Deubiquitination of FANCD2 is required for DNA crosslink repair

Monoubiquitination of FANCD2 and PCNA promotes DNA repair. It causes chromatin accumulation of FANCD2 and facilitates PCNA's recruitment of translesion polymerases to stalled replication. USP1, a protease that removes monoubiquitin from FANCD2 and PCNA, was thought to reverse the DNA damage res...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cell Vol. 28; no. 5; p. 798
Main Authors: Oestergaard, Vibe H, Langevin, Frederic, Kuiken, Hendrik J, Pace, Paul, Niedzwiedz, Wojciech, Simpson, Laura J, Ohzeki, Mioko, Takata, Minoru, Sale, Julian E, Patel, Ketan J
Format: Journal Article
Language:English
Published: United States 14.12.2007
Subjects:
ISSN:1097-2765
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Monoubiquitination of FANCD2 and PCNA promotes DNA repair. It causes chromatin accumulation of FANCD2 and facilitates PCNA's recruitment of translesion polymerases to stalled replication. USP1, a protease that removes monoubiquitin from FANCD2 and PCNA, was thought to reverse the DNA damage response of these substrates. We disrupted USP1 in chicken cells to dissect its role in a stable genetic system. USP1 ablation increases FANCD2 and PCNA monoubiquitination but unexpectedly results in DNA crosslinker sensitivity. This defective DNA repair is associated with constitutively chromatin-bound, monoubiquitinated FANCD2. In contrast, persistent PCNA monoubiquitination has negligible impact on DNA repair or mutagenesis. USP1 was previously shown to autocleave after DNA damage. In DT40, USP1 autocleavage is not stimulated by DNA damage, and expressing a noncleavable mutant in the USP1 knockout strain partially rescues crosslinker sensitivity. We conclude that efficient DNA crosslink repair requires FANCD2 deubiquitination, whereas FANCD2 monoubiquitination is not dependent on USP1 autocleavage.
AbstractList Monoubiquitination of FANCD2 and PCNA promotes DNA repair. It causes chromatin accumulation of FANCD2 and facilitates PCNA's recruitment of translesion polymerases to stalled replication. USP1, a protease that removes monoubiquitin from FANCD2 and PCNA, was thought to reverse the DNA damage response of these substrates. We disrupted USP1 in chicken cells to dissect its role in a stable genetic system. USP1 ablation increases FANCD2 and PCNA monoubiquitination but unexpectedly results in DNA crosslinker sensitivity. This defective DNA repair is associated with constitutively chromatin-bound, monoubiquitinated FANCD2. In contrast, persistent PCNA monoubiquitination has negligible impact on DNA repair or mutagenesis. USP1 was previously shown to autocleave after DNA damage. In DT40, USP1 autocleavage is not stimulated by DNA damage, and expressing a noncleavable mutant in the USP1 knockout strain partially rescues crosslinker sensitivity. We conclude that efficient DNA crosslink repair requires FANCD2 deubiquitination, whereas FANCD2 monoubiquitination is not dependent on USP1 autocleavage.
Monoubiquitination of FANCD2 and PCNA promotes DNA repair. It causes chromatin accumulation of FANCD2 and facilitates PCNA's recruitment of translesion polymerases to stalled replication. USP1, a protease that removes monoubiquitin from FANCD2 and PCNA, was thought to reverse the DNA damage response of these substrates. We disrupted USP1 in chicken cells to dissect its role in a stable genetic system. USP1 ablation increases FANCD2 and PCNA monoubiquitination but unexpectedly results in DNA crosslinker sensitivity. This defective DNA repair is associated with constitutively chromatin-bound, monoubiquitinated FANCD2. In contrast, persistent PCNA monoubiquitination has negligible impact on DNA repair or mutagenesis. USP1 was previously shown to autocleave after DNA damage. In DT40, USP1 autocleavage is not stimulated by DNA damage, and expressing a noncleavable mutant in the USP1 knockout strain partially rescues crosslinker sensitivity. We conclude that efficient DNA crosslink repair requires FANCD2 deubiquitination, whereas FANCD2 monoubiquitination is not dependent on USP1 autocleavage.Monoubiquitination of FANCD2 and PCNA promotes DNA repair. It causes chromatin accumulation of FANCD2 and facilitates PCNA's recruitment of translesion polymerases to stalled replication. USP1, a protease that removes monoubiquitin from FANCD2 and PCNA, was thought to reverse the DNA damage response of these substrates. We disrupted USP1 in chicken cells to dissect its role in a stable genetic system. USP1 ablation increases FANCD2 and PCNA monoubiquitination but unexpectedly results in DNA crosslinker sensitivity. This defective DNA repair is associated with constitutively chromatin-bound, monoubiquitinated FANCD2. In contrast, persistent PCNA monoubiquitination has negligible impact on DNA repair or mutagenesis. USP1 was previously shown to autocleave after DNA damage. In DT40, USP1 autocleavage is not stimulated by DNA damage, and expressing a noncleavable mutant in the USP1 knockout strain partially rescues crosslinker sensitivity. We conclude that efficient DNA crosslink repair requires FANCD2 deubiquitination, whereas FANCD2 monoubiquitination is not dependent on USP1 autocleavage.
Author Takata, Minoru
Kuiken, Hendrik J
Langevin, Frederic
Simpson, Laura J
Ohzeki, Mioko
Pace, Paul
Oestergaard, Vibe H
Niedzwiedz, Wojciech
Patel, Ketan J
Sale, Julian E
Author_xml – sequence: 1
  givenname: Vibe H
  surname: Oestergaard
  fullname: Oestergaard, Vibe H
  organization: Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
– sequence: 2
  givenname: Frederic
  surname: Langevin
  fullname: Langevin, Frederic
– sequence: 3
  givenname: Hendrik J
  surname: Kuiken
  fullname: Kuiken, Hendrik J
– sequence: 4
  givenname: Paul
  surname: Pace
  fullname: Pace, Paul
– sequence: 5
  givenname: Wojciech
  surname: Niedzwiedz
  fullname: Niedzwiedz, Wojciech
– sequence: 6
  givenname: Laura J
  surname: Simpson
  fullname: Simpson, Laura J
– sequence: 7
  givenname: Mioko
  surname: Ohzeki
  fullname: Ohzeki, Mioko
– sequence: 8
  givenname: Minoru
  surname: Takata
  fullname: Takata, Minoru
– sequence: 9
  givenname: Julian E
  surname: Sale
  fullname: Sale, Julian E
– sequence: 10
  givenname: Ketan J
  surname: Patel
  fullname: Patel, Ketan J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18082605$$D View this record in MEDLINE/PubMed
BookMark eNo1T81OwzAYy2GI_cAbIJQTt5bk65ImJzRtDJCmcYFzlaZfpIy22ZL2wNtTCfDFlmxZ9pLM-tAjIXec5Zxx-XjKu9BabHNgrMyZzhmwGVlwpssMSinmZJnSiTG-FkpfkzlXTIFkYkGedjjW_jL6wfdm8KGnwdH95rjdAfWJRpysiA11IdLdcUNtDCm1vv-arLPx8YZcOdMmvP3jFfncP39sX7PD-8vbdnPIrIByyAC0LJw2a60VrI0VqLiCmlmcRtWFKOWkuZNosHYFYtm4xlqQSjeg6rqAFXn47T3HcBkxDVXn0_S4NT2GMVVSMylgworc_wXHusOmOkffmfhd_V-GH8QAWXk
CitedBy_id crossref_primary_10_1016_j_dnarep_2025_103807
crossref_primary_10_1080_15384101_2016_1138185
crossref_primary_10_1074_jbc_C109_038075
crossref_primary_10_1002_stem_437
crossref_primary_10_1080_15384101_2016_1201621
crossref_primary_10_4161_cc_10_23_18501
crossref_primary_10_1038_s41388_019_0856_9
crossref_primary_10_1056_NEJMra0809889
crossref_primary_10_1016_j_molcel_2014_08_012
crossref_primary_10_1016_j_mrfmmm_2008_11_007
crossref_primary_10_1016_j_mrfmmm_2008_11_004
crossref_primary_10_1016_j_hoc_2009_01_008
crossref_primary_10_1074_jbc_M109_016352
crossref_primary_10_1080_15384101_2016_1209613
crossref_primary_10_1371_journal_ppat_1007442
crossref_primary_10_1016_j_jmb_2010_01_003
crossref_primary_10_1128_MCB_00870_13
crossref_primary_10_15252_embr_202050133
crossref_primary_10_1038_s41594_020_0380_1
crossref_primary_10_1186_s11658_025_00753_3
crossref_primary_10_15252_embj_2022111898
crossref_primary_10_1146_annurev_genet_102108_134222
crossref_primary_10_1021_jm501061a
crossref_primary_10_1002_advs_202202437
crossref_primary_10_1101_gad_17020911
crossref_primary_10_1016_j_dnarep_2010_11_004
crossref_primary_10_1016_j_molcel_2014_12_001
crossref_primary_10_1080_10409230903154150
crossref_primary_10_1080_15384101_2015_1120918
crossref_primary_10_1038_s41594_022_00826_3
crossref_primary_10_3390_ijms19102909
crossref_primary_10_1038_s41568_023_00633_y
crossref_primary_10_1101_gad_1955310
crossref_primary_10_1093_neuonc_nov091
crossref_primary_10_3390_genes11050585
crossref_primary_10_1016_j_mrrev_2016_06_004
crossref_primary_10_1038_s41417_024_00797_1
crossref_primary_10_1111_febs_13648
crossref_primary_10_1016_j_mrrev_2012_06_002
crossref_primary_10_1002_ctd2_242
crossref_primary_10_26508_lsa_201800162
crossref_primary_10_1016_j_chembiol_2011_08_014
crossref_primary_10_1016_j_febslet_2011_04_078
crossref_primary_10_1128_MCB_01406_12
crossref_primary_10_1111_febs_16077
crossref_primary_10_1042_BSR20222591
crossref_primary_10_1371_journal_pone_0053693
crossref_primary_10_1038_s41467_020_19939_8
crossref_primary_10_1093_hmg_ddr103
crossref_primary_10_1155_2014_435197
crossref_primary_10_1016_j_mrfmmm_2008_12_012
crossref_primary_10_1038_srep25513
crossref_primary_10_1093_nar_gkt467
crossref_primary_10_1002_iub_300
crossref_primary_10_3390_ijms21093036
crossref_primary_10_3389_fgene_2016_00061
crossref_primary_10_1007_s11693_015_9162_1
crossref_primary_10_1074_jbc_RA120_013714
crossref_primary_10_1007_s12013_013_9637_1
crossref_primary_10_1002_1873_3468_12060
crossref_primary_10_5402_2012_146748
crossref_primary_10_1111_cas_14375
crossref_primary_10_1016_j_mrfmmm_2009_03_015
crossref_primary_10_1038_nchembio_1455
crossref_primary_10_1101_gad_195248_112
crossref_primary_10_1016_j_mrfmmm_2017_09_004
crossref_primary_10_1007_s10238_023_01075_4
crossref_primary_10_1038_nature11863
crossref_primary_10_1111_j_1600_0625_2011_01365_x
crossref_primary_10_1016_j_mrfmmm_2017_09_006
crossref_primary_10_1038_s41598_017_05325_w
crossref_primary_10_1007_s13238_011_1098_y
crossref_primary_10_1186_1476_4598_12_91
crossref_primary_10_1146_annurev_biochem_080320_112510
crossref_primary_10_1038_nrm3562
crossref_primary_10_1083_jcb_201101062
crossref_primary_10_1016_j_devcel_2009_01_001
crossref_primary_10_1016_j_mrfmmm_2009_02_003
crossref_primary_10_1038_s41420_019_0185_3
crossref_primary_10_1016_j_molcel_2014_05_001
crossref_primary_10_1074_jbc_M109_095141
crossref_primary_10_1007_s12185_017_2283_4
crossref_primary_10_1016_j_dnarep_2024_103739
crossref_primary_10_1016_j_molcel_2018_10_045
crossref_primary_10_1038_nrm2921
crossref_primary_10_1073_pnas_0807485106
crossref_primary_10_1002_jbt_23864
crossref_primary_10_1182_bloodadvances_2022008284
crossref_primary_10_1038_s41594_021_00576_8
crossref_primary_10_1074_jbc_M808430200
crossref_primary_10_1128_MCB_05058_11
crossref_primary_10_1080_10409238_2019_1687420
crossref_primary_10_1158_1541_7786_MCR_23_0323
crossref_primary_10_4161_cc_22688
crossref_primary_10_1038_s41388_018_0590_8
crossref_primary_10_1186_s12943_015_0311_7
crossref_primary_10_1186_s12964_017_0195_9
crossref_primary_10_1038_emboj_2011_457
crossref_primary_10_1042_BST0380116
crossref_primary_10_1007_s00018_012_1051_0
crossref_primary_10_1042_BST0380087
crossref_primary_10_1093_nar_gkw036
crossref_primary_10_1016_j_mrfmmm_2017_05_003
crossref_primary_10_1128_MCB_00086_09
crossref_primary_10_1038_s41594_022_00820_9
crossref_primary_10_1155_2012_349837
crossref_primary_10_1038_ng_855
crossref_primary_10_1007_s00439_022_02462_9
crossref_primary_10_1016_j_bbcan_2025_189297
crossref_primary_10_1016_j_molcel_2016_11_005
crossref_primary_10_1007_s10495_022_01736_x
crossref_primary_10_1038_nrm2731
crossref_primary_10_1016_j_dnarep_2010_09_011
crossref_primary_10_1101_gad_349431_122
crossref_primary_10_1042_BCJ20230284
crossref_primary_10_1002_mrd_23449
crossref_primary_10_1128_MCB_00847_15
crossref_primary_10_1111_j_1530_0277_2008_00673_x
crossref_primary_10_1038_s41467_019_10408_5
crossref_primary_10_1038_nature07963
crossref_primary_10_1007_s13277_013_1525_1
crossref_primary_10_3389_fcell_2020_00717
crossref_primary_10_1016_j_molcel_2008_10_009
crossref_primary_10_4061_2010_761217
crossref_primary_10_1007_s12013_013_9635_3
crossref_primary_10_1016_j_mrfmmm_2008_11_018
crossref_primary_10_3109_10409238_2010_502166
crossref_primary_10_3389_fgene_2016_00133
crossref_primary_10_1016_j_cell_2011_07_040
crossref_primary_10_1098_rsob_150018
crossref_primary_10_1158_0008_5472_CAN_13_3109
crossref_primary_10_1016_j_molcel_2008_12_003
crossref_primary_10_1016_j_mrfmmm_2013_01_001
crossref_primary_10_1038_nsmb_1504
crossref_primary_10_1093_nar_gkab892
crossref_primary_10_1016_j_febslet_2011_04_044
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.molcel.2007.09.020
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
ExternalDocumentID 18082605
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Worldwide Cancer Research
  grantid: 05-0472
– fundername: NCCDPHP CDC HHS
  grantid: U58 DP006024
– fundername: Medical Research Council
  grantid: MC_U105178811
– fundername: Medical Research Council
  grantid: MC_U105178808
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
7-5
AAEDT
AAEDW
AAHBH
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACNCT
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFFNX
AFPUW
AFTJW
AGCQF
AGHFR
AGKMS
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
HZ~
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NPM
O-L
O9-
OK1
OZT
P2P
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
7X8
ID FETCH-LOGICAL-c527t-22963f9a499824ac5e8182b0ce001b3576b0c1f6eaebf3ee7dfdcc2689d28bb32
IEDL.DBID 7X8
ISICitedReferencesCount 167
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000251926000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-2765
IngestDate Thu Oct 02 14:54:14 EDT 2025
Mon Jul 21 05:44:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-22963f9a499824ac5e8182b0ce001b3576b0c1f6eaebf3ee7dfdcc2689d28bb32
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S1097276507006326/pdf
PMID 18082605
PQID 69065222
PQPubID 23479
ParticipantIDs proquest_miscellaneous_69065222
pubmed_primary_18082605
PublicationCentury 2000
PublicationDate 2007-12-14
PublicationDateYYYYMMDD 2007-12-14
PublicationDate_xml – month: 12
  year: 2007
  text: 2007-12-14
  day: 14
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2007
SSID ssj0014589
Score 2.340852
Snippet Monoubiquitination of FANCD2 and PCNA promotes DNA repair. It causes chromatin accumulation of FANCD2 and facilitates PCNA's recruitment of translesion...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 798
SubjectTerms Animals
Apoptosis
Blotting, Western
Cell Cycle
Chickens
Chromatin - metabolism
Cisplatin - pharmacology
Cross-Linking Reagents - pharmacology
DNA Damage - drug effects
DNA Damage - physiology
DNA Repair - drug effects
DNA Repair - physiology
Endopeptidases - genetics
Endopeptidases - metabolism
Fanconi Anemia - genetics
Fanconi Anemia - metabolism
Fanconi Anemia Complementation Group D2 Protein - genetics
Fanconi Anemia Complementation Group D2 Protein - metabolism
Gene Expression Regulation
Gene Targeting
Mitomycin - pharmacology
Mutagenesis, Site-Directed
Mutation
Proliferating Cell Nuclear Antigen - genetics
Proliferating Cell Nuclear Antigen - metabolism
Protein Processing, Post-Translational
Subcellular Fractions
Ubiquitin - metabolism
Ubiquitin-Specific Proteases
Ubiquitination
Title Deubiquitination of FANCD2 is required for DNA crosslink repair
URI https://www.ncbi.nlm.nih.gov/pubmed/18082605
https://www.proquest.com/docview/69065222
Volume 28
WOSCitedRecordID wos000251926000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5WV8GL78f6zMFrtE3TpgVhWXZdvFj2oLC3kqQpFNZ2n4L_3kkfeBIPXkqhFMp0JvNNvsl8APeWq0JfSTGQ_IhyITwqlR13h8HlqRSTvq7FJkQch9NpNOnAU3sWxrZVtmtitVCnpbZ75I92oC5iBdafL6jVjLLcaiOgsQVdD4GM9Wkx_eEQuF8J4FmKlTIR-O3Buaq766OcaTNrRhhGDw5zfoeYVaoZH_zvIw9hv4GYZFD7xBF0THEMu7Xo5NcJ9Edmo_LFJl_n9U4gKTMyHsTDESP5iiyN7Q02KUE0S0bxgFR51PK8-Ggu8-UpvI-f34YvtJFRoNpnYk0ZwyDLIom1Tci41L7BJM2Uow0aSXlYcOC9mwVGGpV5xog0S7VmQRilLFTKY2ewXZSFuQCiuAVcQrg887AS5ArDPTA6ixzNpXRlD-5auyToppZ7kIUpN6uktUwPzmvTJvN6mkbihohCsKi6_PPdK9irdlZdRl1-Dd0MA9TcwI7-XOer5W319_EaT16_AfoYt1s
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deubiquitination+of+FANCD2+is+required+for+DNA+crosslink+repair&rft.jtitle=Molecular+cell&rft.au=Oestergaard%2C+Vibe+H&rft.au=Langevin%2C+Frederic&rft.au=Kuiken%2C+Hendrik+J&rft.au=Pace%2C+Paul&rft.date=2007-12-14&rft.issn=1097-2765&rft.volume=28&rft.issue=5&rft.spage=798&rft_id=info:doi/10.1016%2Fj.molcel.2007.09.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon