.1039/c3tb20795a 10.1016/j.biomaterials.2008.12.063 10.1016/j.progpolymsci.2013.06.003 10.1159/000339613 10.1002/mabi.201300366 10.1016/j.jare.2010.05.004 10.1002/adhm.201500093 10.1016/0003-9861(61)90291-0 10.1111/wrr.12244 10.1016/j.biomaterials.2012.05.018 10.1016/j.addr.2003.08.003 10.1016/j.ijbiomac.2016.02.036 10.1039/C4CS00332B 10.1002/adma.201500762 10.1021/bm0701550 10.1021/bm4018963 10.1021/acsami.5b08376 10.1007/s11426-014-5086-y 10.1016/j.biotechadv.2011.01.005 10.1021/acsami.5b00191 10.1111/j.1524-475X.2008.00410.x 10.1016/j.actbio.2015.08.006 10.1002/adfm.201401502 10.1021/mz500498y 10.1002/adfm.201304202 10.1182/blood.V90.10.4153 10.1016/j.actbio.2012.05.001 10.1016/S0142-9612(02)00540-9 10.1016/j.ejmech.2006.11.010 10.1021/cr030441b 10.1039/C6TB01776B 10.1126/science.1176667 10.1074/jbc.272.32.19738 10.1039/C5TB01899D 10.1021/bm200326g 10.1016/0738-081X(94)90266-6 10.1038/nature05300 10.1006/exer.1998.0603 10.1021/acsami.6b04911 10.1021/bm300897j 10.1039/c2cc34701f 10.1021/bm050754b 10.1002/adma.201405166 10.1016/j.ejmech.2015.04.042 10.1016/j.biomaterials.2014.10.024 10.1016/j.synthmet.2005.07.170 10.1002/adfm.201100871 10.1056/NEJM199909023411006 10.1021/bm200464x 10.1016/j.biomaterials.2016.02.010 10.1016/j.biomaterials.2016.01.067 10.1016/j.biomaterials.2013.05.005 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.biomaterials.2017.01.011 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Dentistry |
| EISSN | 1878-5905 |
| EndPage | 47 |
| ExternalDocumentID | 28107663 10_1016_j_biomaterials_2017_01_011 S0142961217300194 1_s2_0_S0142961217300194 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS 9DU AAYXX CITATION AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c527t-6c97bb84f2d20308c0d1df19d31890671e564d4058b3b0f164771807573024a53 |
| ISICitedReferencesCount | 1720 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394472500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Sat Sep 27 23:42:50 EDT 2025 Wed Oct 01 13:44:42 EDT 2025 Mon Jul 21 05:55:48 EDT 2025 Sat Nov 29 07:26:07 EST 2025 Tue Nov 18 22:36:59 EST 2025 Fri Feb 23 02:31:39 EST 2024 Tue Feb 25 19:57:25 EST 2025 Tue Oct 14 19:32:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Full thickness skin defect model Self-healing Wound healing Antibacterial Conductive hydrogel dressing Electroactivity |
| Language | English |
| License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c527t-6c97bb84f2d20308c0d1df19d31890671e564d4058b3b0f164771807573024a53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 28107663 |
| PQID | 1861587802 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2000209346 proquest_miscellaneous_1861587802 pubmed_primary_28107663 crossref_citationtrail_10_1016_j_biomaterials_2017_01_011 crossref_primary_10_1016_j_biomaterials_2017_01_011 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2017_01_011 elsevier_clinicalkeyesjournals_1_s2_0_S0142961217300194 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2017_01_011 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-01 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biomaterials |
| PublicationTitleAlternate | Biomaterials |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Dong, Hassan, Kennedy, Greiser, Pandit, Garcia (bib8) 2014; 10 Kumar, Muzzarelli, Muzzarelli, Sashiwa, Domb (bib56) 2004; 104 da Silva, da Silva, Modolo, Alves, de Resende, Martins (bib49) 2011; 2 Wu, Wang, Guo, P (bib40) 2014; 2 Shi, Ge, Tan, Li, Song, Zhu (bib51) 2007; 42 Zhao, Zhang, Guo, Ma (bib15) 2016; 4 Xie, Wang, Guo, Wang, Chen, Ma (bib35) 2015; 71 Gong, Wu, Wang, Zhang, Luo, Zhao (bib2) 2013; 34 Chen, Chang, Lu, Huang, Harroun, Tseng (bib22) 2015; 25 Jayakumar, Prabaharan, Kumar, Nair, Tamura (bib23) 2011; 29 Spitzer (bib30) 2006; 444 Guo, Ma (bib37) 2014; 57 Greenwel, Inagaki, Hu, Walsh, Ramirez (bib66) 1997; 272 Gharibi, Yeganeh, Rezapour-Lactoee, Hassan (bib20) 2015; 7 Wei, Yang, Liu, Xu, Zhou, Zrínyi (bib47) 2015; 25 Tran, Joung, Lih, Park (bib9) 2011; 12 Pavinatto, Pavinatto, Caseli, dos Santos, Nobre, Zaniquelli (bib55) 2007; 8 Chen, Wang, Chen, Ho, Sheu (bib61) 2006; 7 Arul, Kartha, Jayakumar (bib60) 2007; 80 Li, Zhai, Lv, Yu, Ma, Yin (bib5) 2016; 36 Wu, Wang, Zhao, Hou, Guo, Ma (bib13) 2016; 104 Wu, Wang, Guo, Shao, Ma (bib34) 2016; 87 Deng, Guo, Zhao, Li, Dong, Guo (bib36) 2016; 46 Wu, Guo, Ma (bib12) 2014; 3 Zhao, Li, Guo, Ma (bib26) 2015; 26 Xia, Xia, Huang, Xiao, Lou, Liu (bib50) 2015; 97 Tran, Hamood, Souza, Schultz, Liesenfeld, Mehta (bib4) 2015; 23 Duck (bib27) 2013 Xu, Strandman, Zhu, Barralet, Cerruti (bib24) 2015; 37 Cui, Liu, Cheng, Zhang, Zhang, Chen (bib46) 2014; 15 Dong, Zhao, Guo, Ma (bib14) 2016; 8 Guo, Finne-Wistrand, Albertsson (bib44) 2011; 23 Fan, Liu, Wang, Zhang, Lin, Gong (bib6) 2014; 24 Ruszczak (bib3) 2003; 55 Ghobril, Grinstaff (bib53) 2015; 44 Guo, Glavas, Albertsson (bib32) 2013; 38 Fischbach, Walsh (bib17) 2009; 325 Xie, Wang, Ge, Guo, Ma (bib62) 2015; 7 Hou, Wang, Park, Jin, Ma (bib16) 2015; 4 Sudheesh Kumar, Lakshmanan, Anilkumar, Ramya, Reshmi, Unnikrishnan (bib18) 2012; 4 Ku, Lee, Park (bib31) 2012; 33 Barrientos, Stojadinovic, Golinko, Brem, Tomic-Canic (bib69) 2008; 16 Fiebrig, Harding, Davis (bib54) 1994 Cui, Liu, Deng, Pang, Zhang, Wang (bib72) 2012; 13 Jun, Jeong, Shin (bib29) 2009; 30 Woessner (bib67) 1961; 93 Raghow (bib64) 1994; 8 Wilson, Chen, Mohan, Liang, Liu (bib68) 1999; 68 Nissen, Polverini, Koch, Volin, Gamelli, DiPietro (bib70) 1998; 152 Cui, Cui, Zhang, Huang, Wei, Chen (bib39) 2014; 14 Gaudry, Brégerie, Andrieu, El Benna, Pocidalo, Hakim (bib71) 1997; 90 Cui, del Campo (bib11) 2012; 48 Kilmartin, Gizdavic-Nikolaidis, Zujovic, Travas-Sejdic, Bowmaker, Cooney (bib38) 2005; 153 Zhou, Yan, Cheng, Kong, Liu, Feng (bib59) 2016; 89 Tseng, Tao, Hsieh, Wei, Chiu, Hsu (bib25) 2015; 27 Lih, Lee, Park, Park (bib41) 2012; 8 Song, Rane, Christman (bib19) 2012; 8 Li, Yu, Ma, Guo (bib33) 2016; 4 Xu, Luo, Xia, He, Zhao, Liu (bib1) 2015; 40 Moseley, Walker, Waddington, Chen (bib45) 2003; 24 Li, Yan, Yang, Chen, Zeng (bib10) 2015; 27 Mi, Xue, Li, Jiang (bib21) 2011; 21 Peters, GS, Hendriks (bib28) 2001; 21 Yang, Zhang, Zhang, Tao, Li, Wei (bib48) 2012; 3 Chen, Dong, Ge, Guo, Ma (bib63) 2015; 7 Wen, Weinhart, Lai, Kizhakkedathu, Brooks (bib58) 2016; 86 Kenawy, Abdel-Hay, Mohy Eldin, Tamer, Ibrahim (bib52) 2015; 3 Lawrence, Diegelmann (bib65) 1994; 12 Rieger, Birch, Schiffman (bib7) 2013; 1 Reinke, Sorg (bib42) 2012; 49 Ryu, Lee, Kong, Kim, Park, Lee (bib57) 2011; 12 Singer, Clark (bib43) 1999; 341 Xie (10.1016/j.biomaterials.2017.01.011_bib62) 2015; 7 Guo (10.1016/j.biomaterials.2017.01.011_bib32) 2013; 38 Yang (10.1016/j.biomaterials.2017.01.011_bib48) 2012; 3 Jayakumar (10.1016/j.biomaterials.2017.01.011_bib23) 2011; 29 Dong (10.1016/j.biomaterials.2017.01.011_bib8) 2014; 10 da Silva (10.1016/j.biomaterials.2017.01.011_bib49) 2011; 2 Cui (10.1016/j.biomaterials.2017.01.011_bib46) 2014; 15 Zhao (10.1016/j.biomaterials.2017.01.011_bib15) 2016; 4 Lawrence (10.1016/j.biomaterials.2017.01.011_bib65) 1994; 12 Wu (10.1016/j.biomaterials.2017.01.011_bib40) 2014; 2 Barrientos (10.1016/j.biomaterials.2017.01.011_bib69) 2008; 16 Fischbach (10.1016/j.biomaterials.2017.01.011_bib17) 2009; 325 Fan (10.1016/j.biomaterials.2017.01.011_bib6) 2014; 24 Tran (10.1016/j.biomaterials.2017.01.011_bib9) 2011; 12 Mi (10.1016/j.biomaterials.2017.01.011_bib21) 2011; 21 Xia (10.1016/j.biomaterials.2017.01.011_bib50) 2015; 97 Li (10.1016/j.biomaterials.2017.01.011_bib33) 2016; 4 Guo (10.1016/j.biomaterials.2017.01.011_bib37) 2014; 57 Cui (10.1016/j.biomaterials.2017.01.011_bib11) 2012; 48 Raghow (10.1016/j.biomaterials.2017.01.011_bib64) 1994; 8 Sudheesh Kumar (10.1016/j.biomaterials.2017.01.011_bib18) 2012; 4 Tseng (10.1016/j.biomaterials.2017.01.011_bib25) 2015; 27 Wilson (10.1016/j.biomaterials.2017.01.011_bib68) 1999; 68 Gong (10.1016/j.biomaterials.2017.01.011_bib2) 2013; 34 Wu (10.1016/j.biomaterials.2017.01.011_bib13) 2016; 104 Spitzer (10.1016/j.biomaterials.2017.01.011_bib30) 2006; 444 Li (10.1016/j.biomaterials.2017.01.011_bib10) 2015; 27 Jun (10.1016/j.biomaterials.2017.01.011_bib29) 2009; 30 Wu (10.1016/j.biomaterials.2017.01.011_bib12) 2014; 3 Duck (10.1016/j.biomaterials.2017.01.011_bib27) 2013 Tran (10.1016/j.biomaterials.2017.01.011_bib4) 2015; 23 Woessner (10.1016/j.biomaterials.2017.01.011_bib67) 1961; 93 Dong (10.1016/j.biomaterials.2017.01.011_bib14) 2016; 8 Greenwel (10.1016/j.biomaterials.2017.01.011_bib66) 1997; 272 Gaudry (10.1016/j.biomaterials.2017.01.011_bib71) 1997; 90 Wen (10.1016/j.biomaterials.2017.01.011_bib58) 2016; 86 Kenawy (10.1016/j.biomaterials.2017.01.011_bib52) 2015; 3 Lih (10.1016/j.biomaterials.2017.01.011_bib41) 2012; 8 Wu (10.1016/j.biomaterials.2017.01.011_bib34) 2016; 87 Nissen (10.1016/j.biomaterials.2017.01.011_bib70) 1998; 152 Gharibi (10.1016/j.biomaterials.2017.01.011_bib20) 2015; 7 Xie (10.1016/j.biomaterials.2017.01.011_bib35) 2015; 71 Shi (10.1016/j.biomaterials.2017.01.011_bib51) 2007; 42 Chen (10.1016/j.biomaterials.2017.01.011_bib22) 2015; 25 Xu (10.1016/j.biomaterials.2017.01.011_bib1) 2015; 40 Rieger (10.1016/j.biomaterials.2017.01.011_bib7) 2013; 1 Wei (10.1016/j.biomaterials.2017.01.011_bib47) 2015; 25 Ghobril (10.1016/j.biomaterials.2017.01.011_bib53) 2015; 44 Hou (10.1016/j.biomaterials.2017.01.011_bib16) 2015; 4 Chen (10.1016/j.biomaterials.2017.01.011_bib61) 2006; 7 Ruszczak (10.1016/j.biomaterials.2017.01.011_bib3) 2003; 55 Deng (10.1016/j.biomaterials.2017.01.011_bib36) 2016; 46 Ryu (10.1016/j.biomaterials.2017.01.011_bib57) 2011; 12 Fiebrig (10.1016/j.biomaterials.2017.01.011_bib54) 1994 Cui (10.1016/j.biomaterials.2017.01.011_bib72) 2012; 13 Kumar (10.1016/j.biomaterials.2017.01.011_bib56) 2004; 104 Guo (10.1016/j.biomaterials.2017.01.011_bib44) 2011; 23 Song (10.1016/j.biomaterials.2017.01.011_bib19) 2012; 8 Cui (10.1016/j.biomaterials.2017.01.011_bib39) 2014; 14 Chen (10.1016/j.biomaterials.2017.01.011_bib63) 2015; 7 Singer (10.1016/j.biomaterials.2017.01.011_bib43) 1999; 341 Moseley (10.1016/j.biomaterials.2017.01.011_bib45) 2003; 24 Pavinatto (10.1016/j.biomaterials.2017.01.011_bib55) 2007; 8 Zhao (10.1016/j.biomaterials.2017.01.011_bib26) 2015; 26 Zhou (10.1016/j.biomaterials.2017.01.011_bib59) 2016; 89 Peters (10.1016/j.biomaterials.2017.01.011_bib28) 2001; 21 Xu (10.1016/j.biomaterials.2017.01.011_bib24) 2015; 37 Ku (10.1016/j.biomaterials.2017.01.011_bib31) 2012; 33 Li (10.1016/j.biomaterials.2017.01.011_bib5) 2016; 36 Reinke (10.1016/j.biomaterials.2017.01.011_bib42) 2012; 49 Arul (10.1016/j.biomaterials.2017.01.011_bib60) 2007; 80 Kilmartin (10.1016/j.biomaterials.2017.01.011_bib38) 2005; 153 |
| References_xml | – volume: 12 start-page: 2872 year: 2011 end-page: 2880 ident: bib9 article-title: In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing publication-title: Biomacromolecules – volume: 23 start-page: 1254 year: 2011 end-page: 1262 ident: bib44 article-title: Degradable and electroactive hydrogels with tunable electrical conductivity and swelling behavior publication-title: Chem. Mater – volume: 80 start-page: 275 year: 2007 end-page: 284 ident: bib60 article-title: A therapeutic approach for diabetic wound healing using biotinylated GHK incorporated collagen matrices publication-title: Life Sci. – volume: 444 start-page: 707 year: 2006 end-page: 712 ident: bib30 article-title: Electrical activity in early neuronal development publication-title: Nature – volume: 152 start-page: 1445 year: 1998 ident: bib70 article-title: Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing publication-title: Am. J. Pathol. – volume: 1 start-page: 4531 year: 2013 end-page: 4541 ident: bib7 article-title: Designing electrospun nanofiber mats to promote wound healing–a review publication-title: J. Mater Chem. B – volume: 90 start-page: 4153 year: 1997 end-page: 4161 ident: bib71 article-title: Intracellular pool of vascular endothelial growth factor in human neutrophils publication-title: Blood – volume: 55 start-page: 1595 year: 2003 end-page: 1611 ident: bib3 article-title: Effect of collagen matrices on dermal wound healing publication-title: Adv. Drug Deliv. Rev. – volume: 29 start-page: 322 year: 2011 end-page: 337 ident: bib23 article-title: Biomaterials based on chitin and chitosan in wound dressing applications publication-title: Biotechnol. Adv. – volume: 3 start-page: 3235 year: 2012 end-page: 3238 ident: bib48 article-title: Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier publication-title: Polym. Chem. – volume: 12 start-page: 2653 year: 2011 end-page: 2659 ident: bib57 article-title: Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials publication-title: Biomacromolecules – volume: 4 start-page: 471 year: 2016 end-page: 481 ident: bib33 article-title: Electroactive degradable copolymers enhancing osteogenic differentiation from bone marrow derived mesenchymal stem cells publication-title: J. Mater Chem. B – volume: 15 start-page: 1115 year: 2014 end-page: 1123 ident: bib46 article-title: In vitro study of electroactive tetraaniline-containing thermosensitive hydrogels for cardiac tissue engineering publication-title: Biomacromolecules – volume: 104 start-page: 6017 year: 2004 end-page: 6084 ident: bib56 article-title: Chitosan chemistry and pharmaceutical perspectives publication-title: Chem. Rev. – volume: 8 start-page: 823 year: 1994 end-page: 831 ident: bib64 article-title: The role of extracellular matrix in postinflammatory wound healing and fibrosis publication-title: FASEB J. – volume: 21 start-page: 4028 year: 2011 end-page: 4034 ident: bib21 article-title: A thermoresponsive antimicrobial wound dressing hydrogel based on a cationic betaine ester publication-title: Adv. Funct. Mater – year: 2013 ident: bib27 article-title: Physical Properties of Tissues: a Comprehensive Reference Book – volume: 341 start-page: 738 year: 1999 end-page: 746 ident: bib43 article-title: Cutaneous wound healing publication-title: New Engl. J. Med. – volume: 40 start-page: 1 year: 2015 end-page: 11 ident: bib1 article-title: Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction publication-title: Biomaterials – volume: 33 start-page: 6098 year: 2012 end-page: 6104 ident: bib31 article-title: Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation publication-title: Biomaterials – volume: 97 start-page: 83 year: 2015 end-page: 93 ident: bib50 article-title: Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure–microbicidal activity relationship publication-title: Eur. J. Med. Chem. – volume: 24 start-page: 1549 year: 2003 end-page: 1557 ident: bib45 article-title: Comparison of the antioxidant properties of wound dressing materials–carboxymethylcellulose, hyaluronan benzyl ester and hyaluronan, towards polymorphonuclear leukocyte-derived reactive oxygen species publication-title: Biomaterials – volume: 7 start-page: 6772 year: 2015 end-page: 6781 ident: bib62 article-title: Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering publication-title: ACS Appl. Mater Inter – volume: 7 start-page: 24296 year: 2015 end-page: 24311 ident: bib20 article-title: Stimulation of wound healing by electroactive, antibacterial, and antioxidant polyurethane/siloxane dressing membranes: in vitro and in vivo evaluations publication-title: ACS Appl. Mater Inter – volume: 153 start-page: 153 year: 2005 end-page: 156 ident: bib38 article-title: Free radical scavenging and antioxidant properties of conducting polymers examined using EPR and NMR spectroscopies publication-title: Synth. Met. – volume: 93 start-page: 440 year: 1961 end-page: 447 ident: bib67 article-title: The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid publication-title: Arch. Biochem. Biophys. – volume: 21 start-page: 545 year: 2001 end-page: 557 ident: bib28 article-title: Estimation of the electrical conductivity of human tissue publication-title: Electromagnetics – volume: 48 start-page: 9302 year: 2012 end-page: 9304 ident: bib11 article-title: Multivalent H-bonds for self-healing hydrogels publication-title: Chem. Commun. – volume: 57 start-page: 490 year: 2014 end-page: 500 ident: bib37 article-title: Synthetic biodegradable functional polymers for tissue engineering: a brief review publication-title: Sci. China Chem. – volume: 44 start-page: 1820 year: 2015 end-page: 1835 ident: bib53 article-title: The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial publication-title: Chem. Soc. Rev. – volume: 24 start-page: 3933 year: 2014 end-page: 3943 ident: bib6 article-title: A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing publication-title: Adv. Funct. Mater – volume: 2 start-page: 1 year: 2011 end-page: 8 ident: bib49 article-title: Schiff bases: a short review of their antimicrobial activities publication-title: J. Adv. Res. – volume: 36 start-page: 254 year: 2016 end-page: 266 ident: bib5 article-title: Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing publication-title: Acta Biomater. – volume: 25 start-page: 7189 year: 2015 end-page: 7199 ident: bib22 article-title: Self-assembly of antimicrobial peptides on gold nanodots: against multidrug-resistant bacteria and wound-healing application publication-title: Adv. Funct. Mater – volume: 8 start-page: 1633 year: 2007 end-page: 1640 ident: bib55 article-title: Interaction of chitosan with cell membrane models at the air-water interface publication-title: Biomacromolecules – volume: 23 start-page: 74 year: 2015 end-page: 81 ident: bib4 article-title: A study on the ability of quaternary ammonium groups attached to a polyurethane foam wound dressing to inhibit bacterial attachment and biofilm formation publication-title: Wound Repair Regen. – volume: 4 start-page: 2618 year: 2012 end-page: 2629 ident: bib18 article-title: Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation publication-title: ACS Appl. Mater Inter – volume: 7 start-page: 1058 year: 2006 end-page: 1064 ident: bib61 article-title: Development of N, O-(carboxymethyl) chitosan/collagen matrixes as a wound dressing publication-title: Biomacromolecules – volume: 46 start-page: 234 year: 2016 end-page: 244 ident: bib36 article-title: Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation publication-title: Acta Biomater. – volume: 68 start-page: 377 year: 1999 end-page: 397 ident: bib68 article-title: Expression of HGF, KGF, EGF and receptor messenger RNAs following corneal epithelial wounding publication-title: Exp. Eye Res. – volume: 38 start-page: 1263 year: 2013 end-page: 1286 ident: bib32 article-title: Biodegradable and electrically conducting polymers for biomedical applications publication-title: Prog. Polym. Sci. – volume: 325 start-page: 1089 year: 2009 end-page: 1093 ident: bib17 article-title: Antibiotics for emerging pathogens publication-title: Science – volume: 42 start-page: 558 year: 2007 end-page: 564 ident: bib51 article-title: Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde publication-title: Eur. J. Med. Chem. – volume: 4 start-page: 6644 year: 2016 end-page: 6651 ident: bib15 article-title: Mussel-inspired injectable supramolecular and covalent bond crosslinked hydrogels with rapid self-healing and recovery properties via a facile approach under metal-free conditions publication-title: J. Mater Chem. B – volume: 16 start-page: 585 year: 2008 end-page: 601 ident: bib69 article-title: Growth factors and cytokines in wound healing publication-title: Wound Repair Regen. – volume: 30 start-page: 2038 year: 2009 end-page: 2047 ident: bib29 article-title: The stimulation of myoblast differentiation by electrically conductive sub-micron fibers publication-title: Biomaterials – volume: 13 start-page: 2881 year: 2012 end-page: 2889 ident: bib72 article-title: Synthesis of biodegradable and electroactive tetraaniline grafted poly (ester amide) copolymers for bone tissue engineering publication-title: Biomacromolecules – volume: 2 start-page: 3674 year: 2014 end-page: 3685 ident: bib40 article-title: Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation publication-title: J. Mater Chem. B – volume: 71 start-page: 158 year: 2015 end-page: 167 ident: bib35 article-title: Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation publication-title: Biomaterials – volume: 3 start-page: 1145 year: 2014 end-page: 1150 ident: bib12 article-title: Injectable electroactive hydrogels formed via host–guest interactions publication-title: ACS Macro Lett. – volume: 87 start-page: 18 year: 2016 end-page: 31 ident: bib34 article-title: Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering publication-title: Biomaterials – volume: 4 start-page: 1491 year: 2015 end-page: 1495 ident: bib16 article-title: Rapid self-integrating, injectable hydrogel for tissue complex regeneration publication-title: Adv. Healthc. Mater – volume: 8 start-page: 41 year: 2012 end-page: 50 ident: bib19 article-title: Antibacterial and cell-adhesive polypeptide and poly (ethylene glycol) hydrogel as a potential scaffold for wound healing publication-title: Acta Biomater. – volume: 7 start-page: 28273 year: 2015 end-page: 28285 ident: bib63 article-title: Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering publication-title: ACS Appl. Mater Inter – volume: 8 start-page: 17138 year: 2016 end-page: 17150 ident: bib14 article-title: Self-healing conductive injectable hydrogels with anti-bacterial activity as cell delivery carrier for cardiac cell therapy publication-title: ACS Appl. Mater Inter – volume: 27 start-page: 3518 year: 2015 end-page: 3524 ident: bib25 article-title: An injectable, self-healing hydrogel to repair the central nervous system publication-title: Adv. Mater – volume: 34 start-page: 6377 year: 2013 end-page: 6387 ident: bib2 article-title: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing publication-title: Biomaterials – volume: 26 start-page: 236 year: 2015 end-page: 248 ident: bib26 article-title: Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering publication-title: Acta Biomater. – volume: 10 start-page: 2076 year: 2014 end-page: 2085 ident: bib8 article-title: Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer publication-title: Acta Biomater. – volume: 3 start-page: 563 year: 2015 end-page: 572 ident: bib52 article-title: Novel aminated chitosan-aromatic aldehydes schiff bases: synthesis, characterization and bio-evaluation publication-title: Int. J. Adv. Res. – volume: 14 start-page: 440 year: 2014 end-page: 450 ident: bib39 article-title: In situ electroactive and antioxidant supramolecular hydrogel based on cyclodextrin/copolymer inclusion for tissue engineering repair publication-title: Macromol. Biosci. – volume: 37 start-page: 395 year: 2015 end-page: 404 ident: bib24 article-title: Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery publication-title: Biomaterials – volume: 89 start-page: 471 year: 2016 end-page: 476 ident: bib59 article-title: Biomaterials based on N, N, N-trimethyl chitosan fibers in wound dressing applications publication-title: Int. J. Biol. Macromol. – volume: 104 start-page: 18 year: 2016 end-page: 31 ident: bib13 article-title: Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly publication-title: Biomaterials – volume: 25 start-page: 1352 year: 2015 end-page: 1359 ident: bib47 article-title: Novel biocompatible polysaccharide-based self-healing hydrogel publication-title: Adv. Funct. Mater – volume: 8 start-page: 3261 year: 2012 end-page: 3269 ident: bib41 article-title: Rapidly curable chitosan–PEG hydrogels as tissue adhesives for hemostasis and wound healing publication-title: Acta Biomater. – volume: 49 start-page: 35 year: 2012 end-page: 43 ident: bib42 article-title: Wound repair and regeneration publication-title: Eur. Surg. Res. – start-page: 66 year: 1994 end-page: 73 ident: bib54 article-title: Sedimentation Analysis of Potential Interactions between Mucins and a Putative Bioadhesive Polymer. Ultracentrifugation – volume: 272 start-page: 19738 year: 1997 end-page: 19745 ident: bib66 article-title: Sp1 is required for the early response of α2 (I) collagen to transforming growth factor-β1 publication-title: J. Biol. Chem. – volume: 27 start-page: 1294 year: 2015 end-page: 1299 ident: bib10 article-title: Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property publication-title: Adv. Mater – volume: 12 start-page: 157 year: 1994 end-page: 169 ident: bib65 article-title: Growth factors in wound healing publication-title: Clin. Dermatol. – volume: 86 start-page: 42 year: 2016 end-page: 55 ident: bib58 article-title: Reversible hemostatic properties of sulfabetaine/quaternary ammonium modified hyperbranched polyglycerol publication-title: Biomaterials – volume: 7 start-page: 28273 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib63 article-title: Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering publication-title: ACS Appl. Mater Inter doi: 10.1021/acsami.5b10829 – volume: 71 start-page: 158 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib35 article-title: Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.08.042 – volume: 8 start-page: 823 year: 1994 ident: 10.1016/j.biomaterials.2017.01.011_bib64 article-title: The role of extracellular matrix in postinflammatory wound healing and fibrosis publication-title: FASEB J. doi: 10.1096/fasebj.8.11.8070631 – volume: 46 start-page: 234 year: 2016 ident: 10.1016/j.biomaterials.2017.01.011_bib36 article-title: Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.09.019 – volume: 40 start-page: 1 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib1 article-title: Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.10.077 – volume: 25 start-page: 7189 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib22 article-title: Self-assembly of antimicrobial peptides on gold nanodots: against multidrug-resistant bacteria and wound-healing application publication-title: Adv. Funct. Mater doi: 10.1002/adfm.201503248 – volume: 21 start-page: 545 year: 2001 ident: 10.1016/j.biomaterials.2017.01.011_bib28 article-title: Estimation of the electrical conductivity of human tissue publication-title: Electromagnetics doi: 10.1080/027263401752246199 – volume: 4 start-page: 2618 year: 2012 ident: 10.1016/j.biomaterials.2017.01.011_bib18 article-title: Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation publication-title: ACS Appl. Mater Inter doi: 10.1021/am300292v – volume: 3 start-page: 3235 year: 2012 ident: 10.1016/j.biomaterials.2017.01.011_bib48 article-title: Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier publication-title: Polym. Chem. doi: 10.1039/c2py20627g – volume: 36 start-page: 254 year: 2016 ident: 10.1016/j.biomaterials.2017.01.011_bib5 article-title: Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.03.011 – volume: 8 start-page: 41 year: 2012 ident: 10.1016/j.biomaterials.2017.01.011_bib19 article-title: Antibacterial and cell-adhesive polypeptide and poly (ethylene glycol) hydrogel as a potential scaffold for wound healing publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.10.004 – volume: 23 start-page: 1254 year: 2011 ident: 10.1016/j.biomaterials.2017.01.011_bib44 article-title: Degradable and electroactive hydrogels with tunable electrical conductivity and swelling behavior publication-title: Chem. Mater doi: 10.1021/cm103498s – volume: 104 start-page: 18 year: 2016 ident: 10.1016/j.biomaterials.2017.01.011_bib13 article-title: Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.07.011 – volume: 80 start-page: 275 year: 2007 ident: 10.1016/j.biomaterials.2017.01.011_bib60 article-title: A therapeutic approach for diabetic wound healing using biotinylated GHK incorporated collagen matrices publication-title: Life Sci. doi: 10.1016/j.lfs.2006.09.018 – volume: 10 start-page: 2076 year: 2014 ident: 10.1016/j.biomaterials.2017.01.011_bib8 article-title: Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.12.045 – volume: 2 start-page: 3674 year: 2014 ident: 10.1016/j.biomaterials.2017.01.011_bib40 article-title: Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation publication-title: J. Mater Chem. B doi: 10.1039/c3tb21716g – volume: 1 start-page: 4531 year: 2013 ident: 10.1016/j.biomaterials.2017.01.011_bib7 article-title: Designing electrospun nanofiber mats to promote wound healing–a review publication-title: J. Mater Chem. B doi: 10.1039/c3tb20795a – volume: 30 start-page: 2038 year: 2009 ident: 10.1016/j.biomaterials.2017.01.011_bib29 article-title: The stimulation of myoblast differentiation by electrically conductive sub-micron fibers publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.12.063 – volume: 38 start-page: 1263 year: 2013 ident: 10.1016/j.biomaterials.2017.01.011_bib32 article-title: Biodegradable and electrically conducting polymers for biomedical applications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2013.06.003 – volume: 49 start-page: 35 year: 2012 ident: 10.1016/j.biomaterials.2017.01.011_bib42 article-title: Wound repair and regeneration publication-title: Eur. Surg. Res. doi: 10.1159/000339613 – volume: 14 start-page: 440 year: 2014 ident: 10.1016/j.biomaterials.2017.01.011_bib39 article-title: In situ electroactive and antioxidant supramolecular hydrogel based on cyclodextrin/copolymer inclusion for tissue engineering repair publication-title: Macromol. Biosci. doi: 10.1002/mabi.201300366 – volume: 2 start-page: 1 year: 2011 ident: 10.1016/j.biomaterials.2017.01.011_bib49 article-title: Schiff bases: a short review of their antimicrobial activities publication-title: J. Adv. Res. doi: 10.1016/j.jare.2010.05.004 – volume: 4 start-page: 1491 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib16 article-title: Rapid self-integrating, injectable hydrogel for tissue complex regeneration publication-title: Adv. Healthc. Mater doi: 10.1002/adhm.201500093 – volume: 93 start-page: 440 year: 1961 ident: 10.1016/j.biomaterials.2017.01.011_bib67 article-title: The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(61)90291-0 – volume: 23 start-page: 74 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib4 article-title: A study on the ability of quaternary ammonium groups attached to a polyurethane foam wound dressing to inhibit bacterial attachment and biofilm formation publication-title: Wound Repair Regen. doi: 10.1111/wrr.12244 – volume: 152 start-page: 1445 year: 1998 ident: 10.1016/j.biomaterials.2017.01.011_bib70 article-title: Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing publication-title: Am. J. Pathol. – volume: 33 start-page: 6098 year: 2012 ident: 10.1016/j.biomaterials.2017.01.011_bib31 article-title: Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.05.018 – volume: 55 start-page: 1595 year: 2003 ident: 10.1016/j.biomaterials.2017.01.011_bib3 article-title: Effect of collagen matrices on dermal wound healing publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2003.08.003 – volume: 89 start-page: 471 year: 2016 ident: 10.1016/j.biomaterials.2017.01.011_bib59 article-title: Biomaterials based on N, N, N-trimethyl chitosan fibers in wound dressing applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.02.036 – volume: 44 start-page: 1820 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib53 article-title: The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00332B – volume: 27 start-page: 3518 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib25 article-title: An injectable, self-healing hydrogel to repair the central nervous system publication-title: Adv. Mater doi: 10.1002/adma.201500762 – volume: 8 start-page: 1633 year: 2007 ident: 10.1016/j.biomaterials.2017.01.011_bib55 article-title: Interaction of chitosan with cell membrane models at the air-water interface publication-title: Biomacromolecules doi: 10.1021/bm0701550 – volume: 15 start-page: 1115 year: 2014 ident: 10.1016/j.biomaterials.2017.01.011_bib46 article-title: In vitro study of electroactive tetraaniline-containing thermosensitive hydrogels for cardiac tissue engineering publication-title: Biomacromolecules doi: 10.1021/bm4018963 – volume: 3 start-page: 563 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib52 article-title: Novel aminated chitosan-aromatic aldehydes schiff bases: synthesis, characterization and bio-evaluation publication-title: Int. J. Adv. Res. – volume: 7 start-page: 24296 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib20 article-title: Stimulation of wound healing by electroactive, antibacterial, and antioxidant polyurethane/siloxane dressing membranes: in vitro and in vivo evaluations publication-title: ACS Appl. Mater Inter doi: 10.1021/acsami.5b08376 – volume: 57 start-page: 490 year: 2014 ident: 10.1016/j.biomaterials.2017.01.011_bib37 article-title: Synthetic biodegradable functional polymers for tissue engineering: a brief review publication-title: Sci. China Chem. doi: 10.1007/s11426-014-5086-y – volume: 29 start-page: 322 year: 2011 ident: 10.1016/j.biomaterials.2017.01.011_bib23 article-title: Biomaterials based on chitin and chitosan in wound dressing applications publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2011.01.005 – volume: 7 start-page: 6772 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib62 article-title: Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering publication-title: ACS Appl. Mater Inter doi: 10.1021/acsami.5b00191 – volume: 16 start-page: 585 year: 2008 ident: 10.1016/j.biomaterials.2017.01.011_bib69 article-title: Growth factors and cytokines in wound healing publication-title: Wound Repair Regen. doi: 10.1111/j.1524-475X.2008.00410.x – volume: 26 start-page: 236 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib26 article-title: Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.08.006 – volume: 25 start-page: 1352 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib47 article-title: Novel biocompatible polysaccharide-based self-healing hydrogel publication-title: Adv. Funct. Mater doi: 10.1002/adfm.201401502 – volume: 3 start-page: 1145 year: 2014 ident: 10.1016/j.biomaterials.2017.01.011_bib12 article-title: Injectable electroactive hydrogels formed via host–guest interactions publication-title: ACS Macro Lett. doi: 10.1021/mz500498y – volume: 24 start-page: 3933 year: 2014 ident: 10.1016/j.biomaterials.2017.01.011_bib6 article-title: A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing publication-title: Adv. Funct. Mater doi: 10.1002/adfm.201304202 – start-page: 66 year: 1994 ident: 10.1016/j.biomaterials.2017.01.011_bib54 – volume: 90 start-page: 4153 year: 1997 ident: 10.1016/j.biomaterials.2017.01.011_bib71 article-title: Intracellular pool of vascular endothelial growth factor in human neutrophils publication-title: Blood doi: 10.1182/blood.V90.10.4153 – volume: 8 start-page: 3261 year: 2012 ident: 10.1016/j.biomaterials.2017.01.011_bib41 article-title: Rapidly curable chitosan–PEG hydrogels as tissue adhesives for hemostasis and wound healing publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.05.001 – volume: 24 start-page: 1549 year: 2003 ident: 10.1016/j.biomaterials.2017.01.011_bib45 article-title: Comparison of the antioxidant properties of wound dressing materials–carboxymethylcellulose, hyaluronan benzyl ester and hyaluronan, towards polymorphonuclear leukocyte-derived reactive oxygen species publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00540-9 – volume: 42 start-page: 558 year: 2007 ident: 10.1016/j.biomaterials.2017.01.011_bib51 article-title: Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2006.11.010 – volume: 104 start-page: 6017 year: 2004 ident: 10.1016/j.biomaterials.2017.01.011_bib56 article-title: Chitosan chemistry and pharmaceutical perspectives publication-title: Chem. Rev. doi: 10.1021/cr030441b – volume: 4 start-page: 6644 year: 2016 ident: 10.1016/j.biomaterials.2017.01.011_bib15 article-title: Mussel-inspired injectable supramolecular and covalent bond crosslinked hydrogels with rapid self-healing and recovery properties via a facile approach under metal-free conditions publication-title: J. Mater Chem. B doi: 10.1039/C6TB01776B – volume: 325 start-page: 1089 year: 2009 ident: 10.1016/j.biomaterials.2017.01.011_bib17 article-title: Antibiotics for emerging pathogens publication-title: Science doi: 10.1126/science.1176667 – volume: 272 start-page: 19738 year: 1997 ident: 10.1016/j.biomaterials.2017.01.011_bib66 article-title: Sp1 is required for the early response of α2 (I) collagen to transforming growth factor-β1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.32.19738 – volume: 4 start-page: 471 year: 2016 ident: 10.1016/j.biomaterials.2017.01.011_bib33 article-title: Electroactive degradable copolymers enhancing osteogenic differentiation from bone marrow derived mesenchymal stem cells publication-title: J. Mater Chem. B doi: 10.1039/C5TB01899D – volume: 12 start-page: 2872 year: 2011 ident: 10.1016/j.biomaterials.2017.01.011_bib9 article-title: In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing publication-title: Biomacromolecules doi: 10.1021/bm200326g – volume: 12 start-page: 157 year: 1994 ident: 10.1016/j.biomaterials.2017.01.011_bib65 article-title: Growth factors in wound healing publication-title: Clin. Dermatol. doi: 10.1016/0738-081X(94)90266-6 – volume: 444 start-page: 707 year: 2006 ident: 10.1016/j.biomaterials.2017.01.011_bib30 article-title: Electrical activity in early neuronal development publication-title: Nature doi: 10.1038/nature05300 – volume: 68 start-page: 377 year: 1999 ident: 10.1016/j.biomaterials.2017.01.011_bib68 article-title: Expression of HGF, KGF, EGF and receptor messenger RNAs following corneal epithelial wounding publication-title: Exp. Eye Res. doi: 10.1006/exer.1998.0603 – volume: 8 start-page: 17138 year: 2016 ident: 10.1016/j.biomaterials.2017.01.011_bib14 article-title: Self-healing conductive injectable hydrogels with anti-bacterial activity as cell delivery carrier for cardiac cell therapy publication-title: ACS Appl. Mater Inter doi: 10.1021/acsami.6b04911 – volume: 13 start-page: 2881 year: 2012 ident: 10.1016/j.biomaterials.2017.01.011_bib72 article-title: Synthesis of biodegradable and electroactive tetraaniline grafted poly (ester amide) copolymers for bone tissue engineering publication-title: Biomacromolecules doi: 10.1021/bm300897j – volume: 48 start-page: 9302 year: 2012 ident: 10.1016/j.biomaterials.2017.01.011_bib11 article-title: Multivalent H-bonds for self-healing hydrogels publication-title: Chem. Commun. doi: 10.1039/c2cc34701f – volume: 7 start-page: 1058 year: 2006 ident: 10.1016/j.biomaterials.2017.01.011_bib61 article-title: Development of N, O-(carboxymethyl) chitosan/collagen matrixes as a wound dressing publication-title: Biomacromolecules doi: 10.1021/bm050754b – volume: 27 start-page: 1294 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib10 article-title: Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property publication-title: Adv. Mater doi: 10.1002/adma.201405166 – year: 2013 ident: 10.1016/j.biomaterials.2017.01.011_bib27 – volume: 97 start-page: 83 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib50 article-title: Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure–microbicidal activity relationship publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2015.04.042 – volume: 37 start-page: 395 year: 2015 ident: 10.1016/j.biomaterials.2017.01.011_bib24 article-title: Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.10.024 – volume: 153 start-page: 153 year: 2005 ident: 10.1016/j.biomaterials.2017.01.011_bib38 article-title: Free radical scavenging and antioxidant properties of conducting polymers examined using EPR and NMR spectroscopies publication-title: Synth. Met. doi: 10.1016/j.synthmet.2005.07.170 – volume: 21 start-page: 4028 year: 2011 ident: 10.1016/j.biomaterials.2017.01.011_bib21 article-title: A thermoresponsive antimicrobial wound dressing hydrogel based on a cationic betaine ester publication-title: Adv. Funct. Mater doi: 10.1002/adfm.201100871 – volume: 341 start-page: 738 year: 1999 ident: 10.1016/j.biomaterials.2017.01.011_bib43 article-title: Cutaneous wound healing publication-title: New Engl. J. Med. doi: 10.1056/NEJM199909023411006 – volume: 12 start-page: 2653 year: 2011 ident: 10.1016/j.biomaterials.2017.01.011_bib57 article-title: Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials publication-title: Biomacromolecules doi: 10.1021/bm200464x – volume: 87 start-page: 18 year: 2016 ident: 10.1016/j.biomaterials.2017.01.011_bib34 article-title: Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.02.010 – volume: 86 start-page: 42 year: 2016 ident: 10.1016/j.biomaterials.2017.01.011_bib58 article-title: Reversible hemostatic properties of sulfabetaine/quaternary ammonium modified hyperbranched polyglycerol publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.067 – volume: 34 start-page: 6377 year: 2013 ident: 10.1016/j.biomaterials.2017.01.011_bib2 article-title: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.05.005 |
| SSID | ssj0014042 |
| Score | 2.7017603 |
| Snippet | Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing... Abstract Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 34 |
| SubjectTerms | adhesion Adhesiveness Advanced Basic Science Animals Anti-Bacterial Agents - administration & dosage Antibacterial antibacterial properties Antioxidants - administration & dosage Bandages, Hydrocolloid benzaldehyde biocompatibility blood coagulation collagen Conductive hydrogel dressing Delayed-Action Preparations - administration & dosage Delayed-Action Preparations - chemistry Dentistry Electric Conductivity Electroactivity ethylene glycol free radical scavengers Full thickness skin defect model gene expression glycerol granulation tissue hemostasis Hemostasis - drug effects hydrocolloids Hydrogels - administration & dosage Injections, Subcutaneous Lacerations - pathology Lacerations - physiopathology Lacerations - therapy longevity Mice polyethylene glycol Self-healing tissue repair transforming growth factor beta Treatment Outcome vascular endothelial growth factors Wound healing Wound Healing - drug effects Wound Healing - physiology |
| Title | Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961217300194 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961217300194 https://dx.doi.org/10.1016/j.biomaterials.2017.01.011 https://www.ncbi.nlm.nih.gov/pubmed/28107663 https://www.proquest.com/docview/1861587802 https://www.proquest.com/docview/2000209346 |
| Volume | 122 |
| WOSCitedRecordID | wos000394472500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB66u-LlQbTe6mUZwbclS2ZymQziQ1krXnARWbFvQ5KZ2iw1WZp2qf_En-NP88wlacpaqIJQQgiZNMn5cuabM2e-g9CLkNFUi7x4QRz4XsjzyOO5yr1JGEsVZUCQSW6KTbDT02Q85p96vV_NWpjLGSvLZLXiF__V1HAMjK2Xzv6FuduLwgHYB6PDFswO250MPywXRWY1mI0OwKLwqlUhYefI1bxJjY87KkodgzFLp6Y_5Lz6pma66kytZhNP80cTptVVl46kSZZtorZT9b0CTqmVTIzSq5yquvGZOmkxXwLhVDq11rZ219qYPi4qYMr2bXRC1yZsOy5avH5dmp4xrdosoWVlJ0l0qaGWg7us4s9LGFWU3TAGdI3r7Jcmskk9HpNN12zXLDvn6qKetpu2Op1XOgAbizg_zjrPoRP4mBFndX59Q3V7dPKBeDU99j2d6Eb1LRAt4k94uHmyHTOJmgpfXDl1Dx1QFnHwqwfDd6Px-3YmK_RNAaf28RrhW5NjuO0ut5GkbYMgQ4bO7qDbbhSDhxZ9d1FPlX1047XOPNPFA_voVkfnso-uf3QZHPfQzw144i488QY88RqeuIEnTmvchSc2AMMNPLGGJ17DE64ucReeGOCJW3i61u5a99GXN6Ozk7eeqw7i5RFlCy_OOcuyJJxQSbXoUu5LIieES-ilOHAwoqI4lDAeSbIg8ydaNw94GDBksBgN0yh4gPbLqlSPEE50GTag8rEvNaElKYsZ9eM0VbHkVEUDxBtziNxJ5-sKLjPR5Eiei64phTal8An8yAAFbdsLKyCzU6uXjdVFs0QaOnUBMN-pNftTa1U7N1WLbTAeoFdtS0fBLbXe-Z-fNxAV0E_pyUdrUkESGDslDF719nOoSYzgQRgP0EOL7_ad0YT4DIZHj__52Z6gm2vH8xTtL-ZL9Qxdyy_h05gfoj02Tg7d1_sbf-gpng |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibacterial+anti-oxidant+electroactive+injectable+hydrogel+as+self-healing+wound+dressing+with+hemostasis+and+adhesiveness+for+cutaneous+wound+healing&rft.jtitle=Biomaterials&rft.au=Zhao%2C+Xin&rft.au=Wu%2C+Hao&rft.au=Guo%2C+Baolin&rft.au=Dong%2C+Ruonan&rft.date=2017-04-01&rft.issn=0142-9612&rft.volume=122&rft.spage=34&rft.epage=47&rft_id=info:doi/10.1016%2Fj.biomaterials.2017.01.011&rft.externalDBID=ECK1-s2.0-S0142961217300194&rft.externalDocID=1_s2_0_S0142961217300194 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961217X00033%2Fcov150h.gif |