Modules for Experiments in Stellar Astrophysics (MESA): Time-dependent Convection, Energy Conservation, Automatic Differentiation, and Infrastructure
We update the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar Astrophysics ( MESA ). The new auto _ diff module implements automatic differentiation in MESA , an enabling capability that alleviates the need for hard-coded analytic expressions or finite-diffe...
Uložené v:
| Vydané v: | The Astrophysical journal. Supplement series Ročník 265; číslo 1; s. 15 - 52 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Saskatoon
The American Astronomical Society
01.03.2023
IOP Publishing American Astronomical Society |
| Predmet: | |
| ISSN: | 0067-0049, 1538-4365, 1538-4365 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We update the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar Astrophysics (
MESA
). The new
auto
_
diff
module implements automatic differentiation in
MESA
, an enabling capability that alleviates the need for hard-coded analytic expressions or finite-difference approximations. We significantly enhance the treatment of the growth and decay of convection in
MESA
with a new model for time-dependent convection, which is particularly important during late-stage nuclear burning in massive stars and electron-degenerate ignition events. We strengthen
MESA
’s implementation of the equation of state, and we quantify continued improvements to energy accounting and solver accuracy through a discussion of different energy equation features and enhancements. To improve the modeling of stars in
MESA
, we describe key updates to the treatment of stellar atmospheres, molecular opacities, Compton opacities, conductive opacities, element diffusion coefficients, and nuclear reaction rates. We introduce treatments of starspots, an important consideration for low-mass stars, and modifications for superadiabatic convection in radiation-dominated regions. We describe new approaches for increasing the efficiency of calculating monochromatic opacities and radiative levitation, and for increasing the efficiency of evolving the late stages of massive stars with a new operator-split nuclear burning mode. We close by discussing major updates to
MESA
’s software infrastructure that enhance source code development and community engagement. |
|---|---|
| Bibliografia: | Stars and Stellar Physics AAS41218 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 scopus-id:2-s2.0-85149144782 |
| ISSN: | 0067-0049 1538-4365 1538-4365 |
| DOI: | 10.3847/1538-4365/acae8d |