Hunting attacks in the dark: clustering and correlation analysis for unsupervised anomaly detection

Summary Network anomalies and attacks represent a serious challenge to ISPs, who need to cope with an increasing number of unknown events that put their networks' integrity at risk. Most of the network anomaly detection systems proposed so far employ a supervised strategy to accomplish their ta...

Full description

Saved in:
Bibliographic Details
Published in:International Journal of Network Management Vol. 25; no. 5; pp. 283 - 305
Main Authors: Mazel, Johan, Casas, Pedro, Fontugne, Romain, Fukuda, Kensuke, Owezarski, Philippe
Format: Journal Article
Language:English
Published: Chichester Blackwell Publishing Ltd 01.09.2015
Wiley
Wiley Subscription Services, Inc
Series:Measure, Detect and Mitigate ‐ Challenges and Trends in Network Security
Subjects:
ISSN:1055-7148, 1099-1190
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Network anomalies and attacks represent a serious challenge to ISPs, who need to cope with an increasing number of unknown events that put their networks' integrity at risk. Most of the network anomaly detection systems proposed so far employ a supervised strategy to accomplish their task, using either signature‐based detection methods or supervised‐learning techniques. The former fails to detect unknown anomalies, exposing the network to severe consequences; the latter requires labeled traffic, which is difficult and expensive to produce. In this paper, we introduce a powerful unsupervised approach to detect and characterize network anomalies in the dark, that is, without relying on signatures or labeled traffic. Unsupervised detection is accomplished by means of robust clustering techniques, combining subspace clustering with correlation analysis to blindly identify anomalies. To alleviate network operator's post‐processing tasks and to speed up the deployment of effective countermeasures, anomaly ranking and characterization are automatically performed on the detected events. The system is extensively tested with real traffic from the Widely Integrated Distributed Environment backbone network, spanning 6years of flows captured from a trans‐Pacific link between Japan and the USA, using the MAWILab framework for ground‐truth generation. We additionally evaluate the proposed approach with synthetic data, consisting of traffic from an operational network with synthetic attacks. Finally, we compare the performance of the unsupervised detection against different previously used unsupervised detection techniques, as well as against multiple anomaly detectors used in MAWILab. Copyright © 2015 John Wiley & Sons, Ltd. This article presents an unsupervised approach to detect and characterize network attacks without relying on signatures, training, or labelled traffic. It uses robust unsupervised machine‐learning techniques to unveil anomalous patterns in traffic flows, reducing the intervention of a human network operator. Through extensive evaluation, we show that it not only outperforms previous unsupervised detectors but also achieves high detection accuracy, comparable with that of standard supervised approaches. Our results show that unsupervised detection and characterization of attacks is feasible, opening the door to a new generation of autonomous security algorithms.
AbstractList Summary Network anomalies and attacks represent a serious challenge to ISPs, who need to cope with an increasing number of unknown events that put their networks' integrity at risk. Most of the network anomaly detection systems proposed so far employ a supervised strategy to accomplish their task, using either signature-based detection methods or supervised-learning techniques. The former fails to detect unknown anomalies, exposing the network to severe consequences; the latter requires labeled traffic, which is difficult and expensive to produce. In this paper, we introduce a powerful unsupervised approach to detect and characterize network anomalies in the dark, that is, without relying on signatures or labeled traffic. Unsupervised detection is accomplished by means of robust clustering techniques, combining subspace clustering with correlation analysis to blindly identify anomalies. To alleviate network operator's post-processing tasks and to speed up the deployment of effective countermeasures, anomaly ranking and characterization are automatically performed on the detected events. The system is extensively tested with real traffic from the Widely Integrated Distributed Environment backbone network, spanning 6years of flows captured from a trans-Pacific link between Japan and the USA, using the MAWILab framework for ground-truth generation. We additionally evaluate the proposed approach with synthetic data, consisting of traffic from an operational network with synthetic attacks. Finally, we compare the performance of the unsupervised detection against different previously used unsupervised detection techniques, as well as against multiple anomaly detectors used in MAWILab. Copyright © 2015 John Wiley & Sons, Ltd.
Network anomalies and attacks represent a serious challenge to ISPs, who need to cope with an increasing number of unknown events that put their networks' integrity at risk. Most of the network anomaly detection systems proposed so far employ a supervised strategy to accomplish their task, using either signature-based detection methods or supervised-learning techniques. The former fails to detect unknown anomalies, exposing the network to severe consequences; the latter requires labeled traffic, which is difficult and expensive to produce. In this paper, we introduce a powerful unsupervised approach to detect and characterize network anomalies in the dark, that is, without relying on signatures or labeled traffic. Unsupervised detection is accomplished by means of robust clustering techniques, combining subspace clustering with correlation analysis to blindly identify anomalies. To alleviate network operator's post-processing tasks and to speed up the deployment of effective countermeasures, anomaly ranking and characterization are automatically performed on the detected events. The system is extensively tested with real traffic from the Widely Integrated Distributed Environment backbone network, spanning 6years of flows captured from a trans-Pacific link between Japan and the USA, using the MAWILab framework for ground-truth generation. We additionally evaluate the proposed approach with synthetic data, consisting of traffic from an operational network with synthetic attacks. Finally, we compare the performance of the unsupervised detection against different previously used unsupervised detection techniques, as well as against multiple anomaly detectors used in MAWILab. This article presents an unsupervised approach to detect and characterize network attacks without relying on signatures, training, or labelled traffic. It uses robust unsupervised machine-learning techniques to unveil anomalous patterns in traffic flows, reducing the intervention of a human network operator. Through extensive evaluation, we show that it not only outperforms previous unsupervised detectors but also achieves high detection accuracy, comparable with that of standard supervised approaches. Our results show that unsupervised detection and characterization of attacks is feasible, opening the door to a new generation of autonomous security algorithms.
Network anomalies and attacks represent a serious challenge to ISPs, who need to cope with an increasing number of unknown events that put their networks' integrity at risk. Most of the network anomaly detection systems proposed so far employ a supervised strategy to accomplish their task, using either signature‐based detection methods or supervised‐learning techniques. The former fails to detect unknown anomalies, exposing the network to severe consequences; the latter requires labeled traffic, which is difficult and expensive to produce. In this paper, we introduce a powerful unsupervised approach to detect and characterize network anomalies in the dark, that is, without relying on signatures or labeled traffic. Unsupervised detection is accomplished by means of robust clustering techniques, combining subspace clustering with correlation analysis to blindly identify anomalies. To alleviate network operator's post‐processing tasks and to speed up the deployment of effective countermeasures, anomaly ranking and characterization are automatically performed on the detected events. The system is extensively tested with real traffic from the Widely Integrated Distributed Environment backbone network, spanning 6years of flows captured from a trans‐Pacific link between Japan and the USA, using the MAWILab framework for ground‐truth generation. We additionally evaluate the proposed approach with synthetic data, consisting of traffic from an operational network with synthetic attacks. Finally, we compare the performance of the unsupervised detection against different previously used unsupervised detection techniques, as well as against multiple anomaly detectors used in MAWILab. Copyright © 2015 John Wiley & Sons, Ltd.
Summary Network anomalies and attacks represent a serious challenge to ISPs, who need to cope with an increasing number of unknown events that put their networks' integrity at risk. Most of the network anomaly detection systems proposed so far employ a supervised strategy to accomplish their task, using either signature‐based detection methods or supervised‐learning techniques. The former fails to detect unknown anomalies, exposing the network to severe consequences; the latter requires labeled traffic, which is difficult and expensive to produce. In this paper, we introduce a powerful unsupervised approach to detect and characterize network anomalies in the dark, that is, without relying on signatures or labeled traffic. Unsupervised detection is accomplished by means of robust clustering techniques, combining subspace clustering with correlation analysis to blindly identify anomalies. To alleviate network operator's post‐processing tasks and to speed up the deployment of effective countermeasures, anomaly ranking and characterization are automatically performed on the detected events. The system is extensively tested with real traffic from the Widely Integrated Distributed Environment backbone network, spanning 6years of flows captured from a trans‐Pacific link between Japan and the USA, using the MAWILab framework for ground‐truth generation. We additionally evaluate the proposed approach with synthetic data, consisting of traffic from an operational network with synthetic attacks. Finally, we compare the performance of the unsupervised detection against different previously used unsupervised detection techniques, as well as against multiple anomaly detectors used in MAWILab. Copyright © 2015 John Wiley & Sons, Ltd. This article presents an unsupervised approach to detect and characterize network attacks without relying on signatures, training, or labelled traffic. It uses robust unsupervised machine‐learning techniques to unveil anomalous patterns in traffic flows, reducing the intervention of a human network operator. Through extensive evaluation, we show that it not only outperforms previous unsupervised detectors but also achieves high detection accuracy, comparable with that of standard supervised approaches. Our results show that unsupervised detection and characterization of attacks is feasible, opening the door to a new generation of autonomous security algorithms.
Network anomalies and attacks represent a serious challenge to ISPs, who need to cope with an increasing number of unknown events that put their networks' integrity at risk. Most of the network anomaly detection systems proposed so far employ a supervised strategy to accomplish their task, using either signature-based detection methods or supervised-learning techniques. The former fails to detect unknown anomalies, exposing the network to severe consequences; the latter requires labeled traffic, which is difficult and expensive to produce. In this paper we introduce a powerful unsupervised approach to detect and characterize network anomalies in the dark, i.e., without relying on signatures or labeled traffic. Unsupervised detection is accomplished by means of robust clustering techniques , combining sub-space clustering with correlation analysis to blindly identify anomalies. To alleviate network operator's post-processing tasks and to speed-up the deployment of effective countermeasures, anomaly ranking and characterization are automatically performed on the detected events. The system is extensively tested with real traffic from the WIDE backbone network, spanning six years of flows captured from a trans-pacific link between Japan and the US, using the MAWILab framework for ground-truth generation. We additionally evaluate the proposed approach with synthetic data, consisting of traffic from an operational network with synthetic attacks. Finally, we compare the performance of the unsupervised detection against different previously used unsupervised detection techniques, as well as against multiple anomaly detectors used in MAWILab.
Author Fontugne, Romain
Casas, Pedro
Fukuda, Kensuke
Mazel, Johan
Owezarski, Philippe
Author_xml – sequence: 1
  givenname: Johan
  surname: Mazel
  fullname: Mazel, Johan
  organization: National Institute of Informatics (NII), Tokyo, Japan
– sequence: 2
  givenname: Pedro
  surname: Casas
  fullname: Casas, Pedro
  email: Correspondence to: Pedro Casas, The Telecommunications Research Center Vienna, Donau-City-Straße 1, A-1220 Vienna, Austria., casas@ftw.at
  organization: The Telecommunications Research Center Vienna (FTW), Vienna, Austria
– sequence: 3
  givenname: Romain
  surname: Fontugne
  fullname: Fontugne, Romain
  organization: National Institute of Informatics (NII), Tokyo, Japan
– sequence: 4
  givenname: Kensuke
  surname: Fukuda
  fullname: Fukuda, Kensuke
  organization: National Institute of Informatics (NII), Tokyo, Japan
– sequence: 5
  givenname: Philippe
  surname: Owezarski
  fullname: Owezarski, Philippe
  organization: CNRS, LAAS, 7 avenue du colonel Roche, F-31077, Toulouse Cedex 4, France
BackLink https://cir.nii.ac.jp/crid/1871991017725156608$$DView record in CiNii
https://laas.hal.science/hal-01927394$$DView record in HAL
BookMark eNp1kU1v1DAQhiNUJNqCxE-IBAc4ZPEk8Re3qipdpKVIUNSj5XUm1G3WXmyndP99naa0EoKL7fE8M34970Gx57zDongNZAGE1B8cbhYgSfOs2AciZQU52JvOlFYcWvGiOIjximQUJN8vzHJ0ybqfpU5Jm-tYWlemSyw7Ha4_lmYYY8Jwn3ddaXwIOOhkvcuxHnbRxrL3oRxdHLcYbmzELmf8JufKDhOaiX1ZPO_1EPHVw35Y_Ph0cn68rFZfTz8fH60qQ2veVIZDQxnVYNZrbI2gfd-vxZpJzQSXRFDBmDAAQjQ1oSig6WjNNIp-zXWHdXNYvJ_7XupBbYPd6LBTXlu1PFqp6Y6AzA_J9gYy-25mt8H_GjEmtbHR4DBoh36MCjhtaB5aSzP65i_0yo8hf3-iiGSyBcoytZgpE3yMAXtlbLofVQraDgqImvxR2R81-fOk4LHgj-R_oNWM_rYD7v7LqbOTLw_825l31mYZ0wqCg5RAgPOaZr2MiKe2Npt8-9g2O68YbzhVF2en6lv7fSnFRavOmzvpVLlP
CitedBy_id crossref_primary_10_1109_TNSM_2020_3037019
crossref_primary_10_1109_TNSE_2022_3206353
crossref_primary_10_1007_s11042_020_08653_8
crossref_primary_10_1109_TDSC_2020_2979183
crossref_primary_10_1109_ACCESS_2019_2916648
crossref_primary_10_1002_nem_1992
crossref_primary_10_1002_nem_2159
crossref_primary_10_1007_s00521_022_07156_x
crossref_primary_10_1109_TSMC_2016_2600405
crossref_primary_10_1109_ACCESS_2017_2689001
crossref_primary_10_1002_nem_2129
crossref_primary_10_1016_j_neucom_2018_11_105
Cites_doi 10.1007/978-3-642-28537-0_18
10.1145/1327452.1327492
10.1007/978-1-4615-0953-0_4
10.1145/1298306.1298316
10.1145/1080091.1080118
10.1109/ALLERTON.2009.5394858
10.1016/j.comnet.2011.07.008
10.1109/TPAMI.2005.113
10.1145/276305.276314
10.1109/NTMS.2011.5721067
10.1145/2254756.2254821
10.1109/TNET.2012.2187306
10.1145/1456659.1456660
10.1145/1352664.1352675
10.1109/ITC.2014.6932930
10.1016/j.comnet.2013.07.028
10.1109/INFCOM.2009.5061947
10.1007/s10115-009-0226-y
10.1109/ICASSP.2015.7179029
10.1016/j.comnet.2011.08.015
10.1109/INFCOM.2009.5061979
10.1016/j.ins.2007.03.025
10.1145/2535372.2535411
10.4018/ijmcmc.2014010102
10.1145/1851182.1851215
10.1016/j.comcom.2012.12.002
10.1145/1330107.1330147
10.1145/637201.637210
10.1145/1007730.1007731
10.1145/948205.948236
10.1145/1541880.1541882
10.1016/j.comnet.2014.08.007
10.1109/TNET.2005.860096
10.1145/1921168.1921179
10.1007/978-3-642-05284-2_6
10.1145/1015467.1015492
10.1109/INFCOM.2010.5462151
10.14778/1687627.1687770
10.1145/2034594.2034598
10.1016/j.patrec.2009.09.011
10.1145/997150.997156
10.1109/TNET.2007.911438
ContentType Journal Article
Contributor Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Équipe Services et Architectures pour Réseaux Avancés (LAAS-SARA) ; Laboratoire d'analyse et d'architecture des systèmes (LAAS) ; Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Unive
Contributor_xml – sequence: 1
  fullname: Équipe Services et Architectures pour Réseaux Avancés (LAAS-SARA) ; Laboratoire d'analyse et d'architecture des systèmes (LAAS) ; Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)
– sequence: 2
  fullname: Austrian Institute of Technology [Vienna] (AIT)
– sequence: 3
  fullname: National Institute of Informatics (NII)
– sequence: 4
  fullname: Équipe Services et Architectures pour Réseaux Avancés (LAAS-SARA) ; Laboratoire d'analyse et d'architecture des systèmes (LAAS) ; Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées
– sequence: 5
  fullname: Équipe Services et Architectures pour Réseaux Avancés (LAAS-SARA)
– sequence: 6
  fullname: Laboratoire d'analyse et d'architecture des systèmes (LAAS)
– sequence: 7
  fullname: Université Toulouse Capitole (UT Capitole)
– sequence: 8
  fullname: Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
– sequence: 9
  fullname: Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
– sequence: 10
  fullname: Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
– sequence: 11
  fullname: Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
– sequence: 12
  fullname: Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
– sequence: 13
  fullname: Université de Toulouse (UT)
– sequence: 14
  fullname: Austrian Institute of Technology Vienna (AIT)
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
RYH
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1002/nem.1903
DatabaseName Istex
CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
Technology Research Database
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1099-1190
EndPage 305
ExternalDocumentID oai:HAL:hal-01927394v1
3799167861
10_1002_nem_1903
NEM1903
ark_67375_WNG_R4SH98W4_T
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5GY
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8US
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
WZISG
XPP
XV2
YZZ
ZZTAW
~IA
~WT
RYH
AAYXX
CITATION
O8X
7SC
7SP
8FD
ALUQN
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c5273-c713565a1cbbe4c85fffb8b69a68790858668c11883205e813d526ae8fb7ade23
IEDL.DBID DRFUL
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360842100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1055-7148
IngestDate Sat Nov 29 15:04:27 EST 2025
Sun Nov 09 12:57:57 EST 2025
Fri Jul 25 04:27:39 EDT 2025
Sat Nov 29 02:53:34 EST 2025
Tue Nov 18 22:37:41 EST 2025
Tue Nov 11 03:14:18 EST 2025
Mon Nov 10 09:18:01 EST 2025
Tue Nov 11 03:32:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Anomaly Correlation
Outliers Detection
Unsupervised Anomaly Detection & Characterization
Filtering Rules
Clustering
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5273-c713565a1cbbe4c85fffb8b69a68790858668c11883205e813d526ae8fb7ade23
Notes ArticleID:NEM1903
ark:/67375/WNG-R4SH98W4-T
istex:071D030CDA99205A2F1C73B7BF3C61B0E4C74896
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7713-7003
OpenAccessLink https://laas.hal.science/hal-01927394
PQID 1709694156
PQPubID 2034908
PageCount 23
ParticipantIDs hal_primary_oai_HAL_hal_01927394v1
proquest_miscellaneous_1753510545
proquest_journals_1709694156
crossref_citationtrail_10_1002_nem_1903
crossref_primary_10_1002_nem_1903
wiley_primary_10_1002_nem_1903_NEM1903
nii_cinii_1871991017725156608
istex_primary_ark_67375_WNG_R4SH98W4_T
PublicationCentury 2000
PublicationDate September/October 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September/October 2015
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationSeriesTitle Measure, Detect and Mitigate ‐ Challenges and Trends in Network Security
PublicationTitle International Journal of Network Management
PublicationTitleAlternate Int. J. Network Mgmt
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Müller E, Günnemann S, Assent I, Seidl T. Evaluating clustering in subspace projections of high dimensional data. Proceedings of VLDB Endowment. 2009; 2: 1270-1281.
Xu K, Zhang ZL, Bhattacharyya S. Internet traffic behavior profiling for network security monitoring. IEEE/ACM Transactions on Networking. 2008; 16(6): 1241-1252.
Moise G, Zimek A, Kröger P, Kriegel HP, Sander J. Subspace and projected clustering: experimental evaluation and analysis. Knowledge and Information Systems. 2009; 21: 299-326.
Strehl A, Ghosh J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research. 2003; 3: 583-617.
Coluccia A, D'alconzo A, Ricciato F. Distribution-based anomaly detection via generalized likelihood ratio test: A general maximum entropy approach. Computer Networks. 2013; 57(17): 3446-3462.
Brauckhoff D, Dimitropoulos X, Wagner A, Salamatian K. Anomaly extraction in backbone networks using association rules. IEEE/ACM Transactions on Networking. 2012; 20(6): 1788-1799.
Gamer T. Collaborative anomaly-based detection of large-scale internet attacks. Computer Networks. 2012; 56(1): 169-185.
Bhuyan MH, Bhattacharyya DK, Kalita JK. Towards an unsupervised method for network anomaly detection in large datasets. Computing and Informatics. 2014; 33(1): 1-34.
Novakov S, Lung CH, Lambadaris I, Seddigh N. A hybrid technique using PCA and wavelets in network traffic anomaly detection. International Journal of Mobile Computing and Multimedia Communications. 2014; 6(1): 17-53.
Marnerides A, Schaeffer-Filho A, Mauthe A. Traffic anomaly diagnosis in internet backbone networks: a survey. Computer Networks. 2014; 73(0): 224-243.
Cormode G, Muthukrishnan S. What's new: finding significant differences in network data streams. IEEE/ACM Transactions on Networking. 2005; 13: 1219-1232.
Jain AK. Data clustering: 50 years beyond k-means. Pattern Recognition Letters. 2010; 31: 651-666.
Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of the ACM. 2008; 51(1): 107-113.
Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD Record. 1998; 27(2): 94-105.
Shon T, Moon J. A hybrid machine learning approach to network anomaly detection. Information Sciences. 2007; 177: 3799-3821.
Fred ALN, Jain AK. Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005; 27: 835-850.
Mirkovic J, Reiher P. A taxonomy of DDoS attack and DDoS defense mechanisms. ACM SIGCOMM Computer Communication Review. 2004; 34(2): 39-53.
Kanda Y, Fontugne R, Fukuda K, Sugawara T. ADMIRE: Anomaly detection method using entropy-based PCA with three-step sketches. Computer Communications. 2013; 36(5): 575-588.
Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Computing Surveys. 2009; 41(3): 15:1-15:58.
Tellenbach B, Burkhart M, Schatzmann D, Gugelmann D, Sornette D. Accurate network anomaly classification with generalized entropy metrics. Computer Networks. 2011; 55(15): 3485-3502.
Fontugne R, Fukuda K. A Hough-transform-based anomaly detector with an adaptive time interval. ACM SIGAPP Applied Computing Review. 2011; 11(3): 41-51.
Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. SIGKDD Exploration Newsletter. 2004; 6: 90-105.
Eskin E, Arnold A, Prerau M, Portnoy L, Stolfo S. A geometric framework for unsupervised anomaly detection: detecting intrusions in unlabeled data.Applications of Data Mining in Computer Security. 2002; 6: 77-101.
1998; 27
2010; 31
2009; 41
2009; 21
2012
2011
2010
2002; 6
2008; 16
2009
2008
2011; 11
2007
2011; 55
2004; 6
1996
2005
2004
2003
2002
2005; 27
2008; 51
2012; 56
2013; 36
2001
2000
2013; 57
2007; 177
2004; 34
2003; 3
2015
2014
2013
2014; 73
2009; 2
2014; 6
2012; 20
2014; 33
2005; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
Bhuyan MH (e_1_2_8_41_1) 2014; 33
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Strehl A (e_1_2_8_47_1) 2003; 3
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – reference: Eskin E, Arnold A, Prerau M, Portnoy L, Stolfo S. A geometric framework for unsupervised anomaly detection: detecting intrusions in unlabeled data.Applications of Data Mining in Computer Security. 2002; 6: 77-101.
– reference: Bhuyan MH, Bhattacharyya DK, Kalita JK. Towards an unsupervised method for network anomaly detection in large datasets. Computing and Informatics. 2014; 33(1): 1-34.
– reference: Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Computing Surveys. 2009; 41(3): 15:1-15:58.
– reference: Novakov S, Lung CH, Lambadaris I, Seddigh N. A hybrid technique using PCA and wavelets in network traffic anomaly detection. International Journal of Mobile Computing and Multimedia Communications. 2014; 6(1): 17-53.
– reference: Jain AK. Data clustering: 50 years beyond k-means. Pattern Recognition Letters. 2010; 31: 651-666.
– reference: Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD Record. 1998; 27(2): 94-105.
– reference: Gamer T. Collaborative anomaly-based detection of large-scale internet attacks. Computer Networks. 2012; 56(1): 169-185.
– reference: Moise G, Zimek A, Kröger P, Kriegel HP, Sander J. Subspace and projected clustering: experimental evaluation and analysis. Knowledge and Information Systems. 2009; 21: 299-326.
– reference: Coluccia A, D'alconzo A, Ricciato F. Distribution-based anomaly detection via generalized likelihood ratio test: A general maximum entropy approach. Computer Networks. 2013; 57(17): 3446-3462.
– reference: Fred ALN, Jain AK. Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005; 27: 835-850.
– reference: Shon T, Moon J. A hybrid machine learning approach to network anomaly detection. Information Sciences. 2007; 177: 3799-3821.
– reference: Kanda Y, Fontugne R, Fukuda K, Sugawara T. ADMIRE: Anomaly detection method using entropy-based PCA with three-step sketches. Computer Communications. 2013; 36(5): 575-588.
– reference: Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. SIGKDD Exploration Newsletter. 2004; 6: 90-105.
– reference: Strehl A, Ghosh J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research. 2003; 3: 583-617.
– reference: Müller E, Günnemann S, Assent I, Seidl T. Evaluating clustering in subspace projections of high dimensional data. Proceedings of VLDB Endowment. 2009; 2: 1270-1281.
– reference: Marnerides A, Schaeffer-Filho A, Mauthe A. Traffic anomaly diagnosis in internet backbone networks: a survey. Computer Networks. 2014; 73(0): 224-243.
– reference: Tellenbach B, Burkhart M, Schatzmann D, Gugelmann D, Sornette D. Accurate network anomaly classification with generalized entropy metrics. Computer Networks. 2011; 55(15): 3485-3502.
– reference: Brauckhoff D, Dimitropoulos X, Wagner A, Salamatian K. Anomaly extraction in backbone networks using association rules. IEEE/ACM Transactions on Networking. 2012; 20(6): 1788-1799.
– reference: Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of the ACM. 2008; 51(1): 107-113.
– reference: Cormode G, Muthukrishnan S. What's new: finding significant differences in network data streams. IEEE/ACM Transactions on Networking. 2005; 13: 1219-1232.
– reference: Fontugne R, Fukuda K. A Hough-transform-based anomaly detector with an adaptive time interval. ACM SIGAPP Applied Computing Review. 2011; 11(3): 41-51.
– reference: Mirkovic J, Reiher P. A taxonomy of DDoS attack and DDoS defense mechanisms. ACM SIGCOMM Computer Communication Review. 2004; 34(2): 39-53.
– reference: Xu K, Zhang ZL, Bhattacharyya S. Internet traffic behavior profiling for network security monitoring. IEEE/ACM Transactions on Networking. 2008; 16(6): 1241-1252.
– start-page: 333
  year: 2005
  end-page: 342
– start-page: 1
  year: 2010
  end-page: 9
– year: 2001
– year: 2007
  article-title: METROlogy for SECurity and QOS
– start-page: 145
  year: 2007
  end-page: 152
– start-page: 51
  year: 2000
  end-page: 56
– volume: 27
  start-page: 94
  issue: 2
  year: 1998
  end-page: 105
  article-title: Automatic subspace clustering of high dimensional data for data mining applications
  publication-title: SIGMOD Record
– volume: 2
  start-page: 1270
  year: 2009
  end-page: 1281
  article-title: Evaluating clustering in subspace projections of high dimensional data
  publication-title: Proceedings of VLDB Endowment
– start-page: 8:1
  year: 2010
  end-page: 8:12
– start-page: 1
  year: 2008
  end-page: 7
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  end-page: 113
  article-title: MapReduce: simplified data processing on large clusters
  publication-title: Communications of the ACM
– start-page: 71
  year: 2002
  end-page: 82
– volume: 36
  start-page: 575
  issue: 5
  year: 2013
  end-page: 588
  article-title: ADMIRE: Anomaly detection method using entropy‐based PCA with three‐step sketches
  publication-title: Computer Communications
– start-page: 217
  year: 2005
  end-page: 228
– start-page: 25
  year: 2013
  end-page: 30
– volume: 56
  start-page: 169
  issue: 1
  year: 2012
  end-page: 185
  article-title: Collaborative anomaly‐based detection of large‐scale internet attacks
  publication-title: Computer Networks
– volume: 6
  start-page: 77
  year: 2002
  end-page: 101
  article-title: A geometric framework for unsupervised anomaly detection: detecting intrusions in unlabeled data.
  publication-title: Applications of Data Mining in Computer Security
– start-page: 331
  year: 2005
  end-page: 344
– volume: 34
  start-page: 39
  issue: 2
  year: 2004
  end-page: 53
  article-title: A taxonomy of DDoS attack and DDoS defense mechanisms
  publication-title: ACM SIGCOMM Computer Communication Review
– start-page: 179
  year: 2012
  end-page: 188
– year: 2015
– volume: 57
  start-page: 3446
  issue: 17
  year: 2013
  end-page: 3462
  article-title: Distribution‐based anomaly detection via generalized likelihood ratio test: A general maximum entropy approach
  publication-title: Computer Networks
– start-page: 139
  year: 2000
  end-page: 146
– start-page: 37
  year: 2012
  end-page: 50
– volume: 27
  start-page: 835
  year: 2005
  end-page: 850
  article-title: Combining multiple clusterings using evidence accumulation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 77
  year: 2007
  end-page: 82
– start-page: 424
  year: 2009
  end-page: 432
– volume: 13
  start-page: 1219
  year: 2005
  end-page: 1232
  article-title: What's new: finding significant differences in network data streams
  publication-title: IEEE/ACM Transactions on Networking
– start-page: 128
  year: 2009
  end-page: 135
– volume: 6
  start-page: 90
  year: 2004
  end-page: 105
  article-title: Subspace clustering for high dimensional data: a review
  publication-title: SIGKDD Exploration Newsletter
– volume: 20
  start-page: 1788
  issue: 6
  year: 2012
  end-page: 1799
  article-title: Anomaly extraction in backbone networks using association rules
  publication-title: IEEE/ACM Transactions on Networking
– volume: 55
  start-page: 3485
  issue: 15
  year: 2011
  end-page: 3502
  article-title: Accurate network anomaly classification with generalized entropy metrics
  publication-title: Computer Networks
– start-page: 1
  year: 2011
  end-page: 5
– volume: 73
  start-page: 224
  issue: 0
  year: 2014
  end-page: 243
  article-title: Traffic anomaly diagnosis in internet backbone networks: a survey
  publication-title: Computer Networks
– start-page: 234
  year: 2003
  end-page: 247
– volume: 16
  start-page: 1241
  issue: 6
  year: 2008
  end-page: 1252
  article-title: Internet traffic behavior profiling for network security monitoring
  publication-title: IEEE/ACM Transactions on Networking
– start-page: 711
  year: 2009
  end-page: 719
– volume: 41
  start-page: 15:1
  issue: 3
  year: 2009
  end-page: 15:58
  article-title: Anomaly detection: a survey
  publication-title: ACM Computing Surveys
– volume: 177
  start-page: 3799
  year: 2007
  end-page: 3821
  article-title: A hybrid machine learning approach to network anomaly detection
  publication-title: Information Sciences
– volume: 21
  start-page: 299
  year: 2009
  end-page: 326
  article-title: Subspace and projected clustering: experimental evaluation and analysis
  publication-title: Knowledge and Information Systems
– volume: 3
  start-page: 583
  year: 2003
  end-page: 617
  article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions
  publication-title: Journal of Machine Learning Research
– start-page: 226
  year: 1996
  end-page: 231
– start-page: 219
  year: 2004
  end-page: 230
– start-page: 267
  year: 2010
  end-page: 278
– start-page: 1
  year: 2011
  end-page: 8
– volume: 6
  start-page: 17
  issue: 1
  year: 2014
  end-page: 53
  article-title: A hybrid technique using PCA and wavelets in network traffic anomaly detection
  publication-title: International Journal of Mobile Computing and Multimedia Communications
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  article-title: Data clustering: 50 years beyond k‐means
  publication-title: Pattern Recognition Letters
– start-page: 91
  year: 2009
  end-page: 100
– start-page: 1
  year: 2014
  end-page: 9
– volume: 33
  start-page: 1
  issue: 1
  year: 2014
  end-page: 34
  article-title: Towards an unsupervised method for network anomaly detection in large datasets
  publication-title: Computing and Informatics
– volume: 11
  start-page: 41
  issue: 3
  year: 2011
  end-page: 51
  article-title: A Hough‐transform‐based anomaly detector with an adaptive time interval
  publication-title: ACM SIGAPP Applied Computing Review
– ident: e_1_2_8_28_1
  doi: 10.1007/978-3-642-28537-0_18
– ident: e_1_2_8_50_1
  doi: 10.1145/1327452.1327492
– ident: e_1_2_8_11_1
  doi: 10.1007/978-1-4615-0953-0_4
– ident: e_1_2_8_38_1
  doi: 10.1145/1298306.1298316
– ident: e_1_2_8_14_1
  doi: 10.1145/1080091.1080118
– ident: e_1_2_8_3_1
– ident: e_1_2_8_36_1
  doi: 10.1109/ALLERTON.2009.5394858
– ident: e_1_2_8_27_1
  doi: 10.1016/j.comnet.2011.07.008
– ident: e_1_2_8_44_1
  doi: 10.1109/TPAMI.2005.113
– ident: e_1_2_8_49_1
  doi: 10.1145/276305.276314
– ident: e_1_2_8_4_1
– ident: e_1_2_8_2_1
  doi: 10.1109/NTMS.2011.5721067
– ident: e_1_2_8_29_1
  doi: 10.1145/2254756.2254821
– ident: e_1_2_8_10_1
– ident: e_1_2_8_9_1
  doi: 10.1109/TNET.2012.2187306
– ident: e_1_2_8_35_1
  doi: 10.1145/1456659.1456660
– ident: e_1_2_8_7_1
  doi: 10.1145/1352664.1352675
– ident: e_1_2_8_15_1
– ident: e_1_2_8_30_1
  doi: 10.1109/ITC.2014.6932930
– ident: e_1_2_8_12_1
– ident: e_1_2_8_31_1
  doi: 10.1016/j.comnet.2013.07.028
– ident: e_1_2_8_40_1
  doi: 10.1109/INFCOM.2009.5061947
– ident: e_1_2_8_52_1
  doi: 10.1007/s10115-009-0226-y
– ident: e_1_2_8_18_1
  doi: 10.1109/ICASSP.2015.7179029
– ident: e_1_2_8_48_1
– volume: 3
  start-page: 583
  year: 2003
  ident: e_1_2_8_47_1
  article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_32_1
  doi: 10.1016/j.comnet.2011.08.015
– ident: e_1_2_8_37_1
  doi: 10.1109/INFCOM.2009.5061979
– ident: e_1_2_8_39_1
  doi: 10.1016/j.ins.2007.03.025
– ident: e_1_2_8_17_1
– ident: e_1_2_8_33_1
  doi: 10.1145/2535372.2535411
– ident: e_1_2_8_42_1
  doi: 10.4018/ijmcmc.2014010102
– ident: e_1_2_8_21_1
  doi: 10.1145/1851182.1851215
– ident: e_1_2_8_8_1
  doi: 10.1016/j.comcom.2012.12.002
– ident: e_1_2_8_19_1
  doi: 10.1145/1330107.1330147
– ident: e_1_2_8_16_1
  doi: 10.1145/637201.637210
– ident: e_1_2_8_43_1
  doi: 10.1145/1007730.1007731
– ident: e_1_2_8_20_1
  doi: 10.1145/948205.948236
– ident: e_1_2_8_22_1
  doi: 10.1145/1541880.1541882
– ident: e_1_2_8_23_1
  doi: 10.1016/j.comnet.2014.08.007
– ident: e_1_2_8_45_1
  doi: 10.1109/TNET.2005.860096
– volume: 33
  start-page: 1
  issue: 1
  year: 2014
  ident: e_1_2_8_41_1
  article-title: Towards an unsupervised method for network anomaly detection in large datasets
  publication-title: Computing and Informatics
– ident: e_1_2_8_5_1
  doi: 10.1145/1921168.1921179
– ident: e_1_2_8_25_1
  doi: 10.1007/978-3-642-05284-2_6
– ident: e_1_2_8_13_1
  doi: 10.1145/1015467.1015492
– ident: e_1_2_8_26_1
  doi: 10.1109/INFCOM.2010.5462151
– ident: e_1_2_8_51_1
  doi: 10.14778/1687627.1687770
– ident: e_1_2_8_6_1
  doi: 10.1145/2034594.2034598
– ident: e_1_2_8_46_1
  doi: 10.1016/j.patrec.2009.09.011
– ident: e_1_2_8_34_1
  doi: 10.1145/997150.997156
– ident: e_1_2_8_24_1
  doi: 10.1109/TNET.2007.911438
SSID ssj0002197
ssib017094102
ssib000451940
Score 2.1509817
Snippet Summary Network anomalies and attacks represent a serious challenge to ISPs, who need to cope with an increasing number of unknown events that put their...
Network anomalies and attacks represent a serious challenge to ISPs, who need to cope with an increasing number of unknown events that put their networks'...
Summary Network anomalies and attacks represent a serious challenge to ISPs, who need to cope with an increasing number of unknown events that put their...
SourceID hal
proquest
crossref
wiley
nii
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 283
SubjectTerms [INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI]
Anomalies
Anomaly Correlation
Clustering
Computer information security
Computer Science
Correlation analysis
Detectors
Filtering Rules
MAWILab
Networking and Internet Architecture
Networks
Outliers Detection
Signatures
Traffic engineering
Traffic flow
Unsupervised Anomaly Detection & Characterization
unsupervised anomaly detection & characterization, clustering, outliers detection, anomaly correlation, filtering rules, MAWILab
Title Hunting attacks in the dark: clustering and correlation analysis for unsupervised anomaly detection
URI https://api.istex.fr/ark:/67375/WNG-R4SH98W4-T/fulltext.pdf
https://cir.nii.ac.jp/crid/1871991017725156608
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnem.1903
https://www.proquest.com/docview/1709694156
https://www.proquest.com/docview/1753510545
https://laas.hal.science/hal-01927394
Volume 25
WOSCitedRecordID wos000360842100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-1190
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002197
  issn: 1055-7148
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RXQ5w4F0RaJFBCE6heTm2uVXQZQ9lhUqr9mbZjiNWtNlqk1T8fGaSbLSVQELikiiZieTYM-PPyfgbgLfCxYWSpQmLyJowc9aHNs0VOp4rShcJJbjtik2IxUJeXKhvQ1Yl7YXp-SHGD27kGV28Jgc3tj7YIg31Vx9wNkt3YJqg2fIJTD-fzM6OxziMvtiVVok4DwWi_g31bJQcbJ69NRnt_KBUyCn17i-8qpbLW6hzG7t2k8_s4f80-xE8GCAnO-xt5DHc8dUTuL9FRPgU3LyvGMFM09Cme7asGCJDVpj1z4_MXbZEp9DJq4I5KujRp9Dhdc9pwhD7sraq22uKPbUvULK6QhkrfNNle1XP4Gx2dPppHg7lF0JHrGyho-p9OTexs9ZnTvKyLK20uTK5FAqhmsxz6XCBgkEh4l7GacGT3HhZWmEKn6S7MKlWlX8OzCfWiFLEXFiRycSqzHiVEDl9Ip2NbQDvN-Og3cBNTiUyLnXPqpxo7DZN3RbA61Hzuufj-IPOGxzKUUwE2vPDY033CNCKVGU3cQDvupEe1bBDKclNcH2--KJPsu9zJc8zfRrAPpoCNouOMa4vEVFjGBMIDBEKRzKAvY2R6MH_ax0LXBoqWhxjg0cxei79jjGVX7Wkw1OCtxnHtnQm89c30oujr3R-8a-KL-EeIjveJ8PtwaRZt34f7rqbZlmvXw2e8hsmTBQI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbaLhJw4I0ItGAQglNoXo5tOFXQJYhthMpW7c2yHUesaLPVblLx85nJS1sJJCQuiZKZSI49M_7sTL4h5DW3YSFFqf0iMNpPrHG-iVMJjmeL0gZccmbaYhM8z8XZmfy2RT4M_8J0_BDjhht6Rhuv0cFxQ3p_gzXUXbyD6SzeJpMErAjMe_LpeHoyGwMxOGNbWyVgzOcA-wfu2SDaH569Nhtt_8BcyAl27y-4qhaLa7BzE7y2s8_07n-1-x6504NOetBZyX2y5aoH5PYGFeFDYrOuZgTVdY2_3dNFRQEb0kKvfr6n9rxBQoVWXhXUYkmPLokOrjtWEwrolzbVurnE6LN2BUiWFyCjhavbfK_qETmZHs4_Zn5fgMG3yMvmW6zflzIdWmNcYgUry9IIk0qdCi4BrIk0FRaWKBAWAuZEGBcsSrUTpeG6cFH8mOxUy8o9IdRFRvOSh4wbnojIyEQ7GSE9fSSsCY1H3g4DoWzPTo5FMs5Vx6scKeg2hd3mkZej5mXHyPEHnVcwlqMYKbSzg5nCewhpeSyTq9Ajb9qhHtWgQzHNjTN1mn9Wx8n3TIrTRM09sge2AM3CYwgrTMDUEMg4QEMAw4HwyO5gJaqPAGsVclgcSlweQ4NHMfgufpDRlVs2qMNiBLgJg7a0NvPXN1L54RGen_6r4gtyM5sfzdTsS_71GbkFOI91qXG7ZKdeNW6P3LBX9WK9et67zW-pLhf4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tLULwwDcisIFBCJ6y5cuxDU8TWymiVNPYtL1ZtuOIii2t-jHx53OXpFEngYTES6LkLpJj-86_S86_A3grXFwoWZqwiKwJM2d9aNNcoeG5onSRUILbutiEGI_lxYU63oKP670wDT9E98GNLKP212TgflaU-xusof5qD5ezdBv6GdWQ6UH_8GRwNuocMRpjXVsl4jwUCPvX3LNRsr9-9sZqtP2DciH71L2_8KqaTG7Azk3wWq8-g_v_1e4HcK8FneygmSUPYctXj-DuBhXhY3DDpmYEM8slbbtnk4ohNmSFmf_8wNzliggVanlVMEclPZokOrxuWE0Yol-2qharGXmfhS9QMr1CGSv8ss73qp7A2eDo9NMwbAswhI542UJH9ftybmJnrc-c5GVZWmlzZXIpFII1mefSYYiCbiHiXsZpwZPceFlaYQqfpE-hV00r_wyYT6wRpYi5sCKTiVWZ8SohevpEOhvbAN6vB0K7lp2cimRc6oZXOdHYbZq6LYDXneasYeT4g84bHMtOTBTaw4ORpnsEaUWqsus4gHf1UHdq2KGU5ia4Ph9_1ifZ96GS55k-DWAX5wI2i44xRpiIqdGRCYSGCIYjGcDOepbo1gMsdCwwOFQUHmODOzHaLv2QMZWfrkiHpwRwM45tqefMX99Ij4--0fn5vyq-gtvHhwM9-jL--gLuIMzjTWbcDvSW85XfhVvuejlZzF-2VvMbENUXcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hunting+attacks+in+the+dark%3A+clustering+and+correlation+analysis+for+unsupervised+anomaly+detection&rft.jtitle=International+journal+of+network+management&rft.au=Mazel%2C+Johan&rft.au=Casas%2C+Pedro&rft.au=Fontugne%2C+Romain&rft.au=Fukuda%2C+Kensuke&rft.date=2015-09-01&rft.issn=1055-7148&rft.eissn=1099-1190&rft.volume=25&rft.issue=5&rft.spage=283&rft.epage=305&rft_id=info:doi/10.1002%2Fnem.1903&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-7148&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-7148&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-7148&client=summon